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ABSTRACT

Traditional decision-based black-box adversarial attacks on image classifiers aim
to generate adversarial examples by slightly modifying input images while keeping
the number of queries low, where each query involves sending an input to the model
and observing its output. Most existing methods assume that all queries have equal
cost. However, in practice, queries may incur asymmetric costs; for example, in
content moderation systems, certain output classes may trigger additional review,
enforcement, or penalties, making them more costly than others. While prior work
has considered such asymmetric cost settings, effective algorithms for this scenario
remain underdeveloped. In this paper, we introduce asymmetric black-box attacks,
a new family of decision-based attacks that generalize to the asymmetric query-cost
setup. We develop new methods for boundary search and gradient estimation when
crafting adversarial examples. Specifically, we propose Asymmetric Search (AS), a
more conservative alternative to binary search that reduces reliance on high-cost
queries, and Asymmetric Gradient Estimation (AGREST), which shifts the sampling
distribution in Monte Carlo style gradient estimation to favor low-cost queries. We
design efficient algorithms that reduce total attack cost by balancing different query
types, in contrast to earlier methods such as stealthy attacks that focus only on
limiting expensive (high-cost) queries. We perform both theoretical analysis and
empirical evaluation on standard image classification benchmarks. Across various
cost regimes, our method consistently achieves lower total query cost and smaller
perturbations than existing approaches, reducing the perturbation norm by up to
40% in some settings.

1 INTRODUCTION

Decision-based adversarial attacks, first introduced by Brendel et al. (2017), generate adversarial
examples in black-box settings by systematically querying a classifier and observing only its output
decisions for perturbed inputs. The original Boundary Attack (Brendel et al., 2017) initially required
over 100,000 queries to reliably identify minimal adversarial perturbations for large-scale datasets
such as ImageNet (Deng et al., 2009). Subsequent works (Chen et al., 2020; Chen & Gu, 2020;
Cheng et al., 2018; 2019; Liu et al., 2019b; Rahmati et al., 2020) significantly enhanced the efficiency
of decision-based attacks by reducing the number of queries needed, achieving improvements of
one to three orders of magnitude. These advancements have led to more practical and efficient
frameworks for adversarial testing in limited-query settings.

While prior work (discussed in detail in App. A) has primarily assumed that all queries have equal cost
and focused on minimizing the total number of queries, in many practical scenarios, queries can incur
asymmetric costs depending on their nature. For instance, Not Safe for Work (NSFW) image detection
models have become increasingly important, with major platforms such as Facebook (Facebook, 2024)
and X (formerly Twitter)(Twitter, 2024a) deploying automated mechanisms for identifying sensitive
content, alongside commercial APIs developed by Google(Google, 2024), Amazon (Amazon, 2024),
and Microsoft (Microsoft, 2024). In these settings, submitting explicit or borderline explicit queries
could trigger more severe consequences, such as account suspension or content flagging, compared
to benign queries. As a result, minimizing only the total number of queries is insufficient; effective
attack strategies must account for the asymmetric costs associated with different types of queries.
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Debenedetti et al. (2024) introduced stealthy attack techniques to better handle asymmetric query
costs. They empirically demonstrated that the standard binary search procedure for boundary point
detection, mostly for projecting an adversarial point onto the decision boundary or for OPT-style
gradient estimation (Cheng et al., 2018), leads to a large number of high-cost queries. In particular,
it can be observed from Fig.1 that at least 50% of the queries made during these attacks are high-cost.
To address this, they replaced the binary search with a search strategy inspired by the classic egg
dropping problem (Alves et al., 2024), which is similar to a line search algorithm. However, they
did not provide a stealthy variant of the Monte Carlo gradient estimation used in HSJA (Chen et al.,
2020), GeoDA (Rahmati et al., 2020), and qFool (Liu et al., 2019b). Instead, they substituted it with
an OPT-style gradient estimation procedure (Cheng et al., 2018).

Although stealthy attacks move toward addressing asymmetric query costs, they are not designed
to handle arbitrary cost ratios. They implicitly assume that benign queries have zero cost, which
may not reflect realistic settings where even benign queries contribute to the overall cost. In addition,
since stealthy attacks could not adapt the Monte Carlo gradient approximation used in HSJA (Chen
et al., 2020), they instead rely on a suboptimal and inefficient OPT-style gradient estimation (Cheng
et al., 2018), which is already significantly outperformed by the HSJA gradient approximation under
symmetric cost settings. These limitations motivate us to answer the following question:

Q: How can we develop an efficient framework to adapt attacks for any arbitary cost ratio without
discarding any of their core components, including gradient estimation and binary search?
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Figure 1: Each point represents the median number
of queries required by an attack method to reach a
median ℓ2 norm of 10. The x-axis shows the num-
ber of flagged queries (Qflagged) and the y-axis re-
ports the total number of queries (Qtotal). It demon-
strates the superiority of our method in achieving a
more favorable trade-off between flagged and total
number of queries in stealthy attack settings.

In this work, we propose a general framework
for decision-based attacks that operates under ar-
bitrary query cost asymmetries. Instead of only
considering high-cost queries, we change the
core components of black-box attacks, namely
search along adversarial paths and gradient
estimation, to explicitly reduce the total query
cost. Our framework handles any cost ratio
between high-cost and low-cost queries and
completely outperforms stealthy attacks by op-
timizing the attack structure without sacrificing
efficiency. Unlike stealthy attacks (Debenedetti
et al., 2024), which rely on inefficient gradient
approximations, we retain the more efficient
Monte Carlo gradient estimation technique used
in HSJA (Chen et al., 2020), GeoDA (Rahmati
et al., 2020), and qFool (Liu et al., 2019b).

First, for the boundary search, instead of
dividing the interval into two equal parts at each iteration, as in the standard binary search, we take
a more conservative strategy. Specifically, we split the interval according to the cost ratio between
high-cost and low-cost queries. This approach minimizes the expected cost rather than merely
minimizing the expected number of queries. We call this method Asymmetric Search (AS).

Second, unlike traditional gradient estimation where samples are drawn from a norm ball centered
at a boundary point, which causes roughly half the queries to be high-cost and the other half low-cost
as in standard HSJA, we shift the center to a point in the low-cost region and generate queries around
it (Fig. 2). This adjustment naturally reduces the frequency of high-cost queries, with the degree
of shifting providing direct control over this frequency. To further reduce variance in estimation,
we weight high-cost and low-cost queries differently when computing the gradient. We refer to this
method as Asymmetric GRadient ESTimation (AGREST). Our framework is broadly compatible
with a wide range of state-of-the-art decision-based attacks, including HSJA (Chen et al., 2020),
GeoDA (Rahmati et al., 2020), and CGBA (Reza et al., 2023). Through both theoretical analysis and
extensive experimental evaluation, we show that AGREST consistently outperforms existing attacks
under arbitrary cost ratios. Notably, even under extreme asymmetry where the cost of high-cost
queries approaches infinity, our method achieves significantly lower total query costs to reach a
given adversarial perturbation size compared to prior stealthy methods (Debenedetti et al., 2024)
(see Fig. 1 (left)). This robustness underscores the effectiveness of our framework in balancing query
efficiency and perturbation quality across diverse attack scenarios.
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Figure 2: Left. Illustration of Asymmetric Gradient Estimation (AGREST), which reduces the
frequency of high-cost queries by shifting the sampling region from xt toward the adversarial region
x′
t and appropriately reweighting the outcomes. Right. Three steps of Asymmetric Search (AS) along

the path from a clean (flagged) source image to an adversarial (non-flagged) image. Flagged queries
are shown in red, non-flagged queries in green, and the dashed line denotes the decision boundary.

The contribution of our paper is as follows:

• To the best of our knowledge, we are the first to propose a versatile framework capable of
handling arbitrary query cost ratios, providing flexibility across a wide range of scenarios.

• Our framework introduces AS and AGREST as two core operations that enhance existing
algorithms. We conduct a comprehensive theoretical analysis to establish the foundations
of the framework and demonstrate its robustness across diverse setups.

• We validate the framework through extensive empirical testing on benchmark datasets
and models, including ImageNet, as well as advanced models such as CLIP and Vision
Transformers and ResNet. This validation highlights the framework’s superior performance.

2 PROBLEM STATEMENT

An insight into unequal queries. Consider an attacker trying to deceive an NSFW detector using
decision-based methods. It may seem sufficient to choose an existing attack algorithm and add a small
perturbation to an NSFW image based on that algorithm. However, this approach may encounter
some practical obstacles. Most social networks enforce policies against uploading adult content,
suspending users for violating these terms multiple times (Twitter, 2024a). Using the terminology
from Debenedetti et al. (2024), this means that the cost of queries identified by the detector as
NSFW, i.e., flagged queries, is higher than that of other queries, i.e., non-flagged queries. For
example, on X, an attacker can make up to 2,400 posts per day on a single account (Twitter, 2024b).
However, after about 5 to 10 rule violations for uploading flagged posts, the attacker’s account will
be suspended, requiring them to create a new one. On the other hand, in existing decision-based
attacks, approximately half of the made queries are flagged (Debenedetti et al., 2024). Therefore,
if we assume the violation limit is 10, an attacker will be banned on X after about 20 posts. This
example demonstrates the potential asymmetry in the costs of queries in a decision-based black-box
setup. Debenedetti et al. (2024) addressed this asymmetry in costs by proposing stealthy attacks1

designed to reduce the number of flagged queries. However, they overlooked the cost of non-flagged
queries in their framework, leading to the generation of millions of non-flagged queries for every
hundred flagged queries in stealthy attacks, which can also be costly.

