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ABSTRACT

Traditional decision-based black-box adversarial attacks on image classifiers aim
to generate adversarial examples by slightly modifying input images while keeping
the number of queries low, where each query involves sending an input to the model
and observing its output. Most existing methods assume that all queries have equal
cost. However, in practice, queries may incur asymmetric costs; for example, in
content moderation systems, certain output classes may trigger additional review,
enforcement, or penalties, making them more costly than others. While prior work
has considered such asymmetric cost settings, effective algorithms for this scenario
remain underdeveloped. In this paper, we introduce asymmetric black-box attacks,
a new family of decision-based attacks that generalize to the asymmetric query-cost
setup. We develop new methods for boundary search and gradient estimation when
crafting adversarial examples. Specifically, we propose Asymmetric Search (AS), a
more conservative alternative to binary search that reduces reliance on high-cost
queries, and Asymmetric Gradient Estimation (AGREST), which shifts the sampling
distribution in Monte Carlo style gradient estimation to favor low-cost queries. We
design efficient algorithms that reduce total attack cost by balancing different query
types, in contrast to earlier methods such as stealthy attacks that focus only on
limiting expensive (high-cost) queries. We perform both theoretical analysis and
empirical evaluation on standard image classification benchmarks. Across various
cost regimes, our method consistently achieves lower total query cost and smaller
perturbations than existing approaches, reducing the perturbation norm by up to
40% in some settings.

1 INTRODUCTION

Decision-based adversarial attacks, first introduced by Brendel et al. (2017), generate adversarial
examples in black-box settings by systematically querying a classifier and observing only its output
decisions for perturbed inputs. The original Boundary Attack (Brendel et al., 2017) initially required
over 100,000 queries to reliably identify minimal adversarial perturbations for large-scale datasets
such as ImageNet (Deng et al., 2009). Subsequent works (Chen et al., 2020; Chen & Gu, 2020;
Cheng et al., 2018; 2019; Liu et al., 2019b; Rahmati et al., 2020) significantly enhanced the efficiency
of decision-based attacks by reducing the number of queries needed, achieving improvements of
one to three orders of magnitude. These advancements have led to more practical and efficient
frameworks for adversarial testing in limited-query settings.

While prior work (discussed in detail in App. A) has primarily assumed that all queries have equal cost
and focused on minimizing the total number of queries, in many practical scenarios, queries can incur
asymmetric costs depending on their nature. For instance, Not Safe for Work (NSFW) image detection
models have become increasingly important, with major platforms such as Facebook (Facebook, 2024)
and X (formerly Twitter)(Twitter, 2024a) deploying automated mechanisms for identifying sensitive
content, alongside commercial APIs developed by Google(Google, 2024), Amazon (Amazon, 2024),
and Microsoft (Microsoft, 2024). In these settings, submitting explicit or borderline explicit queries
could trigger more severe consequences, such as account suspension or content flagging, compared
to benign queries. As a result, minimizing only the total number of queries is insufficient; effective
attack strategies must account for the asymmetric costs associated with different types of queries.
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Debenedetti et al. (2024) introduced stealthy attack techniques to better handle asymmetric query
costs. They empirically demonstrated that the standard binary search procedure for boundary point
detection, mostly for projecting an adversarial point onto the decision boundary or for OPT-style
gradient estimation (Cheng et al., 2018), leads to a large number of high-cost queries. In particular,
it can be observed from Fig.| that at least 50% of the queries made during these attacks are high-cost.
To address this, they replaced the binary search with a search strategy inspired by the classic egg
dropping problem (Alves et al., 2024), which is similar to a line search algorithm. However, they
did not provide a stealthy variant of the Monte Carlo gradient estimation used in HSJA (Chen et al.,
2020), GeoDA (Rahmati et al., 2020), and qFool (Liu et al., 2019b). Instead, they substituted it with
an OPT-style gradient estimation procedure (Cheng et al., 2018).

Although stealthy attacks move toward addressing asymmetric query costs, they are not designed
to handle arbitrary cost ratios. They implicitly assume that benign queries have zero cost, which
may not reflect realistic settings where even benign queries contribute to the overall cost. In addition,
since stealthy attacks could not adapt the Monte Carlo gradient approximation used in HSJA (Chen
et al., 2020), they instead rely on a suboptimal and inefficient OPT-style gradient estimation (Cheng
et al., 2018), which is already significantly outperformed by the HSJA gradient approximation under
symmetric cost settings. These limitations motivate us to answer the following question:

Q: How can we develop an efficient framework to adapt attacks for any arbitary cost ratio without
discarding any of their core components, including gradient estimation and binary search?

In this work, we propose a general framework  Query efficiency of vanilla and stealthy attacks on ImageNet
for decision-based attacks that operates under ar- . Stea b HSIAPrior Works) - @ Vanilla Attacks
bitrary query cost asymmetries. Instead of only & WS e
considering high-cost queries, we change the
core components of black-box attacks, namely
search along adversarial paths and gradient
estimation, to explicitly reduce the rotal query S0Pt =

cost. Our framework handles any cost ratio oS e BoUNDaRy
between high-cost and low-cost queries and 0

completely outperforms stealthy attacks by op- Flagged Queries (Q fragged)

timizing the attack structure without sacrificing  Figure 1: Each point represents the median number
efficiency. Unlike stealthy attacks (Debenedetti  of queries required by an attack method to reach a
etal., 2024), which rely on inefficient gradient median ¢5 norm of 10. The x-axis shows the num-
approximations, we retain the more efficient per of flagged queries (Qfiaggea) and the y-axis re-
Monte Carlo gradient estimation technique used  ports the total number of queries (Qqoa). It demon-
in HSJA (Chen et al., 2020), GeoDA (Rahmati  gtrates the superiority of our method in achieving a
et al., 2020), and qFool (Liu et al., 2019b). more favorable trade-off between flagged and total
number of queries in stealthy attack settings.
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First, for the boundary search, instead of
dividing the interval into two equal parts at each iteration, as in the standard binary search, we take
a more conservative strategy. Specifically, we split the interval according to the cost ratio between
high-cost and low-cost queries. This approach minimizes the expected cost rather than merely
minimizing the expected number of queries. We call this method Asymmetric Search (AS).

Second, unlike traditional gradient estimation where samples are drawn from a norm ball centered
at a boundary point, which causes roughly half the queries to be high-cost and the other half low-cost
as in standard HSJA, we shift the center to a point in the low-cost region and generate queries around
it (Fig. 2). This adjustment naturally reduces the frequency of high-cost queries, with the degree
of shifting providing direct control over this frequency. To further reduce variance in estimation,
we weight high-cost and low-cost queries differently when computing the gradient. We refer to this
method as Asymmetric GRadient ESTimation (AGREST). Our framework is broadly compatible
with a wide range of state-of-the-art decision-based attacks, including HSJA (Chen et al., 2020),
GeoDA (Rahmati et al., 2020), and CGBA (Reza et al., 2023). Through both theoretical analysis and
extensive experimental evaluation, we show that AGREST consistently outperforms existing attacks
under arbitrary cost ratios. Notably, even under extreme asymmetry where the cost of high-cost
queries approaches infinity, our method achieves significantly lower total query costs to reach a
given adversarial perturbation size compared to prior stealthy methods (Debenedetti et al., 2024)
(see Fig. 1 (left)). This robustness underscores the effectiveness of our framework in balancing query
efficiency and perturbation quality across diverse attack scenarios.
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Figure 2: Left. Illustration of Asymmetric Gradient Estimation (AGREST), which reduces the
frequency of high-cost queries by shifting the sampling region from x; toward the adversarial region
x; and appropriately reweighting the outcomes. Right. Three steps of Asymmetric Search (AS) along
the path from a clean (flagged) source image to an adversarial (non-flagged) image. Flagged queries
are shown in red, non-flagged queries in green, and the dashed line denotes the decision boundary.

The contribution of our paper is as follows:

* To the best of our knowledge, we are the first to propose a versatile framework capable of
handling arbitrary query cost ratios, providing flexibility across a wide range of scenarios.

* Our framework introduces AS and AGREST as two core operations that enhance existing
algorithms. We conduct a comprehensive theoretical analysis to establish the foundations
of the framework and demonstrate its robustness across diverse setups.

* We validate the framework through extensive empirical testing on benchmark datasets
and models, including ImageNet, as well as advanced models such as CLIP and Vision
Transformers and ResNet. This validation highlights the framework’s superior performance.

2 PROBLEM STATEMENT

An insight into unequal queries. Consider an attacker trying to deceive an NSFW detector using
decision-based methods. It may seem sufficient to choose an existing attack algorithm and add a small
perturbation to an NSFW image based on that algorithm. However, this approach may encounter
some practical obstacles. Most social networks enforce policies against uploading adult content,
suspending users for violating these terms multiple times (Twitter, 2024a). Using the terminology
from Debenedetti et al. (2024), this means that the cost of queries identified by the detector as
NSFW, i.e., flagged queries, is higher than that of other queries, i.e., non-flagged queries. For
example, on X, an attacker can make up to 2,400 posts per day on a single account (Twitter, 2024b).
However, after about 5 to 10 rule violations for uploading flagged posts, the attacker’s account will
be suspended, requiring them to create a new one. On the other hand, in existing decision-based
attacks, approximately half of the made queries are flagged (Debenedetti et al., 2024). Therefore,
if we assume the violation limit is 10, an attacker will be banned on X after about 20 posts. This
example demonstrates the potential asymmetry in the costs of queries in a decision-based black-box
setup. Debenedetti et al. (2024) addressed this asymmetry in costs by proposing stealthy attacks'
designed to reduce the number of flagged queries. However, they overlooked the cost of non-flagged
queries in their framework, leading to the generation of millions of non-flagged queries for every
hundred flagged queries in stealthy attacks, which can also be costly.

