
RelayAttention for Efficient Large Language Model Serving
with Long System Prompts

Anonymous ACL submission

Abstract

Practical large language model (LLM) services001
may involve a long system prompt, which spec-002
ifies the instructions, examples, and knowledge003
documents of the task and is reused across nu-004
merous requests. However, the long system005
prompt causes throughput/latency bottlenecks006
as the cost of generating the next token grows007
w.r.t. the sequence length. This paper aims to008
improve the efficiency of LLM services that009
involve long system prompts. Our key obser-010
vation is that handling these system prompts011
requires heavily redundant memory accesses012
in existing causal attention computation algo-013
rithms. Specifically, for batched requests, the014
cached hidden states (i.e., key-value pairs) of015
system prompts are transferred from off-chip016
DRAM to on-chip SRAM multiple times, each017
corresponding to an individual request. To elim-018
inate such a redundancy, we propose RelayAt-019
tention, an attention algorithm that allows read-020
ing these hidden states from DRAM exactly021
once for a batch of input tokens. RelayAtten-022
tion is a free lunch: it maintains the generation023
quality while requiring no model retraining, as024
it is based on a mathematical reformulation of025
causal attention.026

1 Introduction027

After around one decade of rapid develop-028

ment (Sutskever et al., 2014; Vaswani et al., 2017;029

Radford et al., 2018; OpenAI, 2023b), we have ex-030

perienced a revolution of large language models031

(LLMs) over the past year. LLMs like GPT-4 (Ope-032

nAI, 2023b) and Gemini (Google, 2023b) are so033

powerful that they can now serve as programming034

copilots (Chen et al., 2021; GitHub, 2022), univer-035

sal chatbots (Google, 2023a; OpenAI, 2022), com-036

puter assistants (Microsoft, 2023a) and other roles037

that penetrate our daily life. However, the high038

inference cost of these large models has become a039

substantial obstacle to serving more people (Kwon040

et al., 2023). It is therefore important to improve041

Cache
Op

18

Context
Attention

160 31

Kernel launch overhead, 10 Relay Fusion, 3

System
Attention

Figure 1: Llama-30B attention inference latency w.r.t.
system prompt length (A40 GPU, batch size 32). We set
the length of (request-specific) contexts, which include
user prompts and previously generated tokens, to 128.

the hardware utilization so that LLMs can have a 042

higher throughput within a fixed hardware budget. 043

LLM services commonly use an application- 044

specific system prompt (OpenAI, 2023a) to specify 045

the task’s instructions. The system prompt is con- 046

catenated with the user prompt as the full input 047

to the LLM for response generation and is shared 048

by all requests to a service. The system prompt 049

becomes long if the service provider wants to pro- 050

vide detailed guidelines and examples for better 051

response quality or apply more restrictions/poli- 052

cies for ethical safety. As the sequence length that 053

LLMs can process grows (Anthropic, 2023; Chen 054

et al., 2023b; DeepSeek-AI et al., 2024), some 055

emerging professional applications, such as legal 056

analysis (Cui et al., 2023; Nay et al., 2023), health- 057

care applications (Steinberg et al., 2021; Rasmy 058

et al., 2021), and the shopping assistant example 059

shown in Fig. 2, may include one or more knowl- 060

edge documents to provide domain-specific knowl- 061

edge, resulting in even longer system prompts. Al- 062

though long system prompts are beneficial to im- 063

proving the generation quality or enabling new ap- 064

plications, they also pose a challenge to the LLM 065

1

RTX 4060 Ti (16GB) may be a good choice. It has 16 GB GDDR6 memory,
which supports running 7B LLMs locally in half-precision. It is now on sale at
only $399 ! You can get it [here](https://xxxxx/yyy).

Please suggest a GPU for deep learning research. My budget is $500.

<SYSTEM>
You are a helpful and respectful shopping assistant. For customer
inquires, provide suggestions faithfully according to the documents
provided here. When providing shopping suggestions, also attach
links to the suggested items.

Available items are listed below:
<DOC>
Item, status, price, link
[Item 1 specs]
[item 2 specs]
....
RTX 4060Ti (16GB), on sale, $399, https://xxxxx/yyy
....
</DOC>

Some conversation examples are given below:
<DOC>
[conversation example 1]
[conversation example 2]
...
</DOC>
</SYSTEM>

System
prompt

User
prompt

LLM
output

Figure 2: A system prompt may include instructions,
knowledge documents and few-shot examples. Here,
we use the shopping assistant as an example application.