For example, in the NSFW detector scenario, assume the attacker must create a new account after
reaching the daily post limit. In stealthy attacks like HSJA, the attack can generate around 106

non-flagged queries for every 100 flagged queries (Fig. 1). While 100 flagged queries may lead to
the creation of 10 new accounts, those 106 non-flagged queries result in approximately 400 new
accounts. This shows that non-flagged queries, despite being lower-cost, have a greater overall impact.
Therefore, it is essential to develop generalized decision-based attacks that can effectively manage

1Hereafter, we refer to prior stealthy attacks simply as stealthy attacks, and to our approaches as asymmetric
attacks to emphasize their cost-aware design. Though inherently stealthy due to query cost awareness, we adopt
the term asymmetric attacks to distinguish our method from prior work (Debenedetti et al., 2024).
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asymmetric query costs, making full use of low-cost queries without relying heavily on expensive
ones.
General formulation. Assume that f : Rd → RL is a pre-trained classifier with L classes and
parameters θ. For an input image x ∈ [0, 1]

d, fk (x), the kth component of f (x), represents the
predicted probability of the kth class. Additionally, for each correctly classified image x and query
image x′, we define

Sx (x
′) = argmax

k ̸=ŷ(x)

fk (x
′)− fŷ(x) (x

′) and ϕx (x
′) = sign (Sx (x

′)) . (1)

Given a correctly classified source image x⋆, the attacker’s goal is to find the closest perturbed image
x′ to the source image x⋆ such that ϕx⋆(x′) = 1:

minimize
x′

∥x⋆ − x′∥ s.t. ϕx⋆(x′) = 1. (2)

Note that in a decision-based black-box setup, the attacker has access to ϕx⋆(x′) but not Sx⋆(x′).
Previous methods sought to solve Eq. (2) while keeping the total number of queries as low as possible.
However, as discussed, asymmetric query costs can make this approach ineffective. Instead, we must
keep the total cost of queries in an asymmetric setup as low as possible (Debenedetti et al., 2024):

cost := Qtotal · c0 + Qflagged · cflagged, (3)
where Qflagged is the number of flagged queries (ϕ (x) = −1), and Qtotal is the total number of
queries. Our goal is to solve this for arbitrary values of c0 and cflagged, unlike stealthy attacks where
c0 = 0. Since only the relative magnitude of cflagged with respect to c0 matters, we use the following
reformulation to reduce the number of tunable parameters:

cost := Qnon-flagged + Qflagged · c⋆, (4)

where c⋆ =
cflagged + c0

c0
. Existing decision-based attacks assume c⋆ = 1, while stealthy attacks

assume c⋆ =∞. Our goal in this paper is to propose a framework that is effective for any arbitrary
value of c⋆, unlike both vanilla and stealthy attacks. Furthermore, we demonstrate that our approach
outperforms stealthy attacks even when c⋆ =∞.

For brevity, we omit x⋆ when mentioning S and ϕ. We also refer to queries x′ where ϕ(x′) = −1
as high-cost queries and others as low-cost queries. These new terms reflect the concept of general
asymmetric costs better than the previous terms used by Debenedetti et al. (2024), i.e., flagged and
non-flagged queries, which are more suitable when the discrepancy between query costs is too large.

3 PROPOSED METHOD

Decision-based black-box attacks typically involve two core operations, often applied iteratively
to find small adversarial perturbations: 1. choosing a path, either straight, like GeoDA and HSJA
(Rahmati et al., 2020; Chen et al., 2020), or curved, like SurFree and CGBA (Maho et al., 2021; Reza
et al., 2023), and then 2. Searching along this path to find a new adversarial example, xt+1, that is
closer to x⋆ than xt, the adversarial example from the previous iteration. These attacks either choose
a path randomly, as in Boundary Attack (Brendel et al., 2017) and SurFree, or use queries to find a
path that leads to a closer adversarial example than a random path, as in HSJA, GeoDA, and CGBA.
To find this better-than-random path, these attacks estimate the normalized gradient direction of S at
xt by approximating ∇S (xt) as follows:

∇̃S (xt) =
1

nt

nt∑
i=1

ϕ (xt + δui)ui, (5)

where δ is a small positive parameter and u1, . . . ,unt
are i.i.d. draws from either the uniform distri-

bution over Sd−1, the (d− 1)-dimensional unit sphere, or the multivariate normal distribution. After
finding a path, most attacks use variations of binary search to find xt+1. This is generally achieved
by finding a boundary point xt+1 along the selected path, where S (xt+1) = 0, using binary search.

As highlighted by Debenedetti et al. (2024), the issue with binary search and Eq. (5) is that, in an
asymmetric setup, crafting adversarial examples using these operations becomes costly because
approximately half of the generated queries are high-cost. This raises the question of whether
we can alter the distribution of generated queries to reduce the number of high-cost queries while
maintaining the effectiveness of these two operations as observed in vanilla attacks. As a solution,
we propose AS and AGREST techniques in the following sections.
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3.1 ASYMMETRIC SEARCH (AS)

We define T : [0, 1]→ Rd as the function that parameterizes the search path. For example, when the
path is a straight line between the source image x⋆ and an adversarial image x̃ Rahmati et al. (2020);
Chen et al. (2020), the parameterization is given by T (θ) = θ x⋆ + (1− θ) x̃. Similarly, when the
search path follows a circular arc Reza et al. (2023); Maho et al. (2021) between x⋆ and x̃, lying
on a circle in the 2D subspace spanned by u = x̃−x⋆

∥x̃−x⋆∥2
and a unit vector v satisfying ⟨u,v⟩ = 0,

the parameterization is given by T (θ) = x⋆ + cos
(
π
2 θ
)
· ∥x̃− x⋆∥2

(
cos
(
π
2 θ
)
u+ sin

(
π
2 θ
)
v
)
.

Algorithm 1 AS Algorithm

Inputs: Parametrization function T , thresh-
old τ

Outputs: Near-boundary adversarial exam-
ple

1: bl ← 0, bu ← ⌈∗⌉ 1τ
2: while bu − bl > 1 do
3: bm ← bl + ⌈∗⌉ bu−bl

(c⋆+1)

4: if ϕ (T (bmτ)) = 1 then
5: bl ← bm
6: else
7: bu ← bm
8: end if
9: end while

10: return T (blτ)

As mentioned, the objective is to find the along-the-
path boundary point T (θ⋆) for some θ⋆ ∈ [0, 1].
However, since the search space is discrete in
practice, our goal is to find a point xt+1 that is
near the boundary, i.e., where S (xt+1) ≈ 0. This
implies that for a given error threshold τ , we need
to find [a, b] ⊂ [0, 1] such that 0 < b − a ≤ τ and
θ⋆ ∈ [a, b]. Since S is continuous, one approach
to achieve this is to find 0 ≤ k ≤ ⌈ 1τ ⌉ for which
ϕ (T (kτ)) = 1 and ϕ (T ((k + 1)τ)) = −1. The
smaller τ is, the closer we get to the boundary,
although this requires more queries.

It is well-known that in one-dimensional search,
binary search is the optimal comparison-based
algorithm in terms of minimizing the expected
number of queries, assuming that the boundary
point is uniformly distributed along the path (see
Assumption A1). Nonetheless, in the asymmetric cost setting, the expected cost of binary search
is Θ(c⋆ log (1/τ)), because the expected number of queries is Θ(log (1/τ)), and about half of these
queries are expected to incur the higher cost c⋆.

Assumption A1. Let Θ⋆
rv ∈ [0, 1) be a random variable. If T (Θ⋆

rv) lies on the decision boundary,
that is, S(T (Θ⋆

rv)) = 0, then we assume Θ⋆
rv is drawn uniformly from [0, 1).

The core idea behind AS is similar to that of binary search, but with a more conservative strategy to
account for asymmetric costs. Instead of splitting the interval into two equal parts, AS divides it with a
1 : c⋆ ratio at each step, favoring lower-cost queries. More specifically, suppose we know the desired
point lies within [blτ, buτ ] ⊂ [0, 1]. Then, as shown in Alg. 1, if ϕ

(
T
(
blτ +

⌈
bu−bl
c⋆+1

⌉
τ
))

= 1, AS

continues the search in
[
blτ +

⌈
bu−bl
c⋆+1

⌉
τ, buτ

]
; otherwise, it proceeds within

[
blτ, blτ +

⌈
bu−bl
c⋆+1

⌉
τ
]
.

This process is repeated until AS locates a point within τ of the boundary.

Note that when c⋆ = 1, AS reduces to standard binary search, and when c⋆ = ∞, it becomes a
simple line search strategy, as used in stealthy attacks (Debenedetti et al., 2024), where the algorithm
checks τ, 2τ, 3τ, . . . sequentially. The expected cost of AS is given in Thm. 1, showing that it
improves over binary search by a factor of Θ(log (c⋆ + 1)).

Theorem 1. (Cost Analysis of AS) Suppose 0 < τ < 1 and c⋆ ≥ 1. Under Assumption A1, the
expected cost of the AS algorithm is O(c⋆ log(c⋆+1) (1/τ)).

To illustrate the effect of AS in practice, we compare the cost of AS and binary search when c⋆ = 103,
and we observe that the cost of binary search is approximately 2.5 times higher than that of AS. The
results are provided in App. C. An illustration of the AS algorithm can be found in App. I (Right)
and Fig. 8.

3.2 ASYMMETRIC GRADIENT ESTIMATION (AGREST)
As mentioned earlier, our goal is to adjust the distribution of queries generated during the process.
To achieve this, we first propose a family of estimations that provides flexibility in adjusting the
distribution of queries used for estimation. Then, we introduce a method to select the estimator within
this family that maximizes the similarity between the approximated gradient and the true gradient.
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How can we control the query distribution? The main idea behind AGREST is to estimate
∇S (xt) by approximating the gradient at a point like x′

t, which is close to xt. This approach
allows us to alter the distribution of made queries while approximating effective directions for the
attacks. In this method, we move xt away from x⋆ by ωt, the overshooting value, to reach the new
point x′

t = xt + ωt
xt−x⋆

∥xt−x⋆∥2
(Fig. 2 (left)). Then, we use Eq. (5) at x′

t almost similar to the vanilla
estimation, except that AGREST assigns more weight to high-cost queries than to low-cost ones
(using importance sampling). In other words, we estimate∇S as follows:

∇̂S (xt, ωt, βt) =
1

nt

nt∑
i=1

ϕ̂t (x
′
t + δui)ui =

1

nt

nt∑
i=1

ϕ̂t

(
xt + ωt

xt − x⋆

∥xt − x⋆∥2
+ δui

)
ui, (6)

where ϕ̂t(x) = (1 − βt)1{ϕ(x) = 1} − βt 1{ϕ(x) = −1} is the sampling weight function,
1
2 ≤ βt < 1 is the sampling weight parameter, u1, . . . ,unt

are i.i.d. draws from UNIFORM(Sd−1),
and 1{·} denotes the indicator function. The parameters ωt and βt allow us to control the likelihood
of making high-cost queries and their associated weight in our estimation.