For example, in the NSFW detector scenario, assume the attacker must create a new account after
reaching the daily post limit. In stealthy attacks like HSJA, the attack can generate around 10°
non-flagged queries for every 100 flagged queries (Fig. 1). While 100 flagged queries may lead to
the creation of 10 new accounts, those 10° non-flagged queries result in approximately 400 new
accounts. This shows that non-flagged queries, despite being lower-cost, have a greater overall impact.
Therefore, it is essential to develop generalized decision-based attacks that can effectively manage

"Hereafter, we refer to prior stealthy attacks simply as stealthy attacks, and to our approaches as asymmetric
attacks to emphasize their cost-aware design. Though inherently stealthy due to query cost awareness, we adopt
the term asymmetric attacks to distinguish our method from prior work (Debenedetti et al., 2024).
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asymmetric query costs, making full use of low-cost queries without relying heavily on expensive
ones.

General formulation. Assume that f : R? — R’ is a pre-trained classifier with L classes and
parameters . For an input image x € [0,1]%, fj (x), the k*» component of f (x), represents the
predicted probability of the k*" class. Additionally, for each correctly classified image x and query
image x’, we define

Sx (x') = arg max fr (X)) = fao (X') and oy (x') = sign (Sx (x)) . 0
Given a correctly classified source image x*, the attacker’s goal is to find the closest perturbed image
x’ to the source image x* such that ¢y« (x') = 1:

minimize ||x* —x'|| st o (X)) = 1. )
xl

Note that in a decision-based black-box setup, the attacker has access to ¢y« (x’) but not Sy~ (x').
Previous methods sought to solve Eq. (2) while keeping the total number of queries as low as possible.
However, as discussed, asymmetric query costs can make this approach ineffective. Instead, we must
keep the total cost of queries in an asymmetric setup as low as possible (Debenedetti et al., 2024):

cost := Qoral - €0 + Qﬂagged * Cflagged 3

where Qpageed is the number of flagged queries (¢ (x) = —1), and Qo is the total number of
queries. Our goal is to solve this for arbitrary values of cg and cqagged, unlike stealthy attacks where
co = 0. Since only the relative magnitude of cfageeq With respect to ¢y matters, we use the following
reformulation to reduce the number of tunable parameters:

cost := Qnon—ﬂagged + Qﬂagged : 0*7 4

Cflagged + co
Co
assume ¢* = oo. Our goal in this paper is to propose a framework that is effective for any arbitrary
value of ¢*, unlike both vanilla and stealthy attacks. Furthermore, we demonstrate that our approach

outperforms stealthy attacks even when c¢* = oo.

where ¢* = . Existing decision-based attacks assume ¢* = 1, while stealthy attacks

For brevity, we omit x* when mentioning .S and ¢. We also refer to queries x’ where ¢(x’) = —1
as high-cost queries and others as low-cost queries. These new terms reflect the concept of general
asymmetric costs better than the previous terms used by Debenedetti et al. (2024), i.e., flagged and
non-flagged queries, which are more suitable when the discrepancy between query costs is too large.

3 PROPOSED METHOD

Decision-based black-box attacks typically involve two core operations, often applied iteratively
to find small adversarial perturbations: 1. choosing a path, either straight, like GeoDA and HSJA
(Rahmati et al., 2020; Chen et al., 2020), or curved, like SurFree and CGBA (Maho et al., 2021; Reza
etal., 2023), and then 2. Searching along this path to find a new adversarial example, x; 1, that is
closer to x* than x;, the adversarial example from the previous iteration. These attacks either choose
a path randomly, as in Boundary Attack (Brendel et al., 2017) and SurFree, or use queries to find a
path that leads to a closer adversarial example than a random path, as in HSJA, GeoDA, and CGBA.
To find this better-than-random path, these attacks estimate the normalized gradient direction of S at
x; by approximating V.S (x;) as follows:

_ 1 &

VS (x;) = E;¢(xt + ou;) uj, Q)
where J is a small positive parameter and uy, . .., u,, are i.i.d. draws from either the uniform distri-
bution over S~ 1, the (d — 1)-dimensional unit sphere, or the multivariate normal distribution. After
finding a path, most attacks use variations of binary search to find x;;. This is generally achieved
by finding a boundary point x; 1 along the selected path, where S (x;41) = 0, using binary search.

As highlighted by Debenedetti et al. (2024), the issue with binary search and Eq. (5) is that, in an
asymmetric setup, crafting adversarial examples using these operations becomes costly because
approximately half of the generated queries are high-cost. This raises the question of whether
we can alter the distribution of generated queries to reduce the number of high-cost queries while
maintaining the effectiveness of these two operations as observed in vanilla attacks. As a solution,
we propose AS and AGREST techniques in the following sections.
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3.1 ASYMMETRIC SEARCH (AS)

We define T : [0, 1] — R< as the function that parameterizes the search path. For example, when the
path is a straight line between the source image x* and an adversarial image X Rahmati et al. (2020);
Chen et al. (2020), the parameterization is given by T'(0) = § x* + (1 — 6) X. Similarly, when the
search path follows a circular arc Reza et al. (2023); Maho et al. (2021) between x* and X, lying

on a circle in the 2D subspace spanned by u = ﬁ and a unit vector v satisfying (u, v) = 0,
2

the parameterization is given by T'(6) = x* + cos (30) - X — x*||, (cos (560) u +sin (36) v).

As mentioned, the objective is to find the along-the- - -
path boundary point T (6*) for some 8* € [0, 1]. Algorithm 1 AS Algorithm
However, since the search space is discrete in Inputs: Parametrization function 7', thresh-

practice, our goal is to find a point x;; that is old 7
near the boundary, i.e., where S (x;41) ~ 0. This Outputs: Near-boundary adversarial exam-
implies that for a given error threshold 7, we need ple

to find [a,b] C [0,1] such that 0 < b — a < 7 and
0* € [a,b]. Since S is continuous, one approach
to achieve this is to find 0 < k < [%] for which

by 0, by < [*]
while b, — b; > 1
R

1:
2:
3: GES)
¢ (T (kr)) = Land ¢ (T ((k+1)7)) = —1. The 4. if ¢ (T (b,,7)) = 1 then
smaller 7 is, the closer we get to the boundary, . by < by,
although this requires more queries. 6 else
It is well-known that in one-dimensional search, 7 bu_“ b
binary search is the optimal comparison-based 8  endif
algorithm in terms of minimizing the expected 9 end while
number of queries, assuming that the boundary 10: return T(bir)

point is uniformly distributed along the path (see

Assumption Al). Nonetheless, in the asymmetric cost setting, the expected cost of binary search
is © (c*log (1/7)), because the expected number of queries is © (log (1/7)), and about half of these
queries are expected to incur the higher cost c*.

Assumption Al. Let ©F, € [0, 1) be a random variable. If T(©},) lies on the decision boundary,
that is, S(T'(0O7,)) = 0, then we assume O, is drawn uniformly from [0, 1).

The core idea behind AS is similar to that of binary search, but with a more conservative strategy to
account for asymmetric costs. Instead of splitting the interval into two equal parts, AS divides it with a
1 : ¢* ratio at each step, favoring lower-cost queries. More specifically, suppose we know the desired

point lies within [b;7, b, 7] C [0, 1]. Then, as shown in Alg. 1, if ¢ (T (bl’]’ + Hu*:_blz—‘ T)) =1, AS

by —b;
c*+1
This process is repeated until AS locates a point within 7 of the boundary.

bu—0b;
1 T].

continues the search in [blT + { —‘ T, buT} ; otherwise, it proceeds within {bm’, bt +

Note that when ¢* = 1, AS reduces to standard binary search, and when ¢* = oo, it becomes a
simple line search strategy, as used in stealthy attacks (Debenedetti et al., 2024), where the algorithm
checks 7,27,37,... sequentially. The expected cost of AS is given in Thm. I, showing that it
improves over binary search by a factor of © (log (¢* + 1)).

Theorem 1. (Cost Analysis of AS) Suppose 0 < 7 < 1 and ¢* > 1. Under Assumption Al, the
expected cost of the AS algorithm is O(c*10g .+ 41y (1/7)).

To illustrate the effect of AS in practice, we compare the cost of AS and binary search when ¢* = 103,
and we observe that the cost of binary search is approximately 2.5 times higher than that of AS. The
results are provided in App. C. An illustration of the AS algorithm can be found in App. I (Right)
and Fig. 8.

3.2 ASYMMETRIC GRADIENT ESTIMATION (AGREST)

As mentioned earlier, our goal is to adjust the distribution of queries generated during the process.
To achieve this, we first propose a family of estimations that provides flexibility in adjusting the
distribution of queries used for estimation. Then, we introduce a method to select the estimator within
this family that maximizes the similarity between the approximated gradient and the true gradient.
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How can we control the query distribution? The main idea behind AGREST is to estimate
VS (xt) by approximating the gradient at a point like x}, which is close to x;. This approach
allows us to alter the distribution of made queries while approximating effective directions for the
attacks. In this method, we move x; away from x* by w;, the overshooting value, to reach the new
point X}, = X; + wy mmig. 2 (left)). Then, we use Eq. (5) at x} almost similar to the vanilla
estimation, except that AGREST assigns more weight to high-cost queries than to low-cost ones
(using importance sampling) In other words, we estimate V.S as follows:

VS (x¢,we, Br) = Z¢t X; +0u;)u; = Z¢t (Xt R A T——T H +5uz) u;, (6)
2

IIt—

=1
where ¢y(x) = (1 — B)1{¢(x) = 1} — B;1{¢(x) = —1} is the sampling weight function,
# < By < 1is the sampling weight parameter, uy, . . ., u,, are i.i.d. draws from UNIFORM(S?~1),

and 1{-} denotes the indicator function. The parameters w; and 3; allow us to control the likelihood
of making high-cost queries and their associated weight in our estimation.

