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RESEARCH VISION: LARGE-SCALE
AUTONOMOUS OCEAN OBSERVATION

Major improvements in climate and weather modeling are
essential to addressing the changing climate [1]. The ocean –
which absorbs 91% of Earth’s warming [2] – is particularly
central to our climate, yet much of it remains poorly under-
stood due to general difficulty in observing the ocean at scale
[3]. This lack of observations, particularly in coastal, polar,
and deep-ocean regions, hinders the development of accurate
climate models and thus our ability to predict and mitigate the
impacts of climate change. In addition to climate-relevance,
observation is also critical for the growth of sustainable ocean
industries [4], which are projected to reach $3 trillion by
2030 [5]. Altogether, there is mounting societal and economic
pressure to improve our ocean observation capabilities.

Large-scale teams of autonomous underwater vehicles
(AUVs) have the potential to revolutionize ocean observa-
tion and address current data bottlenecks. Such teams can
seamlessly collaborate with platforms like buoys, divers,
and satellites, enabling high-resolution, adaptive, and reliable
ocean observation at unprecedented scales. However, progress
is hindered by three key challenges: (i) the high cost of
reliable underwater navigation, (ii) a lack of scalable tools for
collaborative autonomy, and (iii) the dynamic nature of marine
environments [6, 7]. Advancements in these areas are crucial
to unlocking the full potential of autonomous ocean obser-
vation, allowing diverse teams of AUVs and other platforms
to leverage complementary capabilities. My research enables
autonomous ocean observation by developing algorithms for
navigation, collaboration, and adaptation in challenging re-
mote environments. While my research is motivated by ocean
observation, the tools developed will impact a wide range of
applications in field robotics and environmental monitoring.

PAST RESEARCH: COLLABORATIVE NAVIGATION FOR
LOW-COST UNDERWATER VEHICLES

My past research focused on the ability for low-cost au-
tonomous underwater vehicles (AUVs) to reliably navigate
underwater. Low-cost navigation is a critical enabling capa-
bility for the deployment of AUVs in large-scale scientific
endeavors. The current platforms used today are prohibitively
expensive, as they rely on high-precision inertial navigation
systems, typically costing $100k-$600k per vehicle [8]. These
costs prohibit large-scale adoption for even well-funded sci-
entific endeavors (e.g., the Ocean Observatories Initiative).

My work considered the ability to use collaborative navi-
gation – a technique where multiple robots share information

Fig. 1: This figure illustrates several envisioned autonomous
ocean monitoring scenarios enabled by my research. My work
moves toward future teams of sensing platforms that flexibly
adapt and collaborate to observe diverse phenomena.

to improve each other’s navigation estimates – to reduce the
cost of navigation equipment. This focused on a team of
“minimally instrumented” AUVs which can use (low-cost)
imprecise inertial sensors to estimate odometry and simple
acoustic equipment for both communication and to estimate
the distance between each other (ranging). The underlying
principle for this setup is that the whole can be greater than
the sum of its parts, with joint information from these low-
cost sensors providing a reliable globally consistent estimate
of each AUV’s position. While my research was inspired by
challenges in underwater navigation, this problem is of interest
to a wide range of robotics applications, including aerial [9],
subterranean [10], and extra-terrestrial [11] navigation.

While this navigation approach has great potential, there
remain significant challenges. Range measurement models are
nonlinear and are often described as ‘underconstrained’ (i.e.,
a single measurement does not uniquely determine the relative
position of two robots). Together, these properties manifest as
non-convexity and potential ambiguity in the state estimation
problem. To date, this has prevented reliable deployments of
low-cost collaborative navigation systems.

Specifically, there are two fundamental challenges that ap-
pear: (i) the nonlinearity of range measurements means that the
optimal state estimate is highly sensitive to the relative position
that the measurements are taken from – often referred to as
dilution of precision, and (ii) the non-convexity of the state es-
timation problem means that standard optimization techniques
are susceptible to local minima and have no guarantees on the



quality of the estimate. In the following sections I outline how
I addressed these problems through my work in planning for
improved localization and certifiably correct estimation.

Collaborative Planning to Aid Navigation. Because of the
previously mentioned sensitivity of the optimal state estimate
to the relative position that range measurements are taken
from, the geometry of the relative trajectories of different
robots significantly impacts the accuracy of the optimal state
estimate. In the worst case, degenerate relative trajectories can
lead to full loss of observability and rapid degradation of a
robot’s estimate of its location. I used tools from information
theory (specifically, the E-optimality criterion) to connect the
trajectories followed by a team of robots to the reliability of
the corresponding state estimation problem. I combined these
information theoretic properties with graph rigidity theory to
develop a collaborative path planning algorithm to rigorously
enforce that the collaborative state estimation problem is well-
posed and the optimal state estimate is robust to measurement
noise [12, 13]. This work established a tight coupling between
the team’s communication graph and underlying information
theoretic properties to enable lossless simplifications of the
planning task, allowing real-time planning.

