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Abstract

Large Language Models (LLMs) are increas-
ingly used to assess NLP tasks due to their abil-
ity to generate human-like judgments. Single
LLMs were used initially, however, recent work
suggests using multiple LLMs as judges yields
improved performance. An important step in
exploiting multiple judgements is the combi-
nation stage, aggregation. Existing methods
in NLP either assign equal weight to all LLM
judgments or are designed for specific tasks
such as hallucination detection. This work fo-
cuses on aggregating predictions from multiple
systems where no reference labels are avail-
able. A new method called SkillAggregation is
proposed, which learns to combine estimates
from LLM judges without needing additional
data or ground truth. It extends the Crowdlayer
aggregation method, developed for image clas-
sification, to exploit the judge estimates during
inference. The approach is compared to a range
of standard aggregation methods on HaluEval-
Dialogue, Truthful QA and Chatbot Arena tasks.
SkillAggregation outperforms Crowdlayer on
all tasks, and yields the best performance over
all approaches on the majority of tasks.

1 Introduction

Human evaluation has long been considered the
gold standard for evaluating the quality of natural
language generation (NLG) systems (Belz and Re-
iter, 2006; Lai and Tetreault, 2018; Fabbri et al.,
2021). However, human evaluation can be labour-
intensive and time-consuming, especially as the
complexity of language generation increases. With
the advent of instruction-following large language
models (LLMs) (Wei et al., 2022; Ouyang et al.,
2022), there has been a shift towards leveraging
these models’ zero-shot capabilities to evaluate
NLP tasks, including NLG evaluation. Recent ad-
vancements have demonstrated high alignment be-
tween “strong” LLMs and human judgments across
various NLP tasks (Zheng et al., 2023). This zero-

shot LLM-based method, also termed LL.M-as-a-
judge, offers a more cost-effective alternative to
traditional human evaluation (Li et al., 2024b).

Despite its advantages, LLM-as-a-judge has lim-
itations such as self-preference bias, where an LLM
tends to favour its own responses; verbosity bias,
where some LLMs may prefer longer, more de-
tailed responses (Zheng et al., 2023; Stureborg
et al., 2024); or sensitivity to prompt phrasing
(Verga et al., 2024). Using a single large LLM
judge not only amplifies biases but can also re-
quire high computational resources that make local
evaluations impractical. Furthermore, existing ag-
gregation approaches in NLP weigh judges equally
(Verga et al., 2024; Badshah and Sajjad, 2024) or
are tailored to specific tasks (Sun et al., 2024; Li
et al., 2024a), resulting in the following limitations.

First, assigning equal weight to all judges, as
done in Verga et al. (2024); Badshah and Sajjad
(2024), can be suboptimal because skill levels may
vary across judges and tasks. For example, GPT-4
is expected to outperform GPT-3 in most tasks and
thus should be assigned a higher weight. Claude3
might excel in programming tasks, whereas GPT-4
may surpass Claude3 in reasoning tasks, suggesting
that the weighting should be adapted depending on
the evaluation task. Second, aggregation methods,
such as those proposed by Sun et al. (2024), Wei
et al. (2024), and Li et al. (2024a), are designed
for specific tasks like hallucination detection or
ranking LLMs. However, the applicability of these
methods beyond truthfulness evaluation remains
uncertain. Li et al. (2024a) impose the constraint
that each judge must evaluate all others.

To address the aforementioned limitations, we
propose a new method, SkillAggregation, which
dynamically weights LLM judges based on con-
textual information, such as the specific question
posed to the LLM judges when generating the esti-
mates. This method is reference-free as it learns to
combine estimates from LLM judges without need-



ing additional data or ground truth. This method is
more general as it can be applied to any problem
where the LLM estimates are binary or probabilis-
tic. Unlike prior work, we do not prompt the judges
for any information besides the estimates, nor does
our algorithm need each judge to assess all others.
Our contributions are as follows. We propose
SkillAggregation, an aggregation method based
on a reformulation of Crowdlayer (Rodrigues and
Pereira, 2018). SkillAggregation improves on
Crowdlayer by learning estimates at training and
utilizing them at inference. Moreover, SkillAg-
gregation includes a regularization term to miti-
gate over-confident probabilistic estimates from
LLM judges. Finally, we demonstrate SkillAggre-
gation’s effectiveness on HaluEval-Dialogue (Li
et al., 2023), TruthfulQA (Lin et al., 2022), and
Chatbot Arena (Chiang et al., 2024) datasets.

2 Related Work

Aggregation Methods: Aggregation methods have
been widely studied in fields such as crowdsourc-
ing and ensemble learning, where strategies are de-
veloped to combine predictions (also referred to as
worker predictions) to enhance decision quality dur-
ing training and inference. However, few aggrega-
tion methods have been applied to LLM evaluation,
despite the increasing use of multiple LLMs in NLP
tasks. Most existing aggregation methods focus on
weighting worker contributions without account-
ing for contextual information (Zhang et al., 2016;
Zheng et al., 2017; Zhang, 2022)), though other
methods introduce context-aware mechanisms (Jin
et al., 2020; Zhang, 2022). The references men-
tioned in the preceding sentences point to surveys
that provide broader surveys of aggregation strate-
gies, particularly from the crowdsourcing litera-
ture. This work builds on these insights and com-
pares representative aggregation methods within
the LLM evaluation framework.

LLM-based Evaluation: Traditional evaluation
methods for NLP tasks, such as BLEU for machine
translation (Papineni et al., 2002) and ROUGE for
summarization (Lin, 2004), have long been task-
specific and reliant on manually designed metrics.
However, with the advent of LLMs capable of per-
forming tasks in a zero-shot manner, the evalua-
tion paradigm has shifted, and LLM-as-a-judge
(Zheng et al., 2023), where LLMs are prompted
with evaluation criteria, has emerged as a flexible
alternative. This method has shown strong correla-

tion with human judgments across tasks. Building
on the LLM judge, Verga et al. (2024) introduced
PoLL, a multi-judge framework where each judge
is assigned equal weight. This simple aggregation
led to improved performance. Recent efforts, such
as CrossCheckGPT (Sun et al., 2024), designed a
hallucination evaluation method based on a cross-
model consistency idea that uses information gen-
erated from a group of LLMs. Similarly, FEWL
(Wei et al., 2024) uses answers generated from a
group of LLMs along with an answer weighing
mechanism for hallucination evaluation. PRD (Li
et al., 2024a) adopts multiple LLMs for pairwise
comparison ranking.