How can we choose the best AGREST estimator? To ensure the selected estimation is as close as
possible to the true gradient direction among all AGREST estimators, one potential solution is to find
the estimator that maximizes:

µ(xt, ωt, βt, nt) = Eu1:nt
cos
(
∇S (xt) , ∇̂S (xt, ωt, βt)

)
. (7)

within the query budget, where cos represents the cosine similarity function. To calculate this
function, we need to assume that S has certain characteristics. One common choice is to assume
that S is L-smooth. However, this assumption introduces excessive complexity to our analysis
and may add additional hyperparameters related to L to the current set of hyperparameters in the
existing attacks. Therefore, similar to Rahmati et al. (2020); Maho et al. (2021) and based on
observations from Fawzi et al. (2016), we assume that S is locally linear around xt, S(x′

t + δu) ≈
S(xt) + ⟨∇S(xt),x

′
t + δu− xt⟩. Since xt is a boundary point, S(xt) = 0. Thus, we have:

ϕ(x′
t + δu) ≈ sign (⟨∇S(xt),x

′
t + δu− xt⟩) = sign(cosαt · ωt + ⟨gt, δu⟩), (8)

where gt =
∇S(xt)

∥∇S(xt)∥2
and αt is the angle between xt−x⋆ and gt (Fig. 2). Additionally, based on this

assumption, we can calculate the probability of low-cost queries, namely pt(ωt) = P[ϕ(x′
t+δu) = 1],

using Lem. 1.
Lemma 1. (Hyperspherical Cap Chudnov (1986)) Under local linearity around xt (Eq. (8)), we
have pt(ωt) =

1
2

(
1 + Id−2(δ

−1 cosαtωt)/Id−2(0)
)
, where Id(x) =

∫ 1−x

0
(1− t2)(d−1)/2dt.

Based on Lem. 1, we can infer that pt(ωt) is strictly increasing and therefore invertible. Nonetheless,
even with the linearity assumption, calculating the expected value remains challenging due to the
nonlinearity of cosine similarity and the complexity of handling multiple independent random vectors.
Therefore, inspired by measure concentration Ledoux (2001), we approximate µ(xt, ωt, βt, nt) as
follows:

J(xt, ωt, βt, nt) =
(
n
1/2
t · E

[
ϕ̂(x′

t + δu)⟨gt,u⟩
])
·
(
E
[
ϕ̂(x′

t + δu)2
])−1/2

. (9)

This new objective is easier to calculate since it removes the need to deal with multiple random
vectors. Thm. 2 establishes a convergence bound for the approximation.
Theorem 2. (Expected Cosine Similarity Approximation) Under the local linearity assumption
around xt, for any constants 0 < z < 1

8 and 1
2 ≤ q, β < 1, as nt and d approach infinity, we have∣∣∣∣µ(xt, p

−1
t (q), β, nt)

J(xt, p
−1
t (q), β, nt)

− 1

∣∣∣∣ ≤ O (d−z
)

(10)

.

Now, we can formulate the optimization problem. The goal is to maximize J(xt, ωt, βt, nt) within a
query budget. Specifically, we want to:

max
ωt,βt,nt

J(xt, ωt, βt, nt) s.t. nt(c
⋆ − (c⋆ − 1)pt(ωt)) ≤ ct (11)

where ct is the maximum allowed cost of estimation at iteration t of the algorithm. The constraint in
Eq. (11) ensures that the expected estimation cost at iteration t is at most ct. To solve this optimization
problem, we propose Thm. 3.

6
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Theorem 3. (Optimal AGREST Parameters) Suppose the solution to Eq. (11) is represented by
(ω⋆

t , w
⋆
t , n

⋆
t ). Given the local linearity around xt, the following statements hold:

1. n⋆
t = ct (c

⋆ − (c⋆ − 1)pt(ω
⋆
t ))

−1 and β⋆
t = pt(ω

⋆
t ).

2. ω⋆
t maximizes the following function over the interval [0, δ/ cosαt]:

Ĵt(ωt) =
(
1−

(
δ−1 cosαtωt

)2)d−1 (
pt(ωt) (1− pt(ωt)) (c

⋆ − (c⋆ − 1)pt(ωt))
)−1

(12)

An immediate consequence of Lem. 1 and Thm. 3 is the existence of ω⋆ such that ω⋆ = cosα1 ·ω⋆
1 =

cosα2 · ω⋆
2 = . . . . As a result, we aim to find ω⋆. One problem is that Id has a complex closed

form. Thus, finding a closed form for ω⋆ would be challenging. Instead, we use numerical methods
to evaluate this integral and numerical optimization techniques to find ω⋆. In particular, we use
QUADPACK Piessens et al. (2012) for the integral calculation and the Nelder–Mead method Nelder
& Mead (1965) for maximizing Ĵt(ωt). Another problem is that we need to know αt, which is not
possible in a black-box setup. Thus, we need to estimate αt at each iteration t.

Algorithm 2 Overshooting Scheduler Step

Inputs: Iteration t, dimension d, desired
probability p, scheduler rate m

Outputs: Next cosine value αt+1

1: α1 ← INIT-ANGLE (d) ▷ Thm. 4
2: α̂t+1 ← 1− (1− cosα1) (t+ 1)

−m

3: αt+1 ← arccos (α̂t+1)
4: return αt+1

How can we estimate αt? We split this problem
into two steps: 1. estimating α1, and 2. under-
standing the behavior of αt with respect to t. For
the first problem, initially, we expect x1 − x⋆ and
g1 to be somehow independent, as most existing
attacks select x1 using a random direction. The
only reasonable assumption about these two vectors
is that they likely have a positive correlation, i.e.,
⟨x1 − x⋆,g1⟩ ≥ 0. Specifically, if we know that
x1 is the closest boundary point to x⋆ along the
direction of x1 − x⋆, meaning there is no 0 < r < 1 such that ϕ(x⋆ + r(x1 − x⋆)) = 1, this
assumption provably holds. Given this assumption, we can use Thm. 4 to attain α1.
Theorem 4. (Initial Cosine Value) Under local linearity around x1, if there is no 0 < r < 1 such
that ϕ(x⋆ + r(x1 − x⋆)) = 1, then we have E [cosα1] = Γ

(
d
2

) (
2
√
π Γ
(
d+1
2

))−1
.

Algorithm 3 AGREST Estimation

Inputs: Iteration t, source image x⋆, boundary point xt, dimension d, high-cost query cost c⋆,
sampling radius δ, sampling batch size b, cosine value αt, vanilla gradient estimation query
budget n′

t, scheduler rate m
Outputs: Normalized approximated direction gt, next cosine value αt+1

1: nL ← 0, nH ← 0, v+ ← 0⃗, v− ← 0⃗, ĉ← 0, ω⋆ ← OVERSHOOTING (c⋆) ▷ Thm. 3
2: ωt ← ω⋆/ cosαt, ct ← n′

t(c
⋆ + 1)/2

3: while ĉ < ct do
4: for each ui ∼ UNIFORM(Sd−1), i = 1, . . . , b do
5: if ϕ

(
xt + ωt

xt−x⋆

∥xt−x⋆∥2
+ δui

)
= 1 then

6: v+ ← v+ + ui, nL ← nL + 1, ĉ← ĉ+ 1
7: else
8: v− ← v− − ui, nH ← nH + 1, ĉ← ĉ+ c⋆

9: end if
10: end for
11: end while
12: p̂t ← nL/ (nL + nH)
13: gt ← (1− p̂t)v

+ + p̂tv
−, αt+1 ← SCHEDULER-STEP (t, p̂t,m) ▷ Alg. 2

14: return gt/ ∥gt∥2 , αt+1

The next step is to estimate αt after the first iteration. Chen et al. Chen et al. (2020) showed that
in HSJA, cos(xt − x⋆,gt) ≥ 1 − c t−m for some constant c and 0 < m < 1

2 . This motivated us
to heuristically estimate αt as arccos(1 − (1 − cosα1)t

−m), where m is a new hyperparameter

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Median ℓ2 distance for various c⋆ values and different types of attacks across neural network
architectures. VA stands for Vanilla Attack. The bold numbers represent the best performance among
different variants of each attack for each c⋆ value and model (For a comprehensive analysis of attacks
under varying total cost constraints, we refer readers to Tab. 5 and Tab. 6 in App. F, which present
exhaustive experimental results across different total cost budgets and query cost c⋆.)

ResNet-50 ViT-B/32

c⋆ = 2 c⋆ = 5 c⋆ = 102 c⋆ = 103 c⋆ = 2 c⋆ = 5 c⋆ = 102 c⋆ = 103

Attack Method Total Cost of Queries

10K 15K 150K 250K 10K 15K 150K 250K

SurFree VA 4.09 5.19 5.21 17.49 2.9 2.5 5.13 16.12
VA+AS (A-SurFree) 3.45 3.52 3.80 7.59 2.4 2.1 3.68 6.35

HSJA

VA 2.24 2.77 4.66 23.72 18.3 13.9 4.21 22.46
VA+AS 2.16 2.72 4.09 19.07 18.3 13.5 3.88 18.79

VA+AGREST 2.19 2.51 2.49 14.62 2.7 2.2 2.19 11.28
VA+AS+AGREST (A-HSJA) 2.13 2.39 2.16 12.28 2.7 2.1 2.06 10.74

GeoDA

VA 2.80 3.21 4.02 10.80 2.7 2.4 3.97 9.83
VA+AS 2.66 3.12 3.32 9.24 2.7 2.3 3.12 8.78

VA+AGREST 2.89 2.95 2.19 6.28 1.9 1.7 2.10 5.12
VA+AS+AGREST (A-GeoDA) 2.93 2.8 2.11 5.78 1.9 1.8 2.03 4.35

CGBA

VA 1.21 1.42 2.22 9.97 1.6 1.4 2.13 9.67
VA+AS 1.17 1.39 2.06 9.28 1.7 1.3 1.97 8.24

VA+AGREST 1.12 1.36 1.63 5.73 1.5 1.3 1.56 5.46
VA+AS+AGREST (A-CGBA) 1.15 1.33 1.58 6.23 1.5 1.2 1.42 5.61

introduced to the existing attacks (Alg. 2). As stated in Thm. 3, under the assumption of local
linearity, the value of βt in an optimal AGREST estimation is the probability of making low-cost
queries. However, similar to Chen et al. (2020), we use the empirical probability of making low-cost
queries, namely nL

nL+nH
, to reduce the variance of the estimation. Here, nH and nL represent the

number of high-cost and low-cost queries made in an AGREST estimator, respectively. Additionally,
we set ct to the expected cost of the vanilla attack, namely n′

t(c
⋆+1)
2 , where n′

t is the number of
made queries by the vanilla attack at iteration t. A detailed overview of AGREST is provided in
Alg. 3. Note that in practice, most attacks are performed in a given subspace rather than in the
entire space to improve sample efficiency. In these cases, we use the effective dimension d′ of the
subspace instead of d, the dimension of the original space. For more details, see App. D.3. Finally,
it is worth mentioning that the probability of making low-cost queries in AGREST closely follows
our theoretical analysis in practice. Further details and empirical results are presented in App. C.