How can we choose the best AGREST estimator? To ensure the selected estimation is as close as
possible to the true gradient direction among all AGREST estimators, one potential solution is to find
the estimator that maximizes:

(Xt wi, B, ni) = By, cos (VS (x;),VS (Xtawtvﬁt» . (7

within the query budget, where cos represents the cosine similarity function. To calculate this
function, we need to assume that .S has certain characteristics. One common choice is to assume
that S is L-smooth. However, this assumption introduces excessive complexity to our analysis
and may add additional hyperparameters related to L to the current set of hyperparameters in the
existing attacks. Therefore, similar to Rahmati et al. (2020); Maho et al. (2021) and based on
observations from Fawzi et al. (2016), we assume that S is locally linear around x¢, S(x} + du) ~
S(x¢) + (VS(x¢),x} + du — x¢). Since x; is a boundary point, S(x;) = 0. Thus, we have:

o(x} + du) ~ sign ((V.S(x¢),x; + du — x;)) = sign(cos o - wy + (g, du)), (8)
where g; = vagﬁ and ay is the angle between x; —x* and g; (Fig. 2). Additionally, based on this
t)ll2
assumption, we can calculate the probability of low-cost queries, namely p; (w;) = P[o(x}+du) = 1],
using Lem. 1.
Lemma 1. (Hyperspherical Cap Chudnov (1986)) Under local linearity around x; (Eq. (8)), we

have py(wy) = % (1 + Zy—2(67 1 cos aywy) /Zq—2(0)), where Iy(z) = Oliw(l —2)d=1/2qy,

Based on Lem. 1, we can infer that p;(w; ) is strictly increasing and therefore invertible. Nonetheless,
even with the linearity assumption, calculating the expected value remains challenging due to the
nonlinearity of cosine similarity and the complexity of handling multiple independent random vectors.
Therefore, inspired by measure concentration Ledoux (2001), we approximate (X, wy, B, 1¢) as
follows:

~ ~ —-1/2
J(x¢, wi, Beyny) = (ni/2 ‘E {¢(X§ + du){g:, u}D : (E [qﬁ(xé + 5u)2D . 9)
This new objective is easier to calculate since it removes the need to deal with multiple random
vectors. Thm. 2 establishes a convergence bound for the approximation.

Theorem 2. (Expected Cosine Similarity Approximation) Under the local linearity assumption
around x4, for any constants 0 < z < % and % < q,B < 1, as ny and d approach infinity, we have

P, py (), B me) ’ .
—1<0( 10
‘J(Xtaptl(Q)>ﬁ7nt) o ( ) (10)

Now, we can formulate the optimization problem. The goal is to maximize J(x¢,wy, B¢, ) within a
query budget. Specifically, we want to:
max  J(x¢,wy, Bt, nt) st ng( — (¢ — Dpe(wy)) < e (11)
we, Bt
where c; is the maximum allowed cost of estimation at iteration ¢ of the algorithm. The constraint in
Eq. (11) ensures that the expected estimation cost at iteration ¢ is at most c;. To solve this optimization
problem, we propose Thm. 3.
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Theorem 3. (Optimal AGREST Parameters) Suppose the solution to Eq. (11) is represented by
(wi,wr,n}). Given the local linearity around X, the following statements hold:

I nf = ci (¢ — (¢ — V)pelw})) " and Bf = pe(wy).

2. w} maximizes the following function over the interval [0,/ cos ay):

Tien) = (1= (67 comanea)?) " () (1 = pulea) (e* = (" = D))

-1
(12)

An immediate consequence of Lem. 1 and Thm. 3 is the existence of w* such that w* = cos ay -w} =
cosag - wj = .... As aresult, we aim to find w*. One problem is that Z; has a complex closed
form. Thus, finding a closed form for w* would be challenging. Instead, we use numerical methods
to evaluate this integral and numerical optimization techniques to find w*. In particular, we use
QUADPACK Piessens et al. (2012) for the integral calculation and the Nelder—-Mead method Nelder
& Mead (1965) for maximizing J;(w;). Another problem is that we need to know o, which is not
possible in a black-box setup. Thus, we need to estimate «; at each iteration .

How can we estimate «;? We split this problem
into two steps: 1. estimating oy, and 2. under-
standing the behavior of a; with respect to t. For Inputs: Iteration ¢, dimension d, desired
the first problem, initially, we expect x; — x* and probability p, scheduler rate m

g1 to be somehow independent, as most existing Outputs: Next cosine value o1

attacks select x; using a random direction. The i @1 < INIT-ANGLE (d) > Thm. 4
only reasonable assumption about these two vectors — 2: &1 < 1 — (1 —cosaq) (t+1)" "

is that they likely have a positive correlation, i.e., 3: azy1  arccos (dyy1)

(x1 — x*,g1) > 0. Specifically, if we know that  4: return ;i1

x1 is the closest boundary point to x* along the
direction of x; — x*, meaning there is no 0 < r < 1 such that ¢(x* + r(x; — x*)) = 1, this
assumption provably holds. Given this assumption, we can use Thm. 4 to attain «;.

Algorithm 2 Overshooting Scheduler Step

Theorem 4. (Initial Cosine Value) Under local linearity around X1, if there is no 0 < r < 1 such
that ¢(x* + r(x1 — x*)) = 1, then we have E [cos o] =T (£) (2y/7 T (%))71.

Algorithm 3 AGREST Estimation

Inputs: Iteration ¢, source image x*, boundary point x;, dimension d, high-cost query cost c*,
sampling radius J, sampling batch size b, cosine value «, vanilla gradient estimation query
budget n}, scheduler rate m

Outputs: Normalized approximated direction g, next cosine value a1

1: np 0, ng+0, vt <0, v <0, ¢+ 0, w* < OVERSHOOTING (c*) > Thm. 3
2: wy +— wr/cosay, ¢ + nj(ck+1)/2

3: while ¢ < ¢; do

4:  for each u; ~ UNIFORM(S? 1), i =1,...,bdo

5. ife (xt + B+ 6ui) — 1 then

6 vie—vt4w, npenp+1, é+¢+1

7 else

8: ViV —u, ng<ng+1, ¢+ é+c*

9: end if

10:  end for

11: end while

12: py nL/ (?”LL + nH)

13: gs + (1 —Pg) vT +psv™, «sy1 + SCHEDULER-STEP (t, py, m) > Alg. 2
14: return gt/ ||gt||23 Qg1

The next step is to estimate o after the first iteration. Chen et al. Chen et al. (2020) showed that
in HSJA, cos(x; — x*,g¢) > 1 — ¢t~™ for some constant ¢ and 0 < m < % This motivated us

to heuristically estimate oy as arccos(1 — (1 — cosa)t™™), where m is a new hyperparameter
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Table 1: Median ¢4 distance for various ¢* values and different types of attacks across neural network
architectures. VA stands for Vanilla Attack. The bold numbers represent the best performance among
different variants of each attack for each ¢* value and model (For a comprehensive analysis of attacks
under varying total cost constraints, we refer readers to Tab. 5 and Tab. 6 in App. F, which present
exhaustive experimental results across different total cost budgets and query cost c*.)

ResNet-50 ViT-B/32
=2 =5 ¢=10> ¢=10> ¢ =2 =5 =102 ¢ =10

Total Cost of Queries

Attack Method
10K 15K 150K 250K 10K 15K 150K 250K
SurFree VA 4.09 5.19 5.21 17.49 2.9 2.5 5.13 16.12
VA+AS (A-SurFree) 345 3.52 3.80 7.59 24 2.1 3.68 6.35
VA 2.24 2.77 4.66 23.72 18.3 13.9 4.21 22.46
HSJA VA+AS 2.16 2.72 4.09 19.07 18.3 13.5 3.88 18.79
VA+AGREST 2.19 2.51 2.49 14.62 2.7 22 2.19 11.28
VA+AS+AGREST (A-HSJA) 2.13 2.39 2.16 12.28 2.7 2.1 2.06 10.74
VA 2.80 3.21 4.02 10.80 2.7 24 3.97 9.83
GeoDA VA+AS 2.66 3.12 332 9.24 2.7 2.3 3.12 8.78
co VA+AGREST 2.89 2.95 2.19 6.28 1.9 1.7 2.10 5.12
VA+AS+AGREST (A-GeoDA) 293 2.8 2.11 5.78 1.9 1.8 2.03 4.35
VA 1.21 1.42 222 9.97 1.6 1.4 2.13 9.67
CGBA VA+AS 1.17 1.39 2.06 9.28 1.7 1.3 1.97 8.24
VA+AGREST 1.12 1.36 1.63 5.73 1.5 1.3 1.56 5.46
VA+AS+AGREST (A-CGBA) 1.15 1.33 1.58 6.23 1.5 1.2 142 5.61

introduced to the existing attacks (Alg. 2). As stated in Thm. 3, under the assumption of local
linearity, the value of (; in an optimal AGREST estimation is the probability of making low-cost
queries. However, similar to Chen et al. (2020), we use the empirical probability of making low-cost
queries, namely nL”ﬁnH, to reduce the variance of the estimation. Here, ny and np, represent the
number of high-cost and low-cost queries made in an AGREST estimator, respectively. Additionally,
ny(c*+1)

we set ¢; to the expected cost of the vanilla attack, namely , where n} is the number of
made queries by the vanilla attack at iteration ¢. A detailed overview of AGREST is provided in
Alg. 3. Note that in practice, most attacks are performed in a given subspace rather than in the
entire space to improve sample efficiency. In these cases, we use the effective dimension d’ of the
subspace instead of d, the dimension of the original space. For more details, see App. D.3. Finally,
it is worth mentioning that the probability of making low-cost queries in AGREST closely follows
our theoretical analysis in practice. Further details and empirical results are presented in App. C.

4 EXPERIMENTS

Model, dataset, and metric. We employed ImageNet-trained models: ResNet-50 (He et al., 2016),
ViT-B/32, ViT-B/16 (Dosovitskiy et al., 2021), and CLIP (Radford et al., 2021). Original images (x*)
were 500 correctly classified ImageNet validation samples similar to the Debenedetti et al. (2024).
Numerical tasks used SciPy (Virtanen et al., 2020). Attack performance was measured by the median
{5 distance between perturbations and originals over query costs, consistent with previous work.

