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ABSTRACT

The increasing context window size in Large Language Models (LLMs), such as
the GPT and LLaMA series, has improved their ability to tackle complex, long-
text tasks, but at the cost of inference efficiency, particularly regarding memory
and computational complexity. Existing methods, including selective token reten-
tion and window-based attention, improve efficiency but risk discarding important
tokens needed for future text generation. In this paper, we propose an approach
that enhances LLM efficiency without token loss by reducing the memory and
computational load of less important tokens, rather than discarding them. We ad-
dress two challenges: 1) investigating the distribution of important tokens in the
context, discovering recent tokens are more important than distant tokens in con-
text, and 2) optimizing resources for distant tokens by sharing attention scores
across layers. The experiments show that our method saves 35% KV cache with-
out compromising the performance.

1 INTRODUCTION

Recently, the increasing context window size in Large Language Models (LLMs) (Brown et al.,
2020; Achiam et al., 2023; Team et al., 2023; Reid et al., 2024; Touvron et al., 2023a;b; Dubey et al.,
2024), has allowed them to excel in handling complex tasks necessitating an in-depth exploration
of lengthy texts (Bairi et al., 2024; Mazumder & Liu, 2024). However, it poses challenges to the
computation and memory footprint of LLMs. Specifically, on the one hand, since most LLMs are
based on the Transformer (Vaswani et al., 2017) architecture, the computational complexity of the
attention module increases quadratically with the size of the context window. On the other hand,
the size of KV cache (Pope et al., 2023), a commonly used technique designed to prevent redundant
computations, is linearly related to the context window size. Hence, enhancing the efficiency of
LLMs with extended context windows is critical.

Against this backdrop, numerous researchers have put forward approaches to enhance the inference
efficiency of LLMs by discarding some tokens within the context. In particular, the window at-
tention approach (Beltagy et al., 2020) retains a fixed-size window over the KV states of the most
recent tokens. LM-Infinite (Han et al., 2024) and StreamingLLM (Xiao et al., 2024) identify the
“attention sink” phenomenon, preserving both the initial tokens and recent tokens (see Figure 1-
(a)). H2O (Zhang et al., 2023) takes into consideration the differing significance of tokens within
the context and selectively retains only the most important tokens in the KV cache based on atten-
tion scores. While such methods improve the efficiency of LLMs in handling long contexts, they
introduce a major drawback (Tang et al., 2024): critical tokens required for later text generation
may be irreversibly discarded early in the process. As shown in Figure 1-(a), when the important
tokens (evidence in the example) fall outside the window, the prediction fails. Additionally, the per-
formance degradation of StreamingLLM and H2O on two real-world benchmarks further confirms
this (see Figure 1-(b)).

In this paper, we seek to improve the efficiency of LLMs while minimizing performance degradation.
Our core motivation is that less important tokens should be allocated fewer resources, rather than
being discarded entirely. This raises two challenges: 1) Where are the important tokens distributed
for a token to attend, and 2) how to optimize memory and computation for less important tokens.
We attempt to address these two challenges through two key observations:
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Figure 1: Experimental results from our customized LLaMA3-8B-32K model. (a) Example of
StreamingLLM prediction failure. (b) Partial experimental results from LongBench (Bai et al., 2024)
and LEval (An et al., 2024). (c) The test data consists of 1000 samples of 32K-length text sampled
from Dolma (Soldaini et al., 2024). For each sample sequence, we compared the last 100 tokens.
(d) We sampled 1000 sequences of 32K length from Dolma, extracting the attention scores for the
last 16 tokens of each sample.

Observation 1: Proximal tokens (initial tokens+recent tokens) are more important than distant
tokens. (see Figure 1-(c)). We conducted experiments and investigated the proportion of cases where
the next-token predictions are identical when each token attends to only a fixed number of proximal
tokens in the context, as opposed to attending to all tokens. Figure 1-(c) demonstrates that, even
when attending to only the 256 proximal tokens, the model predicts the next token identically to the
model attending to all tokens in 80% of the cases for the same input sequence. This phenomenon
proves the observation 1.

Observation 2: attention scores between consecutive layers are similar. In fact, this phenomenon
has been previously observed in smaller models (Xiao et al., 2019; Bhojanapalli et al., 2021), and
here we scale it to modern LLMs. In Figure 1-(d), we can discover attention scores between the
layers enclosed in the red box exhibit a strong similarity.

To this end, we propose POD (Proximal tokens over Distant tokens) to optimize the inference ef-
ficiency during the decoding phase. In detail, it shares inter-layer attention scores exclusively for
distant tokens, while leaving the proximal tokens unchanged based the above two observations.
This approach consists of three main stages: 1) Exploration of Offline Inter-Layer Attention Shar-
ing (§ 2.1): determining which layers can share attention scores; 2) Lightweight Training Adapta-
tion (§ 2.2): post-training the dense model based on the identified attention sharing patterns between
layers with a limited amount of data; 3) Efficient Inference (§ 2.3): sharing the attention scores
between layers for distant tokens, which allows us to retain key states from a single layer in the
KV cache. Additionally, we can preemptively identify situations where only proximal tokens are
required to predict the next token, thereby eliminating the attention computation for distant tokens.

