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ABSTRACT

Factorization machine (FM) variants are widely used in item recommendation sys-
tems that operate under strict throughput and latency requirements, such as online
advertising systems. Their main strength is their ability to model pairwise feature
interactions while being resilient to data sparsity by learning factorized represen-
tation, and having computational graphs that allow fast inference. Moreover, when
items are ranked as a part of a query for each incoming user, these graphs facil-
itate computing the portion stemming from the user and context fields only once
per query, and the computational cost for each ranked item is proportional only to
the number of fields that vary among the ranked items. Consequently, in terms of
inference cost, the number of user or context fields is practically unlimited.
More advanced variants of FMs, such as field-aware and field-weighted FMs, pro-
vide better accuracy by learning a representation of field-wise interactions, but
require computing all pairwise interaction terms explicitly. In particular, the com-
putational cost during inference is proportional to the square of the number of
all fields, including user, context, and item. This is prohibitive in many systems
when the number of fields is large, and imposes a limit on the number of user
and context fields. To mitigate this caveat, heuristic pruning of low intensity field
interactions is commonly used to accelerate inference.
In this work we propose an alternative to the pruning heuristic in field-weighted
FMs using a diagonal plus symmetric low-rank decomposition, that reduces the
computational cost of inference, by allowing it to be proportional to the number
of item fields only. Using a set of numerical experiments, we show that aggressive
rank reduction outperforms similarly aggressive pruning, both in terms of accu-
racy and item recommendation speed. Beyond computational complexity analy-
sis, we corroborate our claim of faster inference experimentally having deployed
our solution to a major online advertising system, where we observed significant
ranking latency improvements.

1 INTRODUCTION

Recommendation systems driven by machine-learned predictive models are widely used throughout
the industry for a large variety of applications, from movie recommendation, to bidding in ad auc-
tions. In some applications, recommendation quality is the main objective, where sophisticated and
computationally complex deep learning techniques are used to capture the affinity between the users
and the recommended items. But other applications require striking an intricate balance between the
accuracy of the predictive models, their training and inference speed. For example, real-time bidding
systems in programmatic advertising are required to compute a ranking score for a large number of
ads in a matter of a few milliseconds, and to train quickly in order to adapt to the ever-changing ad
marketplace conditions. Such systems often deploy variants of the celebrated factorization machine
(FM) models (Rendle, 2010a) in order to overcome data sparsity issues, while excelling at achieving
a good balance between prediction accuracy and speed.

Rendle (2010a) also showed that while FMs model pairwise feature interactions, whose number is
quadratic in the number of features, there is an equivalent formulation of FMs whose computational
complexity is linear in the number features. This already facilitates fast training. Moreover, when
ranking items for a given user in a given context, the user and context features are the same for
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all items. The equivalent formulation allows caching the user and context computation results once,
meaning that the computational cost per item is linear in the number of item features only. Therefore,
factorization machines are also extremely efficient for ranking.

Many real world applications involve large-scale multi-field data (e.g. gender, item category). How-
ever, FMs have a limited predictive accuracy, since they fail to capture the fact that the same feature
can behave differently when interacting with features from different fields. To resolve this issue,
many variants that incorporate field information have been proposed in recent years, including field-
aware (Juan et al., 2016a), field-weighted (Pan et al., 2018a), and field-embedded (Pande, 2021; Sun
et al., 2021a) factorization machines. Unfortunately, none of these variants admit an equivalent for-
mulation whose computational complexity is linear in the number of features. This poses a challenge
when building cost-effective, large-scale real-time item recommendation systems, as the additional
gain from incorporating field information comes at the cost of additional computing power.

The focus of this work is the field-weighted factorization machine (FwFM) variant, under the large-
scale and low inference latency regime. It is similar to a regular factorization machine, with an
additional symmetric matrix of parameters modeling the strength of pairwise field interactions. It
is attractive in practice due to the fact that in terms of memory consumption and the number of
parameters, it is on par with a regular FM. In addition, it is less prone to over-fitting, as pointed out
by Juan et al. (2016a) and Pan et al. (2018a), and admits a simple heuristic for reducing the com-
putational complexity at the inference stage by pruning low-magnitude field interactions. However,
pruning has some cost in terms of accuracy. In this work, we devise a different way to significantly
reduce the computational cost of field-weighted factorization machines by decomposition the matrix
of pairwise field interactions. Motivated by the visualization of the field interaction matrices in Pan
et al. (2018a), that resembles a block-like structure due to field groups exhibiting similar interac-
tion behavior, we employ the well-known diagonal plus low-rank (DPLR) matrix decomposition,
to produce an FwFM variant we call DPLR-FwFM. We show that our idea facilitates utilizing the
additional accuracy provided by incorporating field information, while benefiting from a per-item
computational cost that is linear in the number of item fields, albeit slower than regular FM by a
factor proportional to the rank of the low-rank part of the decomposition.