4 EXPERIMENTS

Model, dataset, and metric. We employed ImageNet-trained models: ResNet-50 (He et al., 2016),
ViT-B/32, ViT-B/16 (Dosovitskiy et al., 2021), and CLIP (Radford et al., 2021). Original images (x⋆)
were 500 correctly classified ImageNet validation samples similar to the Debenedetti et al. (2024).
Numerical tasks used SciPy (Virtanen et al., 2020). Attack performance was measured by the median
ℓ2 distance between perturbations and originals over query costs, consistent with previous work.
Attacks and hyperparameters. We modify SurFree, HSJA, GeoDA, and CGBA by using AS for
search and AGREST for gradient estimation where applicable. The other components of the attacks
remain largely unchanged (see App. D). Moreover, to compare our framework with stealthy attacks,
we use Stealthy HSJA, as it outperforms other stealthy attacks when the ℓ2 norm is the evaluation
metric (Fig. 3 of Debenedetti et al. (2024)). For the hyperparameters used in the vanilla attacks, we
generally use the same values. The only exception is the subspace method in SurFree. Specifically,
instead of using the DCT8×8 method in SurFree, we set it to DCTfull. This adjustment allows for a
fair comparison of SurFree with other attacks, as GeoDA and CGBA both use the DCTfull technique.
Furthermore, we set the newly introduced hyperparameter m, the overshooting scheduler rate, to
0.02, 0.06, and 0.06 for HSJA, GeoDA, and CGBA, respectively (for more details see App. D.2).
Ablation study. To evaluate the effectiveness of AS and AGREST in different attacks, we test
various combinations of these two approaches with each attack when c⋆ = 2, 5, 102, or 103 (Tab. 1).
As shown in Tab. 1, for SurFree, we compare the vanilla attack with A-SurFree, the new asymmetric
attack that utilizes AS. As expected, replacing binary search with AS leads to smaller adversarial
perturbations for all c⋆. Furthermore, we compare the performance of gradient-based attacks with

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

their corresponding variations, namely: 1. Replacing binary search with AS 2. Replacing vanilla
gradient estimation with AGREST 3. Combining the two previous approaches to obtain A-HSJA,
A-GeoDA, A-CGBA. In general, using asymmetric attacks results in incremental improvements
when c⋆ = 2 or 5. This is expected because we anticipate binary search and vanilla gradient
estimation perform well when the cost of high-cost queries is not significantly different from the
cost of low-cost queries. However, for larger values of c⋆, namely 102 and 103, the improvements
are substantial. Specifically, using AGREST alone reduces the ℓ2 norm by approximately 40% in
all cases. Moreover, combining AGREST with AS further decreases the norm. One notable point is
that AGREST enhances attacks utilizing gradient estimation more than AS does. This occurs because
attacks using gradient estimation spend most of their query budget on gradient approximation rather
than on search. (Tab. III of Debenedetti et al. (2024)). We also compared several methods, including
some baseline transfer attacks, using attack success rate (ASR) as the metric (see App. E).

Comparison to stealthy attacks. As mentioned, for larger values of c⋆, we expect asymmetric
attacks to significantly improve over vanilla attacks. Nonetheless, in these cases, we must compare
our framework to stealthy attacks, since, unlike with lower to medium values of c⋆, stealthy attacks
outperform vanilla attacks when c⋆ is large (Fig. 7 of Debenedetti et al. (2024)). As a result, we eval-
uate the performance of A-SurFree, A-HSJA, A-GeoDA, and A-CGBA against Stealthy HSJA on the
ResNet model when c⋆ = 104, 105, or∞. As demonstrated in Fig. 3, when c⋆ = 104, all asymmetric
attacks, including A-HSJA which retains the gradient estimation method that Stealthy HSJA discards,
outperform Stealthy HSJA. The same holds for c⋆ = 105 (Fig. 3). For the case where c⋆ =∞, follow-
ing Debenedetti et al. (2024), we determine the cost of each attack by counting the number of high-cost
(flagged) queries it generates. In this setup, we assume c⋆ = 105 during the execution of AGREST
and AS. As shown in Fig. 3, all asymmetric attacks outperform Stealthy HSJA by a wide margin.
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Figure 3: Performance of various asymmetric attacks compared to Stealthy HSJA under high
cost asymmetry with ResNet-50. The value of c⋆ is 104, 105, and∞ from left to right.

Asymmetric attacks against CLIP. We evaluate CLIP (Radford et al., 2021) as a representative
vision-language model (VLM) under both zero-shot and fine-tuned settings. Our asymmetric attack
achieves significantly better performance than stealthy baselines; results are provided in App. H.

5 CONCLUSION AND OUTLOOK

We proposed a framework that extends existing decision-based black-box attacks to handle
asymmetric query costs, where querying the source class is more expensive than others. Our method
introduces new gradient estimation and search techniques, achieving significant improvements over
both standard and stealthy attack baselines. However, it introduces a new hyperparameter, which
may require tuning for different settings. Additionally, we assume local linearity around decision
boundaries; while this assumption is common in the adversarial examples literature, it may not
hold in practice. There are also many interesting directions for future work, such as generalizing
the framework beyond the binary setting of source versus non-source classes. For instance, different
target classes may each have their own associated query cost. Applying our framework to vision-
language models such as Vision LLaMA (Chu et al., 2024) is another promising direction. AS could
also enhance jailbreak attacks on large language models, potentially replacing random search-based
methods (Andriushchenko et al., 2024; Chao et al., 2024), though adapting our framework to LLMs
presents challenges due to the discrete nature of text prompts (Rocamora et al., 2025). Exploring
these avenues could expand the impact of asymmetric attacks across a wide range of applications.
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A RELATED WORK

Decision-based attacks. Adversarial examples can be crafted in three setups: white-box (Good-
fellow et al., 2014; Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017; Abdolahpourrostam
et al., 2024), score-based black-box (Narodytska & Kasiviswanathan, 2016; Chen et al., 2017; Ilyas
et al., 2018), and decision-based black-box (Brendel et al., 2017). In the decision-based black-box
setup, the attacker relies solely on predictions without access to models or class scores. Moreover,
decision-based attacks can be either targeted or non-targeted. Non-targeted attacks craft adversarial
examples without any constraints on the model’s prediction for the adversarial example. Boundary
Attack (Brendel et al., 2017) was the first effective decision-based attack based on random walking.
OPT (Cheng et al., 2018) outperforms Boundary Attack by introducing a gradient-based approach.
Inspired by zeroth-order optimization methods (Flaxman et al., 2004; Nesterov & Spokoiny, 2017),
HSJA estimates the gradient of the classification margin without direct access to the margin itself and
minimizes perturbation size using optimization techniques (Chen et al., 2020). QEBA (Li et al., 2020)
uses various techniques to approximate the gradient of the classification margin more effectively than
HSJA, leveraging insights like local similarity and the importance of the low-frequency subspace.
GeoDA and qFool (Rahmati et al., 2020; Liu et al., 2019a) use techniques similar to HSJA’s gradient
estimation to locally approximate the decision boundary as a hyperplane at each iteration. They then
search for optimal adversarial examples based on these estimated hyperplanes. While gradient-based
methods outperform previous approaches, their reliance on generating numerous queries for efficient
gradient estimation led (Maho et al., 2021) to focus on decision boundary geometry. They introduced
SurFree, which iteratively selects a random 2D subspace and searches for adversarial examples along
a circular path. In a similar way, TriA (Wang et al., 2022) generates effective adversarial examples
while using minimal queries. CGBA (Reza et al., 2023) combines the gradient approximation method
from GeoDA with SurFree’s 2D subspace search technique to achieve state-of-the-art results.

Asymmetric query costs. Existing decision-based attacks assume all queries have the same cost.
However, (Debenedetti et al., 2024) showed this may not be the case in real-world scenarios. They
found that queries belonging to the target class can be problematic in certain situations and noted
that all decision-based attacks produce many of these bad queries. To mitigate this, they introduced
stealthy attacks inspired by the egg dropping problem (Alves et al., 2024). However, stealthy attacks
face two main challenges. First, they overlook the cost of queries that are not bad. For example,
their most effective attack, Stealthy HSJA, generates about 107 queries for every 1,000 bad queries.
Second, to reduce the number of bad queries during the gradient estimation phase, (Debenedetti
et al., 2024) replaced the HSJA gradient approximation, known for its benefits in crafting adversarial
examples, with OPT gradient estimation, believing that modifying the HSJA gradient estimation
to perform well in this new setup would be difficult. In this paper, we address these challenges in
non-targeted decision-based attacks. In particular, we find a way to efficiently distribute our total
query budget between problematic and non-problematic queries while keeping the HSJA method of
gradient approximation by slightly modifying the method.

13
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B PROOFS

B.1 PROOF OF THM. 1

We define the expected cost of the algorithm for 1 < m <
⌈
1
τ

⌉
points as C(m). Using Alg. 1 and

applying the law of total expectation, we obtain

C(m) = P [ϕ (T (bmτ)) = −1]
(
C

(
m

c⋆ + 1

)
+ c⋆

)
+P [ϕ (T (bmτ)) = 1]

(
C

(
c⋆m

c⋆ + 1

)
+ 1

)
.

(13)
We now claim that

C(m) < 2c⋆
⌈
logc⋆+1 m

⌉
. (14)

We prove this by induction.

For the base case, when m ≤ c⋆ + 1, Alg. 1 reduces to a simple line search. Assuming a uniform
distribution for the boundary point, the expected cost of the line search is approximately c⋆ +m/2,
which clearly satisfies Eq. (14).

For the induction step, suppose the claim holds for all values smaller than m. Under the uniform
distribution assumption for the boundary point, we have

P [ϕ (T (bmτ)) = −1] = 1

c⋆ + 1
, P [ϕ (T (bmτ)) = 1] =

c⋆

c⋆ + 1
.

Substituting into Eq. (13) and applying the induction hypothesis yields:

C(m) =
1

c⋆ + 1

(
C

(
m

c⋆ + 1

)
+ c⋆

)
+

c⋆

c⋆ + 1

(
C

(
c⋆m

c⋆ + 1

)
+ 1

)
<

1

c⋆ + 1

(
2c⋆
⌈
logc⋆+1

m

c⋆ + 1

⌉
+ c⋆

)
+

c⋆

c⋆ + 1

(
2c⋆
⌈
logc⋆+1

c⋆m

c⋆ + 1

⌉
+ 1

)
.