service: the inference throughput and latency of the066

service can be heavily degraded, thus increasing067

the per-request cost. This is inherently caused by068

the causal attention, in which each new token is069

generated by “looking at” all precedent ones.070

In this paper, we propose a novel approach to071

mitigate the efficiency problem of using long sys-072

tem prompts in LLM services. Our key obser-073

vation is that there are not only redundant mem-074

ory footprint (Kwon et al., 2023) and computa-075

tions (Gim et al., 2023) corresponding to the sys-076

tem prompt, but also unnecessary memory accesses077

during causal attention computation. Specifically,078

while the system prompt is shared by all requests,079

its hidden states (i.e., key-value pairs) are read080

from DRAM multiple times by existing attention081

algorithms such as PagedAttention (Kwon et al.,082

2023) and FlashAttention (Dao et al., 2022; Dao,083

2023), each for an individual request in the batch.084

This severely slows down LLM inferences, which085

are known to be memory-bound (Section 3.2). To086

eliminate such redundant memory access, we pro-087

pose RelayAttention, an exact algorithm to com-088

pute causal attention based on a mathematical re-089

formulation of it. The key idea of RelayAtten-090

tion is to group the matrix-vector multiplications091

corresponding to the system prompt into matrix-092

matrix multiplications, which allow loading the093

hidden states of the system prompt from DRAM094

exactly once for all request tokens in a batch (Sec-095

tion 3.3). We provide an in-depth analysis of the096

theoretic speedup via redundancy reduction with097

IO-awareness (Section 3.4). Our empirical results 098

further verify the efficiency: integrating RelayAt- 099

tention into vLLM (Kwon et al., 2023), an already 100

highly optimized production-level LLM serving 101

system, we still observe up to 2.2× sustainable 102

request rate and 2.0× throughput with the Llama2- 103

7B model for a chatbot workload. Similar effi- 104

ciency improvements are also observed for several 105

other popular LLMs and are consistent on several 106

data center GPUs. The efficiency gains continue 107

growing with longer system prompts. 108

Our key contributions can be summarized as: 109

• We have identified a LLM service bottleneck that 110

has not been studied by existing works: there 111

are highly redundant memory accesses caused 112

by long system prompts. We anticipate that our 113

analysis will inspire more works on deep archi- 114

tectures with IO-awareness (Dao et al., 2022; Gu 115

and Dao, 2023). 116

• We propose RelayAttention, a novel approach to 117

compute exact causal attention. It allows access- 118

ing cached hidden states of the system prompt ex- 119

actly once for a batch of request tokens. We con- 120

duct an in-depth analysis of the theoretic speedup 121

brought by RelayAttention. 122

• We empirically verify the end-to-end efficiency 123

improvement by integrating RelayAttention into 124

vLLM, a production level LLM, and observe non- 125

trivial efficiency gains on several popular LLMs 126

with different GPUs. 127

2 Related Works 128

Our approach aims to improve the inference effi- 129

ciency of transformer-based LLMs (Section 2.1). 130

It is based on extending the widely used Key-Value 131

Cache mechanism (Section 2.2). We also briefly 132

review other techniques for accelerating LLM infer- 133

ence, which may complement ours (Section 2.3). 134

2.1 Inference of Transformer-based LLMs 135

The inference of these transformer-based LLMs fol- 136

lows the iterative next-token-prediction paradigm. 137

Specifically, the next token is generated in each 138

time step by attending to all precedent tokens. The 139

generated token is then appended to the end of the 140

current sequence. The generation then continues 141

until a stopping criterion (e.g., the new token is 142

<eos>, which indicates the end of the sequence) is 143

met. A basic approach to implementing such a gen- 144

eration procedure is to perform full self-attention 145

with a casual mask over the entire up-to-present 146

2

sequence at each time step, just as we do while147

training the model (Radford et al., 2018). This way,148

a single generation step takes a quadratic complex-149

ity w.r.t. the length of the up-to-present sequence.150

Next, we will look at how this complexity can be151

reduced to linear using the Key-Value Cache.152

2.2 Key-Value Cache153

Based on the observation that historical tokens are154

not affected by the future ones during LLM de-155

coding, Key-Value (KV) Cache avoids repetitive156

computation of the hidden key-value pairs (KVs)157

by caching them on the fly and then reusing the158

cached KVs in every subsequent steps (Yu et al.,159

2022; Pope et al., 2023). With KV Cache, in each160

time step, only a single token (i.e., the latest gener-161

ated one) is used as the query, and the next token162

is produced by attending to the cached KVs. The163

generation complexity thus reduces from quadratic164

to linear w.r.t. the up-to-date sequence length.165

Some recent research further accelerates LLM166

inferences by pruning superfluous KV cache167

data (Zhang et al., 2023) or compressing it (Liu168

et al., 2023) to reduce key-value pairs to be cached.169

However, these approaches introduce algebraic dis-170

crepancies between model training and inference.171

Hence, they may hurt the generation quality and/or172

require extra finetuning efforts. In contrast, our173

approach maintains generation quality and is plug-174

and-play, as it is based on a mathematical refor-175

mulation of causal attention . The acceleration176

of our approach comes from reducing redundant177

memory access of the KV cache. Therefore, it178

is orthogonal and complementary to prefix shar-179

ing in PagedAttention (Kwon et al., 2023), which180

eliminates redundant memory footprint of system181

prompts, and is unlike PromptCache (Gim et al.,182

2023), which eliminates the redundant computation183

of the reusable prefix KVs and thus only acceler-184

ates the prompt phase (Section 3.2).185

2.3 Other Optimizations for LLM Inference186

Besides the KV Cache, several other techniques187

optimize LLM inference in a post-training manner.188

For example, network quantization techniques can189

also be applied to LLMs as they are architecture-190

agnostic, even though they may need some adapta-191

tions to improve the generation stability and qual-192

ity (Frantar et al., 2022; Xiao et al., 2023; Lin et al.,193

2023). FlashAttention (Dao et al., 2022; Dao, 2023)194

is another technique to optimize LLMs’ through-195

puts on GPUs by avoiding redundant write/read of196

attention probability matrix into/from DRAM. A 197

production-level LLM serving system may also in- 198

clude continuous batching (Yu et al., 2022), which 199

enables iteration-level scheduling of requests, and 200

speculative sampling (Chen et al., 2023a; Leviathan 201

et al., 2023), which uses a smaller model to gener- 202

ate a draft and then uses the large model to check 203

and correct it. Our approach can work together 204

with these components with no conflicts. 205

3 Methdology 206

In this section, we elaborate on the proposed ap- 207

proach. We begin with a brief preliminary of the 208

hardware utilization of operators in Section 3.1, 209

followed by an analysis of the bottleneck in LLM 210

serving in Section 3.2, which shows that the re- 211

dundant memory access slows down the inference 212

especially when the system prompt is long. We 213

then introduce RelayAttention, a novel algorithm 214

to compute exact causal attention that allows the 215

elimination of the redundancy in Section 3.3. Fi- 216

nally, we analyze the theoretical acceleration of 217

RelayAttention over existing approaches from the 218

perspective of IO-awareness (Section 3.4). 219

3.1 Preliminary: The Latency of Operators 220

To increase the utilization of arithmetic units, mod- 221

ern processors use pipelining to allow concurrent 222

memory access and computation. For a perfectly 223

parallelized operator, which maximizes the over- 224

lap of data transfer and computation, the runtime 225

latency is determined by the larger one between 226

total memory access time and total computation 227

time. Given a processor that takes tm for per-byte 228

access, and tc for a floating operation on average, 229

the ratio r of the total computation time over the 230

total memory access time for an operator is: 231

r =
tc ×#floating operations
tm ×#byte access

= I × tc
tm
, (1) 232

where I is the arithmetic intensity of the operator: 233

I =
#floating operations

#byte access
. (2) 234

When I < tm
tc

, r is less than 1, the operator is 235

memory-bound. This means that the bottleneck of 236

the operator is memory access, and we can accel- 237

erate it only if we can reduce the memory access 238

time. The speed of modern GPUs far outpaces the 239

bandwidth of its memory (i.e., tc
tm
� 1), and thus 240

it typically requires a high arithmetic intensity to 241

3

...