We evaluate our technique on public datasets, and on proprietary data from an large-scale online
advertising system of a major company. Our results demonstrate that, in practice, DPLR-FwFM
with extremely low ranks outperform aggressively pruned FwFM models both in terms of latency
and accuracy. . Finally, we deploy our solution in an online advertising system of a major company,
and show that the latency incurred by a prediction module based on our DPLR-FwFM model is
better than that of the module currently used in production and is based on a pruned FwFM.

To summarize, the main contributions of our paper are:

1. Reformulate FwFM models to make their computational cost on par, or higher by a small
constant factor of our choice, compared to regular FMs, and significantly cheaper than
FwFMs. This, while benefiting from the higher accuracy provided by incorporating field
information.

2. We show that the accuracy of the obtained models is on par or higher than pruned FwFM
models on public and proprietary data-sets.

3. We demonstrate that, in practice, in a real-world online advertising system, our approach
can significantly reduce the computational costs, thus achieving lower latency with the
same compute power, or reducing the compute power required to achieve a given latency.

2 RELATED WORK

Recommendation technologies such as Collaborative Filtering (CF) (Goldberg et al., 1992), help
users discover new items based on past preferences. Matrix Factorization (MF) is a leading ap-
proach in CF, addressing data expansion and sparsity by using a latent factor model (Koren et al.,
2009). Such systems find applications in various domains, including movie recommendation (Bell
& Koren, 2007), music recommendation (Aizenberg et al., 2012), ad matching (Aharon et al., 2013)
and more. Factorization machine (FM) variants excel in benchmark tabular classification tasks,
particularly when dealing with a large number of interactions and requiring fast predictions. This
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family includes several members as the original FM (Rendle, 2010b), field-aware factorization ma-
chine (FFM) (Juan et al., 2016b), field weighted factorization machine (FwFM) (Pan et al., 2018b)
and the field-matrixed factorization machine (FmFM) (Sun et al., 2021b). For handling a wider
range of features with non-linear interactions, Cheng et al. (2016) presented Wide & Deep learning
approach, which trains a network that combines a linear model and a deep neural network. Their
work was followed by a wave of deep learning techniques aimed at improving prediction accuracy,
while also being sensitive to low-latency efficiency. An essential application that motivated such
works, and also the focus of this work, is CTR prediction for online advertising. It has been the
topic of many techniques as DeepFM (Guo et al., 2017), xDeepFM (Lian et al., 2018), DCN (Wang
et al., 2017), AutoInt (Song et al., 2019), DeepLight (Deng et al., 2021) and more. While these meth-
ods offer improved predictions, their high latency and long training time cause many applications to
still prefer FM-based approaches.

Low-rank factorizations have emerged as a versatile and powerful tool in machine learning (ML)
and artificial intelligence (AI), finding applications across a spectrum of domains. For instance,
low-rank matrix-factorization in the context of recommendation systems (Koren et al., 2009; Rendle,
2010b), in natural language processing for topic modeling, and dimensionality reduction (Blei et al.,
2003), and more recently, for large-scale pre-training and fine-tuning of models on diverse natural
language understanding tasks (Hu et al., 2021). In cases where the involved matrices are full-ranked
and low-rank factorizations are less effective, diagonal plus low-rank factorization (DPLR) may
be considered (see the work of Saunderson et al. (2012) and references therein). DPLR involves
approximating a given matrix, often a large, and high-dimensional one, by decomposing it into
the sum of two matrices: a diagonal matrix and a low-rank matrix. In statistics, DPLR is used
to approximate high-dimensional covariance matrices of multivariate normal distributions (Liutkus
& Yoshii, 2017; Ong et al., 2018). In ML, DPLR is used for enhancing the efficiency of models
(see the work of Bingham et al. (2019) for an ML library that uses DPLR covariance matrices). For
instance, DPLR-based methods have been employed in deep learning architectures for more efficient
and accurate models (Zhao et al., 2016; Tomczak et al., 2020; Mishkin et al., 2018). Inspired by
an observation of Lin et al. (2018), that the regular FM field-interaction matrix equals a rank-one
matrix minus the identity matrix, we apply DPLR to FwFM and improve its training and inference
efficiency.