Noting that

logc⋆+1

(
m

c⋆ + 1

)
= logc⋆+1(m)− 1, logc⋆+1

(
c⋆m

c⋆ + 1

)
= logc⋆+1(m)+ logc⋆+1

(
c⋆

c⋆ + 1

)
,

and observing that logc⋆+1

(
c⋆

c⋆+1

)
< 0 but close to 0 for large c⋆, we can bound both ceilings by

⌈logc⋆+1(m)⌉.
Thus,

C(m) <
2c⋆

c⋆ + 1

(
⌈logc⋆+1 m⌉ − 1

)
+

c⋆

c⋆ + 1
c⋆ +

2c⋆2

c⋆ + 1
⌈logc⋆+1 m⌉+

c⋆

c⋆ + 1

= 2c⋆⌈logc⋆+1 m⌉.
Thus, the expected complexity of the algorithm is

O
(
c⋆ log (1/τ)

log(c⋆ + 1)

)
,

completing the proof.

■

B.2 PROOF OF THM. 2

Before proving the theorem, we first introduce some useful lemmas.
Lemma 2. (Lévy’s Lemma (Milman & Schechtman, 1986; Ledoux, 2001)) Let f : Sd−1 → R be
an L-Lipschitz function on the unit hypersphere, and let x ∼ UNIFORM

(
Sd−1

)
. Then, for some

constant C > 0, we have:

P (|f (x)− Ef (x)| > ε) ≤ 2 exp

(
−Cdε2

L2

)
.

14
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Corollary 1. Suppose u ∈ Rd is a unit vector, and x ∼ UNIFORM
(
Sd−1

)
. Then, for some constant

C > 0, we have:
P (|⟨u,x⟩| > ε) ≤ 2 exp

(
−Cdε2

)
.

Lemma 3. Suppose ϕ̂2
t,1, . . . , ϕ̂

2
t,nt

are i.i.d. Bernoulli random variables with support {β2
t , (1−βt)

2},
where βt >

1
2 . If ϕ̂t is an i.i.d. copy of ϕ̂t,i, then the following inequality holds:

P

(∣∣∣∣∣ 1nt

nt∑
i=1

ϕ̂2
t,i − E[ϕ̂2

t ]

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− 2ntε

2

(2βt − 1)2

)
.

Proof of Lem. 3: The result follows by applying the Chernoff bound for binomial distributions
(Chernoff, 1952; Harchol-Balter, 2023) to the transformed random variables

ϕ̃i :=
ϕ̂2
t,i − (1− βt)

2

β2
t − (1− βt)2

,

which are i.i.d. Bernoulli random variables taking values in {0, 1}.
Lemma 4. Given the local linearity around xt, for any ωt ∈

[
0, δ

cosαt

]
, we have:

E
[
ϕ̂t⟨gt,u⟩

]
=

Γ
(
d
2

)
·
(
1− (cosαt · ωt/δ)

2
) d−1

2

2
√
π · Γ

(
d+1
2

)
Proof of Lem. 4: By the law of total expectation and linearity assumption, we have

E
[
ϕ̂t⟨gt,u⟩

]
= βt (1− Pt (ωt))E [−⟨gt,u⟩|⟨gt,u⟩ ≤ − cosαt · ωt/δ]

+ (1− βt)Pt (ωt)E [⟨gt,u⟩|⟨gt,u⟩ > − cosαt · ωt/δ]
(15)

Now, by applying the divergence theorem on the constant vector field F⃗ = gt, we have

E [−⟨gt,u⟩|⟨gt,u⟩ ≤ − cosαt · ωt/δ] = ⟨−gt,

∫
⟨gt,u⟩≤− cosαt·ωt/δ

up (u) du⟩

= ⟨−gt,

∫
⟨gt,u⟩≤− cosαt·ωt/δ

1

(1− p (ωt))Ad−1 (1)
udu⟩

=

Vd−1

(√
1− (cosαt · ωt/δ)

2

)
(1− Pt (ωt)) ·Ad−1 (1)

=
Γ
(
d
2

)
·
(
1− (cosαt · ωt/δ)

2
) d−1

2

2
√
π · Γ

(
d+1
2

)
· (1− Pt (ωt))

(16)

Where Vd(r) and Ad−1(r) are the volume of a d-dimensional ball and the area of a d−1-dimensional

sphere with radius r, respectively. Note that the last equality comes from Vd(r) =
πd/2

Γ
(
d
2 + 1

) rd and

Ad−1(r) =
2πd/2

Γ
(
d
2

) rd−1. Similarly, the following holds:

E [⟨gt,u⟩|⟨gt,u⟩ ≥ − cosαt · ωt/δ] =
Γ
(
d
2

)
·
(
1− (cosαt · ωt/δ)

2
) d−1

2

2
√
π · Γ

(
d+1
2

)
· Pt (ωt)

(17)

By using Eq. (16) and Eq. (17) in Eq. (15), we have

E
[
ϕ̂t⟨gt,u⟩

]
=

Γ
(
d
2

)
·
(
1− (cosαt · ωt/δ)

2
) d−1

2

2
√
π · Γ

(
d+1
2

) (18)

■

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Lemma 5. Let ε1, ε2 > 0 be given. Then the following upper and lower bounds hold for
µ(xt, ωt, βt, nt):

1. (Upper bound)

µ(xt, ωt, βt, nt) ≤
√
nt E

[
ϕ̂t⟨gt,u⟩

]
√
E[ϕ̂2

t ]− ε2 − (nt − 1)β2
t ε1

+

1 +

√
nt βt√

E[ϕ̂2
t ]− ε2 − (nt − 1)β2

t ε1

Knt,d (ε1, ε2) .

2. (Lower bound)

µ(xt, ωt, βt, nt) ≥
√
nt E

[
ϕ̂t⟨gt,u⟩

]
√
E[ϕ̂2

t ] + ε2 + (nt − 1)β2
t ε1

−

1 +

√
nt βt√

E[ϕ̂2
t ] + ε2 + (nt − 1)β2

t ε1

Knt,d (ε1, ε2) .

Here, the error term Knt,d(ε1, ε2) is defined as

Knt,d (ε1, ε2) = nt(nt + 1) exp
(
−Cdε21

)
+ 2 exp

(
− 2ntε

2
2

(2βt − 1)2

)
,

for some universal constant C > 0.

Proof of Lem. 5: Let ε1, ε2 > 0 be arbitrary. We define the following sets:
Si(ε1) := {U = (u1, . . . ,unt) | |⟨gt,ui⟩| ≥ ε1} ,
Si,j(ε1) := {U = (u1, . . . ,unt

) | |⟨ui,uj⟩| ≥ ε1} ,

Sϕ(ε2) :=
{
U = (u1, . . . ,unt

)

∣∣∣∣∣
∣∣∣∣∣E[ϕ̂2

t ]−
1

nt

nt∑
i=1

ϕ̂2
t,i

∣∣∣∣∣ ≥ ε2

}
,

S(ε1, ε2) :=
(

nt⋃
i=1

Si(ε1)
)
∪

 ⋃
1≤i<j≤nt

Si,j(ε1)

 ∪ Sϕ(ε2).
For notational convenience, we also define

A(U) :=

nt∑
i=1

ϕ̂t,i⟨gt, δui⟩.

Applying Lem. 2 and Lem. 3, and using the union bound, we obtain

P [U ∈ S] ≤ nt · P [U ∈ S1] +
(
nt

2

)
· P [U ∈ S1,2] + P [U ∈ Sϕ] ≤ Knt,d (ε1, ε2) . (19)

Now, we derive the upper bound. By the law of total probability, we have

µ(xt, ωt, βt, nt) = E

 ⟨gt, ∇̂S(xt, ωt, βt)⟩∥∥∥∇̂S(xt, ωt, βt)
∥∥∥
2


= E

 ⟨gt, ∇̂S(xt, ωt, βt)⟩∥∥∥∇̂S(xt, ωt, βt)
∥∥∥
2

∣∣∣∣∣∣ U /∈ S

P[U /∈ S]

+ E

 ⟨gt, ∇̂S(xt, ωt, βt)⟩∥∥∥∇̂S(xt, ωt, βt)
∥∥∥
2

∣∣∣∣∣∣ U ∈ S
P[U ∈ S].
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To calculate the desired expected value given the event {U /∈ S}, we expand the squared norm
directly. By definition,

∥∥∥∇̂S(xt, ωt, βt)
∥∥∥2
2
=

∥∥∥∥∥ 1

nt

nt∑
i=1

δϕ̂t,iui

∥∥∥∥∥
2

2

=
1

n2
t

〈
nt∑
i=1

δϕ̂t,iui,

nt∑
j=1

δϕ̂t,juj

〉

=
δ2

n2
t

nt∑
i=1

nt∑
j=1

ϕ̂t,iϕ̂t,j⟨ui,uj⟩

=
δ2

n2
t

 nt∑
i=1

ϕ̂2
t,i +

∑
1≤i,j≤nt

i̸=j

ϕ̂t,iϕ̂t,j⟨ui,uj⟩

 .

From the previous expansion, we have∥∥∥∇̂S(xt, ωt, βt)
∥∥∥
2
≥ δ√

nt

√
E[ϕ̂2

t ]− ε2 − (nt − 1)β2
t ε1.

Thus, on the event {U /∈ S}, we can bound

⟨gt, ∇̂S(xt, ωt, βt)⟩∥∥∥∇̂S(xt, ωt, βt)
∥∥∥
2

=
1∥∥∥∇̂S∥∥∥

2

〈
gt,

1

nt

nt∑
i=1

δϕ̂t,iui

〉
=

1

nt

∥∥∥∇̂S∥∥∥
2

A(U).

Therefore,
⟨gt, ∇̂S⟩∥∥∥∇̂S∥∥∥

2

≤ A(U)

δ
√
nt

√
E[ϕ̂2

t ]− ε2 − (nt − 1)β2
t ε1

.

Taking expectations, we get

E

 ⟨gt, ∇̂S⟩∥∥∥∇̂S∥∥∥
2

∣∣∣∣∣∣ U /∈ S

 ≤ 1

δ
√
nt

√
E[ϕ̂2

t ]− ε2 − (nt − 1)β2
t ε1

E[A(U)].

Moreover, by independence and identical distribution of the samples, we have

E[A(U)] = ntδ E
[
ϕ̂t⟨gt,u⟩

]
.