Attacks and hyperparameters. We modify SurFree, HSJA, GeoDA, and CGBA by using AS for
search and AGREST for gradient estimation where applicable. The other components of the attacks
remain largely unchanged (see App. D). Moreover, to compare our framework with stealthy attacks,
we use Stealthy HSJA, as it outperforms other stealthy attacks when the ¢ norm is the evaluation
metric (Fig. 3 of Debenedetti et al. (2024)). For the hyperparameters used in the vanilla attacks, we
generally use the same values. The only exception is the subspace method in SurFree. Specifically,
instead of using the DCTgxg method in SurFree, we set it to DCTyy;. This adjustment allows for a
fair comparison of SurFree with other attacks, as GeoDA and CGBA both use the DCTg, technique.
Furthermore, we set the newly introduced hyperparameter m, the overshooting scheduler rate, to
0.02, 0.06, and 0.06 for HSJA, GeoDA, and CGBA, respectively (for more details see App. D.2).

Ablation study. To evaluate the effectiveness of AS and AGREST in different attacks, we test
various combinations of these two approaches with each attack when ¢* = 2, 5, 102, or 103 (Tab. 1).
As shown in Tab. 1, for SurFree, we compare the vanilla attack with A-SurFree, the new asymmetric
attack that utilizes AS. As expected, replacing binary search with AS leads to smaller adversarial
perturbations for all ¢*. Furthermore, we compare the performance of gradient-based attacks with
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their corresponding variations, namely: 1. Replacing binary search with AS 2. Replacing vanilla
gradient estimation with AGREST 3. Combining the two previous approaches to obtain A-HSJA,
A-GeoDA, A-CGBA. In general, using asymmetric attacks results in incremental improvements
when ¢* = 2 or 5. This is expected because we anticipate binary search and vanilla gradient
estimation perform well when the cost of high-cost queries is not significantly different from the
cost of low-cost queries. However, for larger values of ¢*, namely 10% and 103, the improvements
are substantial. Specifically, using AGREST alone reduces the /5 norm by approximately 40% in
all cases. Moreover, combining AGREST with AS further decreases the norm. One notable point is
that AGREST enhances attacks utilizing gradient estimation more than AS does. This occurs because
attacks using gradient estimation spend most of their query budget on gradient approximation rather
than on search. (Tab. III of Debenedetti et al. (2024)). We also compared several methods, including
some baseline transfer attacks, using attack success rate (ASR) as the metric (see App. E).

Comparison to stealthy attacks. As mentioned, for larger values of ¢*, we expect asymmetric
attacks to significantly improve over vanilla attacks. Nonetheless, in these cases, we must compare
our framework to stealthy attacks, since, unlike with lower to medium values of c*, stealthy attacks
outperform vanilla attacks when c* is large (Fig. 7 of Debenedetti et al. (2024)). As a result, we eval-
uate the performance of A-SurFree, A-HSJA, A-GeoDA, and A-CGBA against Stealthy HSJA on the
ResNet model when ¢* = 104, 10°, or co. As demonstrated in Fig. 3, when ¢* = 10%, all asymmetric
attacks, including A-HSJA which retains the gradient estimation method that Stealthy HSJA discards,
outperform Stealthy HSJA. The same holds for ¢* = 10° (Fig. 3). For the case where ¢* = oo, follow-
ing Debenedetti et al. (2024), we determine the cost of each attack by counting the number of high-cost
(flagged) queries it generates. In this setup, we assume ¢* = 10° during the execution of AGREST
and AS. As shown in Fig. 3, all asymmetric attacks outperform Stealthy HSJA by a wide margin.

= A-HSJA

—— A-GeoDA 102
~—— A-CGBA
A-SurFree

= = Stealthy HSJA

(5 distance
(5 distance
{5 distance

0.0 2.0 25 0.0 50 100 150 200

) L5 2 05 L0 L5 20 25 0 2
Total cost x10° Total cost x107 Total cost (Number of high-cost queries)

Figure 3: Performance of various asymmetric attacks compared to Stealthy HSJA under high
cost asymmetry with ResNet-50. The value of ¢* is 10%, 10°, and co from left to right.

Asymmetric attacks against CLIP. We evaluate CLIP (Radford et al., 2021) as a representative
vision-language model (VLM) under both zero-shot and fine-tuned settings. Our asymmetric attack
achieves significantly better performance than stealthy baselines; results are provided in App. H.

5 CONCLUSION AND OUTLOOK

We proposed a framework that extends existing decision-based black-box attacks to handle
asymmetric query costs, where querying the source class is more expensive than others. Our method
introduces new gradient estimation and search techniques, achieving significant improvements over
both standard and stealthy attack baselines. However, it introduces a new hyperparameter, which
may require tuning for different settings. Additionally, we assume local linearity around decision
boundaries; while this assumption is common in the adversarial examples literature, it may not
hold in practice. There are also many interesting directions for future work, such as generalizing
the framework beyond the binary setting of source versus non-source classes. For instance, different
target classes may each have their own associated query cost. Applying our framework to vision-
language models such as Vision LLaMA (Chu et al., 2024) is another promising direction. AS could
also enhance jailbreak attacks on large language models, potentially replacing random search-based
methods (Andriushchenko et al., 2024; Chao et al., 2024), though adapting our framework to LLMs
presents challenges due to the discrete nature of text prompts (Rocamora et al., 2025). Exploring
these avenues could expand the impact of asymmetric attacks across a wide range of applications.



Under review as a conference paper at ICLR 2026

REFERENCES

Alireza Abdolahpourrostam, Mahed Abroshan, and Seyed-Mohsen Moosavi-Dezfooli. Superdeepfool:
a new fast and accurate minimal adversarial attack. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=pgD7ckR8AF.

Gabriel Alves, Geoff Pilling, James Innes, Refath Bari, Nguyen Quang, Josh Silverman, Ar-
ron Kau, and Jimin Khim. Egg dropping. URL https://brilliant.org/wiki/
egg-dropping/, 2024. Accessed 26-04-2024.

Amazon. Moderating content. URL https://docs.aws.amazon.com/rekognition/
latest/dg/moderation.html, 2024. Accessed 03-05-2024.

Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Jailbreaking leading safety-
aligned 1lms with simple adaptive attacks. arXiv preprint arXiv:2404.02151, 2024.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models. arXiv preprint arXiv:1712.04248, 2017.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39-57. Ieee, 2017.

Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco Croce,
Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J Pappas, Florian Tramer, et al.
Jailbreakbench: An open robustness benchmark for jailbreaking large language models. arXiv
preprint arXiv:2404.01318, 2024.

Jianbo Chen, Michael I Jordan, and Martin J Wainwright. Hopskipjumpattack: A query-efficient
decision-based attack. In 2020 ieee symposium on security and privacy (sp), pp. 1277-1294. IEEE,
2020.

Jinghui Chen and Quanquan Gu. Rays: A ray searching method for hard-label adversarial attack,
2020. URL https://arxiv.org/abs/2006.12792.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM workshop on artificial intelligence and security, pp. 15-26, 2017.

Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh. Query-efficient
hard-label black-box attack: An optimization-based approach. arXiv preprint arXiv:1807.04457,
2018.

Minhao Cheng, Simranjit Singh, Patrick Chen, Pin-Yu Chen, Sijia Liu, and Cho-Jui Hsieh. Sign-opt:
A query-efficient hard-label adversarial attack. arXiv preprint arXiv:1909.10773, 2019.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, pp. 493-507, 1952.

Xiangxiang Chu, Jianlin Su, Bo Zhang, and Chunhua Shen. Visionllama: A unified llama backbone
for vision tasks, 2024. URL https://arxiv.org/abs/2403.00522.

Alexander Mikhailovich Chudnov. On minimax signal generation and reception algorithms. Problemy
Peredachi Informatsii, 22(4):49-54, 1986.

Edoardo Debenedetti, Nicholas Carlini, and Florian Tramer. Evading black-box classifiers without
breaking eggs. In 2024 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML),
pp. 408-424. IEEE, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Teee, 2009.

10


https://openreview.net/forum?id=pqD7ckR8AF
https://openreview.net/forum?id=pqD7ckR8AF
https://brilliant.org/wiki/egg-dropping/
https://brilliant.org/wiki/egg-dropping/
https://docs.aws.amazon.com/rekognition/latest/dg/moderation.html
https://docs.aws.amazon.com/rekognition/latest/dg/moderation.html
https://arxiv.org/abs/2006.12792
https://arxiv.org/abs/2403.00522

Under review as a conference paper at ICLR 2026

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
2021. URL https://arxiv.org/abs/2010.11929.

Facebook. How does facebook use artificial intelligence to moderate content? URL https:
//www.facebook.com/help/1584908458516247,2024. Accessed 03-05-2024.

Alhussein Fawzi, Seyed Mohsen Moosavi-Dezfooli, and Pascal Frossard. Robustness of classifiers:
from adversarial to random noise. Advances in neural information processing systems, 29, 2016.

Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization
in the bandit setting: gradient descent without a gradient. arXiv preprint cs/0408007, 2004.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Google. Detect explicit content (safe search). URL https://cloud.google.com/vision/
docs/detecting-safe-search, 2024. Accessed 03-05-2024.

Mor Harchol-Balter. Introduction to probability for computing. Cambridge University Press, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp.- 770-778, 2016.

Andrew llyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with
limited queries and information. In International conference on machine learning, pp. 2137-2146.
PMLR, 2018.

Michel Ledoux. The concentration of measure phenomenon. Number 89. American Mathematical
Soc., 2001.

Huichen Li, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, and Bo Li. Qeba: Query-efficient boundary-
based blackbox attack. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 1221-1230, 2020.

Yujia Liu, Seyed Mohsen Moosavi-Dezfooli, and Pascal Frossard. A geometry-inspired decision-
based attack. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
4890-4898, 2019a.

Yujia Liu, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. A geometry-inspired decision-
based attack, 2019b. URL https://arxiv.org/abs/1903.10826.

Thibault Maho, Teddy Furon, and Erwan Le Merrer. Surfree: a fast surrogate-free black-box attack.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10430-10439, 2021.

Microsoft. Detect adult, racy, or gory content. URL https://
learn.microsoft.com/azure/ai-services/computer-vision/
concept—-detecting-adult-content, 2024. Accessed 03-05-2024.

Vitali D Milman and Gideon Schechtman. Asymptotic theory of finite dimensional normed spaces:
Isoperimetric inequalities in riemannian manifolds, volume 1200. Springer Science & Business
Media, 1986.