: MatMul
: Query / Output : (Cached) Key / Value

: Attention weights

...
...

...

...

...
KV cache

Causal Attention

Feed Forward Network

KV cache

You<SYSTEM> ... <SYSTEM/> 4060

can

...Please $500 RTX

How ?... You

Ti

try

.

You<SYSTEM> ... <SYSTEM/>

: Data Transfer b/w RAMs

K

V
Q

Figure 3: A decoding step during the autoregressive generation phase. On the right side, we provide a closer view
of the attention computation with IO-awareness. Note that the floating operations are executed in the fast on-chip
SRAM, while the KVs are cached in the slow off-chip DRAM. As highlighted with the dashed boxes and red arrows,
(1) the computation mainly involves matrix-vector multiplications; and (2) while being shared by all requests, the
system KVs are transferred from DRAM to SRAM multiple times, each for one request.

achieve full utilization of the computing capability242

(e.g., A100-SXM4 GPU requires at least 38.2).243

For a half-precision (2 bytes/element) general244

matrix multiplication (GEMM) of problem size245

(m,n, k): C = ABT , where C ∈ Rm×n, A ∈246

Rm×k, B ∈ Rn×k, the arithmetic intensity is:247

Igemm =
2mnk

2(mk + nk +mn)
< min{m,n, k}.

(3)248

When m,n, k are all large (e.g., > 128), the oper-249

ation can saturate the utilization of the computing250

capability due to high arithmetic intensity. This251

is normally true for linear projection operations in252

LLM inference, where m is the number of tokens253

in a batch, k is the input hidden dimension, and n is254

the output hidden dimension. However, as a special255

case of GEMMs, the general matrix-vector product256

(GEMV) operation, in which there is a vector in257

A and B, is always memory-bound as Igemv < 1.258

This is the case for casual attention computation259

with cached KVs, as we will show in Section 3.2.260

3.2 Bottleneck of LLM Services261

Given a batch of user prompts, the LLM infer-262

ence is usually divided into two phases: the prompt263

phase, which computes the hidden states of the full264

prompts (i.e., the concatenation of system prompt265

and user prompts) and generates the first new to-266

kens; and the autoregressive generation phase,267

which generates all subsequent tokens sequentially,268

one token for each request at a time step. In this269

work, we focus our investigation on the autoregres-270

sive generation phase as it contains the hot spot of271

response generation1.272

1Besides, the prompt phase can effectively saturate GPU
utilization as it involves large matrix multiplications.

In Fig. 3, we demonstrate a time step during the 273

autoregressive generation phase, with the batch size 274

assumed to be 2. There are two key observations: 275

1. The computation of attention is memory- 276

bound. This is because the attention computa- 277

tion for a request mainly involves two GEMVs 278

(red dashed boxes in Fig. 3), with an arithmetic 279

intensity lower than 1. It thus requires memory 280

access reduction for acceleration. 281

2. There are redundant memory accesses in 282

the typical scenarios where a shared system 283

prompt is prepended to request-specific con- 284

texts. Specifically, the cached key-value pairs 285

of the shared system prompt (system KVs) are 286

read from off-chip DRAM multiple times, each 287

for a request in the batch (red arrows in Fig. 3). 288

Such redundancy becomes a substantial over- 289

head when the system prompt is long. 290

Section 3.3 proposes the core design of RelayAt- 291

tention for removing the redundant memory access. 292

3.3 LLM Serving with RelayAttention 293

The key idea of RelayAttention is to group multiple 294

matrix-vector multiplications between the batched 295

queries and the cached KVs into single matrix- 296

matrix multiplications, as shown in Fig. 4, allow- 297

ing system KVs to be read from DRAM exactly 298

once per batch. Algorithm 1 summarizes the algo- 299

rithm in Pytorch-like pseudo code. It divides the 300

computation of a causal attention layer into three 301

steps: system attention step, context attention step, 302

and relay fusion step. In the system attention and 303

context attention steps, we compute two interme- 304

diate attention outputs as if the LLM is prompted 305

by the shared system prompt / request-specific con- 306

text only. In the relay fusion step, we compute the 307

4

Step 1: System Attention

......

...

Context
KV cache

+

System
KV cache

...

Step 2: Context Attention Step 3: Relay Fusion

: MatMul

: Query / Output

: (Cached) Key / Value

: Attention weights

: Data Transfer b/w RAMs

Figure 4: The computation of RelayAttention. It is a mathematical reformulation of casual attention in Fig. 3, but
load the System KVs exactly once for a batch of requests (highlighted with red arrows).

Algorithm 1 Pseudocode for RelayAttention.

