
Published in Transactions on Machine Learning Research (02/2026)

LVLM-Count: Enhancing the Counting Ability of Large
Vision-Language Models

Muhammad Fetrat Qharabagh m2fetrat@uwaterloo.ca
Cheriton School of Computer Science
University of Waterloo

Mohammadreza Ghofrani
Independent Researcher

Kimon Fountoulakis kimon.fountoulakis@uwaterloo.ca
Cheriton School of Computer Science
University of Waterloo

Reviewed on OpenReview: https: // openreview. net/ forum? id= G1i9MUQj63

Abstract

Counting is a fundamental operation for various real-world visual tasks, requiring both object
recognition and robust counting capabilities. Despite their advanced visual perception, large
vision-language models (LVLMs) are known to struggle with counting tasks. In this work,
we evaluate the performance of several LVLMs on visual counting tasks across multiple
counting and vision datasets. We observe that while their performance may be less prone
to error for small numbers of objects, they exhibit significant weaknesses as the number of
objects increases. To alleviate this issue, we propose a simple yet effective baseline method
that enhances LVLMs’ counting ability for large numbers of objects using a divide-and-
conquer approach. Our method decomposes counting problems into sub-tasks. Moreover,
it incorporates a mechanism to prevent objects from being split during division, which
could otherwise lead to repetitive counting—a common issue in a naive divide-and-conquer
implementation. We demonstrate the effectiveness of this approach across various datasets
and benchmarks, establishing it as a valuable reference for evaluating future solutions.

1 Introduction

Counting is a key cognitive task with broad applications in industry, healthcare, and environmental monitoring
(De Almeida et al., 2015; Guerrero-Gómez-Olmedo et al., 2015; Paul Cohen et al., 2017; Lempitsky & Zisserman,
2010). It improves manufacturing, inventory, and quality control, ensures safety in medical settings, and helps
manage resources in environmental efforts (Wang & Wang, 2011; Zen et al., 2012; Arteta et al., 2016). These
applications often require distinguishing between objects of the same class with subtle variations, as well
as recognizing complex concepts. Models trained solely on counting datasets struggle to generalize to such
scenarios due to the limited availability of annotated data for fine-grained counting. Recent advancements in
large vision-language models (LVLMs), such as GPT-4o (Achiam et al., 2023), combined with the massive
scale of web-scraped training data, have enabled unprecedented zero-shot recognition capabilities, making
them a promising candidate for handling complex and fine-grained counting tasks. However, evaluations of
LVLMs have also revealed notable weaknesses in their numerical reasoning (Yin et al., 2023; Xu et al., 2024;
Yang et al., 2023).

In this work, we focus specifically on the visual counting, one of the most fundamental aspects of numerical
reasoning. We observe that although LVLMs perform well in counting small numbers of objects—typically
fewer than 20—their accuracy deteriorates with larger quantities. Inspired by prior work on the rapid and

1

https://openreview.net/forum?id=G1i9MUQj63

Published in Transactions on Machine Learning Research (02/2026)

Figure 1: Illustration of our proposed pipeline. First, an expression (E) describing the area of interest is
extracted from the prompted question (Q), such as “brown eggs”. The expression is extracted using a large
language model (LLM) which is the same as LVLM in our work. Then, E and the image are provided as
input to a grounding model, such as the one by Liu et al. (2023) to detect the area of interest. Second, any
objects corresponding to E are segmented. Third, in the object-aware division step, we use the segmentation
masks to divide the detected area of interest without cutting through the objects of interest. Finally, the
number of objects of interest in each sub-image is computed using an LVLM, and the results are aggregated.

accurate estimation of small quantities by Chattopadhyay et al. (2017) we propose a simple yet effective
baseline method to alleviate this issue. Leveraging a divide-and-conquer approach, we engineer a simple
pipeline that divides an image into carefully cut sub-images, and prompts the LVLM to count the objects of
interest in each sub-image. The counts from the sub-images are then aggregated to make the final prediction.
A key feature of our pipeline is a mechanism that prevents objects of interest from being split by the dividing
lines, which could otherwise lead to double-counting. To have this mechanism two existing pre-trained
detection and segmentation models are employed in the pipeline. The workflow is illustrated in Figure 1.

Initially, in our pipeline, the category name of the object of interest is extracted from the input question
using an LLM (We use the LVLM as an LLM for this step). The area containing the objects of interest is
detected in the image by a grounding model, such as Liu et al. (2023), and then cropped. The cropping
step removes irrelevant context from the image. Secondly, using an object detection model by Liu et al.
(2023), and a segmentation model by Kirillov et al. (2023), the segmentation masks of the objects of interest
are created. Thirdly, we use a mechanism that divides the image into multiple sub-images without cutting
through the objects of interest. We call this mechanism object-aware division. The division positions are
determined automatically using an unsupervised and non-parametric method based on object masks. Then
we treat the object-aware division as a path-finding problem, avoiding the segmented objects as obstacles. A
black-white image is built by converting all the masks into black and the rest of the image into white pixels.
The binary image is converted into a graph where only white pixels are connected as nodes. Using the A∗

algorithm (Russell & Norvig, 2016), a path is found from one end to the other end of the image, ensuring
objects remain intact. Finally, using an LVLM as a counting tool, the objects of interest in the sub-images
are counted and aggregated. Our contributions are summarized below:

1. We evaluate the counting performance of several recent Large Vision-Language Models (LVLMs) on
multiple counting and vision datasets. We propose a simple yet effective baseline method, LVLM-
Count, which enhances the counting performance of LVLMs without requiring additional training.
Similar to standard counting with LVLMs, our method is a prompt-based approach that retains
their zero-shot capabilities while addressing their difficulties in handling large numbers. Through
experiments, we demonstrate that LVLM-Count improves LVLMs’ counting performance across the
evaluated datasets.

2. We propose a solution for object-aware division. Accurate division is crucial, as parts of cut objects
can lead to over-counting (see Figure 2a). The proposed solution divides images without cutting
through objects of interest specified by an arbitrary prompt.

2

Published in Transactions on Machine Learning Research (02/2026)

(a) Naive division (b) Object-aware division (c) Counting error

Figure 2: Comparison of the naive and the object-aware division. The objects of interest are the circles. In
Figure 2a, we illustrate a naive division of the input image, which is divided into equally sized sub-images
with straight lines. In Figure 2b, we illustrate the object-aware division, which avoids cutting through circles.
In Figure 2c, we illustrate the counting error of GPT-4o for images with randomly positioned circles. The
absolute counting error is the absolute difference between the ground truth and the number predicted by
GPT-4o. The results are averaged over three trials.

As a minor contribution, we create a new benchmark to address some of the drawbacks of existing datasets.
Prior datasets feature simple counting tasks, e.g., counting “strawberries”, and lack intra-class complexity.
To address these issues, we develop a challenging benchmark for counting emoji icons. The subtle variations
within emoji classes make this benchmark uniquely difficult.