Seyed Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2574-2582, 2016.

Nina Narodytska and Shiva Prasad Kasiviswanathan. Simple black-box adversarial perturbations for
deep networks. arXiv preprint arXiv:1612.06299, 2016.

John A Nelder and Roger Mead. A simplex method for function minimization. The computer journal,
7(4):308-313, 1965.

11


https://arxiv.org/abs/2010.11929
https://www.facebook.com/help/1584908458516247
https://www.facebook.com/help/1584908458516247
https://cloud.google.com/vision/docs/detecting-safe-search
https://cloud.google.com/vision/docs/detecting-safe-search
https://arxiv.org/abs/1903.10826
https://learn.microsoft.com/azure/ai-services/computer-vision/concept-detecting-adult-content
https://learn.microsoft.com/azure/ai-services/computer-vision/concept-detecting-adult-content
https://learn.microsoft.com/azure/ai-services/computer-vision/concept-detecting-adult-content

Under review as a conference paper at ICLR 2026

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527-566, 2017.

Robert Piessens, Elise de Doncker-Kapenga, Christoph W Uberhuber, and David K Kahaner. Quad-
pack: a subroutine package for automatic integration, volume 1. Springer Science & Business
Media, 2012.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021. URL https:
//arxiv.org/abs/2103.00020.

Ali Rahmati, Seyed Mohsen Moosavi-Dezfooli, Pascal Frossard, and Huaiyu Dai. Geoda: a geometric
framework for black-box adversarial attacks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8446-8455, 2020.

Md Farhamdur Reza, Ali Rahmati, Tianfu Wu, and Huaiyu Dai. Cgba: Curvature-aware geometric
black-box attack. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 124-133, 2023.

Elias Abad Rocamora, Grigorios G. Chrysos, and Volkan Cevher. Certified robustness under bounded
levenshtein distance, 2025. URL https://arxiv.org/abs/2501.13676.

Twitter. X’s sensitive media policy. URL https://help.twitter.com/en/
rules—and-policies/media-policy, 2024a. Accessed 03-05-2024.

Twitter. Understanding x  limits. URL https://help.twitter.com/en/
rules—and-policies/x-1imits, 2024b. Accessed 04-05-2024.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature methods, 17(3):261-272, 2020.

Xiaosen Wang, Zeliang Zhang, Kangheng Tong, Dihong Gong, Kun He, Zhifeng Li, and Wei Liu.
Triangle attack: A query-efficient decision-based adversarial attack. In European conference on
computer vision, pp. 156—174. Springer, 2022.

12


https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2501.13676
https://help.twitter.com/en/rules-and-policies/media-policy
https://help.twitter.com/en/rules-and-policies/media-policy
https://help.twitter.com/en/rules-and-policies/x-limits
https://help.twitter.com/en/rules-and-policies/x-limits

Under review as a conference paper at ICLR 2026

A RELATED WORK

Decision-based attacks. Adversarial examples can be crafted in three setups: white-box (Good-
fellow et al., 2014; Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017; Abdolahpourrostam
et al., 2024), score-based black-box (Narodytska & Kasiviswanathan, 2016; Chen et al., 2017; Ilyas
et al., 2018), and decision-based black-box (Brendel et al., 2017). In the decision-based black-box
setup, the attacker relies solely on predictions without access to models or class scores. Moreover,
decision-based attacks can be either targeted or non-targeted. Non-targeted attacks craft adversarial
examples without any constraints on the model’s prediction for the adversarial example. Boundary
Attack (Brendel et al., 2017) was the first effective decision-based attack based on random walking.
OPT (Cheng et al., 2018) outperforms Boundary Attack by introducing a gradient-based approach.
Inspired by zeroth-order optimization methods (Flaxman et al., 2004; Nesterov & Spokoiny, 2017),
HSJA estimates the gradient of the classification margin without direct access to the margin itself and
minimizes perturbation size using optimization techniques (Chen et al., 2020). QEBA (Li et al., 2020)
uses various techniques to approximate the gradient of the classification margin more effectively than
HSJA, leveraging insights like local similarity and the importance of the low-frequency subspace.
GeoDA and gFool (Rahmati et al., 2020; Liu et al., 2019a) use techniques similar to HSJA’s gradient
estimation to locally approximate the decision boundary as a hyperplane at each iteration. They then
search for optimal adversarial examples based on these estimated hyperplanes. While gradient-based
methods outperform previous approaches, their reliance on generating numerous queries for efficient
gradient estimation led (Maho et al., 2021) to focus on decision boundary geometry. They introduced
SurFree, which iteratively selects a random 2D subspace and searches for adversarial examples along
a circular path. In a similar way, TriA (Wang et al., 2022) generates effective adversarial examples
while using minimal queries. CGBA (Reza et al., 2023) combines the gradient approximation method
from GeoDA with SurFree’s 2D subspace search technique to achieve state-of-the-art results.

Asymmetric query costs. Existing decision-based attacks assume all queries have the same cost.
However, (Debenedetti et al., 2024) showed this may not be the case in real-world scenarios. They
found that queries belonging to the target class can be problematic in certain situations and noted
that all decision-based attacks produce many of these bad queries. To mitigate this, they introduced
stealthy attacks inspired by the egg dropping problem (Alves et al., 2024). However, stealthy attacks
face two main challenges. First, they overlook the cost of queries that are not bad. For example,
their most effective attack, Stealthy HSJA, generates about 107 queries for every 1,000 bad queries.
Second, to reduce the number of bad queries during the gradient estimation phase, (Debenedetti
et al., 2024) replaced the HSJA gradient approximation, known for its benefits in crafting adversarial
examples, with OPT gradient estimation, believing that modifying the HSJA gradient estimation
to perform well in this new setup would be difficult. In this paper, we address these challenges in
non-targeted decision-based attacks. In particular, we find a way to efficiently distribute our total
query budget between problematic and non-problematic queries while keeping the HSJA method of
gradient approximation by slightly modifying the method.
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B PROOFS

B.1 PROOF OF THM. 1

We define the expected cost of the algorithm for 1 < m < (H points as C'(m). Using Alg. 1 and
applying the law of total expectation, we obtain

C(m) = P (T (byt)) = —1] (C (c”i 1) + C*) P (T (b)) = 1] (o (cf*ﬁ) + 1> .
(13)

‘We now claim that

C(m) < 2¢* [loge. ym] . (14)
We prove this by induction.

For the base case, when m < ¢* 4 1, Alg. 1 reduces to a simple line search. Assuming a uniform
distribution for the boundary point, the expected cost of the line search is approximately ¢* + m/2,
which clearly satisfies Eq. (14).

For the induction step, suppose the claim holds for all values smaller than m. Under the uniform
distribution assumption for the boundary point, we have
1 c*
Plo (T (b)) =—-1]=——, Plo(T (by71)) =1]= .
6T (b)) = ~1] = . PI6(T (b)) = 1] = =
Substituting into Eq. (13) and applying the induction hypothesis yields:

1 m c* cm
C = Cl—— * C 1
(m) c*+1( (c*+1)+c>+c*+1( (c*+1)+>
1 N m N c* N c'm
<M<2C ’710g6*+1 C*—i-l-‘—'_c)—i_c*—i-l (20 logc*+lm +1 .

Noting that

*

m cm c
10, 11 (c*—|—1> =log.. 1 (m)—1, log.. (C*—i-l) =log.. 1 (m)+1og. (C*—i—l> )

and observing that log .., ; (Cf—;l) < 0 but close to 0 for large c*, we can bound both ceilings by
I—logc*Jrl (mﬂ .
Thus,

c* ., 2P
o1 (Mogeryym] —1) + + [10g ey m] +

c* + 1C c+1
= 2c*[log . 4 m].

C*

cc+1

C(m) <

Thus, the expected complexity of the algorithm is
0 c¢*log (1/7)
log(c*+1) )’

completing the proof.

B.2 PROOF OF THM. 2

Before proving the theorem, we first introduce some useful lemmas.

Lemma 2. (Lévy’s Lemma (Milman & Schechtman, 1986; Ledoux, 2001)) Let f : S*~' — R be

an L-Lipschitz function on the unit hypersphere, and let x ~ UNIFORM (Sd_l). Then, for some
constant C > 0, we have:

Cde?

P(If (%)~ Ef ()] > €) < 2exp (—L) .
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Corollary 1. Suppose u € R? is a unit vector, and x ~ UNIFORM (Sd_l). Then, for some constant
C > 0, we have:
P (|(u,x)| > €) < 2exp (—Cde?) .

Lemma 3. Suppose af’l, ce a%nt are i.i.d. Bernoulli random variables with support {32, (1—3;)?},
where B; > % If(Et is an i.i.d. copy of(gm, then the following inequality holds:

P ii(}? —E[¢?]| > ¢ | < 2ex (—W>
ny £ Pt T O =IO\ 02 )
Proof of Lem. 3: The result follows by applying the Chernoff bound for binomial distributions
(Chernoff, 1952; Harchol-Balter, 2023) to the transformed random variables
3, = ;5?1 - (1=p)?
B - (1-8)

which are i.i.d. Bernoulli random variables taking values in {0, 1}.