We evaluated the performance of POD on Needle in a Haystack and two real-world long context
benchmarks, analyzing its efficiency and examining the impact of key hyperparameters. Case studies
were also conducted. Extensive experiments demonstrated that POD can save 35% of the KV cache
without compromising model performance. In summary, our contributions are: 1) we propose the
idea of assessing the importance of tokens based on their positions in the context and enhanceing
inference efficiency by reducing the resources allocated to less important tokens. 2) we introduce
POD, a new model that adapts to the intra-layer shared attention distribution of distant tokens. 3)
We conducted extensive experiments to prove POD works and we plan to open-source our code and
models in the future.
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Algorithm 1: Greedy Layer Grouping Algorithm

Input: Head-wise attention similarities between layers: {simh (ℓa, ℓb)}1≤h≤H
1≤ℓa, ℓb≤L and the

threshold δ
Output: Head-wise layer blocks
head wise layer blocks← [ ];
for head h← 1 to H do

current head layer blocks← [{1}]; // Each block is a set.
for layer ℓ← 2 to L do

current block← the last element of current head layer blocks;
// Layer ℓ is similar to all layers in the current block.

if simh

(
ℓ, ℓ̂

)
≥ δ, ∀ℓ̂ ∈ current block then

Add ℓ to current block;
else

Append {ℓ} to current head layer blocks;

Append current head layer blocks to head wise layer blocks;
Return head wise layer blocks;

2 METHODOLOGY

Our approach comprises three key steps (Figure 2): 1) analyze the similarity of attention scores
between layers in a given long context LLM and group consecutive similar layers into blocks, 2)
apply attention sharing within each block and post-train the LLM, and 3) conduct efficient inference
by using the post-trained LLM.

2.1 EXPLORATION OF OFFLINE INTER-LAYER ATTENTION SHARING

To assess the similarity in attention scores between layers, we input several tokens into the LLM and
collected a range of attention scores. Subsequently, We calculate the attention similarity between
layers and group consecutive similar layers into blocks as a preparation for enhancing the inference
efficiency of the LLM.

Attention scores calculation Assuming that we input N samples
{
si = (x1, x2, . . . , xn)

}N

i=1
into the modelM, we will collect the attention scores of the last q (1 ≤ q ≤ n) tokens attending to
their corresponding previous tokens for each sample. Mathematically, we obtain{

Sℓ,h
i

}
1≤ℓ≤L, 1≤h≤H

=M (si) , (1)

where L, H ∈ N+ denote the number of layers and attention heads in the model, respectively, and
Sℓ,h
i ∈ Rq×n represents the attention scores collected at the ℓ-th layer of the h-th attention head.

Attention similarity evaluation Next, we need to evaluate the similarity between layers based on
the collected attention scores. For any two distinct layers ℓa and ℓb (1 ≤ ℓa, ℓb ≤ L and ℓa ̸= ℓb),
the attention similarity between them for the h-th head is defined as the average Jensen-Shannon
(JS) divergence (Menéndez et al., 1997) over the last q tokens across all N samples. Formally,

simh (ℓa, ℓb) =
1

N · q

N∑
i=1

q∑
j=1

JS
(
Sℓa,h
i,j ,Sℓb,h

i,j

)
, (2)

where Sℓ,h
i,j denotes the j-th row of Sℓ,h

i and 0 ≤ simh (·, ·) ≤ 1.

Layer grouping After calculating the head-wise attention similarity between layers, we group
consecutive similar layers into head-wise blocks in preparation. Our grouping strategy is based on
the idea that any two layers within the same block should be sufficiently similar. Elaborately, ℓa and
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Figure 2: Three stages of POD.①: An example of layer grouping based on the similarity of offline-
computed attention scores for each head. Consecutive layers with the same color belong to the same
block and thus utilize the same attention scores. ②: Exemplar model structure of the attention
module for head 3 in POD. Each token attends to two groups: proximal tokens (the neighboring
nr tokens and the initial ns tokens, nr = 2 and ns = 1 in this example) and distant tokens (the
remaining tokens). Attention is computed separately for both groups and weighted based on their
respective attention scores. ③: Example of KV cache changes for the 7-th token and avoidance of
distant token attention.

ℓb are considered similar when sim (ℓa, ℓb) ≥ δ, where 0 ≤ δ ≤ 1 is a hyperparameter. Building
on this, we adopt a bottom-up greedy algorithm to iteratively merge consecutive similar layers into
blocks, as detailed in Algorithm 1. Figure 2-①presents a simple example of head-wise partitioning
of layers based on the similarity of inter-layer attention scores.