2 Related Work

Early counting models, referred to as class-specific, targeted counting problems for certain categories (Arteta
et al., 2016; Babu Sam et al., 2022; Mundhenk et al., 2016; Xie et al., 2018), such as cars, people, or cells.
Later, with the emergence of stronger vision models and large-scale datasets, class-agnostic methods were
proposed that could count objects from a wide variety of categories. However, most existing class-agnostic, or
open-world, models require visual exemplars of the target objects (Ðukić et al., 2023; Gong et al., 2022; Lin
et al., 2022; Liu et al., 2022; Lu et al., 2019; Nguyen et al., 2022; Ranjan et al., 2021; Shi et al., 2022; Yang
et al., 2021; You et al., 2023).

Text-based counting models. With the advent of vision-language foundation models such as CLIP and
GroundingDINO, text-based open-world models have been proposed that are trained specifically for counting.
Leveraging the rich textual and visual feature extraction capabilities of foundation models, obtained through
web-scale training, the text-based counting models by Amini-Naieni et al. (2023); Dai et al. (2024); Kang
et al. (2024); Amini-Naieni et al. (2024) have started to demonstrate comparable or superior accuracy. In
addition, Shi et al. (2024) introduce TFOC, a counting model that does not require any counting-specific
training. Instead, they cast the counting problem as a prompt-based segmentation task, using SAM (Kirillov
et al., 2023) to obtain segmentation masks that determine the output number. Despite this progress, these
models remain constrained by two principal limitations. First, their performance can degrade significantly
under considerable distribution shift in the input samples. Second, the prompts they interpret are typically
limited to simple object categories or referring expressions; as task complexity increases, these models often
fail. Employing LVLMs for counting offers a potential pathway to mitigate these issues.

Leveraging the concept of divide and conquer for counting. The concept of divide and conquer has
been used in early work (Chattopadhyay et al., 2017; Xiong et al., 2019; Stahl et al., 2018). Chattopadhyay
et al. (2017) use an image-level divide and conquer approach and train a convolutional neural network (CNN)
that can count objects from a predetermined and limited set of categories in sub-images. Xiong et al. (2019)
propose applying the divide step on the convolutional feature map instead of the input image to avoid
repeatedly computing convolutional features for each sub-image, thereby improving efficiency. However, the
CNN in their work is only capable of counting a single object category. Similar to Chattopadhyay et al. (2017),

3

Published in Transactions on Machine Learning Research (02/2026)

Stahl et al. (2018) also employ image-level division and train a CNN to count objects from a predetermined
set of categories. Nonetheless, their method does not require local image annotations for training.

Assessment of LVLMs’ counting performance. Several prior works have explored the visual counting
capabilities of LVLMs as part of broader evaluations, underscoring the difficulties these models encounter in
counting tasks Yin et al. (2023); Xu et al. (2024); Yang et al. (2023). However, these studies have not focused
on developing solutions to address these challenges. In this work, we conduct a comprehensive quantitative
assessment of LVLMs’ counting performance across diverse visual counting benchmarks. More importantly,
we propose a simple yet effective baseline method to improve their ability to count large numbers. Our
baseline method is not tailored to any specific model and can be used in a plug-and-play manner with different
LVLMs. Regarding the categories outlined earlier, our method, LVLM-Count, is an open-world, prompt-based
counting approach that requires no additional training. To the best of our knowledge, we are the first to
propose a divide-and-conquer strategy that avoids splitting and potentially double-counting objects of interest
specified by an arbitrary text prompt.

3 LVLM-Count

Our proposed method aims to answer counting questions by dividing an image into sub-images while avoiding
cuts through objects of interest. LVLM-Count consists of four key stages. First, in the “Area Detection”
stage, we localize areas containing relevant objects. Second, in the “Target Segmentation” stage, we identify
and segment the objects of interest. Third, in the “Object-aware Division” stage, we divide the localized
areas into sub-images without cutting through the segmented objects. Finally, the LVLM counts the target
objects in each sub-image and aggregates the results. Figure 1 illustrates the workflow of our method, which
we detail in the following subsections.

3.1 Area Detection

In this part of the pipeline, we assume that we are given a counting question Q along with an image. The
question Q contains an expression E that specifies a set of objects of interest. The expression E distinguishes
these objects from objects of other categories or the same category but with different attributes present
in the image. By employing an LLM, the expression E is extracted from Q. For example, let Q be “How
many brown eggs are in the image?”. Q is given to an LLM, which is prompted to return the expression
E, “brown eggs”, referring to the objects we want to count. After E is extracted, it is provided as input to
GroundingDINO along with the image. The output of GroundingDINO may be a single bounding box or a
set of bounding boxes that have relevance to E beyond a certain threshold. These bounding boxes often
overlap and typically contain repeated objects. Thus, all the overlapping output bounding boxes are merged.
After merging, a set of non-overlapping areas of interest may remain. We consider the non-overlapping areas
as “detected areas”, which are then cropped to be passed to the next stage. This process is illustrated in
Figure 3.

3.2 Target Segmentation

The cropped images from the first stage contain objects of interest, and the ultimate goal is to divide them
without cutting through those objects. However, a prerequisite for implementing such a mechanism is to first
detect and localize the objects of interest. Each cropped image is fed into an open-world detection model
along with E. The output of the open-world detection model produces a bounding box for each object of
interest. The bounding boxes are then given as input to a segmentation model, which returns segmentation
masks for the objects within each bounding box. We illustrate an example of this process in Figure 4.

How to determine the bounding boxes. To determine the bounding boxes, we use GroundingDINO
and set the bounding box probability threshold to a low value to avoid missing any object of interest. The
bounding boxes alone cannot help with the object-aware division of the detected areas due to their rigid
structure, which includes redundant areas in the vicinity of the object and, in the worst case, overlaps with
other bounding boxes. Our goal is to precisely locate the pixels of an object of interest.

4

Published in Transactions on Machine Learning Research (02/2026)

Figure 3: Illustration of the area detection stage of LVLM-Count. For this image, Q is set to “How many
brown eggs are in the image”. The LLM that is used in this step returns an E which is “brown eggs”. E and
the original image are given as input to GroundingDINO, which returns a bounding box. If the grounding
model returns multiple bounding boxes, they are merged to form the final detected area.

(a) GroundingDINO output (b) SAM output

Figure 4: Illustration of the target segmentation step of LVLM-Count. The goal is to produce all the instance
masks for E set to “brown egg”. The cropped detected area from Figure 3, together with E, is given as input
to GroundingDINO, which produces the output shown in Figure 4a. Figure 4a is then given as input to SAM,
which produces the output shown in Figure 4b.

How to determine the segmentation masks. We employ a pre-trained segmentation model, specifically
SAM (Kirillov et al., 2023), for the segmentation task. This model accepts bounding boxes as prompts and
generates masks covering the most prominent objects within these boxes. However, we do not use SAM’s
output masks directly, as in crowded scenes or cases with multiple occlusions, the masks often overlap, making
it difficult to identify reliable division paths. To address this issue, we apply several post-processing steps.
First, we perform non-maximum suppression on SAM-generated masks to eliminate those with significant
overlaps corresponding to less certain bounding boxes. Additionally, we apply an erosion function to the
segmentations, ensuring adjacent masks maintain a minimum separation of two pixels. For a detailed analysis
and visual examples of how these post-processing operations enhance robustness in crowded scenes and
occlusion cases, see Appendix C. The final processed masks for each cropped area are then passed to the next
stage of our pipeline.

