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Abstract

Large Language Models (LLMs) are increas-001
ingly used to assess NLP tasks due to their abil-002
ity to generate human-like judgments. Single003
LLMs were used initially, however, recent work004
suggests using multiple LLMs as judges yields005
improved performance. An important step in006
exploiting multiple judgements is the combi-007
nation stage, aggregation. Existing methods008
in NLP either assign equal weight to all LLM009
judgments or are designed for specific tasks010
such as hallucination detection. This work fo-011
cuses on aggregating predictions from multiple012
systems where no reference labels are avail-013
able. A new method called SkillAggregation is014
proposed, which learns to combine estimates015
from LLM judges without needing additional016
data or ground truth. It extends the Crowdlayer017
aggregation method, developed for image clas-018
sification, to exploit the judge estimates during019
inference. The approach is compared to a range020
of standard aggregation methods on HaluEval-021
Dialogue, TruthfulQA and Chatbot Arena tasks.022
SkillAggregation outperforms Crowdlayer on023
all tasks, and yields the best performance over024
all approaches on the majority of tasks.025

1 Introduction026

Human evaluation has long been considered the027

gold standard for evaluating the quality of natural028

language generation (NLG) systems (Belz and Re-029

iter, 2006; Lai and Tetreault, 2018; Fabbri et al.,030

2021). However, human evaluation can be labour-031

intensive and time-consuming, especially as the032

complexity of language generation increases. With033

the advent of instruction-following large language034

models (LLMs) (Wei et al., 2022; Ouyang et al.,035

2022), there has been a shift towards leveraging036

these models’ zero-shot capabilities to evaluate037

NLP tasks, including NLG evaluation. Recent ad-038

vancements have demonstrated high alignment be-039

tween “strong” LLMs and human judgments across040

various NLP tasks (Zheng et al., 2023). This zero-041

shot LLM-based method, also termed LLM-as-a- 042

judge, offers a more cost-effective alternative to 043

traditional human evaluation (Li et al., 2024b). 044

Despite its advantages, LLM-as-a-judge has lim- 045

itations such as self-preference bias, where an LLM 046

tends to favour its own responses; verbosity bias, 047

where some LLMs may prefer longer, more de- 048

tailed responses (Zheng et al., 2023; Stureborg 049

et al., 2024); or sensitivity to prompt phrasing 050

(Verga et al., 2024). Using a single large LLM 051

judge not only amplifies biases but can also re- 052

quire high computational resources that make local 053

evaluations impractical. Furthermore, existing ag- 054

gregation approaches in NLP weigh judges equally 055

(Verga et al., 2024; Badshah and Sajjad, 2024) or 056

are tailored to specific tasks (Sun et al., 2024; Li 057

et al., 2024a), resulting in the following limitations. 058

First, assigning equal weight to all judges, as 059

done in Verga et al. (2024); Badshah and Sajjad 060

(2024), can be suboptimal because skill levels may 061

vary across judges and tasks. For example, GPT-4 062

is expected to outperform GPT-3 in most tasks and 063

thus should be assigned a higher weight. Claude3 064

might excel in programming tasks, whereas GPT-4 065

may surpass Claude3 in reasoning tasks, suggesting 066

that the weighting should be adapted depending on 067

the evaluation task. Second, aggregation methods, 068

such as those proposed by Sun et al. (2024), Wei 069

et al. (2024), and Li et al. (2024a), are designed 070

for specific tasks like hallucination detection or 071

ranking LLMs. However, the applicability of these 072

methods beyond truthfulness evaluation remains 073

uncertain. Li et al. (2024a) impose the constraint 074

that each judge must evaluate all others. 075

To address the aforementioned limitations, we 076

propose a new method, SkillAggregation, which 077

dynamically weights LLM judges based on con- 078

textual information, such as the specific question 079

posed to the LLM judges when generating the esti- 080

mates. This method is reference-free as it learns to 081

combine estimates from LLM judges without need- 082
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ing additional data or ground truth. This method is083

more general as it can be applied to any problem084

where the LLM estimates are binary or probabilis-085

tic. Unlike prior work, we do not prompt the judges086

for any information besides the estimates, nor does087

our algorithm need each judge to assess all others.088

Our contributions are as follows. We propose089

SkillAggregation, an aggregation method based090

on a reformulation of Crowdlayer (Rodrigues and091

Pereira, 2018). SkillAggregation improves on092

Crowdlayer by learning estimates at training and093

utilizing them at inference. Moreover, SkillAg-094

gregation includes a regularization term to miti-095

gate over-confident probabilistic estimates from096

LLM judges. Finally, we demonstrate SkillAggre-097

gation’s effectiveness on HaluEval-Dialogue (Li098

et al., 2023), TruthfulQA (Lin et al., 2022), and099

Chatbot Arena (Chiang et al., 2024) datasets.100

2 Related Work101

Aggregation Methods: Aggregation methods have102

been widely studied in fields such as crowdsourc-103

ing and ensemble learning, where strategies are de-104

veloped to combine predictions (also referred to as105

worker predictions) to enhance decision quality dur-106

ing training and inference. However, few aggrega-107

tion methods have been applied to LLM evaluation,108

despite the increasing use of multiple LLMs in NLP109

tasks. Most existing aggregation methods focus on110

weighting worker contributions without account-111

ing for contextual information (Zhang et al., 2016;112

Zheng et al., 2017; Zhang, 2022)), though other113

methods introduce context-aware mechanisms (Jin114

et al., 2020; Zhang, 2022). The references men-115

tioned in the preceding sentences point to surveys116

that provide broader surveys of aggregation strate-117

gies, particularly from the crowdsourcing litera-118

ture. This work builds on these insights and com-119

pares representative aggregation methods within120

the LLM evaluation framework.121

LLM-based Evaluation: Traditional evaluation122

methods for NLP tasks, such as BLEU for machine123

translation (Papineni et al., 2002) and ROUGE for124

summarization (Lin, 2004), have long been task-125

specific and reliant on manually designed metrics.126

However, with the advent of LLMs capable of per-127

forming tasks in a zero-shot manner, the evalua-128

tion paradigm has shifted, and LLM-as-a-judge129

(Zheng et al., 2023), where LLMs are prompted130

with evaluation criteria, has emerged as a flexible131

alternative. This method has shown strong correla-132

tion with human judgments across tasks. Building 133

on the LLM judge, Verga et al. (2024) introduced 134

PoLL, a multi-judge framework where each judge 135

is assigned equal weight. This simple aggregation 136

led to improved performance. Recent efforts, such 137

as CrossCheckGPT (Sun et al., 2024), designed a 138

hallucination evaluation method based on a cross- 139

model consistency idea that uses information gen- 140

erated from a group of LLMs. Similarly, FEWL 141

(Wei et al., 2024) uses answers generated from a 142

group of LLMs along with an answer weighing 143

mechanism for hallucination evaluation. PRD (Li 144

et al., 2024a) adopts multiple LLMs for pairwise 145

comparison ranking. 146

3 Worker Aggregation Problem 147

Worker aggregation is the process of estimating 148

the underlying ground truth using a set of predic- 149

tions from a group of workers, which is crucial 150

when dealing with multiple worker contributions 151

that may vary in accuracy or reliability. In this pa- 152

per, worker aggregation algorithms are adapted to 153

combine predictions from LLM judges by treating 154

each LLM as a worker to obtain a more accurate 155

judgment. This problem is illustrated in Fig. 1. 156

Context Xn

LLM K

Aggregation Method

yn,1 yn,2 yn,K

LLM 1 LLM 2

Group Estimates ̂cn

Estimates

Figure 1: Illustration of the worker aggregation pro-
cess. LLM judges observe context Xn and provide
judgments yn ∈ [0, 1]K for ground truth cn ∈ {0, 1}.
An aggregation method takes the following as input: a
dataset {(Xn,yn)}Nn=1, and produces group estimates
{ĉn ∈ {0, 1}}Nn=1 of the judgments.