Lemma 4. Given the local linearity around x,, for any wy € [O , we have:

]
cos ay N
rg)- (1 — (cos -wt/é)z) ’
2y T (44)
Proof of Lem. 4: By the law of total expectation and linearity assumption, we have

E [@u(gew)] = B (1= Py (w0)) E [~ (o, wl (e, w) < — cosar - /9]

E[4i(geu)| =

15)
+ (1= Be) Pr (wr) E (g, )| (g, u) > — cos o - wy /6]
Now, by applying the divergence theorem on the constant vector field F = g:, we have
E[—(g:, u)|{g,u) < —cosqy - w /0] = <fgt,/ up (u) du)
(gt"-l>§* cos Ott'wt/5
~ (& | udu)
' (g¢,u)<—cosas-we/d (1 _p(wt)) Adg (1)
Vi1 <\/1 — (cos ay -wt/é)z)
T 0—P (@) A ()
d—1
r)-. (1 — (cos ay ~wt/5)2) ’
Qﬁ'F(L;l) (1= P (wr))
(16)
Where V;(r) and Ag_1 () are the volume of a d-dimensional ball and the area of a d — 1-dimensional
d/2
sphere with radius r, respectively. Note that the last equality comes from V(r) = mrd and
27Td/2 2
Ag_1(r) = mrd_l. Similarly, the following holds:
2
%
r4)- (1 — (cosay -wt/§)2>
E ,u ,u) > —cosay - w /0] = 17
th >|<gt > t t/ } 2\/771—‘(%)3(%) ( )
By using Eq. (16) and Eq. (17) in Eq. (15), we have
d—1
R rg)- (1—(cosat.wt/6)2) ’
E , = 18
|
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Lemma 5. Let 1,65 > 0 be given. Then the following upper and lower bounds hold for

M(Xta Wi, ﬁh nt):
1. (Upper bound)

Vi E [$t<gt7 u>}
ma?%] ~ e — (e~ 1)fien
VT
\/IE — ey — (ny — 1)Pey

(X, we, Bryne) <

2. (Lower bound)
VirE | 6i(gi, )|
VER] + 22+ (i — 12,
P _ V1 B
VEB + o2 + (e — 1Py

M(thta Btant) Z

Here, the error term K, 4(e1,¢2) is defined as

21463
— 2 te2
Knt,d (51,52) = nt(nt + 1) exp (7cd51) + 2€Xp (w> s

for some universal constant C > 0.

Proof of Lem. 5: Lete;, o > 0 be arbitrary. We define the following sets:
Si(e1) ={U=(u1,...,u,,) | (g, us)| > e1},
> 52} )

Sijle1) ={U=(uy,...,upn,) | [(u,u;)| > &1},
61,82 (US €1 ) U U Si,j(el) US¢(€2).

1 &
Sple2) = {U = (uy,...,uy,,) | |E[¢7] - P > 6,
=1
1<i<j<ng

For notational convenience, we also define

U) = Z $t,z-<gt,5ui>.
i=1

Applying Lem. 2 and Lem. 3, and using the union bound, we obtain

P[UES] Snt~P[U€31]+ (Zt> ~P[U€Sl,2]+P[UES¢} SKnt’d(cﬁ,Eg).

Now, we derive the upper bound. By the law of total probability, we have

<gt7 ﬁ(xfd Wt /Bt)>
‘ﬁ(xtthvﬁt) )

H(Xt7wt75t,nt) =E

(¢, ﬁ(xt, wt, Bt))

_p | &Y U¢S|PU¢S)
| ‘VS(antaﬁt) 9
L E (&, VIS(x¢,we, Br)) UeS|PUEeS].

L Hﬁ(xtywtyﬁt) 5

16

K, q(e1,e2).

Ky, q(e1,e2).
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To calculate the desired expected value given the event {U ¢ S}, we expand the squared norm
directly. By definition,

Hﬁ(xt’wt’ﬁt)Hz =

2

Nt
1 ~
*E 5¢t,iui
g im1
ng

= ni% <Z§¢t ili, Zé(ZSt ]u]>

62 ne Nt

= n—% Z Z Q/z;t,igb\t,j (u;,u5)

i=1 j=1

52| e, -
=3 St D britr(wi,uy)
t\i=1 1<i,j<ny
i%5

From the previous expansion, we have

Hﬁ(xhwtvﬂt)

, 2 =\ BE =2 (e~ e

Thus, on the event {U ¢ S}, we can bound

<g,§x\9(x,w,ﬁ)> B 1
St HVSH <g“ > > = e AV

Therefore,
(gt, V) A(U)

H@HQ B 5\/”7\/1*3[5?] — & — (g — 1)5,5251.

Taking expectations, we get

B| &8 ygs| < ! E[A(U)].
193], Sy — 2 — (m — e

Moreover, by independence and identical distribution of the samples, we have

E[A(U)] = 0 E [dy (g w)]

Therefore,
S Vi E (g, 1)
[ A == mrerrs

For the event {U € S}, we use the trivial bound

St @ <1

3], 1~

2
and hence
g8V ges| <1
%51,

17
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Substituting back into the law of total probability, we have

Vi E {$t<gtau>]
p(xe, we, Be,my) < =
VEIS) - e2 — (n, — 1)B2,
N
\/E[(;Abf] —&3— (g — 1)5?51

(1-PU e S])+P[Ue S|

+

Grouping terms, we obtain

NG {Q?thauﬂ
:u‘(xtvwhﬂtant) S =
\/]E [Cbﬂ — &g — (g — 1)@251

V1 Bt
\/E [(Eﬂ —e2 — (e — 1)Bfer

Applying the bound P [U € S] < K, q(e1, €2) from Eq. (19), we finally get

p(xXe,we, Beymg) < \/ Vi E [&(gt,u)}

+ |1+ P[U € §].

E [5%} — &g — (ny — 1)BFex

Ve B

+ 1+ =
\/]E [(b?:| — &9 — (’I’Lt — 1)615251

Ky, a(e1,€2).

Similarly, for the lower bound, we have

s, o) > ¢ VI E [fiigi,w)]

E [af] + 2 + (ny — 1) 7€y

NOY
\/ E [(EE] +eo+ (ne — 1)82

This completes the proof of the lemma. We note that the argument does not rely on the linearity
assumption.

1+

Knt,d(elv 52)~

|
Lemma 6. Assume local linearity holds around x,. Then, for any constant q € [%, 1), we have
E {5 (x +P71(q)LX* + 5u> (g u)} =0 <1>
T W =l ; vd)
d
Proof of Lem. 6: Based on Lem. 4, we analyze the asymptotic behavior of ?gi? ) and
=

d—1

(1 — (cosay - wt/é)Q) " asdtends to infinity.

By Lem. 2, we have
P[|{u,g:)| > ¢] < 2exp (—C’deQ) ,

18



Under review as a conference paper at ICLR 2026

S0 in particular
P[(u,g:) < —¢] < exp (—Cde?).
We know that 1 — ¢ = P[(u, g:) > — cos ay - wt/d], based on the selection of the overshooting value

wy. Thus,
1—q<exp (—Cd (cos oy -wt/§)2) ,

which implies
In(1—¢) < —Cd(cos a; - wy /),
and consequently
In(1—g)
cd
Raising both sides to the (d — 1)/2 power yields

<1+ ln(lcgq))dgl < (1 — (cos ay -wt/6)2>%.

1+ <1—(cosay -w/6)”.

Applying the classical limit lim,, (1 + 7%)" = e°, we obtain

d—1
. n(l-¢)\ = _ In(1 —gq)
Jm (H Cd ) _eXp( 2c )’

d—1
2

which implies that <1 — (cos ay -wt/5)2> =0(1).

On the other hand, by Stirling’s approximation

T(n) = \/?(Z)n <1+O <71L>) :

rr<()> -(7):

Substituting these results into Eq. (18) concludes the proof.

we find that

Now, we proceed to prove the theorem.

Proof of Thm. 2: Forany 0 < z < %, let n, = d, ey = d™*, and g5 = d~*. Also, let
2
d> 4% . We define

VITE 6181 w)]
FE = )

\/IE {(Ef] —e2— (e — 1)B%
Ey = \/TTtB ’

\/E {qﬁ%] — &9 — (nt - 1)ﬂ251
E3 =Ky, i(e1,€2).

Then using the upper bound derived in Lem. 5, we have

1
E 1+ F
e py (9), Bme) | 1 14 + B2 Es.  (20)

J(Xtap;l(Q),ﬁ7nt) - J(Xt7p;1(Q)757nt) J(th;l(q)aﬂvnt)
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Since E [(Ef] = B%(1 — q) + (1 — B)2q is constant, we can estimate

E 1
- ~1< —1
J<Xtapt (q)a /67 'I’Lt) 1— 52+(”t:1):3251
E[¢7]
1
<O (62 + (e — 1)ﬁ251) (since for 0 < z < 3 Vi-x>1-— g)
=0(d™). 1)

Moreover, we have £ = © (niﬂ). Using Lem. 6, we also have J(x;,p; *(q), B,n¢) =
C) <n§/2d1/2). Thus,

1+ FE
: 2 = 0(d'?). (22)
J(Xtapt (Q)? /67 nt)
Substituting the values of ny, €1, and €5 into E3 yields
6z 1-8z 2d*

Since 1 — 8z > 0 and exponential functions dominate polynomial growth, combining Eq. (21),
Eq. (22), and Eq. (23) with Eq. (20) yields

0 (@), Bm) oy
Toeopia) gy SO

Applying similar steps using the lower bound in Lem. 5, we find

M(Xtap;l(q)>67nt)

L- —1
J(x¢t,p; (), B,n)

< Od?).

Thus, the proof is complete.

B.3 PROOF OF THM. 3

Since J(x¢, wy, B¢, ny) is increasing with respect to n, the optimal choice is to take n; at its maximum

allowed value:
Ct

cr = (¢r =D Py(wp)
Substituting this into the definition of J and applying Lem. 4, we obtain

(1 — (cos oy - w;/8)?)d=1/2
Ve — (@~ DR EG)

ny =

J(x¢, wi, Be, ) o

Expanding E[ggf} gives
E[67] = 67 (1 = Pi(wn)) + (1= B)* Pu(w).
Thus,
(1 — (cos auwy /6)?)(d=1)/2
Vet = (¢ =) P(w)(BF(1 = Pi(wr) + (1= Br)? Pilwr))

J (x4, wi, Br,ne) X

To maximize .J, it suffices to minimize

BE(L = Py(wt)) + (1= B¢)* Pe(we).
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Differentiating with respect to 3; and setting the derivative to zero yields
B = Py(wy)-
Substituting this optimal 3; back, we find
E[67] = Pulw)(1 — Pi(w)),
and thus the final expression to maximize is

Sy (1 — (cos azwy /)?)41
M) = BT = Plwn)er — (e — D Biwn)’

B.4 PROOF OF THM. 4

First, we show that cos «; > 0. Suppose for contradiction that cos oy < 0, i.e.,
(x1 —x*,VS(x1)) <O0.
Using the definition of the directional derivative, we have

lim S (x1 + h(x; — x*)) — S(x1)

Lim - = (x1 —x*,VS(x1)) <0.