3 Worker Aggregation Problem

Worker aggregation is the process of estimating
the underlying ground truth using a set of predic-
tions from a group of workers, which is crucial
when dealing with multiple worker contributions
that may vary in accuracy or reliability. In this pa-
per, worker aggregation algorithms are adapted to
combine predictions from LLM judges by treating
each LLM as a worker to obtain a more accurate
judgment. This problem is illustrated in Fig. 1.
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Figure 1: Illustration of the worker aggregation pro-
cess. LLM judges observe context X, and provide
judgments y,, € [0,1]¥ for ground truth ¢,, € {0,1}.
An aggregation method takes the following as input: a
dataset {(X,,,y»)}2_;, and produces group estimates
{é, € {0,1}})_, of the judgments.

As shown in Fig. 1, there are K LLM judges.
For each data sample n, these judges observe
some contextual information X, and give esti-
mates y,, € [0,1]% for a binary ground truth label
¢n € {0, 1} representing Yes/No or preference to
A/B. Since this paper focuses on binary judgments
(e.g., true/false or preference decisions) with open-
source models where output probabilities can be
obtained, we exploit this by having y,, j as the nor-



malized probability of positive decision, e.g. “Yes",
as shown in Eqn. (1).

Unge = PIF) (Yes) /(P{F) (Yes) + P{F) (No)) (1)

where PV (Yes) is the k-th LLM output probabil-
ity of generating the word “Yes" when observing
context X,,. We denote the binary outcomes of
LLM judgments as b,, € {0, 1}, which have el-
ements by, ;, = 1y, x > 0.5]. Note that for LLMs
where probabilities cannot be obtained, binary pre-
dictions where y,, , € {0, 1} can be used, which is
a special case covered by this problem setup.

The aggregation method then combines the LLM
judgments into one group estimate ¢,, for each sam-
ple n, where the input is the dataset { (X, y»)}2Y_;
or some representation of this dataset. Commonly
adopted approaches such as averaging (Sun et al.,
2024) and majority voting (Verga et al., 2024) are
shown in Algorithm 1 and Algorithm 2 in Ap-
pendix C, respectively. However, both methods
treat judges equally and neglect the differences in
the quality and reliability of individual judges.

On the other hand, expectation-maximization
(EM) based algorithms can be applied, such as the
DawidSkene algorithm (Dawid and Skene, 1979).
Instead of treating each judge equally, it estimates
the confusion matrix associated with each judge
and weights the workers based on the confusion
matrices. This matrix is learned using the EM
algorithm as shown in Algorithm 3 in Appendix C,
and it estimates P (b, ;|c,,) under the assumption
that contexts are not informative and P(c, = 1) =
0.5. The group estimate ¢,, is taken to be the label
that maximizes the approximation of P(c,|y).

4 SkillAggregation
4.1 Context-dependent Aggregation

The aforementioned aggregation methods produce
the group estimates only based on the LLLM judg-
ments without considering the context that yields
those judgments. With the advancement in neural
networks, models have been developed that can
map the context into compact vector representa-
tions to enable further manipulation. One repre-
sentative aggregation approach is the Crowdlayer
(Rodrigues and Pereira, 2018). Crowdlayer pre-
dicts a context-dependent distribution P(c,|X,,)
using a neural context encoder. This context en-
coder, together with some transformation matri-
ces with trainable parameters is trained to predict
LLM judgments. SkillAggregation adopts a simi-

lar route with critical modifications that improve
performance for aggregating LLM judgments.

4.2 Model Structure and Training

The structure of SkillAggregation is shown in Fig.
2 including a context encoder with bottleneck layer
output and a set of trainable skill-estimate vectors
that are defined later in this section. The context en-
coder is a pre-trained language model that takes the
textual input and generates a vector representation
of the context. Following Rodrigues and Pereira
(2018), a bottleneck layer is used to project the con-
text representation fy(X,,) into a 2-dimensional
vector as shown in Eqn. (2)

s, = softmax(w’ fy(X,,) + b) )
where s,, € R? is a prediction of the distribution
of the classes, i.e., s, 0 ~ P(c, = 0/X,). The
intuition is that the bottleneck layer output would
capture common information that helps predict the
LLM judgments. If the estimates produced by most
LLMs are better than random guessing, the output
of this layer will be predictive of the ground truth.

To capture the uniqueness of each LLM judge,
instead of directly learning a transformation matrix,
we estimate the skills, i.e. quality and reliability of
predictions from each LLLM, using pairs of scalars
ﬁén’k) € [0,1] and ﬁgn’k) € [0,1]. The underlying
meaning of these two scalars is given below:

p6" % Pbug = Olea = 0.X0); (3)

We will refer to {p("™*) }p< ¢ as skill-estimate vec-
tors since they approximate the probability of iden-
tifying the ground truth correctly. We estimate the
LLM judgments using s and p(k) as follows:

(n,k)

A ~(n,k ~
Plbni = 01X,) = p" sn0 + (1= pU" s

As a design choice, skill-estimate vectors can be
task-specific, using the same set of p(™*) for all
data samples n in one task, or context-specific
where a trainable mapping from the context to
p(™*) is done with a linear layer followed by a
Sigmoid activation function to ensure the range of
values. This is referred to as SkillAggregation-X
which can be useful when the performance of LLM
judges changes with subtasks or topics inside a
task, allowing more flexibility. SkillAggregation-X
is trained by minimizing the cross-entropy between
the predicted LLM judgments and the actual LLM
judgments, as shown in Eqn. (5)