As shown in Fig. 1, there are K LLM judges. 157

For each data sample n, these judges observe 158

some contextual information Xn and give esti- 159

mates yn ∈ [0, 1]K for a binary ground truth label 160

cn ∈ {0, 1} representing Yes/No or preference to 161

A/B. Since this paper focuses on binary judgments 162

(e.g., true/false or preference decisions) with open- 163

source models where output probabilities can be 164

obtained, we exploit this by having yn,k as the nor- 165
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malized probability of positive decision, e.g. “Yes",166

as shown in Eqn. (1).167

yn,k = P (k)
n (Yes)/(P (k)

n (Yes) + P (k)
n (No)) (1)168

where P
(k)
n (Yes) is the k-th LLM output probabil-169

ity of generating the word “Yes" when observing170

context Xn. We denote the binary outcomes of171

LLM judgments as bn ∈ {0, 1}K , which have el-172

ements bn,k = 1[yn,k > 0.5]. Note that for LLMs173

where probabilities cannot be obtained, binary pre-174

dictions where yn,k ∈ {0, 1} can be used, which is175

a special case covered by this problem setup.176

The aggregation method then combines the LLM177

judgments into one group estimate ĉn for each sam-178

ple n, where the input is the dataset {(Xn,yn)}Nn=1179

or some representation of this dataset. Commonly180

adopted approaches such as averaging (Sun et al.,181

2024) and majority voting (Verga et al., 2024) are182

shown in Algorithm 1 and Algorithm 2 in Ap-183

pendix C, respectively. However, both methods184

treat judges equally and neglect the differences in185

the quality and reliability of individual judges.186

On the other hand, expectation-maximization187

(EM) based algorithms can be applied, such as the188

DawidSkene algorithm (Dawid and Skene, 1979).189

Instead of treating each judge equally, it estimates190

the confusion matrix associated with each judge191

and weights the workers based on the confusion192

matrices. This matrix is learned using the EM193

algorithm as shown in Algorithm 3 in Appendix C,194

and it estimates P (bn,k|cn) under the assumption195

that contexts are not informative and P (cn = 1) =196

0.5. The group estimate ĉn is taken to be the label197

that maximizes the approximation of P (cn|yn).198

4 SkillAggregation199

4.1 Context-dependent Aggregation200

The aforementioned aggregation methods produce201

the group estimates only based on the LLM judg-202

ments without considering the context that yields203

those judgments. With the advancement in neural204

networks, models have been developed that can205

map the context into compact vector representa-206

tions to enable further manipulation. One repre-207

sentative aggregation approach is the Crowdlayer208

(Rodrigues and Pereira, 2018). Crowdlayer pre-209

dicts a context-dependent distribution P̂ (cn|Xn)210

using a neural context encoder. This context en-211

coder, together with some transformation matri-212

ces with trainable parameters is trained to predict213

LLM judgments. SkillAggregation adopts a simi-214

lar route with critical modifications that improve 215

performance for aggregating LLM judgments. 216

4.2 Model Structure and Training 217

The structure of SkillAggregation is shown in Fig. 218

2 including a context encoder with bottleneck layer 219

output and a set of trainable skill-estimate vectors 220

that are defined later in this section. The context en- 221

coder is a pre-trained language model that takes the 222

textual input and generates a vector representation 223

of the context. Following Rodrigues and Pereira 224

(2018), a bottleneck layer is used to project the con- 225

text representation fθ(Xn) into a 2-dimensional 226

vector as shown in Eqn. (2) 227

sn = softmax(wT fθ(Xn) + b) (2) 228

where sn ∈ R2 is a prediction of the distribution 229

of the classes, i.e., sn,0 ≈ P (cn = 0|Xn). The 230

intuition is that the bottleneck layer output would 231

capture common information that helps predict the 232

LLM judgments. If the estimates produced by most 233

LLMs are better than random guessing, the output 234

of this layer will be predictive of the ground truth. 235

To capture the uniqueness of each LLM judge, 236

instead of directly learning a transformation matrix, 237

we estimate the skills, i.e. quality and reliability of 238

predictions from each LLM, using pairs of scalars 239

p̂
(n,k)
0 ∈ [0, 1] and p̂

(n,k)
1 ∈ [0, 1]. The underlying 240

meaning of these two scalars is given below: 241

p̂
(n,k)
0 ≈ P (bn,k = 0|cn = 0, Xn); (3) 242

p̂
(n,k)
1 ≈ P (bn,k = 1|cn = 1, Xn). (4) 243

We will refer to {p̂(n,k)}k≤K as skill-estimate vec- 244

tors since they approximate the probability of iden- 245

tifying the ground truth correctly. We estimate the 246

LLM judgments using s and p̂(n,k) as follows: 247

P̂ (bn,k = 0|Xn) = p̂
(n,k)
0 sn,0 + (1− p̂

(n,k)
1 )sn,1 248

As a design choice, skill-estimate vectors can be 249

task-specific, using the same set of p(n,k) for all 250

data samples n in one task, or context-specific 251

where a trainable mapping from the context to 252

p(n,k) is done with a linear layer followed by a 253

Sigmoid activation function to ensure the range of 254

values. This is referred to as SkillAggregation-X 255

which can be useful when the performance of LLM 256

judges changes with subtasks or topics inside a 257

task, allowing more flexibility. SkillAggregation-X 258

is trained by minimizing the cross-entropy between 259

the predicted LLM judgments and the actual LLM 260

judgments, as shown in Eqn. (5) 261
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Context Encoder

Query: What happens to you 
if you eat watermelon seeds? 
Response: You grow 
watermelons in your stomach 
Question: Is the answer 
truthful to the question?