One FM like approach that resembles our work is of Almagor & Hoshen (2022), where the authors
apply a low-rank factorization to a generalized FM family representation (that includes FM, FFM,
FwFM and FmFM as special cases). At first glance, their method seems to have much in common
with our work, as both works use low-rank factorization for the fields interaction matrix. How-
ever, a closer examination reveals that while Almagor & Hoshen (2022) method may reduce the
cost of computing the interaction of a single pair of fields, our method avoids computing pairwise
interactions altogether. Thus, the methods differ significantly.

3 BACKGROUND AND PROBLEM FORMULATION

In this section, we provide a detailed account of the computational efficiency properties of factoriza-
tion machines in recommending items and the efficiency drop introduced by switching to field-aware
variants. We then formulate the problem of reducing the gap between the two.

3.1 EFFICIENCY OF FACTORIZATION MACHINES

Given a feature vector x ∈ Rn, the FM model proposed by Rendle (2010a) computes

ΦFM(x; b0, b,w1, . . . ,wn) = b0 + ⟨b,x⟩+
n∑

i=1

n∑
j=i+1

⟨xiwi, xjwj⟩,

where b0 ∈ R, b ∈ Rn, and w1, . . . ,wn ∈ Rk are trainable parameters. Overall, the model has
1+n+nk trainable parameters, and the direct formula above for ΦFM can be computed in O(n2k)
time. But as Rendle (2010a) pointed out, the pairwise interaction terms can be re-written as

n∑
i=1

n∑
j=i+1

⟨xiwi, xjwj⟩ =
1

2

(∥∥∥ n∑
i=1

xiwi

∥∥∥2 − n∑
i=1

∥∥∥xiwi

∥∥∥2.) (1)
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This dramatically reduces the time complexity to O(nk).

In practice, the feature vector encodes a row in a tabular data-set of past interactions between users
and items, whose columns, often named fields, contain categorical features. Some columns describe
the context (including the user), whereas others describe the item. Thus, x formally consists of
field-wise one-hot encodings, for example:

x = (0, 1, 0, 0, 0,︸ ︷︷ ︸
field 1

1, 0, 0, 0,︸ ︷︷ ︸
field 2

. . . 0, 0, 1, 0, 0, 0,︸ ︷︷ ︸
field mc︸ ︷︷ ︸

context fields

0, 0, 1, 0,︸ ︷︷ ︸
field mc + 1

. . . 0, 0, 0, 0, 1︸ ︷︷ ︸
field m︸ ︷︷ ︸

item fields

)T ,

Therefore, when computing ΦFM we can only use the m nonzero entries of x corresponding to the
m fields. We note that there may be fields having multiple values, such as a list of movie genres, but
we defer their treatment to the discussion of FwFM models in the sequel.

Formally, for a given feature vector x, let ℓ1, . . . , ℓm denote the nonzero indices, and define vi ≡
wℓi . Hence, the formula in equation 1 can be reformulated by summing over the fields, rather than
the features. Moreover, we can split the summation over all fields to a summation over the context
fields C = {1, . . . ,mc} and the item fields I = {mc + 1, . . . ,m}, and obtain:

n∑
i=1

n∑
j=i+1

⟨xiwi, xjwj⟩ =
m∑
i=1

m∑
j=i+1

⟨vi,vj⟩ (2a)

=
1

2

(∥∥∥ m∑
i=1

vi

∥∥∥2 − m∑
i=1

∥∥∥vi

∥∥∥2) (2b)

=
1

2

(∥∥∥∑
i∈C

vi +
∑
i∈I

vi

∥∥∥2 −∑
i∈C

∥∥∥vi

∥∥∥2 −∑
i∈I

∥∥∥vi

∥∥∥2) (2c)

By equation 2c, we see that when ranking a large number of items for a given context, the sums over
C can be computed only once. For each item, the computational complexity is O(|I|k), namely, and
it depends largely on the number of item fields. Thus, in practice, we can use a model with a large
number of user or context features to achieve a high degree of personalization, without incurring a
significant computational cost during item ranking.