This work was expanded in two Master’s theses [14, 15].
Furthermore, I similarly leveraged graph and information
theory in a collaboration on a convex optimization algorithm
for graph pruning [16], a key capability for lifelong auton-
omy which allows agents to determine what information to
‘remember’ and ‘forget’.

Certifiably Correct Estimation. While performing the
work in the previous section I observed that even in best-
case estimation problems localization estimates were often
highly inaccurate. Even in ideal conditions, existing state es-
timation algorithms were insufficiently reliable for large-scale
autonomous vehicle deployments. The root cause was reliance
on local optimization methods like Levenberg-Marquardt [17],
which are highly sensitive to initialization and lack any global
guarantees on solution quality. These issues were especially
problematic for collaborative AUV navigation. The symmetry
of range measurements makes it difficult to determine good
initializations [18, 19, 20], and incorrect navigation underwater
often results in irrecoverable vehicles.

My first work to address these issues developed a novel
convex relaxation for the underlying estimation problem [21],
providing a principled, deterministic, and efficient way of
initializing the state estimation problem. I advanced this line
of research and produced a certifiably correct state estimation
algorithm which is initialization independent and can provide
globally optimal estimates with certificates of correctness [22].
This algorithm was the first certifiably correct algorithm to
fuse fundamentally different measurement modalities (i.e.,
range measurements and relative rigid body measurements,
such as from odometry). This leveraged semidefinite pro-
gramming, Riemannian optimization, probabilistic modeling,
and graph theory to obtain rigorous performance guarantees
along with run times often faster than state-of-the-art local-
search algorithms. From a theoretical perspective, this work

empirically established a regime of this NP-Hard problem for
which it can be solved in polynomial time.

The algorithm was validated on two marine surface vehicles
using low-cost ($12k per vehicle) acoustic and inertial sen-
sors, achieving high-accuracy localization (0.5% of distance
traveled) comparable to $100k+ inertial systems. This work
gained traction with researchers at other institutions, leading
to a collaboration on a distributed extension [23].

FUTURE RESEARCH AGENDA

I will build on my past mathematical experience (e.g.,
graph theory and optimization) to develop algorithmic tools for
autonomous ocean monitoring. I will pursue three mutually re-
inforcing directions: (i) low-cost navigation, (ii) heterogeneous
teaming, and (iii) environmentally informed autonomy.

Low-Cost Navigation. I will continue my work to drive
navigation technologies to cost levels that enable large-scale
deployments. I will target two key challenges: outlier-robust
navigation (as cheaper sensors increase outlier rates) and iner-
tial navigation. I will explore outlier-robust problem formula-
tions that have the same beneficial structure as my past work
[22]. If successful, this would provide the performance guar-
antees and efficiency lacking in current approaches [24, 25].
For inertial navigation, I will combine learning with geometry
and representation theory to construct data-driven inertial
corrections as structured Lie group functions — preserving the
underlying geometry and computational efficiency [26, 27].

Heterogeneous Teaming. Ocean observation requires di-
verse sensing modalities and vehicle capabilities, from AUVs
and buoys to satellite sensing. Observation strategies must
adapt to specific phenomena – e.g., tracking ocean thermal
fronts may integrate AUVs with satellite data, while coral
reef surveys may rely on AUV-diver collaboration. I will
develop optimization-based frameworks to determine ideal
team composition and task allocation, maximizing information
gain while respecting system constraints. This builds on my
past collaboration in diver-AUV teaming [28].

Environmentally Informed Autonomy. Marine environ-
ments significantly impact sensing and communication (e.g.,
sharp temperature gradients induce acoustic refraction), yet
current autonomous systems fail to account for these effects,
leading to failures in localization and data transmission. I will
develop computationally efficient probabilistic environmental
models [29] that capture how environmental conditions affect
autonomy, enabling environment-aware planning and percep-
tion. These models will allow agents to (i) predict how the
environment will affect their capabilities and (ii) plan actions
to best sample the environment.

Summary. Independently, developments in each of these
three areas will advance ocean monitoring as well as the
fundamental science of robotics. However, the joint benefits of
these advances will be multiplicative. Together, this progress
can provide the scale and capability to enable large-scale
autonomous ocean observation, unlocking new opportunities
in ocean science and conservation while also pushing the
frontiers of robotics research across a range of disciplines.
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