Therefore,

E

 ⟨gt, ∇̂S⟩∥∥∥∇̂S∥∥∥
2

∣∣∣∣∣∣ U /∈ S

 ≤ √
nt E

[
ϕ̂t⟨gt,u⟩

]
√
E[ϕ̂2

t ]− ε2 − (nt − 1)β2
t ε1

.

For the event {U ∈ S}, we use the trivial bound∣∣∣∣∣∣ ⟨gt, ∇̂S⟩∥∥∥∇̂S∥∥∥
2

∣∣∣∣∣∣ ≤ 1,

and hence

E

 ⟨gt, ∇̂S⟩∥∥∥∇̂S∥∥∥
2

∣∣∣∣∣∣ U ∈ S
 ≤ 1.
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Substituting back into the law of total probability, we have

µ(xt, ωt, βt, nt) ≤
√
nt E

[
ϕ̂t⟨gt,u⟩

]
√
E[ϕ̂2

t ]− ε2 − (nt − 1)β2
t ε1

(1− P[U ∈ S]) + P[U ∈ S]

+

√
ntβtP[U ∈ S]√

E[ϕ̂2
t ]− ε2 − (nt − 1)β2

t ε1

.

Grouping terms, we obtain

µ(xt, ωt, βt, nt) ≤
√
nt E

[
ϕ̂t⟨gt,u⟩

]
√
E
[
ϕ̂2
t

]
− ε2 − (nt − 1)β2

t ε1

+

1 +

√
nt βt√

E
[
ϕ̂2
t

]
− ε2 − (nt − 1)β2

t ε1

P [U ∈ S] .

Applying the bound P [U ∈ S] ≤ Knt,d(ε1, ε2) from Eq. (19), we finally get

µ(xt, ωt, βt, nt) ≤
√
nt E

[
ϕ̂t⟨gt,u⟩

]
√
E
[
ϕ̂2
t

]
− ε2 − (nt − 1)β2

t ε1

+

1 +

√
nt βt√

E
[
ϕ̂2
t

]
− ε2 − (nt − 1)β2

t ε1

Knt,d(ε1, ε2).

Similarly, for the lower bound, we have

µ(xt, ωt, βt, nt) ≥
√
nt E

[
ϕ̂t⟨gt,u⟩

]
√
E
[
ϕ̂2
t

]
+ ε2 + (nt − 1)β2

t ε1

−

1 +

√
nt βt√

E
[
ϕ̂2
t

]
+ ε2 + (nt − 1)β2

t ε1

Knt,d(ε1, ε2).

This completes the proof of the lemma. We note that the argument does not rely on the linearity
assumption.

■

Lemma 6. Assume local linearity holds around xt. Then, for any constant q ∈
[
1
2 , 1
)
, we have

E
[
ϕ̂

(
xt + P−1

t (q)
xt − x⋆

∥xt − x⋆∥2
+ δu

)
⟨gt,u⟩

]
= Θ

(
1√
d

)
.

Proof of Lem. 6: Based on Lem. 4, we analyze the asymptotic behavior of
Γ( d

2 )
Γ( d+1

2 )
and(

1− (cosαt · ωt/δ)
2
) d−1

2

as d tends to infinity.

By Lem. 2, we have
P [|⟨u,gt⟩| > ε] ≤ 2 exp

(
−Cdε2

)
,
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so in particular
P [⟨u,gt⟩ < −ε] ≤ exp

(
−Cdε2

)
.

We know that 1− q = P [⟨u,gt⟩ > − cosαt · ωt/δ], based on the selection of the overshooting value
ωt. Thus,

1− q ≤ exp
(
−Cd (cosαt · ωt/δ)

2
)
,

which implies
ln(1− q) ≤ −Cd (cosαt · ωt/δ)

2
,

and consequently

1 +
ln(1− q)

Cd
≤ 1− (cosαt · ωt/δ)

2
.

Raising both sides to the (d− 1)/2 power yields(
1 +

ln(1− q)

Cd

) d−1
2

≤
(
1− (cosαt · ωt/δ)

2
) d−1

2

.

Applying the classical limit limn→∞
(
1 + c

n

)n
= ec, we obtain

lim
d→∞

(
1 +

ln(1− q)

Cd

) d−1
2

= exp

(
ln(1− q)

2C

)
,

which implies that
(
1− (cosαt · ωt/δ)

2
) d−1

2

= Θ(1).

On the other hand, by Stirling’s approximation

Γ(n) =

√
2π

n

(n
e

)n(
1 +O

(
1

n

))
,

we find that
Γ
(
d
2

)
Γ
(
d+1
2

) = Θ

(
1√
d

)
.

Substituting these results into Eq. (18) concludes the proof.

■

Now, we proceed to prove the theorem.

Proof of Thm. 2: For any 0 < z < 1
8 , let nt = d3z , ε1 = d−4z , and ε2 = d−z . Also, let

d ≥ 4
E[ϕ̂2

t ]
β2 . We define

E1 :=

√
nt E

[
ϕ̂t⟨gt,u⟩

]
√
E
[
ϕ̂2
t

]
− ε2 − (nt − 1)β2ε1

,

E2 :=

√
nt β√

E
[
ϕ̂2
t

]
− ε2 − (nt − 1)β2ε1

,

E3 := Knt,d(ε1, ε2).

Then using the upper bound derived in Lem. 5, we have

µ(xt, p
−1
t (q), β, nt)

J(xt, p
−1
t (q), β, nt)

− 1 ≤ E1

J(xt, p
−1
t (q), β, nt)

− 1 +
1 + E2

J(xt, p
−1
t (q), β, nt)

· E3. (20)
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Since E
[
ϕ̂2
t

]
= β2(1− q) + (1− β)2q is constant, we can estimate

E1

J(xt, p
−1
t (q), β, nt)

− 1 ≤ 1√
1− ε2+(nt−1)β2ε1

E[ϕ̂2
t ]

− 1

≤ O
(
ε2 + (nt − 1)β2ε1

)
(since for 0 ≤ x ≤ 1

2
,
√
1− x ≥ 1− x

2
)

= O(d−z). (21)

Moreover, we have E1 = Θ
(
n
1/2
t

)
. Using Lem. 6, we also have J(xt, p

−1
t (q), β, nt) =

Θ
(
n
1/2
t d1/2

)
. Thus,

1 + E2

J(xt, p
−1
t (q), β, nt)

= Θ(d1/2). (22)

Substituting the values of nt, ε1, and ε2 into E3 yields

E3 = Θ
(
d6z
)
exp

(
−Cd1−8z

)
+ exp

(
− 2dz

(2β − 1)2

)
. (23)

Since 1 − 8z > 0 and exponential functions dominate polynomial growth, combining Eq. (21),
Eq. (22), and Eq. (23) with Eq. (20) yields

µ(xt, p
−1
t (q), β, nt)

J(xt, p
−1
t (q), β, nt)

− 1 ≤ O(d−z).

Applying similar steps using the lower bound in Lem. 5, we find

1− µ(xt, p
−1
t (q), β, nt)

J(xt, p
−1
t (q), β, nt)

≤ O(d−z).

Thus, the proof is complete.

■

B.3 PROOF OF THM. 3

Since J(xt, ωt, βt, nt) is increasing with respect to nt, the optimal choice is to take nt at its maximum
allowed value:

nt =
ct

c⋆ − (c⋆ − 1)Pt(ω⋆
t )

.

Substituting this into the definition of J and applying Lem. 4, we obtain

J(xt, ωt, βt, nt) ∝
(1− (cosαt · ωt/δ)

2)(d−1)/2√
(c⋆ − (c⋆ − 1)Pt(ωt))E[ϕ̂2

t ]
.

Expanding E[ϕ̂2
t ] gives

E[ϕ̂2
t ] = β2

t (1− Pt(ωt)) + (1− βt)
2Pt(ωt).

Thus,

J(xt, ωt, βt, nt) ∝
(1− (cosαtωt/δ)

2)(d−1)/2√
(c⋆ − (c⋆ − 1)Pt(ωt))(β2

t (1− Pt(ωt)) + (1− βt)2Pt(ωt))
.

To maximize J , it suffices to minimize

β2
t (1− Pt(ωt)) + (1− βt)

2Pt(ωt).
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Differentiating with respect to βt and setting the derivative to zero yields

βt = Pt(ωt).

Substituting this optimal βt back, we find

E[ϕ̂2
t ] = Pt(ωt)(1− Pt(ωt)),

and thus the final expression to maximize is

Ĵt(ωt) =
(1− (cosαtωt/δ)

2)d−1

Pt(ωt)(1− Pt(ωt))(c⋆ − (c⋆ − 1)Pt(ωt))
.

■

B.4 PROOF OF THM. 4

First, we show that cosα1 ≥ 0. Suppose for contradiction that cosα1 < 0, i.e.,

⟨x1 − x⋆,∇S(x1)⟩ < 0.

Using the definition of the directional derivative, we have

lim
h→0

S (x1 + h(x1 − x⋆))− S(x1)

h
= ⟨x1 − x⋆,∇S(x1)⟩ < 0.

Since the directional derivative is strictly negative, there exists ϵ > 0 such that for all sufficiently
small ϵ > 0,

S (x1 − ϵ(x1 − x⋆)) > S(x1).

Noting that
x1 − ϵ(x1 − x⋆) = x⋆ + (1− ϵ)(x1 − x⋆),

we can rewrite this inequality as

S (x⋆ + (1− ϵ)(x1 − x⋆)) > S(x1).

Since ϕ(x1) = 1 by assumption, and assuming ϕ remains 1 in a neighborhood where S does not
decrease, we also have

ϕ (x⋆ + (1− ϵ)(x1 − x⋆)) = 1.

Thus, for r = 1− ϵ, we find a point 0 < r < 1 such that ϕ(x⋆ + r(x1 − x⋆)) = 1, contradicting the
assumption that no such r exists. Therefore, our assumption that cosα1 < 0 must be false, and we
conclude that

cosα1 ≥ 0.

Now that we have established cosα1 ≥ 0, it follows that

E[cosα1] = E [cosα1 | cosα1 ≥ 0] .

Expanding cosα1 in terms of the vectors involved, we write

cosα1 =

〈
x1 − x⋆

∥x1 − x⋆∥2
,g1

〉
.

Thus,

E[cosα1] = E
[〈

x1 − x⋆

∥x1 − x⋆∥2
,g1

〉 ∣∣∣∣ 〈 x1 − x⋆

∥x1 − x⋆∥2
,g1

〉
≥ 0

]
.