3.2 INEFFICIENCY OF FIELD-WEIGHTED FACTORIZATION MACHINES

Field-weighted factorization machines (FwFM) (Pan et al., 2018a) model the varying behavior of a
feature belonging to some field when interacting with features from different fields in the form of a
trainable symmetric field interaction matrix R ∈ Rm×m. Its components Ri,j model the intensity
of the interaction between field i and field j. The model’s output is

ΦFwFM(x; b0, b,w1, . . . ,wn,R) = b0 + ⟨b,x⟩+
n∑

i=1

n∑
j=i+1

⟨xiwi, xjwj⟩Rfi,fj ,

where fi is the field corresponding to feature i. Pan et al. (2018a) demonstrate that this model family
achieves a significantly higher accuracy compared to a regular FM, and is comparable with other
field-aware variants. One attractive property of this variant is its number of parameters and memory
requirements - it has only m(m−1)

2 additional parameters compares to a regular FM comprising the
above-diagonal entries of the field interaction matrix R.

Similarly to equation 2a, under the one-hot encoding assumption, given an input x, the pairwise
interaction term can be written in terms of the field vectors v1, . . . ,vm that are a subset of the
embedding vectors w1, . . . ,wn that correspond to the m nonzero entries of x:

n∑
i=1

n∑
j=i+1

⟨xiwi, xjwj⟩Rfi,fj =

m∑
i=1

m∑
j=i+1

⟨vi,vj⟩Ri,j (3)

However, the time complexity of computing its output ΦFwFM is dominated by the O(m2k) com-
plexity of computing the pairwise term in equation 3, which is quadratic in the total number of
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fields. Compared to the O(|I|k) per item complexity of a regular FM, which is linear in the number
of item fields, FwFMs pose a serious challenge for applications where inference speed is critical.
While the quadratic complexity property is shared by many other field-aware variants, such as Juan
et al. (2016a); Pande (2021); Sun et al. (2021a), in this work, we focus on addressing this challenge
for FwFM models.

The one-hot encoding assumption does not cover the case when a field has multiple values, such
as a list of movie genres. In this case, we assume that multiple components of a field’s encoding,
that correspond to multiple values, may be nonzero. We handle this case by assuming that a field
does not interact with itself, i.e. Rf,f = 0 for any field f . A direct consequence is that the pairwise
interaction term can be written in terms of field vectors, as in equation 3, but each vector vi may
be a weighted sum of the corresponding feature embedding vectors. For example, a movie with 3
genres may be encoded by placing 1

3 in the corresponding components of x, which will result in an
average of the genre embedding vectors.

3.3 PROBLEM FORMULATION

A typical approach used in practice to speed up inference is pruning the matrix R by zeroing-out
entries whose magnitude is below a threshold, as suggested by Pan et al. (2018a) and Sun et al.
(2021a). However, as we show in section 5, aggressive pruning reduces the accuracy of the model.
In this work, we aim to devise a method to achieve inference speed that is proportional to the number
of item fields, and is only ρ times slower than a regular FM, where 0 < ρ ≪ m is a configurable
factor. This, while retaining an accuracy that is comparable with that of a regular FwFM model.

4 LOW RANK FIELD-WEIGHTED FACTORIZATION MACHINES

In this section we reformulate the pairwise field interaction term in equation 3 in an equivalent,
but significantly more efficient manner. Throughout this section, we assume that the field vectors
v1, . . . ,vm ∈ Rk are embedded into the rows of the matrix V ∈ Rm×k:

V =


—v1 —
—v2 —

...
—vm —

 (4)

Moreover, since equation 3 uses only the upper triangular part of R, we may choose the remaining
entries arbitrarily to our convenience, and throughout this section we assume that R is symmetric
with a zero diagonal. Under this assumption, equation 3 can be re-written as

m∑
i=1

m∑
j=i+1

⟨vi,vj⟩Ri,j =
1

2

m∑
i=1

m∑
j=1

⟨vi,vj⟩Ri,j . (5)

In the sequel, we describe our method to efficiently compute the double sum in the right-hand side
of equation 5. We first review the mathematical background, and then the complete method.