2.2 LIGHTWEIGHT TRAINING ADAPTATION

To enhance the capability of the model to share attention across layers within the same block, we
first introduce the post-training process required to adapt the model to this mechanism.

Attention sharing within each block We denote the long input sequence as s = (x1, x2, . . . , xn).
For any token xi (1 ≤ i ≤ n) at the ℓ-th layer in autoregressive transformer-based LLMs, it attends to
all preceding tokens {xj}j≤i. As mentioned, we aim to optimize memory and computation costs for
distant tokens by sharing attention layers. Hence, we first categorize the preceding tokens into two
groups: proximal tokens and distant tokens. Following previous works (Han et al., 2024; Xiao et al.,
2024), we classify several initial tokens as proximal tokens, taking into account the phenomenon of
the “attention sink”. Then, token xi will attend to both groups of tokens, but the attention scores
for distant tokens will utilize the attention scores from the lowest layer of the corresponding block
grouped in Section 2.1.

Mathematically, for any attention head, let Qℓ,Kℓ,Vℓ ∈ Rn×d denote the query, key, and value
states at the ℓ-th layer, respectively*. Layer ℓ belongs to the block Bℓ =

{
ℓ̄ | ℓa ≤ ℓ̄ ≤ ℓb

}
, which

consists of consecutive layers. The outputs of attention for the proximal tokens and the distant tokens

*For the sake of simplicity, we omit the subscripts for the attention heads here.
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for the token xi are calculated as follows†:

aPℓ,i =
Qℓ,i

[
Kℓ,[1,ns];Kℓ,[n−nr+1,n]

]T
√
d

, oP
ℓ,i = Softmax

(
aPℓ,i

) [
Vℓ,[1,ns];Vℓ,[n−nr+1,n]

]
,

aDℓ,i =
Qℓa,iK

T
ℓa,[ns+1,n−nr]√

d
, oD

ℓ,i = Softmax
(
aDℓ,i

)
Vℓ,[ns+1,n−nr],

(3)

where Qℓ,i represents the i-th row of Qℓ, Kℓ,[a,b] denotes the rows from the i-th to the j-th row
of Kℓ, inclusive of the boundaries. Additionally, ns (start size) and nr (recent size) represent the
number of initial and recent tokens within the proximal tokens, respectively. [·; ·] is the concatenation
operation. aPℓ,i ∈ R1×(ns+nr) is the attention inner product to the proximal tokens and oP

ℓ,i ∈ R1×d

is the attention output to the proximal tokens for the token xi. Notations for attention to the distant
tokens are similar.

Aggregation of attention output to proximal and distant tokens A parameter-free gating mech-
anism can integrate attention to proximal and distant tokens via‡

gℓ,i =

∑
expaPℓ,i∑

expaPℓ,i +
∑

expaDℓ,i
, oℓ,i = gℓ,i · oP

ℓ,i + (1− gℓ,i) · oD
ℓ,i. (4)

Figure 2-②is an example of parallel training with an attention mask.

2.3 EFFICIENT INFERENCE

Next, we will discuss strategies for optimizing memory usage and reducing computations for distant
tokens in long context large language model inference through the use of layer-sharing in attention
mechanisms.

KV cache memory footprint optimization As illustrated in Equation 3, the query and key states
are shared across layers within the same block for distant tokens. During inference, caching query
states is unnecessary, as they are not reused. Consequently, our method will reduce the memory
consumption of key states in the KV cache. Figure 2-③presents an example of KV cache changes.
In this case, the layers that share attention scores during decoding retain distant tokens only once;
for instance, only layer 1 retains the key states for x2 and x3, while layers 2 and 3 do not.

Computation optimization for distant tokens Empirical evidence suggests that in many situa-
tions, the prediction of the next token can be effectively accomplished without attending to distant
tokens. This is reflected in Equation 4, where gℓ,i approaches 1 in numerous cases. Based on this,
as shown in the top of Figure 2-③, for layers within a block that are not the lowest, we can preemp-
tively evaluate the value of gℓ,i. If gℓ,i ≥ τ (0 ≤ τ ≤ 1 is a hyperparameter), the computation of
attention for distant tokens can be omitted, thereby reducing computation for distant tokens.

3 EXPERIMENTS

In this section, we explore two key questions: 1) whether POD experiences performance degrada-
tion, and 2) whether POD improves efficiency in long-context inference.