INPUT:
q: query tensor for new inputs , (b, m, h, d)
k: key tensor for new inputs , (b, m, h, d)
v: value tensor for new inputs , (b, m, h, d)
kv_cache: context KVs , (N, 2, b, l-s, h, d)
sys_kv_cache: sys. KVs , (N, 2, 1, s, h, d)
layer_id: the index of current layer , int
l_cache: the length of cached key -value , int
OUTPUT:
o: the output of causal attention

note: (1) we modified the interface of multi -head
attention to return the log -sum -exp (lse);
(2) the order of context attention and system
attention doesn't matter because of no dependency

context attention , as if there is no system prompt
k.size (1) = 1 in autoregressive generation phase
k.size (1) > 1 in prompt phase
l_new = l_cache + k.size (1)
kv_cache[layer_id , 0, l_cache:l_new , ...] = k
kv_cache[layer_id , 1, l_cache:l_new , ...] = v
o, lse = multihead_attention(

q, k_cache[layer_id , 0, :l_new , ...],
v_cache[layer_id , 1, :l_new , ...],
casual_mask=True)

system attention
bsz , len , nhead , dim = q.size()
q1 = q.view(1, bsz*len , nhead , dim)
k_sys , v_sys = sys_kv_cache[layer_id]. unbind(dim=0)
o_sys , lse_sys = multihead_attention(

q1, k_sys , v_sys)
o_sys = o_sys.view(bsz , len , nhead , dim)
lse_sys = lse_sys.view(bsz , len , nhead , 1)
relay fusion
alpha_sys = 1 / (1 + exp(lse - lse_sys))
alpha_usr = 1 - alpha_sys
o = o * alpha_usr + o_sys * alpha_sys

final output as a convex combination of the two308

intermediate outputs . Next, we show that RelayAt-309

tention is computing a mathematical reformulation310

of casual attention.311

Without loss of generality, we consider a single312

sequence in the batch and a single attention head.313

Formally, given an on-the-fly sequence R at gen-314

eration step t, we divide it into three segments (in315

order): (1) the system prompt of length s, (2) the316

user prompt of length u, and (3) the response gen-317

erated by the LLM of length t− 1. Let ki,vi ∈ Rd318

denote the hidden key, value embedding of the to-319

ken at position i ≤ l = s + u + t, and qt ∈ Rd320

denotes the hidden query embedding in the current321

step. The casual attention output ot is defined as: 322

ot = Attention(qt, {ki}li=1, {vi}li=1)

=

l∑
j=1

exp(qtkTj)

σ1→lt

vj ,
(4) 323

where σb→et =
∑e

j=b exp(qtkTj) is the sum-exp 324

between the start position b and end position e > b, 325

associated with qt. By splitting the summation 326

in Eq. (4) at position s, which is the end system 327

prompt, we have: 328

ot =
s∑
j=1

exp(qtkTj)

σ1→lt

vj +
l∑

j=s+1

exp(qtkTj)

σ1→lt

vj .

(5)

329

Consider the first term on the right side of Eq. (5). 330

As it is close to the Attention(·, ·, ·) operation in 331

Eq. (4), with only a difference in the numerator, it 332

can be rewritten as a rescaled attention: 333

σ1→st

σ1→lt

s∑
j=1

exp(qtkTj)

σ1→st

vj . (6) 334

This rescaling can also be applied to the second 335

term on the right side of Eq. (5), and thus ot is a 336

convex combination of two scaled attention terms: 337

ot =α
sys
t Attention(qt, {ki}si=1, {vi}si=1)+

αctxt Attention(qt, {ki}li=s+1, {vi}li=s+1),

(7)
338

where αsyst =
σ1→s
t

σ1→l
t

and αctxt =
σs+1→l
t

σ1→l
t

= 1 − 339

αsyst are the combination coefficients. 340

Discussion. Back to the view of a batch, the first 341

term in Eq. (7) for all concurrent requests, namely 342

system attention, can be grouped to use large ma- 343

trix multiplications. This essentially eliminates the 344

5

redundant access of system KVs as shown in Fig. 4.345

In practice, as the sum of exponentials σb→et is346

not numerically stable to compute directly, we use347

the log-sum-exp trick to return log(σb→et) in atten-348

tion computation, and the computation of αsyst is349

reformulated accordingly in Algorithm 1. While350

reformulating the casual attention, we did not as-351

sume step t 6= 1. This means that RelayAttention352

is also applicable to the prompt phase, where the353

input of a request is not a single token generated in354

the last step but contains multiple tokens from the355

user prompt, as reflected in Algorithm 1.356

Peripheral adaptations. There are two major357

adaptations needed to make RelayAttention work358

better within existing inference systems. First, in-359

stead of using a single KV cache for both the sys-360

tem prompt and the request-specific context, we use361

a separate system KV cache to store system KVs362

and fill it offline before model serving. This can be363

viewed as a combination of prefix sharing in Page-364

dAttention, which eliminates redundant memory365

footprint of system KVs, and PromptCache (Gim366

et al., 2023), which eliminates redundant compu-367

tation in the prompt phase. Second, as the system368

KVs are already computed offline, we add an offset369

of s (i.e., the length of the system prompt) in the370

position of those request-specific context tokens to371

make sure of correct position embedding.372

3.4 Theoretical Speedup373

In this section, to derive the theoretical speedup of374

RelayAttention by the memory access reduction,375

we analyze the memory access during the attention376

computation of an autoregressive generation step.377

Without RelayAttention, given a batch of b re-378

quest tokens, the number of elements n to transfer379

between DRAM and SRAM is:380

n = bd︸︷︷︸
queries

+ b(s+ c)d︸ ︷︷ ︸
cached KVs

+ bd︸︷︷︸
outputs

, (8)381

where d is the embedding dimension, s is the length382

of the shared system prompt, and c is the length383

of request-specific context. With RelayAttention384

enabled, the number of elements to access n′ is:385

n′ = (bd+ sd+ bd)︸ ︷︷ ︸
system attetion

+(bd+ bcd+ bd)︸ ︷︷ ︸
context attention

+ 3bd︸︷︷︸
relay fusion

.