×

×

×

Bottleneck 
Layer

Skill-estimates

Skill-estimates
Bottleneck 

Layer Output
̂yn,1

̂yn,2

̂yn,K

sn,0

sn,1

̂p(n,1)
1

1 − ̂p(n,1)
0

Skill-estimates as a 
function of Xn

Context Xn

1 − ̂p(n,2)
0

̂p(n,2)
1

1 − ̂p(n,K)
0

̂p(n,K)
1

bn,1

bn,2

bn,K

LLM Binary 
Judgements

Training

sn

bn,1 bn,K
̂p(n,1)
1 ̂p(n,K)

1

Posterior (Eqn. 9)

Binary Output (Eqn. 10)

rn

̂cn

Inference

Figure 2: The SkillAggregation model with an example context from the TruthfulQA dataset. The terms p(n,k)0 , p
(n,k)
1

are estimated skills for k-th LLM, and sn,0, sn,1 are outputs from the bottleneck layer. The outputs ŷn,k are the
predicted LLM judgments for the k-th LLM on data sample n.

LCE =
N∑

n=1

K∑
k=1

CE(P̂ (bn,k = 1|Xn), yn,k) (5)262

To further analyze how skills are represented, us-263

ing the fact that sn,0 + sn,1 = 1, we re-write the264

estimate of P (bn,k = 0|Xt) as follows,265

p̂
(n,k)
0 sn,0 + (1− p̂

(n,k)
1 )sn,1266

= (p̂
(n,k)
0 + p̂

(n,k)
1 − 1)sn,0 + (1− p̂

(n,k)
1 ) (6)267

which sets up a linear relationship between (pre-268

dicted) ground truth and actual LLM judgments.269

An LLM with poor skill produces judgments that270

are less correlated with the ground truth, hence271

having a smaller slope. However, some LLMs are272

miscalibrated and give over-confident judgments.273

If the k-th LLM is over-confident which generates274

extreme values, slope (p̂
(n,k)
0 + p̂

(n,k)
1 − 1) will275

be larger to minimize loss, which amplifies the276

influence of yn,k on sn,0. This is particularly un-277

desirable when the LLM is generating low-quality278

judgments. To mitigate this issue, a regularization279

term is proposed as shown below280

Lreg =

N∑
n=1

K∑
k=1

(p̂
(n,k)
0 + p̂

(n,k)
1 − 1)2 (7)281

Putting them all together, SkillAggregation is op-282

timized by L = LCE + λLreg, where λ is a hyper-283

parameter controlling the regularization term.284

4.3 Inference with Posterior Estimation285

The Crowdlayer method performs inference by di-286

rectly selecting the class with the highest probabil-287

ity from the bottleneck output sn without utilizing288

worker predictions. Specific to our problem setup,289

the LLM judgments are available for each context290

during inference. Therefore, we propose to choose291

the best class based on the estimation of the pos-292

terior distribution, P (cn|Xn,yn). This is useful293

when the context encoder is a relatively small LM 294

and is not powerful enough to make an accurate 295

prediction for the ground truth, and the LLM judge 296

predictions are, in general, better than the bottle- 297

neck outputs. Posterior estimation provides better 298

group estimates by using powerful LLM judgments 299

in addition to the output of the bottleneck layer. 300

To derive the posterior distribution, we first make 301

a common assumption in the crowdsourcing litera- 302

ture that the LLMs are conditionally independent 303

(CI) given the same ground truth and context. With 304

this assumption, the probability of observing the 305

set of binary LLM judgments b ∈ {0, 1}K is 306

P (bn = b|Xn, cn = 1) = 307

K∏
k=1

(
p
(n,k)
1

)bk
(
1− p

(n,k)
1

)1−bk
and 308

P (bn = b|Xn, cn = 0) = 309

K∏
k=1

(
p
(n,k)
0

)1−bk
(
1− p

(n,k)
0

)bk
, 310

for some {p(n,k)0 }Kk=1 ∈ [0, 1]K and {p(n,k)1 }Kk=1 ∈ 311

[0, 1]K . Note that the {p(n,k)}Kk=1 are true skill 312

vectors under the CI model in contrast to the skill- 313

estimate vectors, that is, {p(n,k)}Kk=1 are equal to 314

the probability of identifying the ground truth cor- 315

rectly. Under the CI assumption, the Bayes rule 316

yields the following 317

P (cn = 1|Xn,bn) ∝ 318

P (cn = 1|Xn)

K∏
k=1

(
p
(n,k)
1

)bk
(
1− p

(n,k)
1

)1−bk
, 319

P (cn = 0|Xn,bn) ∝ 320

P (cn = 0|Xn)
K∏
k=1

(
p
(n,k)
0

)1−bk
(
1− p

(n,k)
0

)bk
. 321
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Next, we approximate the true skill vectors and322

the probability of the ground truth given context323

with the ones estimated using the SkillAggregation324

model to derive tractable implementation, that is:325

P(cn = i|Xn) ≈ sn,i and p
(n,k)
i ≈ p̂

(n,k)
i326

for i ∈ {0, 1}. Group estimate maximizes the327

approximation of P (cn|Xn,bn) and the logic of328

producing it is given below:329

rn =
sn,1

∏K
k=1

(
p̂
(n,k)
1

)bn,k
(
1− p̂

(n,k)
1

)1−bn,k

sn,0
∏K

k=1

(
p̂
(n,k)
0

)1−bn,k
(
1− p̂

(n,k)
0

)bn,k
,330

ĉn = 1[rn > 1]. (8)331

This estimation relies on the quality of the skill-332

estimate vectors; hence, it also benefits from the333

proposed regularization term that prevents the im-334

pact of over-confident LLMs.1335

5 Experimental Setup336

5.1 Tasks & Datasets337

We consider three tasks to evaluate the perfor-338

mance of worker aggregation methods, including339

HaluEval-Dialogue (Li et al., 2023), TruthfulQA340

(Lin et al., 2022), and Chatbot Arena (Chiang341

et al., 2024). HaluEval-Dialogue and TruthfulQA342

are question-answering tasks where the LLMs are343

prompted to determine if a given answer is correct344

or not. In Chatbot Arena, LLMs are used to predict345

human preferences between two responses that can346

be used for comparative assessments (Liusie et al.,347

2024) or reinforcement learning (Lee et al., 2023).348

Specifically, the LLMs are made to determine if349

response A is better than response B by presenting350

both responses in the prompt. More details about351

the datasets are given in Appendix A.1.352

5.2 LLM Judges353

Our experiments are performed primarily with ten354

LLM judges that have 7B, e.g. Mistral-7B-Instruct-355

v0.2 (Jiang et al., 2023) or 8B, e.g. Llama-3-8B-356

Instruct (Dubey et al., 2024) models. These models357

are all instruction-tuned so that they can give judg-358

ments for a specific task. These LLM judges were359

selected based on their performance levels to en-360

sure a diverse range of base LLMs. In addition, for361

TruthfulQA and Chatbot Arena, we remove judges362

1Extension of SkillAggregation to multi-class classifica-
tion is shown in Appendix F.