5

Published in Transactions on Machine Learning Research (02/2026)

Robustness to the Accuracy of Area Detection and Target Segmentation Stages. Although we
employ GroundingDINO—a state-of-the-art model for grounding and detection—it lacks the flexibility and
robustness of LVLMs when generalizing to unseen data and complex concepts. Consequently, we minimizes
dependence on the accuracy of the detection model used for area detection and target segmentation. Rather
than prioritizing accuracy, we emphasize: i) not missing any region containing objects of interest during area
detection, and ii) not missing segmentation masks for any objects of interest during target segmentation.
These objectives are easily achieved by setting GroundingDINO’s detection threshold to a very low value in
both stages.

A low threshold may lead to false positives. In area detection, this could result in regions that contain no
objects of interest. However, since counting is performed by the LVLM in the final stage, these regions will
be ignored. For target segmentation, false positive masks might occur, but the consequence is that some
irrelevant objects will be protected from being cut by the division lines, just as the objects of interest are.
Furthermore, as we will demonstrate in subsequent sections, all masks are removed from the sub-images after
division, ensuring no noise propagates from this stage to the LVLM-based counting stage.

We demonstrate the effectiveness and robustness of our strategy in the early pipeline stages by showing
that LVLM-Count significantly improves LVLMs’ performance on one of the most challenging counting
datasets—the Penguin Dataset Penguin Research (2016), as detailed in Section 4.2. This dataset is particularly
difficult due to frequent occlusion, camouflage, and complex backgrounds Arteta et al. (2016). Furthermore,
in our ablation studies, we test a variant of our pipeline that removes the detection model entirely. Instead,
SAM is configured to generate segmentation masks for all objects in the scene. As shown in Table 5, our
method still enhances counting performance in this configuration, underscoring its robustness and minimal
dependence on the detection model during the initial pipeline stages.

3.3 Object-aware Division

In this stage, the cropped image is divided into appropriate sub-images so that no object of interest is cut
by the dividing paths. The core idea is that the dividing paths should not intersect the pixels covered by
the masks corresponding to the objects of interest. This step consists of two sub-steps. First, we decide the
starting and ending points of the paths. Second, we draw the paths. Below, we describe how we approach
these two sub-steps.

How to determine the starting and ending points of the paths. We utilize an unsupervised and
non-parametric approach, to obtain the start and end points of the paths. A few pixels are sampled from
each of the masks. To determine the location of the division paths on the x-axis, the samples taken from the
masks are projected onto the x-axis. The projected points are automatically clustered using a non-parametric
mean-shift algorithm1 (Comaniciu & Meer, 2002). Once the clusters are identified, the point between the
point with the highest x value in one cluster and the point with the lowest x value in the subsequent cluster
is considered the x-coordinate of a division path. In effect, knowing the x-coordinate of a vertical path means
that the coordinates of its endpoints are known. In particular, assuming height h for an image crop, we
consider Ps = (x, 0) and Pe = (x, h) as the start and end points, respectively. Note that using this technique,
we obtain the appropriate coordinates for the division paths, as well as the number of paths. For example, if
there is only one cluster along the x-axis, no division is required, and if there are two clusters, one vertical
path will divide the image into two parts. We illustrate this approach in Figure 5.

How to draw the paths. Previous step obtains the endpoints of the division paths. Assume Ps = (x, 0)
and Pe = (x, h) are the start and end points of a vertical division path, respectively. In an ideal case where
there are no masks in the path of a straight line connecting the two points, this path will be drawn by
connecting all the pixels on the straight line. However, there are potential masks that can be considered
obstacles blocking the path. In other words, beginning from Ps, the line needs to go around these obstacles
to reach Pe. Consequently, we treat this as a 2-dimensional path-finding problem. To solve the problem,
we build a 2D binary map, IB, where the pixels covered by the masks are turned into black, indicating
them as obstacles, and all the other pixels are turned into white, showing they are open for passage. This

1In our implementation, we employ the MeanShift algorithm from the Scikit-learn library (Pedregosa et al., 2011), utilizing
its default heuristic for automatic bandwidth estimation.

6

Published in Transactions on Machine Learning Research (02/2026)

Figure 5: Illustration of the unsupervised and non-parametric method to obtain the division points (P 1
s , P 1

e),
and (P 2

s , P 2
e ,). A few pixels are sampled (shown as points inside the segmented objects) from the pixels

composing target masks. The samples are projected onto the x-axis. The projected points are clustered using
mean-shift clustering. The point in the middle of two consecutive clusters is considered a vertical division
point. Blue lines are solely for illustration

binary image IB is mapped into a graph G, where each white pixel is a node, and it is connected to all of its
white neighboring pixels. We use the A∗(G, Ps, Pe, g) search algorithm to find a path that connects Ps to Pe,
where the heuristic g is set to be Manhattan distance. The output of A∗ is a set of connected pixels that go
around the obstacles and connect Ps to Pe, creating an object-aware division path, as shown in Figure 6. The
path-finding algorithm is run for all division coordinates. Finally, we draw the image contours based on these
division paths and take the area surrounded by each contour as a resulting sub-image. Note that although
not part of the main LVLM-Count pipeline, the above two steps can be applied to the y-axis in the same
manner to obtain horizontal division paths. For further discussion, the reader may refer to Appendix S.

3.4 Target Counting

All the sub-images obtained from the cropped areas are gathered. Then, question Q and each sub-image are
given as input to an LVLM. At the end of the loop, the recorded numbers for the sub-images are aggregated
to form the final answer. For images with a very large number of objects, sometimes LVLMs refuse to count,
citing the large number. In those cases, a new prompt requires the model to give the closest estimate of the
number.

4 Experiments

In this section, we present the performance results of different LVLMs and their enhanced performance results
using our method on a counting-specific dataset, a counting benchmark taken from a popular vision datasets,
and a challenging counting benchmark that we propose using emoji icons. Additionally, we show the success
of our design in enhancing counting performance on one of the most challenging counting datasets that
features heavy occlusions and complex backgrounds. The code to reproduce the experiments is available at
our GitHub repository 2

2Our GitHub repository is available at: https://github.com/MuhammadFetrat/lvlm-count

7

https://github.com/MuhammadFetrat/lvlm-count

Published in Transactions on Machine Learning Research (02/2026)

Figure 6: Illustration of object-aware division. The masks are turned into a black-and-white image. A
dividing path is found by connecting Ps to Pe using the A∗ search algorithm in a graph that corresponds to
the binary image. The only nodes in the graph are white pixels of the black-and-white image, which are
connected to all other white pixels in their 3 × 3 neighborhood. The nodes and edges on the obtained paths
have been colored red.

4.1 Datasets and Benchmarks

FSC-147 (Ranjan et al., 2021). FSC-147 is a counting dataset that contains 6135 images, spanning 147
different object categories such as kitchen utensils, office supplies, vehicles, and animals. The number of
objects in each image ranges from 7 to 3731, with an average of 56 objects per image. The dataset is split
into training, validation, and test sets. A total of 89 object categories are assigned to the training set, 29 to
the validation set, and 29 to the test set, with different categories in each split. The training set contains
3659 images, with the validation and test sets containing 1286 and 1190 images, respectively. For each image
in the test set, a single category name is given, and the expected output is the number of instances.