Since the directional derivative is strictly negative, there exists € > 0 such that for all sufficiently
small € > 0,
S(x1 —e(x1 — x%)) > S(x1).
Noting that
x1 —€(x; —X*) =x" 4+ (1 — ¢)(x1 — x¥),

we can rewrite this inequality as
S(x*+ (1 —¢€)(x1 —x%)) > S5(x1).

Since ¢(x1) = 1 by assumption, and assuming ¢ remains 1 in a neighborhood where S does not
decrease, we also have
d(x*+(1—¢€)(x3 —x%))=1.
Thus, for r = 1 — ¢, we find a point 0 < 7 < 1 such that ¢(x* + r(x; — x*)) = 1, contradicting the
assumption that no such r exists. Therefore, our assumption that cos «; < 0 must be false, and we
conclude that
cosaq > 0.

Now that we have established cos a1 > 0, it follows that
E[cosay] = Efcosay [cosag > 0].

Expanding cos o7 in terms of the vectors involved, we write
x; — x*
cosay =( 7———7 81 )-
%1 —x*|2

Efcosan] = E [<X1—x,gl> ‘ <X1—X,g1> > 0] .
%1 = x*{| [[x1 = x*]2
Finally, applying the result from Eq. (17) with w; = 0, we obtain

* * d

X1 —X X1 —X r 5)
o [t S | .k S0 | -
[<X1—X*||2 gl>‘<||X1—X*||2 g1> ] 2yl (41)

This completes the proof.

Thus,
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C EMPIRICAL STUDY OF AS AND AGREST

Here, we design two experiments to validate the effectiveness of our analysis for both AS and
AGREST. (Fig. 4)

First, we sample 100 random correctly classified images from the ImageNet dataset and run the
experiments using binary search and asymmetric search when ¢* = 103. We observe that the average
cumulative search cost across iterations for binary search is approximately 2.5 times higher than that
of AS. This highlights the effectiveness of AS compared to vanilla search.

Second, to show that using the overshooting value obtained by AGREST leads to a probability of
making low-cost queries close to the theoretical value in Thm. 3, we again sample 100 random
images and run one iteration of AGREST using 500 queries for gradient estimation. We then compute
the empirical probability of making low-cost queries, defined as the ratio of low-cost to total (500)
queries, and compare it to the optimal probability predicted by our theoretical analysis. As shown in
Fig. 4, our analysis is close to the empirical results, especially for larger values of c¢*.

1ed
= = Asymmetric search

. 25 = Binary search
8 0.9
o
=20
3]
© 0.8
D15
()
'é 0.7
© 1.0
=]
g 0.6

0.5 .
(@)

= = Empirical
0.0 0.5 = Theoretical
0 5 o 15 20 25 0 20 40 60 80 100
iteration t &

Figure 4: Empirical study of AS and AGREST. The left plot compares AS with vanilla search (binary
search) in terms of cumulative search cost over iterations in GeoDA when ¢* = 103, while the right
plot shows the optimal theoretical probability of making low-cost queries (assuming local linearity of
the decision boundary) versus the empirical ratio of low-cost to total queries for different values of

c*.
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D IMPLEMENTATION

D.1 MODIFICATION TO GEODA

We modify the direction-based adversarial example search phase in GeoDA. In its original implemen-
tation, GeoDA estimates the gradient and then proceeds from the original image, taking fixed-size
steps along that direction until it finds an adversarial example. However, this process often leads
to a large number of flagged queries, since many of the intermediate steps can cross the decision
boundary.

To address this issue, we change the starting point of the search. Instead of beginning at the original
image, we start from

VS (Xt, wt)
IVS(xt, wi) 2
This new starting point lies further in the direction of the estimated gradient and is designed with the
expectation that it is already adversarial—or at least closer to an adversarial example than the original

image. If x” is not adversarial, the algorithm continues the search in the estimated gradient direction.
This modification significantly reduces the number of flagged queries encountered during the search.

X// — X* Jr ||X* _ Xt||2 .

D.2 SELECTION OF THE HYPERPARAMETER m

We select values for the hyperparameter m by evaluating the performance of the corresponding
attacks under different settings of m, using 20 randomly selected correctly classified images. This
evaluation is performed with ¢* = 10° and a total query cost of 250K, as shown in Fig. 5.

Although the optimal value of m can vary with ¢*, we choose to fix m independently of ¢*. This
decision simplifies the attack process and avoids the additional computational overhead of tuning m
for each value of ¢*, while still enabling effective attack performance.

12
&

)

/5 distance

0.00 0.02 0.04 0.06 0.08
Scheduler rate m

Figure 5: Median /s distance of adversarial perturbations for varying values of m, with ¢* = 103 and
a total query cost of 150K.

D.3 AGREST WITH DIMENSION REDUCTION

As mentioned earlier, most practical attacks use a dimension reduction matrix R € R4’ to perform
the sampling process in a subspace of dimension d’ < d, where d is the dimension of the original
space, in order to increase sample efficiency. To apply the same subspace in the AGREST estimator,
the only modifications needed compared to the original AGREST Alg. 3 are: first, projecting each
sample into the subspace; and second, using the effective dimension d’ to compute ;. An overview
of this version of AGREST is provided in Alg. 4.
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Algorithm 4 AGREST Estimation

Inputs: Iteration ¢, source image x*, boundary point x;, dimension d, sampling subspace dimension
d’, sampling subspace matrix R, high-cost query cost ¢*, sampling radius ¢, sampling batch size
b, cosine value oy, vanilla gradient estimation query budget n}, scheduler rate m

Outputs: Normalized approximated direction g, next cosine value a1

1: np <0, ng <0, vi <0, v- <0, ¢+ 0, w* + OVERSHOOTING (¢*) > Thm. 3
2: wp ¢ wr/cosay, ¢ ni(cr+1)/2
3: while ¢ < ¢; do
b . . .

4. B+ {Ru;/||Ruy|| where u; ~ UNIFORM (S* 1)} | > Dimension reduction
5. foreachu; € Bdo
6: if ¢ (xt + wtﬁ + 5ui> =1 then

2
7: vievt4u, npenp+1, é«—é+1
8: else
9: ViV —u, ng<ng+1, ¢+ c¢+c*
10: end if
11:  end for

12: end while

13: Py <= nr/ (np +nm)

14: g¢ < (1 = pg) vt +Pv™, aiq1 < SCHEDULER-STEP (t, py, m) >Alg. 2
15: return g;/ ||g¢ll5, cit1

D.4 COMPUTATION RESOURCES

For our experiments on ResNet-50, we use NVIDIA P100 GPUs. All other experiments, including
those involving ViT and CLIP models, are conducted on NVIDIA A100 GPUs to accommodate the
higher computational and memory demands of these models.
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E ATTACK SUCCESS RATE (ASR) COMPARISONS AND TRANSFER ATTACKS

E.1 ASR COMPARISONS

In this section, we present a detailed comparison of attack success rates (ASR) achieved by various
methods under perturbation norms ¢ = 5 and {5 = 10 on ResNet-50. The following results
highlight that our proposed enhancements consistently deliver substantial gains, reaching up to 20%
improvement in ASR.

Table 2: ASR (%) under ¢ = 5 for different (¢*, total cost) on ResNet-50.

Attack Variant (2,10000) (5,15000) (100,150000) (1000,250000)
SURFREE VA 554 48.7 372 16.7
SURFREE VA+AS 63.9 63.9 57.8 37.0
HSJA VA 74.2 69.8 52.8 18.5
HSJA VA+AS 75.4 67.7 55.7 18.8
HSJA VA+AGREST 71.7 73.0 73.4 22.6
HSJA VA+AGREST+AS 76.8 73.6 74.8 242
GEODA VA 66.3 61.6 56.0 29.9
GEODA VA+AS 65.4 61.9 57.5 323
GEODA VA+AGREST 61.6 65.7 73.3 43.4
GEODA VA+AGREST+AS 60.4 66.0 69.3 46.1
CGBA VA 92.7 88.0 78.0 29.9
CGBA VA+AS 92.1 88.9 78.0 31.8
CGBA VA+AGREST 91.8 89.4 89.5 45.5
CGBA VA+AGREST+AS 91.5 89.7 90.6 43.0

Table 3: ASR (%) under ¢35 = 10 for different (c¢*, total cost) on ResNet-50.

Attack Variant (2,10000) (5,15000) (100,150000) (1000,250000)
SURFREE VA 80.4 71.0 584 31.1
SURFREE VA+AS 81.8 82.7 78.9 59.8
HSJA VA 89.1 86.2 73.9 25.2
HSJA VA+AS 90.9 85.9 76.5 29.6
HSJA VA+AGREST 90.6 88.9 89.3 37.8
HSJA VA+AGREST+AS 90.6 89.4 90.8 43.0
GEODA VA 83.0 79.8 75.4 47.5
GEODA VA+AS 81.2 7.7 754 53.1
GEODA VA+AGREST 79.2 82.1 84.8 65.4
GEODA VA+AGREST+AS 78.6 79.8 84.3 68.4
CGBA VA 99.1 97.7 92.7 50.1
CGBA VA+AS 99.1 97.7 93.0 52.1
CGBA VA+AGREST 99.1 98.5 99.0 70.4
CGBA VA+AGREST+AS 98.2 98.5 99.3 65.0

E.2 TRANSFER ATTACKS

We evaluated the transferability of adversarial examples generated from different surrogate models
under a PGD-40 attack with an /5 norm radius of 10. Tab. 4 summarizes the ASR when transferring
from VGG19 and ViT-B/16 to ResNet50 and ViT-B/32.

Transfer attacks usually have lower success rates than query-heavy decision-based methods, but they
are especially useful when the budget is limited. For example, transferring from VGG19 to ResNet50
achieves a 79.6% attack success rate without using any queries.