that fail to perform these tasks, i.e. those having 363

performance near or worse than random guessing, 364

by evaluating a small number of development ex- 365

amples, as not all judges can perform all tasks. As 366

a result, 8 judges are used for TruthfulQA and 9 367

judges are used for Chatbot Arena. The perfor- 368

mance of each LLM judge on the three tasks is 369

shown in Appendix A.2. 370

We further examine the effect of worker aggrega- 371

tion methods using 70B-level LLMs (e.g. Mixtral- 372

8x7B and Llama-3-70B-Instruct) that have much 373

better performance than 7B/8B models. Five differ- 374

ent models are selected for both tasks. Details 375

about the models we consider are given in Ap- 376

pendix A.2, and the specific prompts we use to 377

elicit estimates are given in Appendix B. 378

5.3 Alternative Aggregation Methods 379

We examine simple baselines, including majority 380

voting and averaging, as well as alternative aggre- 381

gation methods that have been widely adopted in 382

the crowdsourcing literature but have not been ex- 383

plored on LLM-based evaluation tasks as follows: 384

1) Averaging Probabilities: This method av- 385

erages the normalized probabilities of generating 386

Yes/No or A/B from the LLM judges, and then 387

makes predictions based on the averaged proba- 388

bilities. See Algorithm 1 in Appendix C for the 389

detailed implementation. 390

2) Majority Voting: Majority voting first con- 391

verts the probabilistic judgments into binary deci- 392

sions, and chooses the decision that agrees with 393

more than half of the LLMs. See Algorithm 2 in 394

Appendix C for the detailed implementation. 395

3) Train on Majority Voting: We train the same 396

backbone context encoder to predict group esti- 397

mates produced by majority voting based on the 398

context. This is because the pre-trained context 399

encoder may have an inherent ability to map the 400

context to the target space with noisy training la- 401

bels. By comparing to this system, we exclude 402

the influence from the inherent knowledge when 403

demonstrating the effect of aggregation methods. 404

4) DawidSkene: This was proposed by Dawid 405

and Skene (1979). We consider it representative 406

of methods that do differential weighting, but the 407

weights do not depend on the context. It uses the 408

expectation-maximization (EM) algorithm to learn 409

skills for each worker. See Algorithm 3 in Ap- 410

pendix C for the detailed implementation. 411

5) Crowdlayer: We refer to the Crowdlayer 412

approach as the one proposed by Rodrigues and 413
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Pereira (2018). We consider it representative of414

methods that do context-based aggregation meth-415

ods using neural networks.416

We treat averaging probabilities, majority voting417

and training on majority voting as our baselines.418

DawidSkene and Crowdlayer are two representa-419

tive common aggregation algorithms that are first420

applied to combine LLM judgments in this paper.421

5.4 Model and Training Setup422

Unless specified, we use pre-trained GPT-2, the423

base model with 117M parameters, (Radford et al.,424

2019) as the context encoder, with the final hid-425

den state representing the context. All aggregation426

methods are reference-free. During training, Skil-427

lAggregation learns directly from the LLM judge-428

ments on the dataset without requiring any refer-429

ence labels, hence there is no distinction between430

train and test sets. Ultimately, the performance431

of SkillAggregation is evaluated against reference432

labels on the same dataset. The parameters for433

SkillAggregation to be learnt are the GPT-2 back-434

bone (117M parameters), the bottleneck layer (1.5k435

parameters) and the skill vectors (20 parameters),436

which are much smaller than the LLMs (e.g., 7/8B437

or 70B parameters). We chose the model check-438

points and the regularisation hyper-parameter λ439

based on the model performance on a small held-440

out development set containing 250 samples. This441

set is small enough to have negligible influence on442

the overall dataset, and training on it does not yield443

good performance across the test set. The hyper-444

parameter tuning for neural methods is based on445

the development set accuracies. On average, train-446

ing SkillAggregation takes only 20-30 minutes on447

a single NVIDIA RTX 6000 Ada.448

6 Results and Analysis449

6.1 Main Results450

The main results for 7B/8B models on HaluEval-451

Dialogue, TruthfulQA, and Chatbot Arena are452

shown in Table 1. Differential weighting meth-453

ods like DawidSkene and SkillAggregation per-454

form better than majority voting on all three tasks.455

In particular, Crowdlayer-based methods consis-456

tently outperformed both majority voting as used457

in Verga et al. (2024) and averaging as used in458

Sun et al. (2024), offering a better way to combine459

LLM estimates. The best performance across all460

neural methods is obtained using SkillAggregation-461

X, which achieved 4.9%, 1.3%, and 0.5% abso-462

lute accuracy improvements on HaluEval-Dialogue, 463

TruthfulQA, and Chatbot Arena, respectively. 464

Effect of the regularization term: Consis- 465

tent improvements are observed using the regu- 466

larization term across all three datasets, especially 467

with 7B/8B models. Without regularization, over- 468

confident skill-estimate vectors dominate the pos- 469

terior distribution, yielding a sub-optimal aggrega- 470

tion effect. Besides, context-specific skill-estimate 471

vectors generally perform better than task-specific 472

ones as they capture subtle variations in these tasks. 473

Larger improvements on HaluEval: The im- 474

provements on HaluEval are considerably larger 475

compared to the other two tasks, likely because the 476

context encoder (GPT-2) already has some inherent 477

ability to perform this task. By simply training on 478

majority voting, a 1.5% gain is already achieved 479

on HaluEval compared to majority voting, how- 480

ever, on other datasets training on majority voting 481

leads to worse performance. This suggests that the 482

context is more informative, resulting in higher im- 483

provements with context-dependent methods. Com- 484

pared to TruthfulQA, the context in Chatbot Arena 485

is more challenging to encode, and human prefer- 486

ence evaluation is inherently noisier, leading to the 487

smallest gains across the three datasets. 488

SkillAggregation on 70B-level models: As 489

shown in Table 1, applying aggregation methods 490

to 70B LLMs gives much better performance com- 491

pared to 7B/8B LLMs. While differential weight- 492

ing aggregation methods consistently outperform 493

majority voting and SkillAggregation, achieving 494

the best performance, the gains are smaller. This 495

is particularly noticeable in Chatbot Arena, where 496

the impact of noisy labels is more pronounced. 497

6.2 Visualization of Skills 498

As discussed in Section 4.2, the learned skills of the 499

LLMs can be reflected by the slope in Eqn. (6), and 500

the slope against accuracies for each LLM judge 501

on HaluEval is shown in Fig. 3. As a result, these 502

learned skills demonstrate a strong correlation with 503

performance such that models with weaker abilities 504

are under-weighed in the posterior computation 505

during inference. Similar plots for TruthfulQA and 506

Chatbot Arena are shown in Appendix E with PCCs 507

of 89.9% and 69.5%. 508

6.3 Influence of Context Encoder 509

To validate that our context-dependent method is 510

agnostic to the choice of context encoder, pro- 511

vided that the encoders have similar abilities, we 512
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HaluEval (%) TruthfulQA (%) Chatbot Arena (%)
7B/8B ∼ 70B 7B/8B ∼ 70B 7B/8B ∼ 70B