PASCAL VOC Benchmark We build a counting benchmark from PASCAL VOC dataset (Everingham
et al., 2015). Similar to Chattopadhyay et al. (2017), we choose PASCAL VOC 2007 among other variants.
This variant contains a training set of 2501 images, a validation set of 2510 images, and a test set of 4952
images, with 20 object categories that remain consistent across the splits. Each image includes annotations
for instances of the 20 object categories in the dataset. We first create 20 simple counting questions asking
for the number of objects from each of the 20 categories for every image in the test set. Then, we randomly
sample five questions from each ground truth count. This process resulted in 102 questions in total. Finally,
we manually checked the ground truth counts and corrected them if required.

Emoji-Count. To our knowledge, no counting benchmark exists with large number of objects in a scene
involving complex reasoning. To this end, we propose a challenging counting benchmark using emoji icons.
From the 1816 standard emoji icons, we remove those that directly overlap with concepts demonstrated by
other icons. We then group the remaining 1197 icons into 82 classes. In each class, there are icons from the
same or similar object categories, but with subtle differences that require complex reasoning to distinguish.
For each of the 82 classes, an empty 1024 × 1024 image is first created. This image is filled with up to six
categories chosen randomly from the class, with each category having a random count between 30 and 50 in
the image. For each image, we create questions that ask the number of instances of the available categories in
the image. This results in 415 image-question pairs. We illustrate two examples of this dataset in Figure 7.

Penguin Benchmark. The challenging Penguin dataset Penguin Research (2016) consistently exhibits
heavy occlusion and complex background patterns that can easily be mistaken for penguins Arteta et al.
(2016). The test set of this dataset is quite large, containing thousands of images with penguin counts

8

Published in Transactions on Machine Learning Research (02/2026)

(a) Q: How many waning gibbous moons
are there in the image? Answer: 18.

(b) Q: How many clocks at time “two-thirty”
are there in the image? Answer: 15.

Figure 7: Illustration of a smaller version of two challenging cases from Emoji-Count. In Figure 7a, the class
name is “Moon Phase”. In Figure 7b, the class name is “Clock Time”.

ranging from 0 to 213. To build a manageable benchmark, we randomly sample 100 images while preserving
a balanced ground truth range. We refer the reader to Appendix D for more details about this benchmark.

4.2 Results

This section presents the numerical results of our experiments with the base LVLMs and their corresponding
LVLM-Count on each benchmark described in Section 4.1. In the experiments, we consider two baselines: (i) a
baseline where the number of target segmentation masks is taken as the final answer, and (ii) a baseline where
an image of the generated segmentation masks is provided to GPT-4o along with a prompt to count them.
For reference, we also report the performance of three state-of-the-art (SOTA) text-based counting-specific
models: GroundingREC (Dai et al., 2024), CountGD (Amini-Naieni et al., 2024), and DAVEprm (Pelhan
et al., 2024).

It is important to note that the primary aim of this work is to propose a method that enhances the counting
ability of an arbitrary large vision-language model (LVLM) across diverse datasets. The inclusion of these
specialized models in our comparison should not be interpreted as an attempt to replace or compete with
them on specific counting tasks—particularly those involving simple counting. These models are trained on
dedicated counting datasets and perform efficiently on test samples from the same distribution or datasets
with high category overlap. However, their performance may degrade significantly when applied to out-of-
distribution samples. Furthermore, these models are constrained by the type and complexity of the input
prompts they can process; they typically only accept simple category names or referring expressions, and
often fail when presented with complex phrases or sentences.

In contrast, our method is designed to be comprehensive. Although it may not match the efficiency of
task-specific models on datasets they were trained on, it performs robustly across a wide range of test
distributions, despite not being explicitly trained on any of the tasks. Moreover, it is capable of handling
arbitrary prompt types and structures, regardless of complexity. We also report the performance of TFOC
(Shi et al., 2024), a SOTA training-free model. In essence, TFOC is a segmentation-based counting approach,
similar to our baselines, but employs a more sophisticated methodology.

The above discussion is reflected in our experimental results. For the trained counting models, we report
performance using weights obtained from training on the FSC-147 training set. These models perform
well on the FSC-147 dataset and on the PASCAL VOC benchmark, which has high category overlap with
FSC-147. However, on the Emoji-Count dataset—which exhibits a different distribution and requires complex

9

Published in Transactions on Machine Learning Research (02/2026)

understanding—their performance drops considerably. In contrast, our method, LVLM-Count, maintains high
performance even on challenging benchmarks such as Emoji-Count. Another experiment on the TallyQA-
Complex benchmark, which contains real-world scenes with complex counting questions, further reveals the
limited complex reasoning capability of conventional trained models. LVLMs and our proposed LVLM-Count,
however, demonstrate a superior ability to handle such challenging cases. The corresponding results on the
TallyQA-Complex benchmark are provided in Appendix T.

We also conduct an ablation study on the effectiveness of different components of our pipeline in Appendix A.
In summary, the ablation experiments support three conclusions: (i) each component has a positive effect
over the baseline LVLM, and when combined, the full pipeline in Figure 1 achieves the best performance
compared to different variants; (ii) naive division with straight lines cannot replace object-aware division;
and (iii) LVLM-Count is robust to the accuracy of the target segmentation stage. For visual examples of
LVLM-Count’s performance on the benchmarks introduced in Section 4.1, see Appendix B. An inference time
analysis is provided in Appendix J. This analysis shows that the largest portion of the time is spent querying
the LVLM, which is a step common to both the base LVLM and LVLM-Count. The other steps contribute a
much smaller share to the overall inference time.

FSC-147. We evaluate the performance of various LVLMs and their enhanced performance using our method,
LVLM-Count, on the test set of the FSC-147 dataset. We consider two baselines: (i) the baseline where the
number of target segmentation masks is taken as the final answer, and (ii) the baseline where an image of the
generated segmentation masks is provided to GPT-4o with a prompt to count the number of masks. Our
experiments involve GPT-4o (a leading proprietary model), as well as two open-source models: Qwen2 VL
72B AWQ (Yang et al., 2024) and Gemma 3 27B Team et al. (2025). The expression E used in different
stages of our method corresponds to the category name provided in the test set. A simple query Q in the form
of “How many E are there?” is constructed and used as the text prompt for the LVLM during the counting
stage. In all experiments, the detection thresholds are set to 0.1. The results are presented in Table 1,
reporting the mean absolute error (MAE) and root mean square error (RMSE). Our findings indicate that
LVLM-Count improves the performance of all three LVLMs in terms of MAE. Interestingly, while the base
Qwen2 and Gemma 3 models are much less powerful than their commercial counterpart, they outperform the
base GPT-4o when integrated into our pipeline.

Table 1: Evaluation on the test set of the FSC-147 dataset. In all the tables of this section, the results for
base LVLMs and LVLM-Count are reported over six trials. In the tables, columns marked with ∆ show the
performance difference between the LVLM-Count and the base LVLM it uses. Green indicates improvement,
while red represents degradation. Also, the 95% confidence intervals for the MAEs are reported in the column
named MAE 95% CI. To see the measured accuracy metrics for this dataset and the subsequent benchmarks,
refer to Appendix I. Additionally, MAE analysis across different intervals of ground truth values for FSC-147
is provided in Appendix H.