Context X, T

Query: What happens to you
if you eat watermelon seeds?
Response: You grow

watermelons in your stomach
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Figure 2: The SkillAggregation model with an example context from the Truthful QA dataset. The terms p(()”’k) , pgn’k)

are estimated skills for k-th LLM, and s,, o, 55,1 are outputs from the bottleneck layer. The outputs ), ;, are the
predicted LLM judgments for the k-th LLM on data sample n.
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To further analyze how skills are represented, us-
ing the fact that s, o + s,,1 = 1, we re-write the
estimate of P(b,, , = 0|.X) as follows,

P50+ (1=,
= T 450 s 0+ (1= ) (6)

which sets up a linear relationship between (pre-
dicted) ground truth and actual LLM judgments.
An LLM with poor skill produces judgments that
are less correlated with the ground truth, hence
having a smaller slope. However, some LLMs are
miscalibrated and give over-confident judgments.
If the k-th LLM is over-confident which generates
extreme values, slope (p, k) Agn’k) — 1) will
be larger to minimize loss, Wthh amplifies the
influence of y,,  on s, o. This is particularly un-
desirable when the LLM is generating low-quality
judgments. To mitigate this issue, a regularization
term is proposed as shown below

reg = ZZ A(n k)

n=1k=1

2 VN ¢)
Putting them all together, SkillAggregation is op-
timized by £ = Lcg + ALeg, where A is a hyper-
parameter controlling the regularization term.

4.3 Inference with Posterior Estimation

The Crowdlayer method performs inference by di-
rectly selecting the class with the highest probabil-
ity from the bottleneck output s,, without utilizing
worker predictions. Specific to our problem setup,
the LLM judgments are available for each context
during inference. Therefore, we propose to choose
the best class based on the estimation of the pos-
terior distribution, P(cy|X,,,yr). This is useful

when the context encoder is a relatively small LM
and is not powerful enough to make an accurate
prediction for the ground truth, and the LLM judge
predictions are, in general, better than the bottle-
neck outputs. Posterior estimation provides better
group estimates by using powerful LLM judgments
in addition to the output of the bottleneck layer.

To derive the posterior distribution, we first make
a common assumption in the crowdsourcing litera-
ture that the LLLMs are conditionally independent
(CI) given the same ground truth and context. With
this assumption, the probability of observing the
set of binary LLM judgments b € {0, 1}¥ is

P(by = b X cn = 1) =
K b 1-b
1607 (1)

k=1
P(b, = b|X,,c, = 0) =

K n, 1—bg n by,
[TGe) " (m)
for some {p(()n k)}szl € [0,1]% and {P(n M €

0,1]%. Note that the {p™*)} K are true skill
vectors under the CI model in contrast to the skill-
estimate vectors, that is, {p(™*)}X_ are equal to
the probability of identifying the ground truth cor-
rectly. Under the CI assumption, the Bayes rule

yields the following
P(c, = 1|X,,by) x

K
P(c, =11X,) H (pgn,k))bk (1 B pgn,k))lfbk ’

k=1

P(c, = 0|X,,by,) x

K
Plen = 01X T () (1=

k=1



Next, we approximate the true skill vectors and
the probability of the ground truth given context
with the ones estimated using the SkillAggregation
model to derive tractable implementation, that is:
P(c, = i|X,) ~ s and p"*) ~ pt

1

n7k)

for i € {0,1}. Group estimate maximizes the
approximation of P(c,|X,,by) and the logic of
producing it is given below:

R k bn,k R k 17bn,k:
o TS ()" (1 )

R 1_bn,k . bn,k ’
o e S R CE )

Cp = 1[ry, > 1]. )

Tn =

This estimation relies on the quality of the skill-
estimate vectors; hence, it also benefits from the
proposed regularization term that prevents the im-
pact of over-confident LLMs.!

5 Experimental Setup
5.1 Tasks & Datasets

We consider three tasks to evaluate the perfor-
mance of worker aggregation methods, including
HaluEval-Dialogue (Li et al., 2023), Truthful QA
(Lin et al., 2022), and Chatbot Arena (Chiang
et al., 2024). HaluEval-Dialogue and Truthful QA
are question-answering tasks where the LLMs are
prompted to determine if a given answer is correct
or not. In Chatbot Arena, LLMs are used to predict
human preferences between two responses that can
be used for comparative assessments (Liusie et al.,
2024) or reinforcement learning (Lee et al., 2023).
Specifically, the LLMs are made to determine if
response A is better than response B by presenting
both responses in the prompt. More details about
the datasets are given in Appendix A.1.

5.2 LLM Judges

Our experiments are performed primarily with ten
LLM judges that have 7B, e.g. Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023) or 8B, e.g. Llama-3-8B-
Instruct (Dubey et al., 2024) models. These models
are all instruction-tuned so that they can give judg-
ments for a specific task. These LLM judges were
selected based on their performance levels to en-
sure a diverse range of base LLMs. In addition, for
Truthful QA and Chatbot Arena, we remove judges

"Extension of SkillAggregation to multi-class classifica-
tion is shown in Appendix F.

that fail to perform these tasks, i.e. those having
performance near or worse than random guessing,
by evaluating a small number of development ex-
amples, as not all judges can perform all tasks. As
a result, 8 judges are used for Truthful QA and 9
judges are used for Chatbot Arena. The perfor-
mance of each LLM judge on the three tasks is
shown in Appendix A.2.

We further examine the effect of worker aggrega-
tion methods using 70B-level LLMs (e.g. Mixtral-
8x7B and Llama-3-70B-Instruct) that have much
better performance than 7B/8B models. Five differ-
ent models are selected for both tasks. Details
about the models we consider are given in Ap-
pendix A.2, and the specific prompts we use to
elicit estimates are given in Appendix B.

5.3 Alternative Aggregation Methods

We examine simple baselines, including majority
voting and averaging, as well as alternative aggre-
gation methods that have been widely adopted in
the crowdsourcing literature but have not been ex-
plored on LLM-based evaluation tasks as follows:

1) Averaging Probabilities: This method av-
erages the normalized probabilities of generating
Yes/No or A/B from the LLM judges, and then
makes predictions based on the averaged proba-
bilities. See Algorithm 1 in Appendix C for the
detailed implementation.