These results show the complementary role of transfer-based strategies. They may not always be
strong across every model pair, but they provide a powerful and cost-free option when query budgets
are very limited.
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Table 4: Transfer ASR (%) for different source and target models using PGD-40 with /5 = 10.

Source Model Target Model Transfer ASR

VGGI19 ResNet50 79.6
VGG19 ViT-B/32 9.4
ViT-B/16 ResNet50 41.0
ViT-B/16 ViT-B/32 28.4
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F ADDITIONAL RESULTS FOR VISION TRANSFORMERS (VIT)

In this section, we present comprehensive empirical evaluations that extend our analysis across varying
budget constraints and different query cost parameters c*. Specifically, we conduct experiments
utilizing Vision Transformer architectures (ViT-B/32 and ViT-B/16) on the ImageNet dataset.

Table 5: Median ¢, distance for various ¢* values and different types of attacks for ViT-B/32 model
on ImageNet dataset.

" =20 =50 = 100.0 * = 1000.0 Higher Queries
Attack Method Total Cost Total Cost Total Cost Total Cost Total Cost
1000 2000 5000 10000 TS000 [ TO00 2000 5000 T0000 15000 [ T000 2000 5000 10000 15000 [ T000 2000 5000 10000 15000 [ TS0000 250000

SURFREE VA 93 6.2 39 29 25 143 99 57 44 34 704 710 347 213 182 [ 697 7I.1 70.6 681 68.3 5.13 16.12
- VA+AS (A-SurFree) 7.8 5.0 3.6 24 2.1 14 73 4.6 3.1 2.5 700 70.1 228 145 9.7 70.1 699 715 673 68.5 3.68 6.35
VA 537 448 287 183 139 | 61.6 532 400 28.1 228 | 684 672 675 679 631 | 699 7II 693 694 702 | 421 2246
HSIA VA+AS 533 418 252 183 135 | 626 505 386 244 185 | 69.5 684 697 588 568 | 68.7 694 702 681 68.2 3.88 18.79
VA+AGREST 186 9.7 42 27 22 363 173 78 4.4 31 69.1 711 737 370 354 | 685 721 691 701 69.7 2.19 11.28
VA+AS+AGREST (A-HSJA) 17.8 9.6 4.7 2.7 2.1 348 19.1 7.6 42 3.1 714 69.1 60.1 383 253 | 718 721 719 676 68.7 2.06 10.74

VA 42 66 34 27 24 [ 189 120 67 35 32 | 671 682 301 263 187 | 693 686 681 675 692 397 983

GEODA. VA+AS 127 78 37 27 23 [ 171 117 55 34 29 [ 710 737 305 205 160 | 705 715 687 731 714 | 312 8.78
VA+AGREST 74 37 24 1.9 17 146 88 45 33 2.7 702 698 366 235 177 | 686 722 660 69.0 69.5 2.10 5.12

VA+AS+AGREST (A-GeoDA) | 7.8 39 23 1.9 18 148 84 44 3.1 28 688 706 340 19.0 156 | 722 725 735 729 68.2 2.03 4.35

A 6 60 30 6 T4 [ 184 113 53 31 21 [ 704 720 280 245 170 | 688 704 697 728 728 | 213 9,67

CGBA VA+AS 108 64 32 1.7 13 | 162 107 46 26 20 | 685 734 292 181 137 | 719 738 683 685  70.1 1.97 8.24
VA+AGREST 73 36 20 1.5 1.3 158 83 4.0 3.0 25 67.1 735 .2 18.9 152 | 709 705 727 698 69.5 1.56 546

VA+AS+AGREST (A-CGBA) | 7.6 4.1 19 L5 12 144 77 4.2 29 25 702 672 239 159 134 | 719 704 673  70.0 72.7 1.42 5.61

Table 6: Median /5 distance for various ¢* values and different types of attacks for ViT-B/16 model
on ImageNet dataset.

=20 c* =50 c* =100.0 c* = 1000.0
Attack Method Total Cost Total Cost Total Cost Total Cost
1000 2000 5000 10000 15000 [ 1000 2000 5000 10000 15000 | 1000 2000 5000 10000 15000 [ 1000 2000 5000 10000
SURFREE VA 107 7.1 42 3.0 23 166 110 6.8 44 3.6 57.6 571 333 207 186 [ 60.0 560 568 568
VA+AS (A-SurFree) 8.9 6.0 3.7 23 2.0 144 83 4.6 32 2.6 582 582 277 15.0 104 | 58.0 549 546 569
VA 375 299 178 10.8 7.1 49.6 400 26.0 184 13.9 573 560 55.1 52.5 49.7 56.7 589 592 572
HSJA VA+AS 38.1 286 185 9.6 6.8 478 385 239 16.5 11.0 | 574 566 550 474 44.5 56.6 609 579 592
" VA+AGREST 145 8.0 4.0 23 17 294 146 60 38 2.7 567 569 596 305 316 | 559 553 582 574
VA+AS+AGREST (A-HSJA) 15.1 7.7 3.9 23 1.8 271 145 64 3.6 2.6 58.1 581 405 313 210 | 582 567 575  56.7
VA 125 73 3.1 22 1.8 197 137 65 33 25 568 577 325 255 226 | 582 565 603 574
GEODA VA+AS 144 7.1 32 2.0 1.9 199 126 55 33 25 602  60.6 306  23.1 17.6 | 58.0 570 580 593
VA+AGREST 8.4 4.0 2.1 15 1.4 135 81 38 2.6 2.1 583 558 355 19.4 17.0 | 588 59.0 584
VA+AS+AGREST (A-GeoDA) | 7.9 3.8 2.1 1.6 14 137 85 4.1 25 22 559 585 275 18.1 152 | 592 606 584
VA 11.3 60 2.3 13 1.0 166 112 46 2.4 1.6 57.1 549 324 237 186 | 56.1 567 59.5
CGBA VA+AS 112 56 24 1.3 1.0 164 95 4.3 22 15 56.2 ?6.6 28.1 17.2 14.8 59.0 580 599
VA+AGREST 6.5 34 1.8 12 0.9 140 7.9 3.8 22 1.8 55.0 557 350 19.5 14.1 563 554 593
VA+AS+AGREST (A-CGBA) 7.6 35 17 1.2 1.0 122 1715 34 22 1.9 58.1 605 215 16.5 122 | 582 582 559
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G ASYMMETRIC SEARCH (AS) ILLUSTRATION

Fig. 6 provides a visual example of the Asymmetric Search (AS) algorithm running with parameters
7 = 0.1 and ¢* = 2. The illustration shows the iterative progression and query evaluations leading to
successful convergence near the decision boundary.

Asymmetric Search (AS) Algorithm

Asymmetric Cost Ratio 1:¢* =1:2

Parameters: 7 =0.1 (Threshold parameter)
¢* =2 (Cost ratio parameter)

Cost: ¢* =2 Cost: 1

Iteration 1:

¢ A(T(by,7)) = S(T (3 -0.1)) = ¢(T(0.056)) =0

Iteration 3: b =14.01=0.033

=0 R : N but =1
b = by + %L =0 ;%3 = % (T (b)) = O(T (5 -0.1)) = $(T(0.033)) =
¢ by b =1
Iteration 2: N
b =%-01=0.033 - b,7=1-0.1=0.1
bu=br _ -3 _ 5
[”m:bt+;~+;—%+2+f%+% ;

by T = % -0.1 = 0.056

5-3
_ bu=b _ 1 3 1 5 _ 1 2 _ 11
{l'ﬂl_}’l+c*+1_3+2+1_3+3 _3+27_27}

Returned point: 7'(b,,7) = T( l% -0.1) = 7(0.041)

AS locates a point within 7 = 0.1 of the boundary

Convergence to Near-Boundary Point

T(bi) = T(0.033) @e———!

T (b,7) = T(0.056)
<7=01

'
Decision Boundary

Figure 6: Asymmetric Search (AS) illustration.
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H ASYMMETRIC ATTACKS AGAINST CLIP

We evaluate the robustness of vision-language models (VLMs), such as CLIP (Radford et al., 2021),
against stealthy adversarial attacks. Our experiments cover both the zero-shot and fine-tuned versions
of CLIP. We apply our asymmetric attacks to these models and observe substantial improvements
over stealthy baselines. As shown in Fig. 7, after making 300 total queries, asymmetric methods
achieve 40-60% lower {5 distortion compared to Stealthy HSJA.

Zero-Shot CLIP Fine-Tuned CLIP

Comparison of Attack Methods on Zero-Shot CLIP Model Comparison of Attack Methods on Fine-Tuned CLIP Model

2 2
10 —m— A-HSJA 10° —&— A-HSJA
—m— A-GeoDA —8— A-GeoDA
—=— A-CGBA —m— A-CGBA

A-SurFree
—#%— Stealthy HSJA

A-SurFree
Ss —#%— Stealthy HSJA

6 x 10*

tance

B4 x 10 e I St i 1
<3 % 10!

(y distance

2 x 10t

100 200 300 0 100 200 300

Number of high-cost queries Number of high-cost queries

o

Figure 7: Performance of various asymmetric attacks compared to Stealthy HSJA on CLIP.

I CONCEPTUAL ILLUSTRATION

In this section, we show the conceptual illustration of the vanilla gradient estimation and our proposed
gradient estimation AGREST.

Vanilla Gradient Estimation Asymmetric GRadient EStimation (AGREST)
. *
] . Xp —
- . X.:K—Xt"'W:”xt_x*”
N VS (x,)
[ ] \ A t
t N~
SB L \ ¢() =+1 s
| AN B . Xt o) =+1
¢() =1 . N, N
. Nex $() =1 N

Nex*

Figure 8: Comparison of vanilla gradient estimation and its asymmetric counterpart. Vanilla
sampling results in roughly half high-cost and half low-cost queries, whereas AGREST reduces the
frequency of high-cost queries by shifting the sampling region and weighting outcomes accordingly.

J NOTE ON THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were utilized exclusively for the purpose of writing and refining the
manuscript. LLMs were employed to enhance grammar, increase clarity, and rephrase sentences for
improved readability. All research concepts, experiments, and analyses were carried out without the
assistance of LLMs.
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