Method Trained Model MAE ↓ ∆ MAE 95% CI RMSE ↓ ∆
TFOC (Shi et al., 2024) ✗ 24.79 - - 137.15 -
DAVEprm (Pelhan et al., 2024) ✓ 14.90 - - 103.42 -
CountGD (Amini-Naieni et al., 2024) ✓ 14.76 - - 120.42 -
GroundingREC (Dai et al., 2024) ✓ 10.12 - - 107.19 -
Number of target segmentaion masks ✗ 44.14 - - 154.39 -
GPT-4o counting target segmentaion masks ✗ 38.45 - - 156.11 -
GPT-4o ✗ 25.57 - [24.74, 26.39] 137.26 -
LVLM-Count (GPT-4o as LVLM) ✗ 17.86 ↓ 7.71 [16.96, 18.77] 91.71 ↓ 45.55
Gemma 3 27B ✗ 30.59 - [30.22, 30.97] 132.61 -
LVLM-Count (Gemma 3 27B as LVLM) ✗ 20.25 ↓ 10.34 [19.62, 20.89] 110.45 ↓ 22.16
Qwen2 VL 72B AWQ ✗ 34.18 - [32.85, 35.51] 149.49 -
LVLM-Count (Qwen2 VL 72B AWQ as LVLM) ✗ 22.29 ↓ 11.89 [21.63, 22.96] 119.46 ↓ 30.44

PASCAL VOC Benchmark. We evaluate the performance of three LVLMs—GPT-4o, Qwen2, and Gemma
3—on this benchmark, both with and without LVLM-Count. As shown in Table 2, LVLM-Count consistently
outperforms the base LVLMs.

10

Published in Transactions on Machine Learning Research (02/2026)

Table 2: Evaluation on the PASCAL VOC counting benchmark.

Method MAE ↓ ∆ MAE 95% CI RMSE ↓ ∆
TFOC (Shi et al., 2024) 12.03 - - 18.18 -
DAVEprm (Pelhan et al., 2024) 12.39 - - 22.81 -
CountGD (Amini-Naieni et al., 2024) 2.81 - - 7.01 -
GroundingRec (Dai et al., 2024) 4.05 - - 7.80 -
Number of the target segmentation masks 4.03 - - 7.47 -
GPT-4o counting target segmentaion masks 6.60 - - 15.09 -
GPT4o 4.64 - [4.45, 4.82] 8.56 -
LVLM-Count (GPT4o as LVLM) 3.42 ↓ 1.22 [3.25, 3.59] 7.17 ↓ 1.39
Gemma 3 27B 3.40 - [3.24 ,3.55] 7.54 -
LVLM-Count (Gemma 3 27B as LVLM) 2.97 ↓ 0.43 [2.82, 3.11] 6.16 ↓ 1.38
Qwen2 VL 72B AWQ 4.80 - [4.61, 4.99] 8.71 -
LVLM-Count (Qwen2 VL 72B AWQ as LVLM) 4.12 ↓ 0.68 [3.87, 4.37] 7.76 ↓ 0.95

Emoji-Count. We evaluate the performance of the LVLMs and their performance using LVLM-Count on the
Emoji-Count benchmark. The results are shown in Table 3. This is a challenging benchmark, as it requires
understanding complex concepts. We observe that taking the number of masks as the final count performs
particularly poorly, as for any object of interest in the image, the segmentation stage tends to segment all the
objects and cannot distinguish between different icons. Although GPT-4o and Gemma 3 show reasonable
performance, the other open-source model does not perform well. Nonetheless, the performance of all three
base LVLMs is significantly enhanced by LVLM-Count, especially Qwen2, which performs almost on par with
GPT-4o when LVLM-Count is used for it.

Table 3: Evaluation on the Emoji-Count benchmark.

Method MAE ↓ ∆ MAE 95% CI RMSE ↓ ∆
TFOC (Shi et al., 2024) 64.64 - - 87.45 -
DAVEprm (Pelhan et al., 2024) 198.99 - - 208.08 -
CountGD (Amini-Naieni et al., 2024) 137.93 - - 156.80 -
GroundingREC (Dai et al., 2024) 143.22 - - 158.74 -
Number of the target segmentation masks 82.47 - - 107.98 -
GPT-4o counting target segmentaion masks 107.72 - - 162.12 -
GPT-4o 23.57 - [22.37, 24.76] 36.97 -
LVLM-Count (GPT-4o as LVLM) 16.57 ↓ 7 [16.25, 16.90] 33.11 ↓ 3.86
Gemma 3 27B 21.39 - [21.32, 21.45] 24.04 -
LVLM-Count (Gemma3 27B as LVLM) 16.16 ↓ 5.23 [15.76, 16.56] 21.27 ↓ 2.77
Qwen2 VL 72B AWQ 78.05 - [72.17, 83.93] 159.22 -
LVLM-Count (Qwen2 VL 72B AWQ as LVLM) 24.43 ↓ 53.62 [23.65, 25.21] 43.38 ↓ 115.84

Penguin Benchmark. We report the counting performance on the Penguin benchmark in Table 4. We
evaluate two variants of LVLM-Count. The primary variant uses GroundingDINO in both the area detection
and target segmentation stages. The alternative variant does not use a detection model; instead, SAM
is configured to segment all entities in the image. Both variants improve MAE across all three LVLMs,
highlighting LVLM-Count’s robustness in scenarios with heavy occlusion and complex backgrounds—conditions
that pose significant challenges for area detection and target segmentation. Additional details and a visual
example showing the segmentation masks and division paths generated in both variants for a sample from
the Penguin benchmark can be found in Appendix D.

11

Published in Transactions on Machine Learning Research (02/2026)

Table 4: Evaluation on the Penguin benchmark.

Method MAE ↓ ∆ MAE 95% CI RMSE ↓ ∆
GPT4o 35.18 - [33.13, 37.23] 45.76 -
LVLM-Count(Main variant, using GPT-4o) 26.76 ↓ 8.42 [25.86, 27.66] 38.60 ↓ 7.16
LVLM-Count(SAM-only variant, using GPT-4o) 29.02 ↓ 6.16 [28.21, 29.84] 44.89 ↓ 0.87
Gemma 3 27B 49.44 - [48.94, 49.95] 60.20 -
LVLM-Count(Main variant, using Gemma 3) 34.13 ↓ 15.31 [31.72, 36.53] 44.11 ↓ 16.09
LVLM-Count(SAM-only variant, using Gemma 3) 41.09 ↓ 8.35 [39.92, 42.25] 53.01 ↓ 7.19
Qwen2 VL 72B AWQ 44.02 - [40.45, 47.60] 65.59 -
LVLM-Count(Main variant, using Qwen2) 28.21 ↓ 15.81 [26.48, 29.94] 40.40 ↓ 25.19
LVLM-Count(SAM-only, using Qwen2) 33.33 ↓ 10.69 [30.45, 36.21] 47.55 ↓ 18.04

5 Limitations

In this work, we quantitatively evaluated the visual counting performance of several LVLMs on multiple
datasets. More importantly, we introduced a simple yet effective baseline method, LVLM-Count, that
enhances the visual counting capabilities of LVLMs across the evaluated benchmarks. However, like any
method, LVLM-Count has limitations. One limitation arises in cases where sub-images contain no objects
of interest: the LVLM may occasionally predict a non-zero value. This reflects a broader weakness in
LVLMs, and addressing it will require targeted improvements to ensure their accurate zero prediction in
such scenarios. Another limitation occurs with open-source models during the target counting stage. Ideally,
the LVLM’s output for each sub-image should be a numerical value. While top proprietary LVLMs, such as
GPT-4o, offer functionalities like JSON schema to enforce structured responses (e.g., ensuring a numerical
output), open-source models typically lack such features. For these models, the prompt must include explicit
instructions to format the response correctly. For instance, an instruction like "Place the final predicted
number inside [[]]" enables the use of regex searches to extract the number for aggregation.