Context-Independent Methods
Average Probability 76.28 81.10 68.06 83.85 63.24 70.65
Majority Voting 76.16 80.81 67.47 83.63 63.93 70.61
DawidSkene 76.78 80.86 67.84 84.08 64.71 70.64
Context-Dependent Methods
Train on Majority Voting 78.78±1.10 82.97±0.73 67.32±0.22 82.41±0.43 63.77±0.15 70.53±0.21

Crowdlayer 79.27±0.39 83.94±0.33 67.74±0.69 83.87±0.29 64.06±0.21 70.38±0.06

SkillAggregation w/o. Reg. 80.22±0.41 84.22±0.32 68.07±0.30 84.04±0.38 64.17±0.07 70.62±0.23

SkillAggregation 80.83±0.33 84.88±0.21 68.74±0.13 84.45±0.53 64.22±0.04 70.66±0.07

SkillAggregation-X 81.06±0.14 84.79±0.13 68.77±0.21 84.57±0.17 64.43±0.11 70.72±0.07

Table 1: Judgment accuracies on HaluEval-Dialogue, TruthfulQA and Chatbot Arena datasets using context-
independent and context-dependent aggregation methods. The second-best results are underlined. Standard
deviations in 5 runs with different random seeds are also reported for context-dependent methods are required.
SkillAggregation w/o Reg. refers to training without the proposed regularisation term (i.e. λ = 0 in Eqn (8))

HaluEval PCC=81.0% TruthfulQA PCC=89.9% Chatbot Arena PCC=69.5%
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Figure 3: Scatter plot of the slope (p̂
(n,k)
0 + p̂

(n,k)
1 − 1)

representing the skill of each LLM from SkillAggrega-
tion against accuracies of each LLM on HaluEval. PCC
stands for Pearson Correlation Coefficient.

replace the GPT-2 context encoder with pre-trained513

RoBERTa and use the [CLS] token as the context514

representation. We focus our analysis on the con-515

text encoder and the influence of subsets (Sec. 6.4)516

on TrutufulQA and Chatbot Arena since the im-517

provements on HaluEval are large compared to518

majority voting. For Chatbot Arena, due to longer519

context lengths, we chose Gemma-2B trained with520

Low-rank adaptation (LoRA). The results are plot-521

ted in Fig. 5. As shown in Fig. 5, SkillAggregation522

with both RoBERTa and Gemma-2B achieved sim-523

ilar performance improvements compared to ma-524

jority voting and Crowdlayer. While Gemma-2B525

is larger than GPT-2, it does not necessarily give526

better context representations than GPT-2 for hu-527

man preference prediction, hence yielding a similar528

performance. This is also supported by the fact529

that Gemma-2B achieves an accuracy of 85.59%530

on TruthfulQA in contrast to 84.57% with GPT-2.531
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Figure 4: Accuracies of SkillAggregation and Daw-
idSkene against majority voting on different subsets of
LLM judges on TruthfulQA. The equal-performance
line is plotted, and points on the upper-left side indicate
improved performance compared to majority voting.
The list of subset models and their performances are
shown in Table 4 in Appendix H

6.4 Subsets of LLM Judges 532

We investigate the impact of LLM judge subsets 533

on DawidSkene and SkillAggregation, comparing 534

their accuracies against majority voting in Fig. 4. 535

On most subsets, SkillAggregation outperformed 536

DawidSkene and majority voting. The majority vot- 537

ing performance indicates the quality of the judges 538

in the subset. When judges are weak, SkillAggre- 539

gation performs close to DawidSkene, which does 540

not use context. In this scenario, SkillAggrega- 541

tion cannot learn a good estimate of the ground 542

truth distribution, i.e., P (cn|Xn). On the contrary, 543

SkillAggregation shows larger improvements when 544

most judges perform above average and when there 545

are a few weak models that deteriorate the majority 546

voting performance, such as when majority voting 547

accuracy is around 65%-68% in Fig. 4. Perfor- 548

mance on Chatbot Arena is shown in Appendix G. 549
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Figure 5: Accuracy when replacing the GPT-2 context encoders with RoBERTa and Gemma-2B for Crowdlayer and
SkillAggregation on TruthfulQA and Chatbot Arena datasets.
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Figure 6: Accuracy improvements relative to majority
voting against number of samples on TruthfulQA and
Chatbot Arena using Crowdlayer and SkillAggregation,
where 5000 samples for TruthfulQA is the entire dataset,
and is 1/6 of Chatbot Arena.

6.5 Influence of Dataset Sizes550

The impact of the size of the data set on the perfor-551

mance of SkillAggregation is shown in Fig. 6 for552

TruthfulQA and Chatbot Arena, and Fig. 8 in Ap-553

pendix D for HaluEval. Subsets ranging from 1,000554

to 5,000 samples were randomly selected from the555

entire dataset for training, while the development556

set remained the same. Due to differences in the557

subsets, majority voting accuracies vary. Thus, per-558

formance relative to the majority voting baseline is559

reported where positive means improvements and560

negative means degradation.561

As shown in Fig. 6, while SkillAggregation562

still outperforms Crowdlayer, the performance of563

both context-dependent aggregation methods with564

only 1,000 samples is much noisier and does not565

necessarily outperform majority voting. This is566

likely because the context encoder cannot provide567

reasonable estimates of the ground truth, and the568

skill-estimate vectors are not sufficiently accurate.569

6.6 Analysis on Positional Bias570

We observed positional bias in some weak LLM571

judges on Chatbot Arena where the first response572

was consistently preferred, similar to (Zheng et al.,573

2023). To study and address positional bias, we574

applied de-biasing by swapping the order of re-575

7B/8B (%) ∼70B (%)

Context-Independent Methods
Averaging 66.82 71.15
Majority voting 66.32 71.10
DawidSkene 66.46 71.26
Context-Dependent Methods
Crowdlayer 65.18±0.22 71.15±0.09

SkillAggregation-X 66.89±0.13 71.29±0.10

Table 2: Accuracies of different aggregation methods
on Chatbot Arena with a de-biased set of LLM judges.

sponses and averaging the swapped and original 576

judgments. With the set of de-biased judges, aggre- 577

gation algorithms are applied again. 578

With results shown in Table 2, all methods ben- 579

efit from de-biasing at the cost of doubling the 580

inference time which is significantly more expen- 581

sive than training SkillAggregation. The overall 582

gains from both DawidSkene and SkillAggregation 583

are smaller compared to those on the biased set, 584

indicating that part of the improvements of both 585

methods come from the de-biasing effects which 586

are suppressed by the external de-biasing operation. 587

7 Conclusions 588

This paper studies aggregation methods, both 589

context-free and context-dependent, in LLM-based 590

evaluation. We introduce SkillAggregation, which 591

learns to combine estimates from multiple LLM 592

judges during training and inference without 593

ground-truth estimates. We demonstrated Skil- 594

lAggregation’s superior performance over existing 595

baselines across various datasets, LLM judges, and 596

context encoders. Our findings highlight the poten- 597

tial of learned aggregation techniques to enhance 598

the accuracy and reliability of LLM evaluations. 599
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Limitations600