2) Majority Voting: Majority voting first con-
verts the probabilistic judgments into binary deci-
sions, and chooses the decision that agrees with
more than half of the LLMs. See Algorithm 2 in
Appendix C for the detailed implementation.

3) Train on Majority Voting: We train the same
backbone context encoder to predict group esti-
mates produced by majority voting based on the
context. This is because the pre-trained context
encoder may have an inherent ability to map the
context to the target space with noisy training la-
bels. By comparing to this system, we exclude
the influence from the inherent knowledge when
demonstrating the effect of aggregation methods.

4) DawidSkene: This was proposed by Dawid
and Skene (1979). We consider it representative
of methods that do differential weighting, but the
weights do not depend on the context. It uses the
expectation-maximization (EM) algorithm to learn
skills for each worker. See Algorithm 3 in Ap-
pendix C for the detailed implementation.

5) Crowdlayer: We refer to the Crowdlayer
approach as the one proposed by Rodrigues and



Pereira (2018). We consider it representative of
methods that do context-based aggregation meth-
ods using neural networks.

We treat averaging probabilities, majority voting
and training on majority voting as our baselines.
DawidSkene and Crowdlayer are two representa-
tive common aggregation algorithms that are first
applied to combine LLLM judgments in this paper.

5.4 Model and Training Setup

Unless specified, we use pre-trained GPT-2, the
base model with 117M parameters, (Radford et al.,
2019) as the context encoder, with the final hid-
den state representing the context. All aggregation
methods are reference-free. During training, Skil-
[Aggregation learns directly from the LLM judge-
ments on the dataset without requiring any refer-
ence labels, hence there is no distinction between
train and test sets. Ultimately, the performance
of SkillAggregation is evaluated against reference
labels on the same dataset. The parameters for
SkillAggregation to be learnt are the GPT-2 back-
bone (117M parameters), the bottleneck layer (1.5k
parameters) and the skill vectors (20 parameters),
which are much smaller than the LLMs (e.g., 7/8B
or 70B parameters). We chose the model check-
points and the regularisation hyper-parameter A
based on the model performance on a small held-
out development set containing 250 samples. This
set is small enough to have negligible influence on
the overall dataset, and training on it does not yield
good performance across the test set. The hyper-
parameter tuning for neural methods is based on
the development set accuracies. On average, train-
ing SkillAggregation takes only 20-30 minutes on
a single NVIDIA RTX 6000 Ada.

6 Results and Analysis
6.1 Main Results

The main results for 7B/8B models on HaluEval-
Dialogue, TruthfulQA, and Chatbot Arena are
shown in Table 1. Differential weighting meth-
ods like DawidSkene and SkillAggregation per-
form better than majority voting on all three tasks.
In particular, Crowdlayer-based methods consis-
tently outperformed both majority voting as used
in Verga et al. (2024) and averaging as used in
Sun et al. (2024), offering a better way to combine
LLM estimates. The best performance across all
neural methods is obtained using SkillAggregation-
X, which achieved 4.9%, 1.3%, and 0.5% abso-

lute accuracy improvements on HaluEval-Dialogue,
TruthfulQA, and Chatbot Arena, respectively.
Effect of the regularization term: Consis-
tent improvements are observed using the regu-
larization term across all three datasets, especially
with 7B/8B models. Without regularization, over-
confident skill-estimate vectors dominate the pos-
terior distribution, yielding a sub-optimal aggrega-
tion effect. Besides, context-specific skill-estimate
vectors generally perform better than task-specific
ones as they capture subtle variations in these tasks.
Larger improvements on HaluEval: The im-
provements on HaluEval are considerably larger
compared to the other two tasks, likely because the
context encoder (GPT-2) already has some inherent
ability to perform this task. By simply training on
majority voting, a 1.5% gain is already achieved
on HaluEval compared to majority voting, how-
ever, on other datasets training on majority voting
leads to worse performance. This suggests that the
context is more informative, resulting in higher im-
provements with context-dependent methods. Com-
pared to TruthfulQA, the context in Chatbot Arena
is more challenging to encode, and human prefer-
ence evaluation is inherently noisier, leading to the
smallest gains across the three datasets.
SkillAggregation on 70B-level models: As
shown in Table 1, applying aggregation methods
to 70B LLMs gives much better performance com-
pared to 7B/8B LLMs. While differential weight-
ing aggregation methods consistently outperform
majority voting and SkillAggregation, achieving
the best performance, the gains are smaller. This
is particularly noticeable in Chatbot Arena, where
the impact of noisy labels is more pronounced.

6.2 Visualization of SKkills

As discussed in Section 4.2, the learned skills of the
LLMs can be reflected by the slope in Eqn. (6), and
the slope against accuracies for each LLM judge
on HaluEval is shown in Fig. 3. As a result, these
learned skills demonstrate a strong correlation with
performance such that models with weaker abilities
are under-weighed in the posterior computation
during inference. Similar plots for Truthful QA and
Chatbot Arena are shown in Appendix E with PCCs
of 89.9% and 69.5%.

6.3 Influence of Context Encoder

To validate that our context-dependent method is
agnostic to the choice of context encoder, pro-
vided that the encoders have similar abilities, we



HaluEval (%) Truthful QA (%) Chatbot Arena (%)

7B/8B ~ 70B 7B/8B ~ 70B 7B/8B ~ 70B
Context-Independent Methods
Average Probability 76.28 81.10 68.06 83.85 63.24 70.65
Majority Voting 76.16 80.81 67.47 83.63 63.93 70.61
DawidSkene 76.78 80.86 67.84 84.08 64.71 70.64
Context-Dependent Methods
Train on Majority Voting 78.78+1.10 829741073 67.324022 82414943 63.7710.15 70.53+0.21
Crowdlayer 79.27:{:0_39 83.94:{:0_33 67.74:{:0‘69 83.87:{:0‘29 64.06:{:0‘21 70.38;&).06
SkillAggregation w/o. Reg 80.22i0.41 84.22i0.32 68.07i0‘30 84-04i0438 64.17i0‘07 70.62i0,23
SkillAggregation 80.83:{:0_33 84.88:{:0‘21 68.74:{:0‘13 84.45:{:0‘53 64.22:{:0‘04 70.66i0.07
SkillAggregation-X 81.06+0.14 84.79+0.13 68.77+021 84571017 64431011 70.72+0.07

Table 1: Judgment accuracies on HaluEval-Dialogue, TruthfulQA and Chatbot Arena datasets using context-
independent and context-dependent aggregation methods. The second-best results are underlined. Standard
deviations in 5 runs with different random seeds are also reported for context-dependent methods are required.