Acknowledgments

K. Fountoulakis would like to acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC). Cette recherche a été financée par le Conseil de recherches en sciences naturelles
et en génie du Canada (CRSNG), [RGPIN-2019-04067, DGECR-2019-00147].

References
Manoj Acharya, Kushal Kafle, and Christopher Kanan. TallyQA: Answering complex counting questions. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 8076–8084, 2019.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Niki Amini-Naieni, Kiana Amini-Naieni, Tengda Han, and Andrew Zisserman. Open-world text-specifed
object counting. In 34th British Machine Vision Conference 2023, BMVC 2023, Aberdeen, UK, November
20-24, 2023. BMVA, 2023. URL https://papers.bmvc2023.org/0510.pdf.

Niki Amini-Naieni, Tengda Han, and Andrew Zisserman. CountGD: Multi-modal open-world counting. In
Advances in Neural Information Processing Systems (NeurIPS), 2024.

Carlos Arteta, Victor Lempitsky, and Andrew Zisserman. Counting in the wild. In Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part
VII 14, pp. 483–498. Springer, 2016.

12

https://papers.bmvc2023.org/0510.pdf

Published in Transactions on Machine Learning Research (02/2026)

Deepak Babu Sam, Abhinav Agarwalla, Jimmy Joseph, Vishwanath A Sindagi, R Venkatesh Babu, and
Vishal M Patel. Completely self-supervised crowd counting via distribution matching. In European
Conference on Computer Vision, pp. 186–204. Springer, 2022.

Prithvijit Chattopadhyay, Ramakrishna Vedantam, Ramprasaath R Selvaraju, Dhruv Batra, and Devi Parikh.
Counting everyday objects in everyday scenes. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1135–1144, 2017.

Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space analysis. IEEE
Transactions on pattern analysis and machine intelligence, 24(5):603–619, 2002.

Siyang Dai, Jun Liu, and Ngai-Man Cheung. Referring expression counting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16985–16995, 2024.

Paulo RL De Almeida, Luiz S Oliveira, Alceu S Britto Jr, Eunelson J Silva Jr, and Alessandro L Koerich.
PKLot–A robust dataset for parking lot classification. Expert Systems with Applications, 42(11):4937–4949,
2015.

Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The PASCAL visual object classes challenge: A retrospective. International journal of computer
vision, 111:98–136, 2015.

Shenjian Gong, Shanshan Zhang, Jian Yang, Dengxin Dai, and Bernt Schiele. Class-agnostic object counting
robust to intraclass diversity. In European Conference on Computer Vision, pp. 388–403. Springer, 2022.

Ricardo Guerrero-Gómez-Olmedo, Beatriz Torre-Jiménez, Roberto López-Sastre, Saturnino Maldonado-
Bascón, and Daniel Onoro-Rubio. Extremely overlapping vehicle counting. In Pattern Recognition and
Image Analysis: 7th Iberian Conference, IbPRIA 2015, Santiago de Compostela, Spain, June 17-19, 2015,
Proceedings 7, pp. 423–431. Springer, 2015.

Philipp Kainz, Martin Urschler, Samuel Schulter, Paul Wohlhart, and Vincent Lepetit. You should use
regression to detect cells. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp.
276–283. Springer, 2015.

Seunggu Kang, WonJun Moon, Euiyeon Kim, and Jae-Pil Heo. VLCounter: Text-aware visual representation
for zero-shot object counting. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 2714–2722, 2024.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Antti Lehmussola, Pekka Ruusuvuori, Jyrki Selinummi, Heikki Huttunen, and Olli Yli-Harja. Computational
framework for simulating fluorescence microscope images with cell populations. IEEE transactions on
medical imaging, 26(7):1010–1016, 2007.

Victor Lempitsky and Andrew Zisserman. Learning to count objects in images. Advances in Neural Information
Processing Systems, 23, 2010.

Wei Lin, Kunlin Yang, Xinzhu Ma, Junyu Gao, Lingbo Liu, Shinan Liu, Jun Hou, Shuai Yi, and Antoni B
Chan. Scale-prior deformable convolution for exemplar-guided class-agnostic counting. In The British
Machine Vision Conference (BMVC), pp. 313, 2022.

Chang Liu, Yujie Zhong, Andrew Zisserman, and Weidi Xie. CounTR: Transformer-based generalised visual
counting. In BMVA Press, 2022.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang
Su, Jun Zhu, et al. Grounding DINO: Marrying DINO with grounded pre-training for open-set object
detection. arXiv preprint arXiv:2303.05499, 2023.

13

Published in Transactions on Machine Learning Research (02/2026)

Erika Lu, Weidi Xie, and Andrew Zisserman. Class-agnostic counting. In Computer Vision–ACCV 2018:
14th Asian Conference on Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers,
Part III 14, pp. 669–684. Springer, 2019.

T Nathan Mundhenk, Goran Konjevod, Wesam A Sakla, and Kofi Boakye. A large contextual dataset for
classification, detection and counting of cars with deep learning. In Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III 14, pp.
785–800. Springer, 2016.

Thanh Nguyen, Chau Pham, Khoi Nguyen, and Minh Hoai. Few-shot object counting and detection. In
European Conference on Computer Vision, pp. 348–365. Springer, 2022.

Joseph Paul Cohen, Genevieve Boucher, Craig A Glastonbury, Henry Z Lo, and Yoshua Bengio. Count-ception:
Counting by fully convolutional redundant counting. In Proceedings of the IEEE International Conference
on Computer Vision Workshops, pp. 18–26, 2017.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Jer Pelhan, Vitjan Zavrtanik, Matej Kristan, et al. DAVE-A: Detect-and-verify paradigm for low-shot
counting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
23293–23302, 2024.

Penguin Research. Penguin research webpage, 2016. URL https://www.robots.ox.ac.uk/~vgg/data/
penguins/. Accessed: 2024-11-23.

Viresh Ranjan, Udbhav Sharma, Thu Nguyen, and Minh Hoai. Learning to count everything. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3394–3403, 2021.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

Min Shi, Hao Lu, Chen Feng, Chengxin Liu, and Zhiguo Cao. Represent, compare, and learn: A similarity-
aware framework for class-agnostic counting. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9529–9538, 2022.

Zenglin Shi, Ying Sun, and Mengmi Zhang. Training-free object counting with prompts. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 323–331, 2024.

Tobias Stahl, Silvia L Pintea, and Jan C Van Gemert. Divide and count: Generic object counting by image
divisions. IEEE Transactions on Image Processing, 28(2):1035–1044, 2018.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah
Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical report. arXiv
preprint arXiv:2503.19786, 2025.