Implementation details For the data, we sampled a total of 5B tokens from Dolma (Soldaini et al.,
2024) for post-training, ensuring that the total number of tokens in each length interval remains
consistent (GLM et al., 2024). For the model, we first initialized using LLaMA3-8B and conducted
post-training on the 5B tokens with a maximum sequence length of 32K, resulting in LLaMA3-8B-
32K. Subsequently, we initialized from LLaMA3-8B-32K and continued post-training on the same
5B tokens with a maximum sequence length of 32K, yielding the POD model with ns = 16 and
nr = 4080. The layer similarity threshold δ is set to 0.5, corresponding to saving 35% KV cache

†When there are no distant tokens for xi, attention to distant tokens does not exist.
‡The derivation process for calculating the gate is in the Appendix A.
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Figure 3: Searching results for a needle in a haystack

states. During training, the batch size was set to 4M tokens, with a learning rate of 1e-5 and a cosine
learning rate scheduler. Additionally, the base in the RoPE (Rotary Positional Embedding) (Su et al.,
2023) was increased to 16M+, as in Xiong et al. (2024). For the code implementation, we utilized
HuggingFace (Wolf et al., 2020) along with DeepSpeed (Rasley et al., 2020), incorporating ZeRO-
3 (Rajbhandari et al., 2020) and Ulysses (Jacobs et al., 2023) sequence parallelism techniques, and
employed efficient FlexAttention from PyTorch (Paszke et al., 2019).

Baselines We primarily consider the following three types of baselines:

• Token-selection-based methods: 1) SnapKV (Li et al., 2024): important tokens are selected based
on attention scores, and only these important tokens are cached during the prefilling phase. 2)
PyramidKV (Zhang et al., 2024b): this work extends SnapKV, where the number of tokens cached
at different layers varies. 3) Quest (Tang et al., 2024): this work does not reduce the size of the
KV cache, but instead reduces the number of tokens involved in the attention computation that are
read from the KV cache through an efficient token selection method.

• Token-eviction-based methods: 1) Window Attention (WA) (Beltagy et al., 2020): each token will
only attend to a limited number of neighboring tokens. 2) Window Attention + CPT (Continual
Pre-Training): continue pre-training LLaMA3-8B-32K on the same 5B tokens with window at-
tention. 3) StreamingLLM (Xiao et al., 2024): in addition to neighboring tokens, each token will
also attend to the initial few tokens. 4) LM-Infinite (Han et al., 2024): each token attends to the
same tokens as in StreamingLLM, but the position embeddings differ. 5) H2O: each token not
only focuses on neighboring tokens but also dynamically adds important tokens and removes less
significant tokens based on the attention scores during decoding.

• Layer-sharing-based methods: CLA (Brandon et al., 2024) reduces the KV cache by sharing key
and value states across adjacent layers.

3.1 PERFORMANCE EVALUATION

To evaluate the performance of POD, we conducted experiments in two fields: 1) Needle in a
Haystack and 2) Practical Long Context Benchmarks.

Needle in a Haystack The task places a random statement in the middle of a long context window
and asks the model to retrieve this statement. Figure 3 demonstrates the searching results of different
methods. We found that StreamingLLM and H2O fail when the needle is outside their predefined

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Evaluation results of different methods on two famous long context benchmarks

Model Window LongBench LEval
SQA MQA Summ Few-Shot Code Avg. Closed QA Summ Avg.

LLaMA3-8B-32K 32K 32.94 32.23 25.41 69.30 66.54 45.28 42.10 24.68 15.55 27.45

Token-selection-based methods
SnapKV 4K 31.76 31.85 21.92 68.62 66.72 44.17 39.86 23.90 13.53 25.76

PyramidKV 4K 33.34 31.51 23.76 68.91 66.36 44.78 42.10 22.63 12.96 25.90

Quest 4K 32.14 32.19 24.27 69.05 66.43 44.82 40.55 25.59 14.69 26.94

Token-eviction-based methods
LM-Infite 16+4080 28.83 28.95 21.74 68.12 66.54 42.84 37.32 22.80 13.91 24.68

StreamingLLM 16+4080 28.68 28.95 21.64 68.14 66.60 42.80 37.12 22.79 13.81 24.57

H2O 96+4000 29.36 29.51 22.73 68.45 66.17 43.24 37.15 23.18 13.48 24.60

WA 4K 8.90 3.63 9.05 11.13 41.08 14.76 20.95 5.57 2.79 9.77

WA + CPT 4K 26.94 27.95 22.29 66.60 66.10 41.97 32.94 22.09 12.55 22.52

Layer-sharing-based methods
CLA 32K 24.02 22.58 22.50 60.92 59.35 37.87 19.05 13.52 11.52 14.70

POD (ours) 16+4080+28K 30.97 32.43 24.82 67.30 68.26 44.75 43.59 22.95 15.00 27.18

POD+SnapKV (ours) 4K 30.98 32.68 22.90 66.90 67.79 44.25 43.07 22.12 14.32 26.50

window. In contrast, our method, which avoids token loss, performs similarly to dense models and
can locate nearly all the needles.

Long Context Benchmarks To ensure that POD can handle real-world tasks, we evaluated it
on two well-known long context benchmarks: LongBench (English version) (Bai et al., 2024) and
LEval (An et al., 2024). We test on 14 datasets within LongBench involving Single-document
QA, Multi-document QA, Summarization, Few-shot learning, and Code completion tasks. LEval
consists of 20 sub-tasks, divided into two groups: closed-domain and open-domain. The closed-
domain group primarily evaluates reasoning and comprehension over longer contexts, while the
open-domain group focuses on tasks such as summarization and question answering, which require
aggregating information from long documents.