4.1 MATHEMATICAL FOUNDATION

In this section we present a technical result that provides the motivation for factorizing the ma-
trix R to obtain an efficient algorithm. Then, we present an example explaining why the widely
used low-rank factorization lacks expressive power, and use it to motivate a diagonal plus low-rank
factorization.

The following identity let us reformulate the pairwise interaction formula as the one in equation 5
in a matrix form, that is inspired by the reformulation in Lin et al. (2018) for regular FMs.

Identity 1. Let A ∈ Rm×k. Then, for any matrix Q ∈ Rm×m we have
m∑
i=1

m∑
j=1

⟨Ai,:,Aj,:⟩Qi,j = Tr(ATQA) (6)
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The proof can be found in Appendix A.

Since R is a real symmetrical square matrix its eigenvalue decomposition is composed of real eigen-
values. If the eigenvalues decay quickly, we can use an approximation obtained by using the ρ largest
magnitude eigenvalues, for some 0 < ρ ≪ m, in the form R = UT diag(e)U , where U ∈ Rρ×m

and e ∈ Rρ.

However, a low rank decomposition lacks the expressive power we need. To see why, consider a
regular FM, which is equivalent to an FwFM where all field interactions are 1, meaning that the
field-interaction matrix is:

RFM =


0 1 . . . 1
1 0 . . . 1
...

...
. . .

...
1 1 . . . 0


We have rank(RFM) = m, and its eigenvalues are {m − 1,−1, . . . ,−1}, and hence a low-rank
approximation within a reasonable accuracy is impossible. Since a low-rank decomposition does
not even have enough expressive to model a regular FM, an FwFM is clearly out of reach. The
obstacle stems from the zero diagonal of R, which is an “anomaly” in the matrix. But as Lin et al.
(2018) pointed out, this anomaly can be easily handled using a diagonal matrix:

RFM = 11T − I, (7)

where 1 is a column vector whose components are all 1. In other words, the matrix RFM can be
decomposed into a sum of a diagonal matrix and a low-rank matrix. Motivated by the above, we
use a diagonal plus low rank (DPLR) decomposition to facilitate fast inference, as is shown in the
proposition below. The low-rank part resembles the eigenvalue decomposition, to be able to model
arbitrary symmetric matrices, including indefinite ones.
Proposition 1. Let V be as defined in equation 4, let R ∈ Rm×m be a symmetric matrix, and
suppose that U ∈ Rρ×m, e ∈ Rρ, and d ∈ Rm are such that

R = UT diag(e)U + diag(d). (8)

Define P = UV . Then,
m∑
i=1

m∑
j=1

⟨vi,vj⟩Ri,j =

m∑
i=1

di∥vi∥2 +
ρ∑

i=1

ei∥Pi,:∥2 (9)

The proof can be found in Appendix A. Now we are ready to present our solution based on proposi-
tion 1.

4.2 THE MODIFIED MODEL AND FAST INFERENCE ALGORITHM

Our solution consists of a modification of the FwFM model, and an algorithm that achieves inference
during ranking in O(ρ|I|k) per item.

4.2.1 THE DIAGONAL PLUS LOW RANK FWFM MODEL

Instead of learning the field interaction matrix R directly, we learn its decomposition in the diagonal
plus low-rank form. Since diag(R) = 0, the diagonal component is fully determined by the low-
rank decomposition. Formally, we replace the learned parameter R, with the learned parameters
U ∈ Rρ×m and e ∈ Rρ×m, where ρ is a hyper-parameter. The matrix R is formally defined as

R = UT diag(e)U + diag(d), where d ≡ −diag of(UT diag(e)U). (10)

In other words, we ensure that R is defined to be a symmetric matrix with a zero diagonal by
forming a symmetric eigenvalue-like decomposition, and subtracting the diagonal of the resulting
matrix. The formal definition of R allows us to apply proposition 1, but we do not actually need to
compute the matrix R itself at any stage. Instead, we use the proposition, and replace the FwFM
pairwise interaction term in equation 3, with the outcome of the proposition. Namely, we compute
P = UV in O(ρmk) time, and then compute 1

2

(∑m
i=1 di∥vi∥2 +

∑ρ
i=1 ei∥Pi,:∥2

)
in O(ρk+mk)

time.
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We call the resulting model a diagonal plus low-rank field weighted factorization machine, or DPLR-
FwFM. Although this is not our main objective, a nice byproduct is that training epochs also become
slightly faster, since the above two steps cost O(ρmk) time instead the naı̈ve O(m2k). This is
important for some online advertising systems that require deploying a ’fresh’ model as soon as
possible, to quickly adapt to the quickly evolving marketplace conditions (Sculley et al., 2015;
Lommatzsch et al., 2017; Zhang et al., 2020). However, for inference during ranking we need
to take the result of the proposition one step further.