SkillAggregation w/o Reg. refers to training without the proposed regularisation term (i.e. A = 0 in Eqn (8))
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igure 3: Scatter plot of the slope (5, ' +p; =~ —1)
representing the skill of each LLM from SkillAggrega-
tion against accuracies of each LLM on HaluEval. PCC
stands for Pearson Correlation Coefficient.

replace the GPT-2 context encoder with pre-trained
RoBERTa and use the [CLS] token as the context
representation. We focus our analysis on the con-
text encoder and the influence of subsets (Sec. 6.4)
on TrutufulQA and Chatbot Arena since the im-
provements on HaluEval are large compared to
majority voting. For Chatbot Arena, due to longer
context lengths, we chose Gemma-2B trained with
Low-rank adaptation (LoRA). The results are plot-
ted in Fig. 5. As shown in Fig. 5, SkillAggregation
with both RoBERTa and Gemma-2B achieved sim-
ilar performance improvements compared to ma-
jority voting and Crowdlayer. While Gemma-2B
is larger than GPT-2, it does not necessarily give
better context representations than GPT-2 for hu-
man preference prediction, hence yielding a similar
performance. This is also supported by the fact
that Gemma-2B achieves an accuracy of 85.59%
on Truthful QA in contrast to 84.57% with GPT-2.
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Figure 4: Accuracies of SkillAggregation and Daw-
idSkene against majority voting on different subsets of
LLM judges on TruthfulQA. The equal-performance
line is plotted, and points on the upper-left side indicate
improved performance compared to majority voting.
The list of subset models and their performances are
shown in Table 4 in Appendix H

6.4 Subsets of LLM Judges

We investigate the impact of LLM judge subsets
on DawidSkene and SkillAggregation, comparing
their accuracies against majority voting in Fig. 4.
On most subsets, SkillAggregation outperformed
DawidSkene and majority voting. The majority vot-
ing performance indicates the quality of the judges
in the subset. When judges are weak, SkillAggre-
gation performs close to DawidSkene, which does
not use context. In this scenario, SkillAggrega-
tion cannot learn a good estimate of the ground
truth distribution, i.e., P(c,|X,,). On the contrary,
SkillAggregation shows larger improvements when
most judges perform above average and when there
are a few weak models that deteriorate the majority
voting performance, such as when majority voting
accuracy is around 65%-68% in Fig. 4. Perfor-
mance on Chatbot Arena is shown in Appendix G.
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Figure 6: Accuracy improvements relative to majority
voting against number of samples on Truthful QA and
Chatbot Arena using Crowdlayer and SkillAggregation,
where 5000 samples for Truthful QA is the entire dataset,
and is 1/6 of Chatbot Arena.

6.5 Influence of Dataset Sizes

The impact of the size of the data set on the perfor-
mance of SkillAggregation is shown in Fig. 6 for
Truthful QA and Chatbot Arena, and Fig. 8 in Ap-
pendix D for HaluEval. Subsets ranging from 1,000
to 5,000 samples were randomly selected from the
entire dataset for training, while the development
set remained the same. Due to differences in the
subsets, majority voting accuracies vary. Thus, per-
formance relative to the majority voting baseline is
reported where positive means improvements and
negative means degradation.

As shown in Fig. 6, while SkillAggregation
still outperforms Crowdlayer, the performance of
both context-dependent aggregation methods with
only 1,000 samples is much noisier and does not
necessarily outperform majority voting. This is
likely because the context encoder cannot provide
reasonable estimates of the ground truth, and the
skill-estimate vectors are not sufficiently accurate.

6.6 Analysis on Positional Bias

We observed positional bias in some weak LLM
judges on Chatbot Arena where the first response
was consistently preferred, similar to (Zheng et al.,
2023). To study and address positional bias, we
applied de-biasing by swapping the order of re-

7B/8B (%) ~T70B (%)
Context-Independent Methods
Averaging 66.82 71.15
Majority voting 66.32 71.10
DawidSkene 66.46 71.26
Context-Dependent Methods
Crowdlayer 65.184022 71.1540.09
SkillAggregation-X 66.891013 71.29.¢.19

Table 2: Accuracies of different aggregation methods
on Chatbot Arena with a de-biased set of LLM judges.

sponses and averaging the swapped and original
judgments. With the set of de-biased judges, aggre-
gation algorithms are applied again.

With results shown in Table 2, all methods ben-
efit from de-biasing at the cost of doubling the
inference time which is significantly more expen-
sive than training SkillAggregation. The overall
gains from both DawidSkene and SkillAggregation
are smaller compared to those on the biased set,
indicating that part of the improvements of both
methods come from the de-biasing effects which
are suppressed by the external de-biasing operation.

7 Conclusions

This paper studies aggregation methods, both
context-free and context-dependent, in LLM-based
evaluation. We introduce SkillAggregation, which
learns to combine estimates from multiple LLM
judges during training and inference without
ground-truth estimates. We demonstrated Skil-
1Aggregation’s superior performance over existing
baselines across various datasets, LLM judges, and
context encoders. Our findings highlight the poten-
tial of learned aggregation techniques to enhance
the accuracy and reliability of LLM evaluations.