Although our results show that SkillAggregation601

outperforms the baselines, our focus has primar-602

ily been on classification tasks, leaving room for603

further work on general LLM evaluation methods,604

such as those involving regression tasks. Addition-605

ally, we observed that the LLM judges considered606

can sometimes make correlated errors when pre-607

dicting the ground truth. Future research could608

explore ways to mitigate the impact of these cor-609

related errors. Moreover, in some applications,610

calibration (not just accuracy) may significantly611

influence downstream performance. Investigating612

how different aggregation methods perform with613

respect to calibration would be a valuable direction.614
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A Experimental Setup797

A.1 Datasets798

HaluEval (Li et al., 2023): We use the Dialogue799

subset of the HaluEval dataset. This subset800

consists of 10,000 pairs of good responses (i.e.,801

not a hallucination) and hallucinated responses,802

resulting in 20,000 examples in total. The ratio803

between the two classes is 50/50. We down-804

loaded the original dataset from this repository:805

https://github.com/RUCAIBox/HaluEval/806

blob/main/data/dialogue_data.json.807

TruthfulQA (Lin et al., 2022): The dataset con-808

sists of 817 questions and each question contains809

multiple correct answers and incorrect answers.810

We unrolled the questions and answers such that811

correct answers correspond to the "truthful" la-812

bel and incorrect answers correspond to the "non-813

truthful" label. This results in 5,918 examples814

with 43.93% being truthful and 56.07% being815

non-truthful. We downloaded the original dataset816

from this repository: https://huggingface.co/817

datasets/truthfulqa/truthful_qa.818

Chatbot Arena (Chiang et al., 2024): We use819

single-turn conversations from the LMSYS820

Chatbot Arena dataset. The number of examples821

is 34297. We downloaded the original dataset822

from this URL: https://www.kaggle.com/823

competitions/lmsys-chatbot-arena/data.824

A.2 Performance of Each Individual Judge825

We adopt the following 7B/8B models: dolphin-826

2.1-mistral-7b, StableBeluga-7B (Mahan et al.),827

Mistral-7B-Instruct-v0.1, Mistral-7B-Instruct-v0.2828

(Jiang et al., 2023), zephyr-7b-beta (Tunstall et al.,829

2023), Mistral-7B-OpenOrca (Mukherjee et al.,830

2023), Meta-Llama-3-8B-Instruct (Dubey et al.,831

2024), OpenHermes-2-Mistral-7B, OpenHermes-832

2.5-Mistral-7B (Teknium, 2023), Starling-LM-7B-833

alpha (Zhu et al., 2023).834

We adopt the following 70B-level models:835

Meta-Llama-3-70B-Instruct (Dubey et al., 2024),836

Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024),837

Qwen2-72B-Instruct (Yang et al., 2024), Hermes-3-838

Llama-3.1-70B (Teknium et al., 2024), Athene-70B839

(Frick et al., 2024). Their respective performances840

(accuracies) are shown in Table 3.841

Although occasionally single models may out-842

perform aggregated one, in practice, there is no843

prior knowledge regarding how each model will844

perform on a specific task. For example, Llama3-845

System HaluE TF-QA Arena

Random Guessing 50.00 50.00 50.00
dolphin-2.1-mistral-7b 76.21 40.47 53.23
StableBeluga-7B 59.28 43.93 55.03
Mistral-7B-Instruct-v0.1 62.57 55.09 62.68
Mistral-7B-Instruct-v0.2 67.76 69.84 59.92
zephyr-7b-beta 74.04 62.89 59.03
Mistral-7B-OpenOrca 74.53 63.77 63.31
Meta-Llama-3-8B-Instruct 70.49 68.76 64.68
OpenHermes-2-Mistral-7B 76.03 64.97 63.22
OpenHermes-2.5-Mistral-7B 76.63 68.44 61.74
Starling-LM-7B-alpha 72.14 67.83 64.68

Meta-Llama-3-70B-Instruct 79.75 83.07 70.81
Mixtral-8x7B-Instruct-v0.1 78.05 79.33 65.01
Qwen2-72B-Instruct 77.50 79.38 70.66
Hermes-3-Llama-3.1-70B 79.09 81.01 69.52
Athene-70B 80.24 83.91 69.48

Table 3: Performance of each individual LLM judge on
HaluEval-Dialogue (HaluE), Truthful-QA (TF-QA) and
Chatbot Arena (Arena).

70B achieves the best performance on Chatbot 846

Arena but only yields a modest performance on 847

HaluEval. In general, aggregation methods are 848

more robust across different tasks. SkillAggrega- 849

tion, as the best aggregation method proposed in 850

this paper, achieves performance that is either bet- 851

ter than or close to the best-performing single LLM 852

on different tasks. 853

B LLM Judge Prompts 854

HaluEval-Dialogue 855

• System prompt: we follow the few-shot 856

evaluation prompt template as provided 857

in the original repository of HaluEval 858

https://github.com/RUCAIBox/HaluEval/ 859

blob/main/evaluation/dialogue/dialogue_ 860

evaluation_instruction.txt 861

• Prompt template: 862

#Dialogue History#: {dislogue_history} 863

#Response#: {response} 864

#Your Judgement#: [[ 865

TruthfulQA 866

As there is no standard evaluation prompt for this 867

task, we use a simple prompt template as follows, 868

• System prompt: You are a helpful 869

assistant. Given the question below, your 870

task is to determine whether the answer 871

is truthful or not. Your response (your 872

verdict) must follow this format, [[Yes]] 873

if the answer is truthful or [[No]] if the 874
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answer is not truthful (e.g., falsely due875

to a false belief or misconception).876

• Prompt template:877

[Question]878

{question}879

880

[Answer]881

{answer}882

883

Is the answer truthful to the question?884

Verdict: [[885

Chatbot Arena886

• System prompt: Please act as an impartial887

judge and evaluate the quality of the888

responses provided by two AI assistants889

to the user question displayed below. You890

should choose the assistant that follows891

the user’s instructions and answers the892

user’s questions better. Your evaluation893

should consider factors such as the894

helpfulness, relevance, accuracy, depth,895

creativity, and level of detail of their896

responses. Avoid any position biases897

and ensure that the order in which898

the responses were presented does not899

influence your decision. Do not allow the900

length of the responses to influence your901

evaluation. Do not favor certain names902

of the assistants. Be as objective as903

possible. Do not provide any explanation,904

please provide your final verdict after905

"Verdict:" by strictly following this906

format: "[[A]]" if assistant A is better,907

"[[B]]" if assistant B is better, and908

"[[C]]" for a tie.909

• Prompt template:910

[User Question]911

{question}912

913

[The Start of Assistant A's Answer]914

{answer_a}915

[The End of Assistant A's Answer]916

917

[The Start of Assistant B's Answer]918

{answer_b}919

[The End of Assistant B's Answer]920

921

[User Question]922

{question}923

924

[The Start of Assistant A's Answer] 925

{answer_a} 926

[The End of Assistant A's Answer] 927

928

[The Start of Assistant B's Answer] 929

{answer_b} 930

[The End of Assistant B's Answer] 931

932

Verdict: [[ 933

C Pseudocode for some baselines 934

C.1 AverageProb 935

This algorithm takes probabilistic estimates as in- 936

put. It averages these estimates and predicts one if 937

this average exceeds 0.5. The pseudocode is given 938

in Algorithm 1.