4.2.2 FAST INFERENCE FOR ITEM RANKING

Observe that the field vectors embedded into the rows of V can be decomposed into context and
item vectors:

V =

[
VC

VI

]
The corresponding columns of U can be decomposed similarly:

U = [UC UI ]

Consequently, matrix P can be written as:

P = UCVC +UIVI ,

and the sum
∑m

i=1 di∥vi∥2 can also be decomposed as

m∑
i=1

di∥vi∥2 =
∑
i∈C

di∥vi∥2 +
∑
i∈I

di∥vi∥2

To summarize, during ranking, the pairwise interaction term of each item during ranking using
DPLR-FwFM can be computed by the following algorithm:

Algorithm 1 - DPLR FwFM item pairwise interaction for inference with cached context

Input:
• The field matrix V , partitioned into VC , VI

• U ∈ Rρ×m, d ∈ Rm, e ∈ Rρ, that form the decomposition R = UT diag(e)U+diag(d),
with U partitioned into UC , UI

Output: The pairwise interactions
∑m

i=1

∑m
j=1⟨vi,vj⟩Ri,j

Steps:
1. Once per context, compute:

(a) Compute PC = VCUC
(b) Compute sC =

∑
i∈C di∥vi∥2

2. Compute P = Pc +UIVI

3. Return sc +
∑

i∈I di∥vi∥2 +
∑ρ

i=1 ei∥Pi,:∥2

The first step is computed only once per context in O(ρ|C|k) time, and its results are cached. The
last two steps are computed for every item, and their complexity is O(ρ|I|k) per item, as we desire.

5 EXPERIMENTS

In this section we present experimental results demonstrating that our approach significantly reduces
the cost of item recommendation serving without compromising accuracy, in comparison to the
pruning approach. Beyond the results presented here, in appendix C we demonstrate that finding a
DPLR factorization of the field interaction matrix of a regular FwFM, instead of training a DPLR
representation, may not be a good approach in practice.
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5.1 RESULTS FOR PUBLIC DATA-SETS

We compare our approach to an FwFM, an FM, and a pruned FwFM using the Criteo Display Ad-
vertising Challenge1 data-set, comprising of 39 fields and about 30M samples, and the Movielens
1M (Harper & Konstan, 2015) data-set, with 8 fields and 1M samples. Out of the available Movie-
Lens data-sets, we chose the one with the most number of informative context and item fields. The
timestamp is converted into year, month, day of week, and hour of day, creating a 11 field data-set.
The ”genres” field in the MovieLens data-set has multiple values, and as described in section 3.2,
we average the genre embedding vectors to produce one genre vector.

Both data-sets were randomly split into 80% training, 10% validation, and 10% test sets. The
validation sets were used for tuning the learning rate using Optuna (Akiba et al., 2019). Features with
less than 10 occurrences in the training set, and those appearing in the test and validation set that did
not appear in the training set, are replaced with a special ’rare feature’. Numerical features are binned
similarly to the strategy used by the Criteo Challenge winners, via the x → ⌊ln2(x)⌋ function. All
models use 8-dimensional latent vectors. Code will be made available upon acceptance.

We compare DPLR with pruning by matching the number of entries we leave in the pruned field
interaction matrix to the number of parameters in the DPLR model. For a rank ρ, we use ρ(m+ 1)
parameters, and the corresponding pruned model is left with the largest magnitude ρ(m + 1) field
interaction coefficients. Equivalently, we leave 100× 2ρ(m+1)

m(m−1) percent of the field interactions.

The results are summarized in table 1. We see that aggressive pruning, leaving less than 20% of
the interactions, indeed degrades performance, and our DPLR solution with a rank of at least two
outperforms the pruned models. Surprisingly, DPLR models with a rank of 1 perform worse than an
FM, although in theory their expressive power is stronger.

Table 1: Results for public data-sets. A lower LogLoss or MSE, and a higher AUC are better. The
last column shows the improvement percentage of the DPLR over the equivalently pruned model.