Nikola Ðukić, Alan Lukežič, Vitjan Zavrtanik, and Matej Kristan. A low-shot object counting network with
iterative prototype adaptation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 18872–18881, 2023.

Meng Wang and Xiaogang Wang. Automatic adaptation of a generic pedestrian detector to a specific traffic
scene. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2011, pp.
3401–3408. IEEE, 2011.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

14

https://www.robots.ox.ac.uk/~vgg/data/penguins/
https://www.robots.ox.ac.uk/~vgg/data/penguins/

Published in Transactions on Machine Learning Research (02/2026)

Weidi Xie, J Alison Noble, and Andrew Zisserman. Microscopy cell counting and detection with fully
convolutional regression networks. Computer methods in biomechanics and biomedical engineering: Imaging
& Visualization, 6(3):283–292, 2018.

Haipeng Xiong, Hao Lu, Chengxin Liu, Liang Liu, Zhiguo Cao, and Chunhua Shen. From open set to
closed set: Counting objects by spatial divide-and-conquer. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8362–8371, 2019.

Peng Xu, Wenqi Shao, Kaipeng Zhang, Peng Gao, Shuo Liu, Meng Lei, Fanqing Meng, Siyuan Huang,
Yu Qiao, and Ping Luo. Lvlm-ehub: A comprehensive evaluation benchmark for large vision-language
models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li,
Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Shuo-Diao Yang, Hung-Ting Su, Winston H Hsu, and Wen-Chin Chen. Class-agnostic few-shot object
counting. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
870–878, 2021.

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Lijuan Wang.
The dawn of lmms: Preliminary explorations with gpt-4v (ision). arXiv preprint arXiv:2309.17421, 9(1):1,
2023.

Zhenfei Yin, Jiong Wang, Jianjian Cao, Zhelun Shi, Dingning Liu, Mukai Li, Xiaoshui Huang, Zhiyong Wang,
Lu Sheng, Lei Bai, et al. Lamm: Language-assisted multi-modal instruction-tuning dataset, framework,
and benchmark. Advances in Neural Information Processing Systems, 36:26650–26685, 2023.

Zhiyuan You, Kai Yang, Wenhan Luo, Xin Lu, Lei Cui, and Xinyi Le. Few-shot object counting with
similarity-aware feature enhancement. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pp. 6315–6324, 2023.

Gloria Zen, Negar Rostamzadeh, Jacopo Staiano, Elisa Ricci, and Nicu Sebe. Enhanced semantic descriptors
for functional scene categorization. In Proceedings of the 21st International Conference on Pattern
Recognition, pp. 1985–1988. IEEE, 2012.

15

Published in Transactions on Machine Learning Research (02/2026)

Appendix Table of Contents

A Ablation Study 17

B Visual Examples of LVLM-Count’s Performance on the FSC-147 Dataset, PASCAL VOC,
and Emoji-Count Benchmarks 17

C Robustness to Crowded Scenes and Heavy Occlusion 17

D Additional Information and Visual Examples from the Penguin Benchmark 19

E Real-world Application of LVLM-Count 21

F LVLM-Count’s Power in Handling Multiple Object Categories in the Same Image 24

G False Positive Masks at the Target Segmentation Stage 26

H Performance Analysis of LVLM-Count for different ground truth ranges on FSC-147
dataset 27

I Report of Various Accuracy Metrics for the Performance of LVLM-Count on the FSC-147
Dataset, PASCAL VOC, Emoji-Count, and Penguin Benchmarks 28

J Inference Time Comparison 28

K Comparison of Base LVLMs and LVLM-Count’s Counting Performance with SOTA
Counting Models as a Reference Point 30

L LVLM-Count’s Ability to Handle Visual Exemplars 31

M Chain of Thought Prompting for LVLM-Count 32

N Illustration of the Complete Workflow of the LVLM-Count for an Additional Image 33

O Emoji-Count Benchmark Details 34

P Parsing Strategy for the Output of Open-source LVLMs 35

Q Non-zero Prediction of LVLMs for Subimages with No Objects of Interest 36

R Reproducibility Table for Implementation Parameter 38

S Dividing Images Along Both the Horizontal and Vertical Axes 38

T Evaluation of the counting methods on TallyQA-Complex 39

16

Published in Transactions on Machine Learning Research (02/2026)

A Ablation Study

We examine the effect of each stage in our method: (i) area detection and (ii) object-aware division using
masks produced during target segmentation. We design different experiments to investigate each stage’s
individual contribution, as well as their combined effect in our pipeline.

To demonstrate our method’s minimal dependence on detection accuracy in the area detection and target
segmentation stages, we conduct an experiment without area detection and without using GroundingDINO
for segmentation masks. Instead, we configure SAM in “segment anything” mode, which generates masks
for all entities in the scene. The results show that our method remains effective even without any detection
model, confirming that LVLM-Count has minimal dependence on the accuracy of these initial stages.

Additionally, we conduct an experiment where both area detection and segmentation stages are excluded. In
this case, object-aware division cannot be performed, so we divide images using equidistant straight lines
into subimages (which we call “naive division”). We also run another experiment with area detection but
without segmentation, applying naive division to the detected areas. The results demonstrate that unlike
object-aware division, the naive approach is unreliable due to repetitive counting of fragmented objects.

We perform ablation studies using GPT-4o, conducting experiments on the FSC-147 test set. Table 5 presents
the results of these ablation experiments.

Table 5: An ablation study of LVLM-Count on the FSC-147 test dataset. Columns marked with ∆ show the
performance difference between LVLM-Count and the base LVLM. Green indicates improvement, while red
represents degradation.

Method MAE ↓ ∆ RMSE ↓ ∆
GPT-4o 25.57 - 137.26 -
GPT-4o + Naive division 33.04 ↑ 7.47 116.83 ↓ 20.43
GPT-4o + Area Detection + Naive division 32.69 ↑ 7.12 102.41 ↓ 34.85
GPT-4o + Area detection 23.08 ↓ 2.49 120.06 ↓ 17.2
GPT-4o + Object-aware division (using SAM without GroundingDINO) 21.01 ↓ 4.56 135.04 ↓ 2.22
GPT-4o + Object-aware division 19.17 ↓ 6.40 120.61 ↓ 16.65
GPT-4o + Area detection + Object-aware division, (equiv. to LVLM-Count) 17.86 ↓ 7.71 91.71 ↓ 45.55

B Visual Examples of LVLM-Count’s Performance on the FSC-147 Dataset, PASCAL
VOC, and Emoji-Count Benchmarks

This section presents several visual examples showcasing the performance of LVLM-Count on the FSC-147
dataset , PASCAL VOC, and the Emoji-Count benchmarks. The LVLM used in the pipeline to generate
these visual examples is GPT-4o.

Figure 8 illustrates three examples of LVLM-Count’s performance on FSC-147. Additionally, Figure 9
includes an example from the PASCAL VOC benchmark. Finally, we present three visual examples from the
Emoji-Count benchmark in Figure 10. In these visual examples, LVLM-Count achieves more accurate results
compared to the base GPT-4o.