Finally, applying the result from Eq. (17) with ωt = 0, we obtain

E
[〈

x1 − x⋆

∥x1 − x⋆∥2
,g1

〉 ∣∣∣∣ 〈 x1 − x⋆

∥x1 − x⋆∥2
,g1

〉
≥ 0

]
=

Γ
(
d
2

)
2
√
π Γ
(
d+1
2

) .
This completes the proof.

■
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C EMPIRICAL STUDY OF AS AND AGREST

Here, we design two experiments to validate the effectiveness of our analysis for both AS and
AGREST. (Fig. 4)

First, we sample 100 random correctly classified images from the ImageNet dataset and run the
experiments using binary search and asymmetric search when c⋆ = 103. We observe that the average
cumulative search cost across iterations for binary search is approximately 2.5 times higher than that
of AS. This highlights the effectiveness of AS compared to vanilla search.

Second, to show that using the overshooting value obtained by AGREST leads to a probability of
making low-cost queries close to the theoretical value in Thm. 3, we again sample 100 random
images and run one iteration of AGREST using 500 queries for gradient estimation. We then compute
the empirical probability of making low-cost queries, defined as the ratio of low-cost to total (500)
queries, and compare it to the optimal probability predicted by our theoretical analysis. As shown in
Fig. 4, our analysis is close to the empirical results, especially for larger values of c⋆.
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Figure 4: Empirical study of AS and AGREST. The left plot compares AS with vanilla search (binary
search) in terms of cumulative search cost over iterations in GeoDA when c⋆ = 103, while the right
plot shows the optimal theoretical probability of making low-cost queries (assuming local linearity of
the decision boundary) versus the empirical ratio of low-cost to total queries for different values of
c⋆.
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D IMPLEMENTATION

D.1 MODIFICATION TO GEODA

We modify the direction-based adversarial example search phase in GeoDA. In its original implemen-
tation, GeoDA estimates the gradient and then proceeds from the original image, taking fixed-size
steps along that direction until it finds an adversarial example. However, this process often leads
to a large number of flagged queries, since many of the intermediate steps can cross the decision
boundary.

To address this issue, we change the starting point of the search. Instead of beginning at the original
image, we start from

x′′ = x⋆ + ∥x⋆ − xt∥2 ·
∇̂S(xt, ωt)

∥∇̂S(xt, ωt)∥2
.

This new starting point lies further in the direction of the estimated gradient and is designed with the
expectation that it is already adversarial—or at least closer to an adversarial example than the original
image. If x′′ is not adversarial, the algorithm continues the search in the estimated gradient direction.
This modification significantly reduces the number of flagged queries encountered during the search.

D.2 SELECTION OF THE HYPERPARAMETER m

We select values for the hyperparameter m by evaluating the performance of the corresponding
attacks under different settings of m, using 20 randomly selected correctly classified images. This
evaluation is performed with c⋆ = 103 and a total query cost of 250K, as shown in Fig. 5.

Although the optimal value of m can vary with c⋆, we choose to fix m independently of c⋆. This
decision simplifies the attack process and avoids the additional computational overhead of tuning m
for each value of c⋆, while still enabling effective attack performance.
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Figure 5: Median ℓ2 distance of adversarial perturbations for varying values of m, with c⋆ = 103 and
a total query cost of 150K.

D.3 AGREST WITH DIMENSION REDUCTION

As mentioned earlier, most practical attacks use a dimension reduction matrix R ∈ Rd×d′
to perform

the sampling process in a subspace of dimension d′ ≪ d, where d is the dimension of the original
space, in order to increase sample efficiency. To apply the same subspace in the AGREST estimator,
the only modifications needed compared to the original AGREST Alg. 3 are: first, projecting each
sample into the subspace; and second, using the effective dimension d′ to compute αt. An overview
of this version of AGREST is provided in Alg. 4.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 4 AGREST Estimation

Inputs: Iteration t, source image x⋆, boundary point xt, dimension d, sampling subspace dimension
d′, sampling subspace matrix R, high-cost query cost c⋆, sampling radius δ, sampling batch size
b, cosine value αt, vanilla gradient estimation query budget n′

t, scheduler rate m
Outputs: Normalized approximated direction gt, next cosine value αt+1

1: nL ← 0, nH ← 0, v+ ← 0⃗, v− ← 0⃗, ĉ← 0, ω⋆ ← OVERSHOOTING (c⋆) ▷ Thm. 3
2: ωt ← ω⋆/ cosαt, ct ← n′

t(c
⋆ + 1)/2

3: while ĉ < ct do
4: B ←

{
Rui/ ∥Rui∥ where ui ∼ UNIFORM

(
Sd−1

)}b
i=1

▷ Dimension reduction
5: for each ui ∈ B do
6: if ϕ

(
xt + ωt

xt−x⋆

∥xt−x⋆∥2
+ δui

)
= 1 then

7: v+ ← v+ + ui, nL ← nL + 1, ĉ← ĉ+ 1
8: else
9: v− ← v− − ui, nH ← nH + 1, ĉ← ĉ+ c⋆

10: end if
11: end for
12: end while
13: p̂t ← nL/ (nL + nH)
14: gt ← (1− p̂t)v

+ + p̂tv
−, αt+1 ← SCHEDULER-STEP (t, p̂t,m) ▷ Alg. 2

15: return gt/ ∥gt∥2 , αt+1

D.4 COMPUTATION RESOURCES

For our experiments on ResNet-50, we use NVIDIA P100 GPUs. All other experiments, including
those involving ViT and CLIP models, are conducted on NVIDIA A100 GPUs to accommodate the
higher computational and memory demands of these models.
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E ATTACK SUCCESS RATE (ASR) COMPARISONS AND TRANSFER ATTACKS

E.1 ASR COMPARISONS

In this section, we present a detailed comparison of attack success rates (ASR) achieved by various
methods under perturbation norms ℓ2 = 5 and ℓ2 = 10 on ResNet-50. The following results
highlight that our proposed enhancements consistently deliver substantial gains, reaching up to 20%
improvement in ASR.

Table 2: ASR (%) under ℓ2 = 5 for different (c⋆, total cost) on ResNet-50.

Attack Variant (2,10000) (5,15000) (100,150000) (1000,250000)

SURFREE VA 55.4 48.7 37.2 16.7
SURFREE VA+AS 63.9 63.9 57.8 37.0
HSJA VA 74.2 69.8 52.8 18.5
HSJA VA+AS 75.4 67.7 55.7 18.8
HSJA VA+AGREST 77.7 73.0 73.4 22.6
HSJA VA+AGREST+AS 76.8 73.6 74.8 24.2
GEODA VA 66.3 61.6 56.0 29.9
GEODA VA+AS 65.4 61.9 57.5 32.3
GEODA VA+AGREST 61.6 65.7 73.3 43.4
GEODA VA+AGREST+AS 60.4 66.0 69.3 46.1
CGBA VA 92.7 88.0 78.0 29.9
CGBA VA+AS 92.1 88.9 78.0 31.8
CGBA VA+AGREST 91.8 89.4 89.5 45.5
CGBA VA+AGREST+AS 91.5 89.7 90.6 43.0

Table 3: ASR (%) under ℓ2 = 10 for different (c⋆, total cost) on ResNet-50.

Attack Variant (2,10000) (5,15000) (100,150000) (1000,250000)

SURFREE VA 80.4 71.0 58.4 31.1
SURFREE VA+AS 81.8 82.7 78.9 59.8
HSJA VA 89.1 86.2 73.9 25.2
HSJA VA+AS 90.9 85.9 76.5 29.6
HSJA VA+AGREST 90.6 88.9 89.3 37.8
HSJA VA+AGREST+AS 90.6 89.4 90.8 43.0
GEODA VA 83.0 79.8 75.4 47.5
GEODA VA+AS 81.2 77.7 75.4 53.1
GEODA VA+AGREST 79.2 82.1 84.8 65.4
GEODA VA+AGREST+AS 78.6 79.8 84.3 68.4
CGBA VA 99.1 97.7 92.7 50.1
CGBA VA+AS 99.1 97.7 93.0 52.1
CGBA VA+AGREST 99.1 98.5 99.0 70.4
CGBA VA+AGREST+AS 98.2 98.5 99.3 65.0

E.2 TRANSFER ATTACKS

We evaluated the transferability of adversarial examples generated from different surrogate models
under a PGD-40 attack with an ℓ2 norm radius of 10. Tab. 4 summarizes the ASR when transferring
from VGG19 and ViT-B/16 to ResNet50 and ViT-B/32.

Transfer attacks usually have lower success rates than query-heavy decision-based methods, but they
are especially useful when the budget is limited. For example, transferring from VGG19 to ResNet50
achieves a 79.6% attack success rate without using any queries.

These results show the complementary role of transfer-based strategies. They may not always be
strong across every model pair, but they provide a powerful and cost-free option when query budgets
are very limited.
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Table 4: Transfer ASR (%) for different source and target models using PGD-40 with ℓ2 = 10.

Source Model Target Model Transfer ASR

VGG19 ResNet50 79.6
VGG19 ViT-B/32 9.4
ViT-B/16 ResNet50 41.0
ViT-B/16 ViT-B/32 28.4
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F ADDITIONAL RESULTS FOR VISION TRANSFORMERS (VIT)

In this section, we present comprehensive empirical evaluations that extend our analysis across varying
budget constraints and different query cost parameters c⋆. Specifically, we conduct experiments
utilizing Vision Transformer architectures (ViT-B/32 and ViT-B/16) on the ImageNet dataset.

Table 5: Median ℓ2 distance for various c⋆ values and different types of attacks for ViT-B/32 model
on ImageNet dataset.