Table 1 illustrates all experimental results. To ensure fairness, all baseline attention mechanisms
have the same window size. For POD, we also ensure that the number of proximal tokens each
token attends to is consistent with this window size.

We can draw the following conclusions: 1) POD outperforms token-eviction-based methods, demon-
strating that our approach of not losing tokens is indeed effective. 2) With a small amount of post-
training data, POD beats the classical layer-sharing-based method CLA, demonstrating that our
model has an advantage in adapting existing LLMs. 3) Both PoD and token-selection-based methods
can achieve performance comparable to the standard dense model. Furthermore, POD is orthogonal
to token-selection-based methods, and combining them can further reduce the size of the KV cache
while maintaining model performance.

3.2 EFFICIENCY EVALUATION
Table 2: Theoretical and practical memory foot-
print savings

Theoretical saving
Practical evaluation of maximum batch size b

x y LLaMA3-8B-32K POD

35%

2048 8192 25 33 (32.0% ↑)
4096 8192 13 17 (30.8% ↑)
8192 8192 6 8 (33.3% ↑)
16384 8192 3 4 (33.3% ↑)

Memory footprint The savings in memory
consumption can be analyzed from both the-
oretical and empirical perspectives. Theoreti-
cally, we can calculate the potential reduction
in KV cache size based on the layer-sharing
results obtained from offline analysis. Empir-
ically, we can conduct end-to-end evaluations
to assess the actual savings. Following Flex-
Gen (Sheng et al., 2023) and LCKV (Wu & Tu, 2024), for a prompt of length x, we let the model
generate y tokens, The maximum batch size b achievable on a given GPU will be used to assess the
memory requirements of the model. A larger b indicates that the model is more memory-efficient.
Table 2 presents the memory consumption results. We observe that POD achieves a more than 30%
increase in maximum batch size across varying input text lengths, closely aligning with our theoret-
ical KV cache savings rate of 35%, demonstrating that POD effectively reduces memory usage.
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Table 3: Optimized stage, KV cache saving, and
performance balance between different methods

Method Optimized Stage KV Cache Performance
Saving (%) Degradation (%)

Token-selection-based methods
SnapKV

Prefilling
87.5 4.3

PyramidKV 93.6 3.4

Quest Prefilling&Decoding 0.0 1.4

Token-eviction-based methods
LM-Infinite

Prefilling&Decoding 87.5

7.7

StreamingLLM 8.0

H2O 7.4

WA 65.9

WA+CPT 12.6

Layer-sharing-based methods
CLA

Prefilling&Decoding
50.0 31.4

POD (ours) 35.0 2.8

POD+SnapKV (ours) 91.9 3.1

Optimized stage, KV cache saving, and per-
formance balance In Table 3, we compare
different methods based on the optimized stage
(prefilling or decoding), the proportion of KV
cache saved, and the resulting performance
loss. From this, we can draw the following con-
clusions: 1) Token-eviction-based methods are
more efficient, as they are suitable for both pre-
filling and decoding and save a relatively large
amount of KV cache. However, they come with
a greater performance loss for the model. 2) To-
ken-selection-based methods (SnapKV & Pyra-
midKV) can significantly compress the KV
cache with minimal impact on model perfor-
mance, but they are only applicable to the prefilling stage. Quest, on the other hand, does not degrade
model performance and can be applied to both prefilling and decoding stages. However, it does not
reduce the size of the KV cache; instead, it reduces the KV cache load by limiting the model’s at-
tention to a selectively filtered subset of tokens. 3) Layer-selection-based methods can be applied
to both the prefilling and decoding stages. Our method incurs much less performance degradation
compared to the classical layer-sharing method, CLA. Furthermore, our method is orthogonal to
token-selection-based methods, and when the two are combined, the resulting model excels in three
aspects: optimized stage (applicable to both prefilling and decoding), KV cache saving (with a higher
compression rate), and maintaining model performance.

0.9 0.8 0.7 0.6 0.5
0

5

10

15

20

25

30

35
Computation saving
Performance loss

Figure 4: The computation
saving and performance loss
rates versus the gate threshold
τ mentioned in § 2.3.

Computation for distant tokens As is mentioned in § 2.3, the
attention output of a particular layer, is derived from the weighted
outputs of both proximal and distant tokens. The weighting coeffi-
cients can be obtained in advance using the shared attention scores
from the lower layer before applying attention to the distant tokens.
Therefore, when the weighting coefficient for the proximal tokens
is greater than τ , we consider the distant tokens to be irrelevant for
predicting the next token at the current decoding time in this layer,
allowing us to skip their computation.