(9)386

Therefore, the speedup p is:387

p =
n

n′
=

s+ c+ 2

s/b+ c+ 7
. (10)388

0 1000 2000 3000 4000
System Prompt Length (#toks)

2

4

6

8

10

12

14

16

R
el

at
iv

e
sp

ee
du

p

Theorectical
Practical

Figure 5: The theoretical and practical speedups for
casual attention computation with RelayAttention. We
set the batch size to 32 and context length to 128, and
plot the speedup w.r.t. the length of the system prompt.
A40 GPU is used.

In Fig. 5, we plot the speedup brought by using Re- 389

layAttention. The small gap between the practical 390

and theoretical curves verifies our analysis. 391

Though the speedup of standalone RelayAtten- 392

tion can be analyzed, it is still a question of how an 393

end-to-end LLM serving system can benefit from 394

RelayAttention. In Section 4, we provide an empir- 395

ical study to answer this question. 396

4 Experiments 397

In this section, we conduct experiments to answer 398

the question of how much our approach can help 399

an end-to-end LLM serving system. We provide 400

the experimental setup in Section 4.1. Our major 401

evaluation is conducted with consideration of two 402

scenarios: noninteractive batch processing (Sec- 403

tion 4.2) and interactive service (Section 4.3). We 404

use the Llama2-7B model (Touvron et al., 2023) for 405

evaluation unless stated otherwise. We demonstrate 406

the improvement for more models in Section 4.4. 407

4.1 Experimental Setup 408

Data. Two datasets are used in our eval- 409

uation: ShareGPTv3 (ShareGPT, 2023) and 410

MMLU (Hendrycks et al., 2021). SharedG- 411

PTv3 (ShareGPT, 2023) contains 53k real conver- 412

sions between users and ChatGPT (OpenAI, 2022). 413

MMLU is a benchmark for measuring massive mul- 414

titask language understanding in few-shot settings. 415

It consists of 57 tasks covering various subjects and 416

domains, such as mathematics, history, law, and 417

medicine. Each subject/task contains a series of 418

single-choice questions, and 5 extra questions with 419

answers (as few-shot examples). The statistics of 420

the benchmarking data are summarized in Table 1. 421

Hardware. Our experiments involve three GPUs: 422

6

(c) A100-SXM4-80GB throughput

vLLM-RA (ours)vLLM-PSvLLM

Th
ro

ug
hp

ut
 (t

ok
 /

s)

(a) Nvidia A40 throughput (b) A100-PCIE-40GB througput

Figure 6: Throughput w.r.t. system prompt length during the noninteractive processing of ShareGPTv3 dataset.

Sys. prompt len. User prompt len. Generation len.

ShareGPTv3 64-2048 4-1024 4-2013
MMLU 379-2895 55-1219 32

Table 1: Data for benchmarking. Lengths are measured
in token.

Memory Mem. Band. FP16 Peak F. Price

A40 48 GB 696 GB/s 37.4 TFLOPs $0.40/hr
A100-PCIE-40GB 40 GB 1,555 GB/s 77.9 TFLOPs $0.90/hr

A100-SXM4-80GB 80 GB 2,039 GB/s 77.9 TFLOPs $1.84/hr

Table 2: The specifications of the GPUs used in our
experiments. Prices are from vast.ai.

A40, A100-PCIE-40GB, and A100-SXM4-80GB.423

However, A40 is used unless stated otherwise. The424

hardware specifications are listed in Table 2.425

Three Approaches used for comparison:426

• vLLM 2: a state-of-the-art open-source LLM427

inference system designed for high throughput428

LLM serving. Note that the core component429

of vLLM, PagedAttention (Kwon et al., 2023),430

allows storing the shared system KVs exactly431

once by the prefix sharing technique mentioned432

in their paper, but this technique is not included433

in the public code release. Considering the impor-434

tance to save memory for a higher concurrency,435

we implement a stronger baseline, vLLM-PS as436

specified below.437

• vLLM-PS: the augmented version of vLLM im-438

plemented by us. It integrates not only prefix439

sharing but also PromptCache (Gim et al., 2023),440

which precomputes the system KVs and reuses441

them to mitigate the burden of the prompt phase.442

Therefore, vLLM-PS eliminates both redundant443

memory footprint and unnecessary computations444

of system KVs.445

• vLLM-RA (ours): the modfied vLLM with446

our RelayAttention integrated. Compared with447

vLLM-PS, this version further eliminates the re-448

dundant memory accesses of system KVs, as dis-449

cussed in Section 3.3.450

2https://github.com/vllm-project/vllm

Accuracy GPU vLLM vLLM-PS vLLM-RA

1-shot 37.6%
A100-80G 502 336(↓33%) 306(↓39%)
A40-48G 1012 675(↓33%) 621(↓39%)

3-shot 41.3%
A100-80G 851 378(↓55%) 311(↓63%)
A40-48G 1751 752(↓57%) 629(↓64%)

5-shot 43.2%
A100-80G 1308 432(↓67%) 316(↓76%)
A40-48G 2660 850(↓68%) 641(↓76%)

Table 3: MMLU few-shot acc. and processing time (s).

4.2 Noninteractive Batch Processing 451

For the non-interactive batch processing scenar- 452

ios where users just submit their jobs to the LLM 453

services and harvest the processing results later, 454

we consider the throughput (number of tokens per 455

second) and processing time as the key metrics. 456

We plot the throughputs w.r.t. the length of sys- 457

tem prompt for processing ShareGPTv3 on the 458

three GPUs in Fig. 6. For vLLM, the throughputs 459

degrade heavily as the system prompt becomes 460

long for two reasons: (1) the system prompt occu- 461

pies too much memory, and thus heavily limits the 462

batch size/concurrency of decoding; (2) it takes too 463

much time to handle long system prompts during 464

causal attention computation. With prefixing shar- 465

ing, vLLM-PS solves the first problem and achieves 466

up to 108% improvement on the throughput. Our 467

vLLM-RL further solves the second problem and 468

increases the throughput to 1.06× to 4.36× of 469

vLLM. Table 3 shows results of the few-shot test 470

on MMLU. We can see that using a long system 471

prompt to include more examples is crucial for im- 472

proving accuracy. In the case of the 5-shot test, our 473

vLLM-RA provides a 76% reduction of processing 474

time on both A40 and A100-SXM4-80GB GPUs. 475

4.3 Interactive Serving 476

An important LLM application is chatbots (Ope- 477

nAI, 2022; Google, 2023a), in which interactive 478

LLM services are typically provided. Unlike the 479

noninteractive scenario, though we still expect a 480

high throughput for good hardware utilization, we 481

also care about the normalized latency (i.e., average 482

7

https://github.com/vllm-project/vllm

Th
ro

ug
hp

ut
(r

eq
 /

s)
N

or
m

al
iz

ed
 la

te
nc

y
(s

/to
ke

n)

vLLM-RA (ours)vLLM-PSvLLM

(a) System prompt length = 512 (b) System prompt length = 1024 (c) System prompt length = 2048