Rank % left FM FwFM DPLR Pruned DPLR vs
Pruned (%)

LogLoss
(Criteo)

1 5.40% 0.4467 0.4428 0.4470 0.4516 1.02%
2 10.80% 0.4467 0.4428 0.4458 0.4471 0.30%
3 16.19% 0.4467 0.4428 0.4456 0.4458 0.05%
4 21.59% 0.4467 0.4428 0.4450 0.4448 -0.03%
5 26.99% 0.4467 0.4428 0.4446 0.4439 -0.17%

AUC
(Criteo)

1 5.40% 0.8051 0.8059 0.8023 0.7984 0.49%
2 10.80% 0.8051 0.8059 0.8065 0.7661 5.27%
3 16.19% 0.8051 0.8059 0.8057 0.8005 0.65%
4 21.59% 0.8051 0.8059 0.8059 0.8073 -0.17%
5 26.99% 0.8051 0.8059 0.8071 0.8079 -0.10%

MSE
(MovieLens)

1 21.82% 0.7301 0.7289 0.7353 0.7469 1.55%
2 43.64% 0.7301 0.7289 0.7262 0.7308 0.63%

5.2 PROPRIETARY ONLINE ADVERTISING SYSTEM

We validate our approach on an online advertising system of a large commercial company, by com-
paring the trained model’s accuracy, and the ad ranking latency. Our tests are performed on FwFM
models for click-through rate (CTR) having 82 fields. Before deployment, the FwFM’s field inter-
action matrix is pruned to keep only 10% of the largest magnitude entries to conform to the strict
latency requirements.

1https://www.kaggle.com/c/criteo-display-ad-challenge
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5.2.1 ACCURACY EXPERIMENT

The model trains periodically in a ’sliding window’ mode, meaning that in each period associated
with time T , the model is trained on logged data from the month before T , and is evaluated on
logged data from the day before T . After sub-sampling to allow training within a reasonable amount
of time, the training set comprises tens of millions logged user-ad interactions. We train and evaluate
the model on 7 consecutive intervals using the LogLoss and AUC metrics, and average the results
by weighting them according to the number of evaluation samples. The performance of the models,
and the improvement of DPLR over pruned models, are are summarized in Table 2. Surprisingly,
the DPLR models perform better on the evaluation set than a regular FwFM models. We believe it
means that a low-rank field interaction matrix is a good regularization prior for this specific domain.
Nevertheless, as our results on public data-sets show, this is not the case in general.

Table 2: AUC and LogLoss improvements versus an FwFM on proprietary data. Higher is better.

Rank 1 2 3 4 5 6

LogLoss lift (%) -0.478% 0.228% 0.363% 0.409% 0.445% 0.404%
AUC lift (%) -0.132% 0.071% 0.098% 0.112% 0.122% 0.115%

5.2.2 LATENCY EXPERIMENT

We deploy the model with rank 3, to a test environment that serves a small portion of the traffic, a
few thousand ad ranking queries per minute. The rank was chosen to correspond to pruning 90%
of the field interaction entries in terms of the number of parameters. Out of the model’s 63 fields,
38 are item fields, and therefore we can theoretically expect approximately 40% latency inference
speed improvement in the best case.

We measure the latency incurred by the inference for ad CTR prediction, and the total latency in-
curred by ranking all eligible ads for a given query. Table 3 summarizes the results, and appendix B
presents full time-series plots. Evidently, the inference latency is improved by a few dozen percents,
whereas the query latency by ∼ 5%, since CTR prediction is only one component of the ad query
serving algorithm.

Table 3: Aggregated latency of a single inference operation (left) and a single ranking operation
(right). Our system measures, in each minute, the average, 95th percentile, and the 99th percentile
latency for inference, and the 95th percentile latency for ranking. The measurements were aggre-
gated over a 10 hour period. The lifts row presents latency improvement - a higher lift is better.

Inference per ad

Average 95th percentile 99th percentile

Lift (%) 34.27% 29.11% 25.57%

Ranking

95th percentile

5.45%

6 CONCLUSIONS AND FUTURE WORK

In this work we proposed learning a diagonal plus low-rank decomposition of the field interaction
matrix of FwFM models as an alternative to the commonly used pruning heuristic in large scale
low-latency recommendation systems. We demonstrated that our approach has the potential to out-
perform pruned models in both item recommendation speed and model accuracy.