Limitations

Although our results show that SkillAggregation
outperforms the baselines, our focus has primar-
ily been on classification tasks, leaving room for
further work on general LLM evaluation methods,
such as those involving regression tasks. Addition-
ally, we observed that the LLM judges considered
can sometimes make correlated errors when pre-
dicting the ground truth. Future research could
explore ways to mitigate the impact of these cor-
related errors. Moreover, in some applications,
calibration (not just accuracy) may significantly
influence downstream performance. Investigating
how different aggregation methods perform with
respect to calibration would be a valuable direction.
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A Experimental Setup

A.1 Datasets

HaluEval (Li et al., 2023): We use the Dialogue
subset of the HaluEval dataset. This subset
consists of 10,000 pairs of good responses (i.e.,
not a hallucination) and hallucinated responses,
resulting in 20,000 examples in total. The ratio
between the two classes is 50/50. We down-
loaded the original dataset from this repository:
https://github.com/RUCAIBox/HaluEval/
blob/main/data/dialogue_data. json.

TruthfulQA (Lin et al., 2022): The dataset con-
sists of 817 questions and each question contains
multiple correct answers and incorrect answers.
We unrolled the questions and answers such that
correct answers correspond to the "truthful" la-
bel and incorrect answers correspond to the "non-
truthful" label. This results in 5,918 examples
with 43.93% being truthful and 56.07% being
non-truthful. We downloaded the original dataset
from this repository: https://huggingface.co/
datasets/truthfulqa/truthful_qa.

Chatbot Arena (Chiang et al., 2024): We use
single-turn conversations from the LMSYS
Chatbot Arena dataset. The number of examples
is 34297. We downloaded the original dataset
from this URL: https://www.kaggle.com/
competitions/lmsys-chatbot-arena/data.

A.2 Performance of Each Individual Judge

We adopt the following 7B/8B models: dolphin-
2.1-mistral-7b, StableBeluga-7B (Mahan et al.),
Mistral-7B-Instruct-v0.1, Mistral-7B-Instruct-v0.2
(Jiang et al., 2023), zephyr-7b-beta (Tunstall et al.,
2023), Mistral-7B-OpenOrca (Mukherjee et al.,
2023), Meta-Llama-3-8B-Instruct (Dubey et al.,
2024), OpenHermes-2-Mistral-7B, OpenHermes-
2.5-Mistral-7B (Teknium, 2023), Starling-LM-7B-
alpha (Zhu et al., 2023).

We adopt the following 70B-level models:
Meta-Llama-3-70B-Instruct (Dubey et al., 2024),
Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024),
Qwen2-72B-Instruct (Yang et al., 2024), Hermes-3-
Llama-3.1-70B (Teknium et al., 2024), Athene-70B
(Frick et al., 2024). Their respective performances
(accuracies) are shown in Table 3.

Although occasionally single models may out-
perform aggregated one, in practice, there is no
prior knowledge regarding how each model will
perform on a specific task. For example, Llama3-
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System HaluE TF-QA Arena
Random Guessing 50.00  50.00  50.00
dolphin-2.1-mistral-7b 76.21 4047 5323
StableBeluga-7B 59.28 4393  55.03
Mistral-7B-Instruct-v0.1 62.57 55.09 62.68
Mistral-7B-Instruct-v0.2 67.76 69.84 59.92
zephyr-7b-beta 74.04  62.89  59.03
Mistral-7B-OpenOrca 74.53 63.77  63.31
Meta-Llama-3-8B-Instruct 70.49 68.76  64.68
OpenHermes-2-Mistral-7B 76.03 64.97 63.22
OpenHermes-2.5-Mistral-7B ~ 76.63 68.44  61.74
Starling-LM-7B-alpha 72.14 67.83 64.68
Meta-Llama-3-70B-Instruct 79.75 83.07 70.81
Mixtral-8x7B-Instruct-v0.1 78.05 79.33 65.01
Qwen2-72B-Instruct 77.50 79.38 70.66
Hermes-3-Llama-3.1-70B 79.09 81.01 69.52
Athene-70B 80.24 83.91 69.48

Table 3: Performance of each individual LLM judge on
HaluEval-Dialogue (HaluE), Truthful-QA (TF-QA) and
Chatbot Arena (Arena).

70B achieves the best performance on Chatbot
Arena but only yields a modest performance on
HaluEval. In general, aggregation methods are
more robust across different tasks. SkillAggrega-
tion, as the best aggregation method proposed in
this paper, achieves performance that is either bet-
ter than or close to the best-performing single LLM
on different tasks.

B LLM Judge Prompts

HaluEval-Dialogue

e System prompt: we follow the few-shot
evaluation prompt template as provided
in the original repository of HaluEval
https://github.com/RUCAIBox/HaluEval/
blob/main/evaluation/dialogue/dialogue_
evaluation_instruction. txt

e Prompt template:

#Dialogue History#: {dislogue_history}
#Response#: {response}
#Your Judgement#: [[

TruthfulQA

As there is no standard evaluation prompt for this
task, we use a simple prompt template as follows,

e System prompt: You are a helpful
assistant. Given the question below, your
task is to determine whether the answer
is truthful or not. Your response (your
verdict) must follow this format, [[Yes]]
if the answer is truthful or [[No]l] if the
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answer is not truthful (e.g., falsely due
to a false belief or misconception).

e Prompt template:

[Question]
{question}

[Answer]
{answer}

Is the answer truthful to the question?
Verdict: [[

Chatbot Arena

e System prompt: Please act as an impartial
judge and evaluate the quality of the
responses provided by two AI assistants
to the user question displayed below. You
should choose the assistant that follows
the user’s instructions and answers the
user’s questions better. Your evaluation
should consider factors such as the
helpfulness, relevance, accuracy, depth,
creativity, and level of detail of their
responses. Avoid any position biases
and ensure that the order in which
the responses were presented does not
influence your decision. Do not allow the
length of the responses to influence your
evaluation. Do not favor certain names
of the assistants. Be as objective as
possible. Do not provide any explanation,
please provide your final verdict after
"Verdict:" by strictly following this
format: "[[AJ]" if assistant A is better,
"[[B]]" if assistant B is better, and
"[L[C1]" for a tie.

e Prompt template:

[User Question]
{question}

[The Start of Assistant A's Answer]
{answer_a}
[The End of Assistant A's Answer]

[The Start of Assistant B's Answer]
{answer_b}
[The End of Assistant B's Answer]

[User Question]
{question}
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[The Start of Assistant A's Answer]
{answer_a}
[The End of Assistant A's Answer]

[The Start of Assistant B's Answer]
{answer_b}
[The End of Assistant B's Answer]

Verdict: [[

C Pseudocode for some baselines

C.1 AverageProb

This algorithm takes probabilistic estimates as in-
put. It averages these estimates and predicts one if
this average exceeds 0.5. The pseudocode is given
in Algorithm 1.