Figure 7: Benchmark interactive serving with requests sampled from the ShareGPTv3 dataset.

per-token latency), which is crucial for user expe-483

rience. Following PagedAttention (Kwon et al.,484

2023), we sample 1000 requests from the ShareG-485

PTv3 dataset to benchmark the efficiency. The486

request arrival times are generated using Poisson487

distribution with different request rates.488

As shown in Fig. 7, as the request rate increases,489

the throughput grows gradually until reaching a490

maximum. In contrast, the latency remains low491

at the beginning and then goes up steeply when492

the highest throughput is achieved. Around the493

latency of 0.5s/token, where the user experience494

and hardware utilization is balanced, vLLM-RA495

sustains higher request rates than both vLLM and496

vLLM-PS with clear margins (up to ∼ 2.2× when497

the system prompt length is 2048).498

4.4 The Improvement for More Models499

To verify the efficiency improvement for more500

models, we choose several other popular LLMs501

such as Llama2-13B, Llama-30B, Phi-2 (Microsoft,502

2023b), and Mistral-7B (Jiang et al., 2023) to run503

the noninteractive batch processing of ShareGPTv3.504

As shown in Table 4, vLLM-RA also provides con-505

sistent improvements for these LLMs.506

5 Limitations and Future Work507

The limitations of RelayAttention can be reflected508

by the theoretical speedup (Eq. (10)). First, it helps509

batched inference (b > 1). The larger the batch510

size, the more efficient RelayAttention is. When511

there is only one request, which is the typical case512

on device-side applications, RelayAttention does513

not help. Therefore, RelayAttention is suitable for514

cloud-serving scenarios. Second, when the request-515

specific contexts (including user prompts and re-516

vLLM vLLM-PS vLLM-RA

system prompt length = 512

Llama2-13B 0.99 1.44 (↑45%) 1.71 (↑73%)
Llama-30B† 2.15 3.01(↑40%) 3.65(↑70%)
Phi-2 (2.7B) 5.03 6.29 (↑25%) 8.85(↑76%)
Mistral-7B 3.68 5.40 (↑47%) 5.90(↑60%)

system prompt length = 1024

Llama2-13B 0.66 1.23(↑86%) 1.69(↑156%)
Llama-30B† 1.52 2.55(↑68%) 3.64(↑139%)
Phi-2 (2.7B) 3.54 4.82(↑36%) 8.76(↑147%)
Mistral-7B 2.60 4.92(↑89%) 5.85(↑125%)

Table 4: Throughput (req/s) of different models during
the batch processing of the ShareGPTv3 dataset. †: the
30B model is hosted on two A100-SXM4-80GB GPUs.

sponses) are long (e.g., 2× longer than the shared 517

system prompt), the computation time is dominated 518

by the processing of them; thus the efficiency gain 519

will diminish. However, as the context length has a 520

long-tailed distribution in many applications (e.g., 521

chatbots), where the majority of user prompts and 522

responses are short, the efficiency gain brought by 523

RelayAttention is still considerable. In future work, 524

we will explore more applications by customizing 525

a LLM with long system prompts. 526

6 Conclusion 527

In this paper, we have identified a bottleneck of us- 528

ing long system prompts in LLM services: there are 529

highly redundant memory accesses corresponding 530

to those system KVs. We have proposed Relay- 531

Attention to compute exact causal attention while 532

removing the redundant memory accesses. An anal- 533

ysis of the theoretical speedup of RelayAttention 534

is provided. Extensive experiments over different 535

GPUs, models, and datasets empirically verify the 536

efficiency gains brought by RelayAttention. 537

8

References538

Anthropic. 2023. https://www.anthropic.com/in539
dex/100k-context-windows.540

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,541
Jean-Baptiste Lespiau, Laurent Sifre, and John542
Jumper. 2023a. Accelerating large language model543
decoding with speculative sampling. arXiv preprint544
arXiv:2302.01318.545

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming546
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-547
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,548
Greg Brockman, et al. 2021. Evaluating large549
language models trained on code. arXiv preprint550
arXiv:2107.03374.551

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,552
Zhijian Liu, Song Han, and Jiaya Jia. 2023b. Lon-553
glora: Efficient fine-tuning of long-context large lan-554
guage models. arXiv preprint arXiv:2309.12307.555

Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and556
Li Yuan. 2023. Chatlaw: Open-source legal large557
language model with integrated external knowledge558
bases. arXiv preprint arXiv:2306.16092.559

Tri Dao. 2023. Flashattention-2: Faster attention with560
better parallelism and work partitioning. arXiv561
preprint arXiv:2307.08691.562

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and563
Christopher Ré. 2022. Flashattention: Fast and564
memory-efficient exact attention with io-awareness.565
Advances in Neural Information Processing Systems,566
35:16344–16359.567