Figure 4 shows the relationship between the ratio of computational
savings and performance loss on LEval and the value of τ . We
observe that as τ decreases, it becomes easier to ignore the compu-
tation for distant tokens, leading to greater computational savings, but with some performance loss.
However, when τ < 0.7, the performance degradation slows down while the computational savings
become more pronounced. Specifically, when τ = 0.7, a 25% reduction in computational cost is
achieved with only a 5% decrease in performance.

3.3 ADDITIONAL ANALYSIS

Scaling to longer context and other LLMs To explore the generality of our method, we con-
ducted experiments on LLaMA3.1-8B (Dubey et al., 2024), which can handle longer (128K) con-
texts. We sampled 5B tokens from the ProLong-data-512K (Gao et al., 2024) dataset and applied the
same hyperparameter configuration used for training LLaMA3-8B-32K to post-train LLaMA3.1-
8B with a sequence length of 128K. The evaluation results over 4 practical sub-tasks in the In-
finiteBench (Zhang et al., 2024a) under different context sizes are shown in Table 4.

Consistent with the conclusions found in Table 1, our method causes less performance degrada-
tion compared to token-eviction-based methods. However, a notable difference is that token-selec-
tion-based methods appear to struggle in maintaining model performance in longer context scenar-
ios. This limitation is also reflected in the combined model (POD+SnapKV), which integrates our
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Table 4: Evaluation results on InfiniteBench. OOM: out of memory over one A800-80G GPU

Model Window 32K 64K 128K Avg.
En.MC En.Summ Math.Find Code.Debug En.MC En.Summ Math.Find Code.Debug En.MC En.Summ Math.Find Code.Debug

LLaMA3.1-8B 128K 25.33 15.51 32.29 27.41 28.82 15.14 28.00 27.92 41.48 14.86 21.14 25.38 25.27

Token-selection-based methods
SnapKV 4K 26.64 13.26 32.28 27.41 27.07 11.69 28.00 27.92 34.50 13.65 21.05 26.65 24.18

PyramidKV 4K 25.76 15.01 32.29 27.39 28.82 15.18 28.00 27.92 OOM* OOM
Quest 4K 25.76 12.87 32.29 27.41 27.51 11.22 27.89 27.90 34.50 8.95 21.14 26.9 23.70

Token-eviction-based methods
LM-Infite 16+4080 26.64 12.46 32.11 27.31 28.82 12.64 26.89 27.91 29.26 13.01 21.14 26.63 23.74

StreamingLLM 16+4080 26.20 12.05 32.29 27.41 27.95 13.29 28.00 27.92 27.95 12.79 21.14 26.65 23.64

H2O 96+4000 26.20 13.08 32.29 27.41 27.95 14.31 28.00 27.91 OOM* OOM
WA 4K 3.49 0.53 0.00 10.41 3.06 0.65 0.00 10.66 3.49 0.70 0.00 9.64 3.55

WA + CPT 4K 36.79 11.31 18.57 28.43 38.47 10.78 17.71 28.68 39.36 11.26 17.71 28.17 23.94

Layer-sharing-based methods
CLA 32K 34.06 13.58 12.57 27.16 31.88 12.74 12.57 27.66 34.50 12.96 12.86 29.44 21.83

POD (ours) 16+4080+28K 33.12 16.42 24.71 26.65 37.17 15.60 21.71 26.14 40.61 15.05 22.29 25.89 25.45

POD+SnapKV (ours) 4K 29.26 12.89 27.71 26.65 37.12 12.56 21.71 26.14 31.00 13.23 22.29 25.89 23.87

method with token-selection-based methods, showing a decline in performance. This to some extent
indicates that our method is more robust to the context length.

Next, we explore two key hyperparameters in POD: the number of proximal tokens and the degree of
attention score sharing between layers, which is reflected in the KV cache savings rate. Starting from
the LLaMA3-8B-32K initialization, we continued training with 2B data to conduct experiments.

Relationship between model performance and numbers of proximal tokens As shown in the
left part of Figure 5, the performance of POD steadily improves with an increasing number of
proximal tokens. When the count reaches 4K tokens, training with 2B data achieves performance
that is acceptable compared to the LLaMA3-8B-32K trained with 5B data. Considering the trade-off
between performance and efficiency, we ultimately chose to use 4K proximal tokens.

Figure 5: Relationship between model perfor-
mance on LEval and two factors: proximal token
count and KV cache savings rate

Relationship between model performance
and KV cache savings rate As shown in
the right part of Figure 5, the performance of
POD decreases as the KV cache savings rate in-
creases. Considering the balance between per-
formance and efficiency, we ultimately chose
to compress the KV cache to 35%. This en-
sures POD to achieve performance comparable
to LLaMA3-8B-32K using the same training
data.