Algorithm 1 Averaging probabilistic estimates

procedure AVERAGEPROB(y1.n)
for n < N do

K
b 1 [ Zigt > 05
end for

Return ¢;.5

1:
2
3
4:
5
6: end procedure

C.2 Majority vote

This algorithm takes binary estimates as input and
predicts the class preferred by the majority of the
workers. The pseudocode for this algorithm is
given in Algorithm 2.

Algorithm 2 Majority vote

procedure MAJORITY VOTE(b1.xn)
for n < N do

K
b 1 [ Zignt > 0.5
end for
Return ¢;. 5

1:
2
3
4:
5
6: end procedure

C.3 DawidSkene

The goal is to infer the ground truth by estimating
the confusion matrix of each worker and the proba-
bility of each class for every item. We describe the
procedure in detail as follows.

Initialization. For each worker £ and class 7, the
algorithm initializes the confusion matrix values
Ck,p» which represent the probability of worker



k correctly identifying class b. These values are
randomly initialized between 0.5 and 1.

E-step. For each item n, the algorithm computes
the probability g, that the true label is 1, based
on the current estimates of the confusion matrices.
It does this by calculating the likelihood of each
possible label given the workers’ responses.

M-step. The confusion matrix values Cj 1 and
Ci,0 are updated using the probabilities ¢, com-
puted in the E-step. These updates reflect the like-
lihood that worker k has correctly identified class Algorithm 3 Dawid Skene method
1 or O for each item. 1: procedure DAWIDSKENE(b1.n, M, €)

Termination. The algorithm repeats the E and 2 // Initialization
M steps until either the number of iterations M 3 fork e {l,--- ,K} do
is reached or the changes in the confusion matrix 4 forb € {0,1} do
values are smaller than a given threshold e. 5: Crp ~ U[0.5,1]

6
7
8
9

Final Label Assignment. After the iterations, end for
the algorithm assigns a final label ¢,, for each item end for
n by comparing the likelihood of class 1 to class 0. m <+ 0
If this ratio is greater than 1, the label is set to 1; : repeat
otherwise, it’s set to 0. 10: for n < N do
The method returns the final aggregated labels ~ 11: /I E-step
¢1:.n, which are the inferred true labels for the items 12 foo Hf 1 b”’k (1—-Cka )i —bnk
based on the collective input from the workers. The 13: bar « Hk .C 1 bn k (1-C, 0) n,k
algorithm is shown in Algorithm 3. foo
14 n < Footbar
D Results on Dataset Sizes 15: end for
16: /l M-step
In addition to the differences, we also show the 17: fork e {1,--- K} do
actual accuracies of Crowdlayer and SkillAggre-  g. Ch1 Z%N qnbn.k
gation on Truthful QA and Chatbot Arena datasets > <7;\]§(tlli1q”)(1_ b )
together with majority voting accuracies on each 1% Cro n‘zn <. (1—qn) 7
subset of data in Fig. 7. 20: end for -
We provide the influence of dataset sizes on 21: m<+—m+1
HaluEval-Dial in Fig. 8. Different from the 22: untilm =Mor|[C - C'| <€
other two datasets, the performance of the context-  23: for n < N do \ .
dependent method was consistently much higher . £00 Hk 1 (G, 1)171’: (1-Ck1) b"'k
when 1000 data samples were provided. k=1(Cro) M (1=Cro) ™
25: Cn ]l[foo > 1]
E Correlation Between Skills and 26: end for
Accuracy 27: Return ¢;.n5

28: end procedure

The correlation between skills and accuracy of each
LLM judge on Chatbot Arena and Truthful QA is
shown in Fig. 9 and 10 respectively.

F Multi-class SkillAggregation

We will discuss how SkillAggregation can be ex-
tended when the number of classes C' is greater
than two.

Context encoder and bottleneck layer. The
context encoder stays the same. We make the out-
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Figure 8: Influence of dataset sizes on HaluEval-Dial.

put of the bottleneck layer C' dimensional, i.e., s,
has C entries that sum to one.

Confusion matrices. We will still be using the
conditional independence (CI) model. In the binary
case, we could do inference under the CI model by
just learning the skills, i.e., the diagonal entries of
worker confusion matrices. However, with multiple
classes, learning skills is insufficient; one needs to
learn more confusion matrix entries.

We formalize the notion of a worker’s confusion
matrix here. For worker k, C(™*) e [0,1]¢%C is
the confusion matrix. It satisfies the following prop-
erty. Force {1,--- ,C}andb € {1,--- ,C}:

CR) = P(byg = blen = ¢, X).

¢,z

Chatbot Arena PCC=69.5%

0.55 .
*
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= —
* *
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Figure 9: Correlation between skills learned and accu-
racy for each LLM judge using SkillAggregation on
Chatbot Arena.
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Figure 10: Correlation between skills learned and ac-
curacy for each LLM judge using SkillAggregation on
Truthful QA.

Predicting the £th worker. With some abuse of
notation, we assume that y,, ;. is C-dimensional. If
a judge gives a hard prediction, we encode it into
a one-hot vector. If we get soft predictions, we
assume that elements of y,, ;, are non-negative and
sum to one. Now, we derive SkillAggregation’s
prediction for the kth worker’s estimate vector. For
anybe {1,---,C},

P(by 1 = b|Xy)

)

Q

= "P(cn = | Xp)P(bnk = blen = ¢, Xy)
c=1

~(n.k)
~ Z Sn,kcc’b )

c=1

where C(F) ¢ RC*C ig an estimate of the kth
worker’s confusion matrix for context X,,.