DeepSeek-AI, :, Xiao Bi, Deli Chen, Guanting568
Chen, Shanhuang Chen, Damai Dai, Chengqi Deng,569
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu,570
Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge,571
Kang Guan, Daya Guo, Jianzhong Guo, Guangbo572
Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan573
Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li,574
Y. K. Li, Wenfeng Liang, Fangyun Lin, A. X. Liu,575
Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan576
Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, Shirong Ma,577
Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu,578
Tongzheng Ren, Zehui Ren, Chong Ruan, Zhangli579
Sha, Zhihong Shao, Junxiao Song, Xuecheng Su,580
Jingxiang Sun, Yaofeng Sun, Minghui Tang, Bingx-581
uan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang,582
Yongji Wang, Tong Wu, Y. Wu, Xin Xie, Zhenda Xie,583
Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu,584
Yanhong Xu, Dejian Yang, Yuxiang You, Shuiping585
Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong586
Zhang, Liyue Zhang, Mingchuan Zhang, Minghua587
Zhang, Wentao Zhang, Yichao Zhang, Chenggang588
Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou,589
Qihao Zhu, and Yuheng Zou. 2024. Deepseek llm:590
Scaling open-source language models with longter-591
mism.592

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and593
Dan Alistarh. 2022. Gptq: Accurate post-training594

quantization for generative pre-trained transformers. 595
arXiv preprint arXiv:2210.17323. 596

In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, 597
Anurag Khandelwal, and Lin Zhong. 2023. Prompt 598
cache: Modular attention reuse for low-latency infer- 599
ence. arXiv preprint arXiv:2311.04934. 600

GitHub. 2022. Github copilot. https://github.com 601
/features/copilot. 602

Google. 2023a. https://bard.google.com. 603

Google. 2023b. Gemini - google deepmind. https: 604
//deepmind.google/technologies/gemini. 605

Albert Gu and Tri Dao. 2023. Mamba: Linear-time 606
sequence modeling with selective state spaces. arXiv 607
preprint arXiv:2312.00752. 608

Dan Hendrycks, Collin Burns, Steven Basart, Andy 609
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein- 610
hardt. 2021. Measuring massive multitask language 611
understanding. Proceedings of the International Con- 612
ference on Learning Representations (ICLR). 613

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 614
sch, Chris Bamford, Devendra Singh Chaplot, Diego 615
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 616
laume Lample, Lucile Saulnier, et al. 2023. Mistral 617
7b. arXiv preprint arXiv:2310.06825. 618

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 619
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 620
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 621
memory management for large language model serv- 622
ing with pagedattention. In Proceedings of the 29th 623
Symposium on Operating Systems Principles, pages 624
611–626. 625

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 626
2023. Fast inference from transformers via spec- 627
ulative decoding. In International Conference on 628
Machine Learning, pages 19274–19286. PMLR. 629

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, 630
Xingyu Dang, and Song Han. 2023. Awq: Activation- 631
aware weight quantization for llm compression and 632
acceleration. arXiv preprint arXiv:2306.00978. 633

Yuhan Liu, Hanchen Li, Kuntai Du, Jiayi Yao, Yi- 634
hua Cheng, Yuyang Huang, Shan Lu, Michael 635
Maire, Henry Hoffmann, Ari Holtzman, et al. 2023. 636
Cachegen: Fast context loading for language model 637
applications. arXiv preprint arXiv:2310.07240. 638

Microsoft. 2023a. https://www.microsoft.com/en 639
-us/windows/copilot-ai-features. 640

Microsoft. 2023b. https://www.microsoft.com/en 641
-us/research/blog/phi-2-the-surprising-p 642
ower-of-small-language-models/. 643

John J Nay, David Karamardian, Sarah B Lawsky, Went- 644
ing Tao, Meghana Bhat, Raghav Jain, Aaron Travis 645
Lee, Jonathan H Choi, and Jungo Kasai. 2023. Large 646
language models as tax attorneys: A case study 647

9

https://www.anthropic.com/index/100k-context-windows
https://www.anthropic.com/index/100k-context-windows
https://www.anthropic.com/index/100k-context-windows
http://arxiv.org/abs/2401.02954
http://arxiv.org/abs/2401.02954
http://arxiv.org/abs/2401.02954
http://arxiv.org/abs/2401.02954
http://arxiv.org/abs/2401.02954
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://bard.google.com
https://deepmind.google/technologies/gemini
https://deepmind.google/technologies/gemini
https://deepmind.google/technologies/gemini
https://www.microsoft.com/en-us/windows/copilot-ai-features
https://www.microsoft.com/en-us/windows/copilot-ai-features
https://www.microsoft.com/en-us/windows/copilot-ai-features
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/

in legal capabilities emergence. arXiv preprint648
arXiv:2306.07075.649

OpenAI. 2021. https://openai.com/research/tr650
iton.651

OpenAI. 2022. https://openai.com/blog/chatgp652
t.653

OpenAI. 2023a. https://openai.com/blog/custom654
-instructions-for-chatgpt.655

OpenAI. 2023b. GPT-4 technical report. CoRR,656
abs/2303.08774.657

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,658
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan659
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-660
ciently scaling transformer inference. Proceedings661
of Machine Learning and Systems, 5.662

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya663
Sutskever, et al. 2018. Improving language under-664
standing by generative pre-training.665

Laila Rasmy, Yang Xiang, Ziqian Xie, Cui Tao, and666
Degui Zhi. 2021. Med-bert: pretrained contextual-667
ized embeddings on large-scale structured electronic668
health records for disease prediction. NPJ digital669
medicine, 4(1):86.670

ShareGPT. 2023. https://sharegpt.com/.671

Ethan Steinberg, Ken Jung, Jason A Fries, Conor K672
Corbin, Stephen R Pfohl, and Nigam H Shah. 2021.673
Language models are an effective representation674
learning technique for electronic health record data.675
Journal of biomedical informatics, 113:103637.676

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.677
Sequence to sequence learning with neural networks.678
Advances in neural information processing systems,679
27.680

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-681
bert, Amjad Almahairi, Yasmine Babaei, Nikolay682
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti683
Bhosale, et al. 2023. Llama 2: Open founda-684
tion and fine-tuned chat models. arXiv preprint685
arXiv:2307.09288.686