Case study In Figure 6, we provide four different representative cases to compare StreamingLLM,
H2O, and our POD. For case (a), The correct answer lies within the window of neighboring tokens,
allowing all methods to attend to it during decoding. As a result, all three methods can make accurate
predictions. For case (b), the answer is at the beginning, and both StreamingLLM and POD can
attend to it during decoding, resulting in correct predictions. However, for H2O, a long sequence of
irrelevant tokens following the answer causes it to mistakenly discard the initial answer, leading to
an incorrect prediction. For case (c), the answer is in the middle, and StreamingLLM cannot attend
to it during decoding, leading to an incorrect prediction. However, the text following the answer
and just before the question is related to the answer, allowing H2O to retain it within its attention
window, resulting in a correct prediction. POD, being able to attend to all tokens, also makes a
correct prediction. For case (d), only POD can answer the example in Needle in a Haystack since
the other two methods disregard the answer tokens.

4 RELATED WORK

Long context LLMs present substantial challenges in terms of memory consumption and latency
during inference, owing to their extensive parameter count and the long sequences they must process.
From the perspective of optimization, we roughly categorize the approaches as follows:

*We run the official code.
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"A equals B." + "C equals D." * 10000 + "Question: A equals? Answer:"

# StreamingLLLM: B.
# H2O: B equals?
# PoD: A equals B.

The answer is at the
beginning and H2O fails.

"C equals D." * 10000 + "A equals B." + "Question: A equals? 
Answer:"

# StreamingLLM: B.
# H2O: B
# PoD: B

The answer is within the recent tokens
window and all methods succeed.

"C equals D." * 7000 + "A equals B." + "A C A C" * 1500 + 
"Question: A equals? Answer:

# StreamingLLM: A equals A
# H2O: A equals B
# PoD: A equals B

The answer is at the middle while
H2O can save the answer tokens
by the similar bold italic ‘A’’ .

"Sun rises at the east." * 2500 + "The best thing to do in San Francisco 
is eat a sandwich and sit in Dolores Park on a sunny day." + "Sun sets at 
the west." * 2500 + "Question: What is the best thing to do in San 
Francisco? Answer:"

# StreamingLLM: Eat.
# H2O: Eat.
# PoD: The best thing to do in San 
Francisco is eat a sandwich and sit in 
Dolores Park on a sunny day.

An example in Needle in a Haystack

(a)

(b)

(c) (d)

Figure 6: Case study of different methods. s∗n means repeating n times of the string s. + represents
the concatenation of strings.
Reduce context computation Recent studies optimize context computation from two direc-
tions (Fu, 2024), i.e. prefilling and decoding. In the context of the prefilling phase, some work aims
to reduce the size of the generated KV cache by selectively caching only significant input tokens like
SnapKV (Li et al., 2024), PyramidKV (Zhang et al., 2024b), and LazyLLM (Fu et al., 2024). Mean-
while, MInference (Jiang et al., 2024a) and RetrievalAttention (Liu et al., 2024c) leverage the sparse
attention mechanisms inherent in transformers to minimize prefilling latency. Some approaches (Li
et al., 2023; Jiang et al., 2024b; Pan et al., 2024) also enhance efficiency by directly compressing
the length of the input prompts. This work is orthogonal to these approaches and primarily focuses
on optimizing the decoding phase.

In the context of the decoding phase, H2O (Zhang et al., 2023) drops insignificant tokens
from the KV cache based on the attention scores, whereas LM-Infite (Han et al., 2024) and
StreamingLLM (Xiao et al., 2024) retain only the most recent tokens along with several initial
tokens during each decoding step. While all these methods enhance efficiency, they also carry the
risk of discarding important tokens that are necessary for future text generation. This work aims to
enhance efficiency while ensuring that no tokens are overlooked.

Reduce hidden states dimension and quantize We also present an alternative line of methods,
including hidden size reduction and quantization, although these techniques are orthogonal to the
focus of our work. On the one hand, MQA (Shazeer, 2019) and GQA (Ainslie et al., 2023) reduce
the dimensionality of hidden states by grouping multiple heads of key-value pair states into a single
pair. MLA (Liu et al., 2024a) compresses a pair of key-value states into a low-rank latent vector. On
the other hand, AWQ (Lin et al., 2024) and QLLM (Liu et al., 2024d) convert model weights and
activations into low bit-width formats, thereby reducing memory usage and computational overhead.

Reduce redundancy between layers Another line of work closely related to ours aims to im-
prove efficiency by reducing redundancy between layers in transformers. LCKV (Wu & Tu, 2024),
CLA (Brandon et al., 2024), and MiniCache (Liu et al., 2024b) exploit key-value similarities be-
tween layers by sharing key-value states across layers. In comparison to these approaches, our
method has two main distinguishing features: 1) we leverage the similarity of attention scores be-
tween transformer layers (Xiao et al., 2019; Bhojanapalli et al., 2021) and scale the phenomenon
to LLMs and 2) unlike their sharing strategies, which involve adjacent layers or the final layer, our
sharing strategy is head-wise and derived from a search process.