Attack Method
c⋆ = 2.0 c⋆ = 5.0 c⋆ = 100.0 c⋆ = 1000.0 Higher Queries

Total Cost Total Cost Total Cost Total Cost Total Cost
1000 2000 5000 10000 15000 1000 2000 5000 10000 15000 1000 2000 5000 10000 15000 1000 2000 5000 10000 15000 150000 250000

SURFREE VA 9.3 6.2 3.9 2.9 2.5 14.3 9.9 5.7 4.4 3.4 70.4 71.0 34.7 21.3 18.2 69.7 71.1 70.6 68.1 68.3 5.13 16.12
VA+AS (A-SurFree) 7.8 5.0 3.6 2.4 2.1 11.4 7.3 4.6 3.1 2.5 70.0 70.1 22.8 14.5 9.7 70.1 69.9 71.5 67.3 68.5 3.68 6.35

HSJA

VA 53.7 44.8 28.7 18.3 13.9 61.6 53.2 40.0 28.1 22.8 68.4 67.2 67.5 67.9 63.1 69.9 71.1 69.3 69.4 70.2 4.21 22.46
VA+AS 53.3 41.8 25.2 18.3 13.5 62.6 50.5 38.6 24.4 18.5 69.5 68.4 69.7 58.8 56.8 68.7 69.4 70.2 68.1 68.2 3.88 18.79

VA+AGREST 18.6 9.7 4.2 2.7 2.2 36.3 17.3 7.8 4.4 3.1 69.1 71.1 73.7 37.0 35.4 68.5 72.1 69.1 70.1 69.7 2.19 11.28
VA+AS+AGREST (A-HSJA) 17.8 9.6 4.7 2.7 2.1 34.8 19.1 7.6 4.2 3.1 71.4 69.1 60.1 38.3 25.3 71.8 72.1 71.9 67.6 68.7 2.06 10.74

GEODA

VA 14.2 6.6 3.4 2.7 2.4 18.9 12.0 6.7 3.5 3.2 67.1 68.2 30.1 26.3 18.7 69.3 68.6 68.1 67.5 69.2 3.97 9.83
VA+AS 12.7 7.8 3.7 2.7 2.3 17.1 11.7 5.5 3.4 2.9 71.0 73.7 30.5 20.5 16.0 70.5 71.5 68.7 73.1 71.4 3.12 8.78

VA+AGREST 7.4 3.7 2.4 1.9 1.7 14.6 8.8 4.5 3.3 2.7 70.2 69.8 36.6 23.5 17.7 68.6 72.2 66.0 69.0 69.5 2.10 5.12
VA+AS+AGREST (A-GeoDA) 7.8 3.9 2.3 1.9 1.8 14.8 8.4 4.4 3.1 2.8 68.8 70.6 34.0 19.0 15.6 72.2 72.5 73.5 72.9 68.2 2.03 4.35

CGBA

VA 11.6 6.0 3.0 1.6 1.4 18.4 11.3 5.3 3.1 2.1 70.4 72.0 28.0 24.5 17.0 68.8 70.4 69.7 72.8 72.8 2.13 9.67
VA+AS 10.8 6.4 3.2 1.7 1.3 16.2 10.7 4.6 2.6 2.0 68.5 73.4 29.2 18.1 13.7 71.9 73.8 68.3 68.5 70.1 1.97 8.24

VA+AGREST 7.3 3.6 2.0 1.5 1.3 15.8 8.3 4.0 3.0 2.5 67.1 73.5 39.2 18.9 15.2 70.9 70.5 72.7 69.8 69.5 1.56 5.46
VA+AS+AGREST (A-CGBA) 7.6 4.1 1.9 1.5 1.2 14.4 7.7 4.2 2.9 2.5 70.2 67.2 23.9 15.9 13.4 71.9 70.4 67.3 70.0 72.7 1.42 5.61

Table 6: Median ℓ2 distance for various c⋆ values and different types of attacks for ViT-B/16 model
on ImageNet dataset.

Attack Method
c⋆ = 2.0 c⋆ = 5.0 c⋆ = 100.0 c⋆ = 1000.0

Total Cost Total Cost Total Cost Total Cost
1000 2000 5000 10000 15000 1000 2000 5000 10000 15000 1000 2000 5000 10000 15000 1000 2000 5000 10000 15000

SURFREE VA 10.7 7.1 4.2 3.0 2.3 16.6 11.0 6.8 4.4 3.6 57.6 57.1 33.3 20.7 18.6 60.0 56.0 56.8 56.8 57.6
VA+AS (A-SurFree) 8.9 6.0 3.7 2.3 2.0 14.4 8.3 4.6 3.2 2.6 58.2 58.2 27.7 15.0 10.4 58.0 54.9 54.6 56.9 58.3

HSJA

VA 37.5 29.9 17.8 10.8 7.1 49.6 40.0 26.0 18.4 13.9 57.3 56.0 55.1 52.5 49.7 56.7 58.9 59.2 57.2 58.0
VA+AS 38.1 28.6 18.5 9.6 6.8 47.8 38.5 23.9 16.5 11.0 57.4 56.6 55.0 47.4 44.5 56.6 60.9 57.9 59.2 57.4

VA+AGREST 14.5 8.0 4.0 2.3 1.7 29.4 14.6 6.0 3.8 2.7 56.7 56.9 59.6 30.5 31.6 55.9 55.3 58.2 57.4 59.0
VA+AS+AGREST (A-HSJA) 15.1 7.7 3.9 2.3 1.8 27.1 14.5 6.4 3.6 2.6 58.1 58.1 40.5 31.3 21.0 58.2 56.7 57.5 56.7 58.7

GEODA

VA 12.5 7.3 3.1 2.2 1.8 19.7 13.7 6.5 3.3 2.5 56.8 57.7 32.5 25.5 22.6 58.2 56.5 60.3 57.4 55.8
VA+AS 14.4 7.1 3.2 2.0 1.9 19.9 12.6 5.5 3.3 2.5 60.2 60.6 30.6 23.1 17.6 58.0 57.0 58.0 59.3 57.3

VA+AGREST 8.4 4.0 2.1 1.5 1.4 13.5 8.1 3.8 2.6 2.1 58.3 55.8 35.5 19.4 17.0 58.8 59.0 58.4 57.6 57.4
VA+AS+AGREST (A-GeoDA) 7.9 3.8 2.1 1.6 1.4 13.7 8.5 4.1 2.5 2.2 55.9 58.5 27.5 18.1 15.2 59.2 60.6 58.4 57.7 58.0

CGBA

VA 11.3 6.0 2.3 1.3 1.0 16.6 11.2 4.6 2.4 1.6 57.1 54.9 32.4 23.7 18.6 56.1 56.7 59.5 61.3 59.2
VA+AS 11.2 5.6 2.4 1.3 1.0 16.4 9.5 4.3 2.2 1.5 56.2 56.6 28.1 17.2 14.8 59.0 58.0 59.9 58.3 55.5

VA+AGREST 6.5 3.4 1.8 1.2 0.9 14.0 7.9 3.8 2.2 1.8 55.0 55.7 35.0 19.5 14.1 56.3 55.4 59.3 57.6 53.5
VA+AS+AGREST (A-CGBA) 7.6 3.5 1.7 1.2 1.0 12.2 7.5 3.4 2.2 1.9 58.1 60.5 21.5 16.5 12.2 58.2 58.2 55.9 58.8 57.2
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G ASYMMETRIC SEARCH (AS) ILLUSTRATION

Fig. 6 provides a visual example of the Asymmetric Search (AS) algorithm running with parameters
τ = 0.1 and c⋆ = 2. The illustration shows the iterative progression and query evaluations leading to
successful convergence near the decision boundary.

Asymmetric Search (AS) Algorithm

Parameters: τ = 0.1 (Threshold parameter)
c∗ = 2 (Cost ratio parameter)

0 10.5

Iteration 1:

blτ = 0 buτ = 1

bm = bl +
bu−bl
c∗+1 = 0 + 1−0

2+1 = 1
3

ϕ(T (bmτ)) = ϕ(T ( 13 · 0.1)) = ϕ(T (0.033)) = 1

bl ← bm = 1
3

Iteration 2:
blτ = 1

3 · 0.1 = 0.033 buτ = 1 · 0.1 = 0.1

bm = bl +
bu−bl
c∗+1 = 1

3 +
1− 1

3

2+1 = 1
3 + 2

9 = 5
9

ϕ(T (bmτ)) = ϕ(T ( 59 · 0.1)) = ϕ(T (0.056)) = 0
bu ← bm = 5

9

Iteration 3: blτ = 1
3 · 0.1 = 0.033 buτ = 5

9 · 0.1 = 0.056

bm = bl +
bu−bl
c∗+1 = 1

3 +
5
9− 1

3

2+1 = 1
3 +

5−3
9

3 = 1
3 + 2

27 = 11
27

bmτ = 11
27 · 0.1 = 0.041

AS locates a point within τ = 0.1 of the boundary

Returned point: T (bmτ) = T ( 1127 · 0.1) = T (0.041)

Convergence to Near-Boundary Point

Decision Boundary

T (blτ) = T (0.033) T (buτ) = T (0.056)
≤ τ = 0.1

Cost: c∗ = 2 Cost: 1

Asymmetric Cost Ratio 1 : c∗ = 1 : 2

Figure 6: Asymmetric Search (AS) illustration.
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H ASYMMETRIC ATTACKS AGAINST CLIP

We evaluate the robustness of vision-language models (VLMs), such as CLIP (Radford et al., 2021),
against stealthy adversarial attacks. Our experiments cover both the zero-shot and fine-tuned versions
of CLIP. We apply our asymmetric attacks to these models and observe substantial improvements
over stealthy baselines. As shown in Fig. 7, after making 300 total queries, asymmetric methods
achieve 40–60% lower ℓ2 distortion compared to Stealthy HSJA.

Zero-Shot CLIP Fine-Tuned CLIP
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Number of high-cost queries
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Comparison of Attack Methods on Zero-Shot CLIP Model
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A-GeoDA

A-CGBA
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Number of high-cost queries
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Comparison of Attack Methods on Fine-Tuned CLIP Model

A-HSJA

A-GeoDA

A-CGBA

A-SurFree

Stealthy HSJA

Figure 7: Performance of various asymmetric attacks compared to Stealthy HSJA on CLIP.

I CONCEPTUAL ILLUSTRATION

In this section, we show the conceptual illustration of the vanilla gradient estimation and our proposed
gradient estimation AGREST.

𝜙 . = −1

𝜙 . = +1

𝑥⋆

𝑥𝑡

𝑥𝑡
′ = 𝑥𝑡 + 𝑤𝑡

𝑥𝑡 − 𝑥⋆

| 𝑥𝑡 − 𝑥⋆ |

𝛼𝑡

∇𝑆(𝑥𝑡)

𝜙 . = −1

𝜙 . = +1

𝑥⋆

𝑥𝑡

Vanilla Gradient Estimation Asymmetric GRadient EStimation (AGREST)

Figure 8: Comparison of vanilla gradient estimation and its asymmetric counterpart. Vanilla
sampling results in roughly half high-cost and half low-cost queries, whereas AGREST reduces the
frequency of high-cost queries by shifting the sampling region and weighting outcomes accordingly.

J NOTE ON THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were utilized exclusively for the purpose of writing and refining the
manuscript. LLMs were employed to enhance grammar, increase clarity, and rephrase sentences for
improved readability. All research concepts, experiments, and analyses were carried out without the
assistance of LLMs.
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