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob687
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz688
Kaiser, and Illia Polosukhin. 2017. Attention is all689
you need. Advances in neural information processing690
systems, 30.691

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,692
Julien Demouth, and Song Han. 2023. Smoothquant:693
Accurate and efficient post-training quantization for694
large language models. In International Conference695
on Machine Learning, pages 38087–38099. PMLR.696

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-697
jeong Kim, and Byung-Gon Chun. 2022. Orca: A698
distributed serving system for {Transformer-Based}699
generative models. In 16th USENIX Symposium700

on Operating Systems Design and Implementation 701
(OSDI 22), pages 521–538. 702

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong 703
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan- 704
dong Tian, Christopher Ré, Clark Barrett, et al. 2023. 705
H _2 o: Heavy-hitter oracle for efficient generative 706
inference of large language models. arXiv preprint 707
arXiv:2306.14048. 708

A Implementation of RelayAttention 709

Reformulation of relay fusion. As mentioned 710

in Section 3.3, we use the log-sum-exp trick to 711

handle the numerical instability of the denominator 712

in Softmax operation. The combination coefficient 713

for the system attention term in Eq. (7), αsyst , is 714

reformulated accordingly as: 715

αsyst =
σ1→st

σ1→lt

=
σ1→st

σ1→st + σs+1→l
t

=
exp(β1→st)

exp(β1→st) + exp(βs+1→l
t)

=
1

1 + exp(βs+1→l
t − β1→st)

,

(11) 716

where 717

βb→et = log(σb→et) = log(
e∑
j=b

exp(qtkTj)) (12) 718

is the log-sum-exp. 719

Implementation details. RelayAttention can be 720

built up on existing efficient attention kernels with 721

minimal adaptations. For the system attention in- 722

volving the system prompt of non-growing static 723

length, we use off-the-shelf FlashAttention ker- 724

nels (Dao, 2023), which natively return the log- 725

sum-exp required for computation of combination 726

coefficients in Eq. (7). For the context attention that 727

needs to handle the growing request-specific con- 728

texts, we use PagedAttention (Kwon et al., 2023) 729

kernels for efficient memory management and mod- 730

ify these kernels to return log-sum-exp. We im- 731

plement a single fused kernel with OpenAI Tri- 732

ton (OpenAI, 2021) for the relay fusion step, which 733

involves multiple element-wise operations. 734

B System Level Design of vLLM-RA 735

As mentioned in Section 3.3, it is easy to integrate 736

RelayAttention into existing inference system with 737

the replacement of attention computation function 738

and several peripheral adaptations. In Fig. 9, we 739

summarize the system level design of vLLM-RA 740

in a comparison with vLLM. 741

10

https://openai.com/research/triton
https://openai.com/research/triton
https://openai.com/research/triton
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/custom-instructions-for-chatgpt
https://openai.com/blog/custom-instructions-for-chatgpt
https://openai.com/blog/custom-instructions-for-chatgpt
https://doi.org/10.48550/ARXIV.2303.08774
https://sharegpt.com/

vLLM-RA (ours)vLLM-PSvLLM

(a) user prompt len. 64, generation len. 128 (b) user prompt len. 128, generation len. 256 (c) user prompt len. 256, generation len. 512

Th
ro

ug
hp

ut
 (t

ok
 /

s)

Figure 8: Throughput w.r.t. system prompt length with synthetic workloads.

Run LLM inference
w/ PagedAttention

Allocate empty KV
cache blocks (for
request-specific

contexts)

Allocate and prefill
system KV cache

Allocate empty KV
cache blocks

Shift the pos. by ;
 run LLM inference
w/ RelayAttention

Offline Preparation Online Serving

 : number of layers
 : sys. prompt length
 : number of heads
 : head dimension

Figure 9: Comparison of the system level design of
vLLM (top) and vLLM-RA (bottom). The modifications
of vLLM-RA are highlighted in red.

C More Information of The Datasets742

The ShareGPTv3 dataset contains both user743

prompts and LLM responses. The distributions of744

the length are plotted on the top of Fig. 10. We use745

synthesized system prompts during benchmarking746

with this dataset.747

For the MMLU dataset, we use the provided few-748

shot examples as system prompts and the questions749

as user prompts. The generation length is set to750

32 and we extract the answer in A, B, C, D as751

the first capital letter in the responses. The length752

distributions of system prompts and user prompts753

are shown in Fig. 10 bottom.754

D Benchmark with Synthetic Workloads755

In the section, we benchmark the efficiency with756

synthetic workloads, where the user prompt length757

and the generation length are both fixed for all758

requests. Though this is far from real-world sce-759

narios, it is useful to test the limit of an LLM serv-760

ing system because such perfectly length-aligned761

requests eliminate the burden of scheduling. We762

adopt three combinations of user prompt length763

and generation length, (64, 128), (128, 256), and764

(256, 512) for benchmarking, and plot the trend765

of throughput w.r.t. the system prompt lenth in766

Figure 10: Distribution of the two datasets: ShareG-
PTv3 (top) and MMLU (bottom).

Fig. 8. Notably, in the most challenging case 767

where the request-specific contexts have a length 768

of 256 + 512 = 768, RelayAttention still provides 769

an up to 2.2× speedup when the system prompt 770

length is 2048. 771

11

	Introduction
	Related Works
	Inference of Transformer-based LLMs
	Key-Value Cache
	Other Optimizations for LLM Inference

	Methdology
	Preliminary: The Latency of Operators
	Bottleneck of LLM Services
	LLM Serving with RelayAttention
	Theoretical Speedup

	Experiments
	Experimental Setup
	Noninteractive Batch Processing
	Interactive Serving
	The Improvement for More Models

	Limitations and Future Work
	Conclusion
	Implementation of RelayAttention
	System Level Design of vLLM-RA
	More Information of The Datasets
	Benchmark with Synthetic Workloads