5 CONCLUSION

In this work, we intend to improve the efficiency of LLMs. Previous window-based works suffer
from performance degradation due to token loss. Thanks to the observation of proximal tokens are
more important than distant tokens, we proposed POD, which allocates fewer resources by sharing
attention between similar layers for distant tokens. Evaluations reveal that POD can save 35% of KV
cache without sacrificing model performance. This approach not only optimizes resource allocation
but also offers a pathway for future improvements in LLM efficiency.
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Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: high-throughput generative inference of
large language models with a single gpu. In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Jha,
Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas

13

https://arxiv.org/abs/2409.10516
https://openreview.net/forum?id=FIplmUWdm3
https://openreview.net/forum?id=FIplmUWdm3
https://www.sciencedirect.com/science/article/pii/S0016003296000634
https://www.sciencedirect.com/science/article/pii/S0016003296000634
https://aclanthology.org/2024.findings-acl.57
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Muennighoff, Aakanksha Naik, Crystal Nam, Matthew Peters, Abhilasha Ravichander, Kyle
Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Evan Walsh,
Luke Zettlemoyer, Noah Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
and Kyle Lo. Dolma: an open corpus of three trillion tokens for language model pretraining re-
search. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 15725–15788, Bangkok, Thailand, August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.840. URL https://aclanthology.org/2024.
acl-long.840.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. QUEST:
Query-aware sparsity for efficient long-context LLM inference. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
KzACYw0MTV.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Qun Liu and David Schlangen (eds.), Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–
45, Online, October 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-demos.6. URL https://aclanthology.org/2020.emnlp-demos.6.

Haoyi Wu and Kewei Tu. Layer-condensed KV cache for efficient inference of large language
models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 11175–11188, Bangkok, Thailand, August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.602. URL https://aclanthology.org/2024.
acl-long.602.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Tong Xiao, Yinqiao Li, Jingbo Zhu, Zhengtao Yu, and Tongran Liu. Sharing attention weights for
fast transformer. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19, pp. 5292–5298. International Joint Conferences on Artificial Intelligence
Organization, 7 2019. doi: 10.24963/ijcai.2019/735. URL https://doi.org/10.24963/
ijcai.2019/735.

14

https://aclanthology.org/2024.acl-long.840
https://aclanthology.org/2024.acl-long.840
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2024.acl-long.602
https://aclanthology.org/2024.acl-long.602
https://openreview.net/forum?id=NG7sS51zVF
https://doi.org/10.24963/ijcai.2019/735
https://doi.org/10.24963/ijcai.2019/735


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Mar-
tin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madian Khabsa, Han Fang,
Yashar Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov,
Mike Lewis, Sinong Wang, and Hao Ma. Effective long-context scaling of foundation mod-
els. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 4643–4663, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.260. URL
https://aclanthology.org/2024.naacl-long.260.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Hao, Xu Han, Zhen
Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. ∞Bench: Extending long context evaluation
beyond 100K tokens. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 15262–15277, Bangkok, Thailand, August 2024a. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.814. URL https://aclanthology.org/
2024.acl-long.814.

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie
Hu, Wen Xiao, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=RkRrPp7GKO.

A APPENDIX

For token xi at the ℓ-th layer, we divide its context tokens into two groups: proximal tokens
TP = {j | xj is a proximal token} and distant tokens TD = {j | xj is a distant token}. The stan-
dard attention output to them is

oℓ,i =

∑
j∈TP∪TD

expajℓ,i ·Vℓ,j∑
j∈TP∪TD

expajℓ,i

=

∑
j∈TP

expajℓ,i ·Vℓ,j∑
j∈TP∪TD

expajℓ,i
+

∑
j∈TD

expajℓ,i ·Vℓ,j∑
j∈TP∪TD

expajℓ,i

=

∑
j∈TP

expajℓ,i∑
j∈TP∪TD

expajℓ,i
·

∑
j∈TP

expajℓ,i ·Vℓ,j∑
j∈TP

expajℓ,i
+

∑
j∈TD

expajℓ,i∑
j∈TP∪TD

expajℓ,i
·

∑
j∈TD

expajℓ,i ·Vℓ,j∑
j∈TD

expajℓ,i

=

∑
j∈TP

expajℓ,i∑
j∈TP∪TD

expajℓ,i
· oP

ℓ,i +

∑
j∈TD

expajℓ,i∑
j∈TP∪TD

expajℓ,i
· oD

ℓ,i.

(5)

Therefore, we set

gℓ,i =

∑
expaPℓ,i∑

expaPℓ,i +
∑

expaDℓ,i
. (6)

15

https://aclanthology.org/2024.naacl-long.260
https://aclanthology.org/2024.acl-long.814
https://aclanthology.org/2024.acl-long.814
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO

	Introduction
	Methodology
	Exploration of Offline Inter-Layer Attention Sharing
	Lightweight Training Adaptation
	Efficient Inference

	Experiments
	Performance Evaluation
	Efficiency Evaluation
	Additional Analysis

	Related Work
	Conclusion
	Appendix