Loss function. As in the loss, one part of our
loss function will be the cross-entropy loss, and
the other will be a regularization term. To derive
this term, we will first assume C' = 3 and do some
analysis, and then generalize to more classes. Pre-
diction for bth component of kth worker’s estimate
is

snaCUs 4 5,008 45,550

, ~(n,k ~
=S, 1C§ b ") + Sn’QCé b ) (1 — Sp,1 — Sn Q)C:()) ")

(n, k) 2~ (n,k) (n,k)
=Cy, +(Cy —Cyy

+(E5y" - &
Gradient of this prediction w.r.t. s, 1.2 is [(Ckl .=
ék73’z), (Ck’g,z - (Ajk,gyz)]T and we want to regu-
larize this gradient. When we extend this idea to
an arbitrary value of C, we find that a reasonable
regularization term is the following:

) n,l

) n,2-

N C-1C-1

=233 (el

n=1 b=1 c=1

_CCb)>2

We only regularize for C' — 1 classes for both z
and c. The reason is transitivity, i.e., when we
encourage a to be close to b and b to be close to c,
we also encourage a to be close to c.

Group estimate. To produce a group estimate,
we assume the CI model and a uniform prior
P(¢, = ¢) = 1/C. Under these assumptions,
forany b € {1,---,C}X,

P(b, = b|X,,,c, = c)

~TTIT (et

k=12z=1

>]1[bn k=b] .

Then, by Bayes rule, we get
P(c,, = ¢| Xy, by)
x P(en, = | Xpn)P(by| X, cn = ¢)

P(cy, = | Xn) ﬁH( ) Zk:Z].

k=1z2=1
We then approximate P(¢,, = ¢|X,,) with sy, ¢, and
C(k) with C(™*), This gets us

P(Cn = C|Xn7bn)
nkj) [n k:Z]
Sncnk 1Hz 1( )

1[bn, k=2]"
C K C ~ (TL,]C) .k
Zc’:l Sn,c/ Hk::l Hz:1 <Cc’,z

which we denote by P(¢,, = ¢|X,, b,,). The group
estimate is the class that maximizes P(c,|X,,, by).

~
~
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G Performance on Subsets of LLM
Judges on Chatbot Arena
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Figure 11: Accuracies of aggregation methods (includ-
ing SkillAggregation and DawidSkene) against majority
voting accuracies on different subsets of LLM judges on
Chatbot Arena. The equal-performance line is shown
where any points on the upper-left side have improved
performances compared to majority voting.

We further provide the performance of SkillAg-
gregation and DawidSkene methods using different
subsets of LLLM judges on Chatbot Arena in Fig. 11
where a subset of 5000 data samples is used. As be-
fore, when there is a majority of good LLM judges
with a couple of bad ones corresponding to accu-
racies in 64%-66% yield the largest improvements
compared to majority voting.

H List of LLM Subsets

We provide the list of subsets and their respective
performances for Fig. 4 in Table 4, and the LLM
subsets for Fig. 11 in Table 5 respectively.



Subsets Majority Voting (%) SkillAggregation (%)

7 Models (w/o Mistral-v0.1) 67.93 70.36
7 Models (w/o OpenOrca) 67.76 69.21
7 Models (w/o zephyr) 67.15 67.68
7 Models (w/o Hermes-2.0) 67.51 69.30
7 Models (w/o Starling) 66.69 68.06
7 Models (w/o Hermes-2.5) 66.48 67.15
7 Models (w/o Llama-3) 66.41 67.69
7 Models (w/o Mistral-v0.2) 66.36 67.24
Mistral-v0.2, Hermes-2.0, Mistral-v0.1 64.47 68.58
Mistral-v0.2, OpenOrca, Mistral-v0. 1 63.96 67.34
Llama-3, Hermes-2.0, Mistral-v0.1 64.57 66.71
OpenOrca, Hermes-2.5, Mistral-v0.1 64.53 64.60
Starling, OpenOrca, Mistral-v0.1 64.14 64.04
OpenOrca, Hermes-2.0, Mistral-v0.1 63.08 63.25
Mistral-v0.2, Mistral-v0.1, Beluga 57.62 59.19
Mistral-v0.2, OpenOrca, Beluga 63.48 66.90
Llama-3, Mistral-v0.2, zephyr 68.67 69.64
Hermes-2.5, Llama-3, Mistral-v0.1 66.81 68.20
Starling, Mistral-v(.2, Mistral-v0.1 66.42 68.71
Starling, Llama-3, Mistral-v0.1 66.68 68.03
Starling, Hermes-2.5, Mistral-v0.1 67.15 67.69

Table 4: Details of LLM subsets used for TrutufulQA. When the subset has 7 models, the excluded one model is
given, and otherwise all models are given.

Subsets Majority Voting (%) SkillAggregation (%)
8 Models (w/o Llama-3) 67.14 67.20
8 Models (w/o Mistral-v0.1) 67.46 67.98
8 Models (w/o zephyr) 67.72 68.10
8 Models (w/o Starling) 67.48 67.66
8 Models (w/o OpenOrca) 67.52 68.24
8 Models (w/o Mistral-v0.2) 67.44 68.32
8 Models (w/o Hermes-2.0) 67.46 68.02
8 Models (w/o Hermes-2.5) 67.22 67.76
8 Models (w/o Beluga) 67.48 67.84
Llama-3,Mistral-v0.2,Beluga 67.78 67.98
Llama-3,Mistral-v0.2,Hermes-2.0 67.72 67.94
Llama-3,Hermes-2.0,Beluga 67.22 68.10
Mistral-v0.2,Hermes-2.0,Beluga 66.52 66.82
llama3,Starling,Beluga 67.46 68.52
Mistral-v0.2,Hermes-2.0,Starling 67.20 67.26
Mistral-v0.2,Starling, Beluga 66.96 67.30
Zephyr,Mistral-v0.2,Beluga 65.70 66.60
Zephyr,OpenOrca,Beluga 65.40 65.92

Table 5: Details of LLM subsets used for Chatbot Arena.
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