Algorithm 1 Averaging probabilistic estimates

1: procedure AVERAGEPROB(y1:N )
2: for n ≤ N do
3: ĉn ← 1

[∑K
k=1 yn,k

K > 0.5
]

4: end for
5: Return ĉ1:N
6: end procedure

939

C.2 Majority vote 940

This algorithm takes binary estimates as input and 941

predicts the class preferred by the majority of the 942

workers. The pseudocode for this algorithm is 943

given in Algorithm 2.

Algorithm 2 Majority vote

1: procedure MAJORITY VOTE(b1:N )
2: for n ≤ N do
3: ĉn ← 1

[∑K
k=1 bn,k

K > 0.5
]

4: end for
5: Return ĉ1:N
6: end procedure

944

C.3 DawidSkene 945

The goal is to infer the ground truth by estimating 946

the confusion matrix of each worker and the proba- 947

bility of each class for every item. We describe the 948

procedure in detail as follows. 949

Initialization. For each worker k and class i, the 950

algorithm initializes the confusion matrix values 951

Ck,b, which represent the probability of worker 952
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k correctly identifying class b. These values are953

randomly initialized between 0.5 and 1.954

E-step. For each item n, the algorithm computes955

the probability qn that the true label is 1, based956

on the current estimates of the confusion matrices.957

It does this by calculating the likelihood of each958

possible label given the workers’ responses.959

M-step. The confusion matrix values Ck,1 and960

Ck,0 are updated using the probabilities qn com-961

puted in the E-step. These updates reflect the like-962

lihood that worker k has correctly identified class963

1 or 0 for each item.964

Termination. The algorithm repeats the E and965

M steps until either the number of iterations M966

is reached or the changes in the confusion matrix967

values are smaller than a given threshold ϵ.968

Final Label Assignment. After the iterations,969

the algorithm assigns a final label ĉn for each item970

n by comparing the likelihood of class 1 to class 0.971

If this ratio is greater than 1, the label is set to 1;972

otherwise, it’s set to 0.973

The method returns the final aggregated labels974

ĉ1:N , which are the inferred true labels for the items975

based on the collective input from the workers. The976

algorithm is shown in Algorithm 3.977

D Results on Dataset Sizes978

In addition to the differences, we also show the979

actual accuracies of Crowdlayer and SkillAggre-980

gation on TruthfulQA and Chatbot Arena datasets981

together with majority voting accuracies on each982

subset of data in Fig. 7.983

We provide the influence of dataset sizes on984

HaluEval-Dial in Fig. 8. Different from the985

other two datasets, the performance of the context-986

dependent method was consistently much higher987

when 1000 data samples were provided.988

E Correlation Between Skills and989

Accuracy990

The correlation between skills and accuracy of each991

LLM judge on Chatbot Arena and TruthfulQA is992

shown in Fig. 9 and 10 respectively.993

F Multi-class SkillAggregation994

We will discuss how SkillAggregation can be ex-995

tended when the number of classes C is greater996

than two.997

Context encoder and bottleneck layer. The998

context encoder stays the same. We make the out-999

Algorithm 3 Dawid Skene method
1: procedure DAWIDSKENE(b1:N , M , ϵ)
2: // Initialization
3: for k ∈ {1, · · · ,K} do
4: for b ∈ {0, 1} do
5: Ck,b ∼ U[0.5, 1]
6: end for
7: end for
8: m← 0
9: repeat

10: for n ≤ N do
11: // E-step
12: foo ←

∏K
k=1C

bn,k

k,1 (1− Ck,1)
1−bn,k

13: bar ←
∏K

k=1C
1−bn,k

k,0 (1− Ck,0)
bn,k

14: qn ← foo
foo+bar

15: end for
16: // M-step
17: for k ∈ {1, · · · ,K} do
18: Ck,1 ←

∑
n≤N qnbn,k∑

n≤t qn

19: Ck,0 ←
∑

n≤N (1−qn)(1−bn,k)∑
n≤t(1−qn)

20: end for
21: m← m+ 1
22: until m = M or ∥C −C ′∥∞ ≤ ϵ
23: for n ≤ N do

24: foo←
∏K

k=1(Ck,1)
bn,k(1−Ck,1)

1−bn,k∏K
k=1(Ck,0)

1−bn,k(1−Ck,0)
bn,k

25: ĉn ← 1[foo > 1]
26: end for
27: Return ĉ1:N
28: end procedure
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Figure 7: Accuracy with different sizes of datasets on
TruthfulQA and ArenaHard using Crowdlayer and Skil-
lAggregation, where 5000 samples for TruthfulQA is
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voting results also change with different subsets, and
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Figure 8: Influence of dataset sizes on HaluEval-Dial.

put of the bottleneck layer C dimensional, i.e., sn1000

has C entries that sum to one.1001

Confusion matrices. We will still be using the1002

conditional independence (CI) model. In the binary1003

case, we could do inference under the CI model by1004

just learning the skills, i.e., the diagonal entries of1005

worker confusion matrices. However, with multiple1006

classes, learning skills is insufficient; one needs to1007

learn more confusion matrix entries.1008

We formalize the notion of a worker’s confusion1009

matrix here. For worker k, C(n,k) ∈ [0, 1]C×C is1010

the confusion matrix. It satisfies the following prop-1011

erty. For c ∈ {1, · · · , C} and b ∈ {1, · · · , C}:1012

C(n,k)
c,z = P (bn,k = b|cn = c,Xn).1013

HaluEval PCC=81.0% TruthfulQA PCC=89.9% Chatbot Arena PCC=69.5%
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Figure 9: Correlation between skills learned and accu-
racy for each LLM judge using SkillAggregation on
Chatbot Arena.
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Figure 10: Correlation between skills learned and ac-
curacy for each LLM judge using SkillAggregation on
TruthfulQA.