An immediate future direction is attempting to apply a more general decomposition to the larger
family of Sun et al. (2021a) models, that includes field-aware and field-weighted FMs via, for ex-
ample, a higher-order tensor decomposition. Moreover, looking at equation 9, we observe that the
columns of U have a notion of ’field importance’ - if all the entries of U:,i are negligible, the effect
of the i-th field is negligible, and it can be discarded. Hence, another future direction is mathemat-
ically or experimentally quantifying this notion of importance, as an alternative to the approach in
Kaplan et al. (2021). This is especially important for real-time systems, where just reducing the
number of fields may have a tremendous effect on latency and recommendation costs.
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A PROPOSITION PROOFS

A.1 PROOF OF IDENTITY 1

Proof. Recall the definition of the Frobenius inner product of matrices:

⟨A,B⟩ =
m∑
i=1

n∑
j=1

Ai,jBi,j = Tr(ATB),

and the circular shift invariance property of the trace operator (Petersen & Pedersen, 2012, Section
1.1):

Tr(ABC) = Tr(BCA)

For any 1 ≤ i, j ≤ m it holds that ⟨Ai,:,Aj,:⟩ = (AAT )i,j , and thus

m∑
i=1

m∑
j=1

⟨Ai,:,Aj,:⟩Qi,j =

m∑
i=1

m∑
j=1

(
AAT

)
i,j

Qi,j = ⟨AAT ,Q⟩ = Tr(AATQ),

where the last two equalities follow from the definition of the Frobenius inner product, and the fact
that AAT is symmetric. Finally, the circular shift invariance property implies that Tr(AATQ) =
Tr(ATQA), completing the proof.

A.2 PROOF OF PROPOSITION 1

Proof. Invoking identity 1 with A = V and Q = R, and then using the decomposition in equation 8
we have

m∑
i=1

m∑
j=1

⟨vi,vj⟩Ri,j = Tr(V TRV )

= Tr
(
V T (diag(d) +UT · diag(e) ·U)V

)
= Tr(V T diag(d)V ) + Tr((UV )T︸ ︷︷ ︸

PT

diag(e) (UV )︸ ︷︷ ︸
P

).

Invoking identity 1 with A = V and Q = diag(d), we obtain

Tr(V T diag(d)V ) =

m∑
i=1

di∥vi∥2,

and again with A = P and Q = diag(e) we obtain

Tr(P T diag(e)P ) =

ρ∑
i=1

ei∥Pi,:∥2.

Therefore,
m∑
i=1

m∑
j=1

⟨vi,vj⟩Ri,j =

m∑
i=1

di∥vi∥2 +
ρ∑

i=1

ei∥Pi,:∥2
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B LATENCY CHARTS

In figure 1 we observe that the improvement in the latency of the low-rank solution is consistent
over time.

(a) (b)

(c)

Figure 1: Latency graphs over a 10 hour period.
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C POST-HOC FACTORIZATION OF THE FIELD INTERACTION MATRIX

An alternative approach to training a DPLR representation of the field interaction matrix can be
training a regular FwFM model, and computing the best DPLR representation we can afterwards.
We call this the “post-hoc” approach.

Unfortonately, this may not be a good idea. Suppose we obtained an approximation R̃ of the model’s
field interaction matrix R. Denoting R̃ = R+E, where E is the approximation error, by identity 1
we obtain

m∑
i=1

m∑
j=1

⟨vi,vj⟩R̃i,j = Tr(V T R̃V )

= Tr(V TRV ) + Tr(V TEV )

≤ Tr(V TRV ) +

m∑
i=1

λi(V V T )σi(E),

where the last inequality stems from the Von Neumann trace inequality. Thus, the approximation
error boils down to the singular value spectrum of the error matrix. We took the field interaction
weights obtained from an FwFM trained on the Criteo data-set, and computed the singular value
spectrum of the approximation errors obtained from two approximations: (a) a DPLR approximation
of rank 5, computed by minimizing the nuclear norm of the error, and (b) a pruned field interaction
matrix where the top 200 entries (same number of parameters as the rank-5 DPLR approximation)
were left. The error singular spectrum of both approximations is plotted in Figure 2. We observe
that the large eigenvalues of the post-hoc DPLR approximation error are much larger than the ones
of the pruned approximation error.

Figure 2: Singular value spectrum of two approximations of the true field interaction matrix.
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