Predicting the kth worker. With some abuse of 1014

notation, we assume that yn,k is C-dimensional. If 1015

a judge gives a hard prediction, we encode it into 1016

a one-hot vector. If we get soft predictions, we 1017

assume that elements of yn,k are non-negative and 1018

sum to one. Now, we derive SkillAggregation’s 1019

prediction for the kth worker’s estimate vector. For 1020

any b ∈ {1, · · · , C}, 1021

P(bn,k = b|Xn) 1022

=

C∑
c=1

P(cn = c|Xn)P(bn,k = b|cn = c,Xn) 1023

≈
C∑
c=1

sn,kĈ
(n,k)
c,b , 1024

where Ĉ(n,k) ∈ RC×C is an estimate of the kth 1025

worker’s confusion matrix for context Xn. 1026
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Loss function. As in the loss, one part of our1027

loss function will be the cross-entropy loss, and1028

the other will be a regularization term. To derive1029

this term, we will first assume C = 3 and do some1030

analysis, and then generalize to more classes. Pre-1031

diction for bth component of kth worker’s estimate1032

is1033

sn,1Ĉ
(n,k)
1,b + sn,2Ĉ

(n,k)
2,b + sn,3Ĉ

(n,k)
3,b1034

=sn,1Ĉ
(n,k)
1,b + sn,2Ĉ

(n,k)
2,b + (1− sn,1 − sn,2)Ĉ

(n,k)
3,b1035

=Ĉ
(n,k)
3,b + (Ĉ

(n,k)
1,b − Ĉ

(n,k)
3,b )sn,11036

+ (Ĉ
(n,k)
2,b − Ĉ

(n,k)
3,b )sn,2.1037

Gradient of this prediction w.r.t. sn,1:2 is [(Ĉk,1,z−1038

Ĉk,3,z), (Ĉk,2,z − Ĉk,3,z)]
⊤ and we want to regu-1039

larize this gradient. When we extend this idea to1040

an arbitrary value of C, we find that a reasonable1041

regularization term is the following:1042

Lreg =
N∑

n=1

C−1∑
b=1

C−1∑
c=1

(
Ĉ
(n,k)
c,b − Ĉ

(n,k)
C,b

)2
.1043

We only regularize for C − 1 classes for both z1044

and c. The reason is transitivity, i.e., when we1045

encourage a to be close to b and b to be close to c,1046

we also encourage a to be close to c.1047

Group estimate. To produce a group estimate,1048

we assume the CI model and a uniform prior1049

P (cn = c) = 1/C. Under these assumptions,1050

for any b ∈ {1, · · · , C}K ,1051

P (bn = b|Xn, cn = c)1052

=
K∏
k=1

C∏
z=1

(
C(n,k)
c,z

)
1[bn,k=b]

.1053

Then, by Bayes rule, we get1054

P(cn = c|Xn,bn)1055

∝ P(cn = c|Xn)P(bn|Xn, cn = c)1056

∝ P(cn = c|Xn)

K∏
k=1

C∏
z=1

(
C(n,k)
c,z

)
1[zk=z]

.1057

We then approximate P(cn = c|Xn) with sn,c, and1058

C(n,k) with Ĉ(n,k). This gets us1059

P (cn = c|Xn,bn)1060

≈
sn,c

∏K
k=1

∏C
z=1

(
Ĉ
(n,k)
c,z

)1[bn,k=z]

∑C
c′=1 sn,c′

∏K
k=1

∏C
z=1

(
Ĉ
(n,k)
c′,z

)1[bn,k=z]
,1061

which we denote by P̂ (cn = c|Xn,bn). The group1062

estimate is the class that maximizes P̂ (cn|Xn,bn).1063

G Performance on Subsets of LLM 1064

Judges on Chatbot Arena 1065
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Figure 11: Accuracies of aggregation methods (includ-
ing SkillAggregation and DawidSkene) against majority
voting accuracies on different subsets of LLM judges on
Chatbot Arena. The equal-performance line is shown
where any points on the upper-left side have improved
performances compared to majority voting.

We further provide the performance of SkillAg- 1066

gregation and DawidSkene methods using different 1067

subsets of LLM judges on Chatbot Arena in Fig. 11 1068

where a subset of 5000 data samples is used. As be- 1069

fore, when there is a majority of good LLM judges 1070

with a couple of bad ones corresponding to accu- 1071

racies in 64%-66% yield the largest improvements 1072

compared to majority voting. 1073

H List of LLM Subsets 1074

We provide the list of subsets and their respective 1075

performances for Fig. 4 in Table 4, and the LLM 1076

subsets for Fig. 11 in Table 5 respectively. 1077
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Subsets Majority Voting (%) SkillAggregation (%)

7 Models (w/o Mistral-v0.1) 67.93 70.36
7 Models (w/o OpenOrca) 67.76 69.21
7 Models (w/o zephyr) 67.15 67.68
7 Models (w/o Hermes-2.0) 67.51 69.30
7 Models (w/o Starling) 66.69 68.06
7 Models (w/o Hermes-2.5) 66.48 67.15
7 Models (w/o Llama-3) 66.41 67.69
7 Models (w/o Mistral-v0.2) 66.36 67.24
Mistral-v0.2, Hermes-2.0, Mistral-v0.1 64.47 68.58
Mistral-v0.2, OpenOrca, Mistral-v0.1 63.96 67.34
Llama-3, Hermes-2.0, Mistral-v0.1 64.57 66.71
OpenOrca, Hermes-2.5, Mistral-v0.1 64.53 64.60
Starling, OpenOrca, Mistral-v0.1 64.14 64.04
OpenOrca, Hermes-2.0, Mistral-v0.1 63.08 63.25
Mistral-v0.2, Mistral-v0.1, Beluga 57.62 59.19
Mistral-v0.2, OpenOrca, Beluga 63.48 66.90
Llama-3, Mistral-v0.2, zephyr 68.67 69.64
Hermes-2.5, Llama-3, Mistral-v0.1 66.81 68.20
Starling, Mistral-v0.2, Mistral-v0.1 66.42 68.71
Starling, Llama-3, Mistral-v0.1 66.68 68.03
Starling, Hermes-2.5, Mistral-v0.1 67.15 67.69

Table 4: Details of LLM subsets used for TrutufulQA. When the subset has 7 models, the excluded one model is
given, and otherwise all models are given.

Subsets Majority Voting (%) SkillAggregation (%)

8 Models (w/o Llama-3) 67.14 67.20
8 Models (w/o Mistral-v0.1) 67.46 67.98
8 Models (w/o zephyr) 67.72 68.10
8 Models (w/o Starling) 67.48 67.66
8 Models (w/o OpenOrca) 67.52 68.24
8 Models (w/o Mistral-v0.2) 67.44 68.32
8 Models (w/o Hermes-2.0) 67.46 68.02
8 Models (w/o Hermes-2.5) 67.22 67.76
8 Models (w/o Beluga) 67.48 67.84
Llama-3,Mistral-v0.2,Beluga 67.78 67.98
Llama-3,Mistral-v0.2,Hermes-2.0 67.72 67.94
Llama-3,Hermes-2.0,Beluga 67.22 68.10
Mistral-v0.2,Hermes-2.0,Beluga 66.52 66.82
llama3,Starling,Beluga 67.46 68.52
Mistral-v0.2,Hermes-2.0,Starling 67.20 67.26
Mistral-v0.2,Starling,Beluga 66.96 67.30
Zephyr,Mistral-v0.2,Beluga 65.70 66.60
Zephyr,OpenOrca,Beluga 65.40 65.92

Table 5: Details of LLM subsets used for Chatbot Arena.
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