C Robustness to Crowded Scenes and Heavy Occlusion

One of the key strengths of our approach is its robustness in crowded scenes and images with heavy occlusions.
To achieve this robustness, the masks produced by SAM are not directly used for object-aware division.
Instead, several important post-processing operations are applied beforehand. The most critical of these is
non-maximum suppression, which removes lower-confidence masks that overlap with others. Additionally, an

17

Published in Transactions on Machine Learning Research (02/2026)

Figure 8: Illustration of three examples of the performance of LVLM-Count on FSC-147. Top row: The
object of interest is “strawberry”. Middle row: The object of interest is “hot air balloon”. Bottom row: The
object of interest is “sheep”.

erosion function is applied to trim the outermost layer of each mask, ensuring at least two pixels of empty
space between adjacent masks to allow for reliable placement of division lines. A polishing step further refines
the masks by smoothing their surfaces and eliminating artifacts, preventing division lines from mistakenly
passing through them.

Figure 11 demonstrates the strong performance of our method on a randomly selected image from the web
containing various types of flowers. This scene features extreme occlusion; nonetheless, our method effectively
handles the division task. It is important to note that the strong performance of our method in this challenging
scenario is not coincidental. Figure 12 illustrates the impact of our post-processing operations. The upper

18

Published in Transactions on Machine Learning Research (02/2026)

Figure 9: An example of the performance of LVLM-Count on the PASCAL VOC benchmark. The object of
interest is “bottle”.

row displays the unprocessed SAM masks, while the bottom row shows the results after post-processing,
which generates reliable paths for the division lines.

To further demonstrate the effectiveness of our method in crowded scenes, we present Table 6, which compares
the performance of different LVLMs on FSC-147 dataset samples where the ground truth count is 100 or
higher. The table contrasts their baseline performance with their performance when using our LVLM-Count
method. The results show significant improvements when LVLM-Count is employed. Furthermore, Figure 13
presents three visual examples of LVLM-Count’s performance on crowded images from FSC-147.

Table 6: Evaluation on samples with ground truth counts equal to or higher than 100 from the test set of the
FSC-147 dataset. Showing the effectiveness of our method for crowded scenes.

Method MAE ↓ ∆ RMSE ↓ ∆
GPT-4o 89.22 - 291.34 -
LVLM-Count (GPT-4o as LVLM) 57.87 ↓ 31.35 185.29 ↓ 106.05
Gemma 3 27B 125.69 - 330.38 -
LVLM-Count (Gemma 3 27B as LVLM) 71.68 ↓ 54.01 251.48 ↓ 78.9
Qwen2 VL 72B AWQ 102.64 - 302.23 -
LVLM-Count (Qwen2 VL 72B AWQ as LVLM) 79.66 ↓ 22.98 289.47 ↓ 12.76

D Additional Information and Visual Examples from the Penguin Benchmark

To demonstrate the effectiveness of our strategy of setting a low detection threshold to overcome challenges
in area detection and target segmentation stages, we evaluate it on a benchmark taken from the Penguin
dataset (Penguin Research, 2016). The goal in this dataset is to count penguins in images. This is challenging
since images in the dataset consistently exhibit heavy occlusion and complex background patterns that can
easily be mistaken for penguins Arteta et al. (2016). This dataset consists of two splits: i) the mixed-site
split, in which images from the same camera can appear in both the training and testing sets, and ii) the
separate-site split, in which images in each set strictly belong to different cameras. Images in this dataset are
annotated by multiple annotators, where each annotator might identify a different number of penguins due to
the challenges in locating them within the images. Since annotators usually undercount the penguins, similar
to Arteta et al. (2016), we take the maximum number of penguins among the annotations as the ground
truth and calculate MAE and RMSE with respect to this value. For additional details regarding the dataset
and metric calculations, we direct readers to Arteta et al. (2016).

We construct our benchmark using the separate-site split. Given the dataset’s substantial size, which
comprises tens of thousands of images, we randomly select 100 samples from the chosen split. To ensure

19

Published in Transactions on Machine Learning Research (02/2026)

Figure 10: Three examples of the performance of LVLM-Count on the Emoji-Count benchmark. Top row:
The object of interest is “right arrow curving left”. Middle row: The object of interest is “woman with red
hair”. Bottom row: The object of interest is “hibiscus”.

balance, the sampling probability for an image with a specific ground-truth annotation count is inversely
proportional to the frequency of that count in the entire split. We evaluate two variants of our pipeline. The
main variant employs GroundingDINO with a low threshold for area detection and target segmentation,
while the alternative variant does not use GroundingDINO at all. In this variant, masks are obtained by
configuring SAM to segment any entity in the image. The results presented in Table 4 show that both
variants significantly improve the counting performance of the LVLMs, demonstrating the robustness of the
initial stages in our pipeline.

Figure 14 demonstrates the segmentation masks and division paths for the two variants on a sample from
the Penguin benchmark. In Figure 14 (a), GroundingDINO with a low detection threshold is employed.

20

Published in Transactions on Machine Learning Research (02/2026)

Figure 11: An example of the performance of LVLM-Count on a random crowded image from the web,
involving heavy occlusion. The object of interest is “flower”.

Figure 12: The effect of post-processing on the masks produced by SAM in making LVLM-Count robust to
crowded scenes with heavy occlusions. The object of interest is “flower”.

It correctly identifies all penguin instances, though there are some false positives. These detections are
subsequently segmented by SAM. Figure 14 (c) depicts the division paths found using these masks. In
Figure 14 (b), GroundingDINO is not used, and SAM is configured to segment all entities in the scene.
As a result, in addition to the penguins, a large number of other objects are segmented. Nevertheless,
Figure 14 (d) shows that the division paths derived from these masks successfully partition the image without
cutting any penguins. Note that some excessively large masks generated by SAM have been removed due to
post-processing in our pipeline.

E Real-world Application of LVLM-Count

As stated in Section 1, counting has numerous real-world applications, including but not limited to biology,
health, industry, warehousing, and environmental monitoring. Below, we demonstrate the performance of
LVLM-Count on examples from the following areas: i) biology/health, ii) industry/warehousing, and iii)
environmental monitoring. We also compare its results with those of the base LVLM (GPT-4o for the figures

21

Published in Transactions on Machine Learning Research (02/2026)

Figure 13: Visual examples of the performance of LVLM-Count on three crowded scenes from the FSC-147
dataset.

in this section). Note that in all examples, the cluster-based approach automatically determines the start
and end points of the division paths.

In Figure 15, images of two laboratory samples are analyzed using LVLM-Count. The first row shows an
image from a dataset introduced by Lempitsky & Zisserman (2010), which contains simulated bacterial cells
from fluorescence-light microscopy, created by Lehmussola et al. (2007). The second row shows an image from
the BM dataset introduced by Kainz et al. (2015), which contains bone marrow samples from eight healthy
individuals. The standard staining procedure highlights the nuclei of various cell types in blue, while other
cellular components appear in shades of pink and red (Paul Cohen et al., 2017). As observed, LVLM-Count
achieves much higher accuracy in counting bacterial cells and bone marrow nuclei in the top and bottom
rows of Figure 15, respectively, compared to the base LVLM, particularly for the bone marrow nuclei.

22

Published in Transactions on Machine Learning Research (02/2026)

Figure 14: Illustration of robustness in detection during the initial pipeline stages: an example from the
challenging Penguin benchmark. (a) GroundingDINO with a low threshold successfully detects all penguins,
though a few false positives remain. These detections are then segmented by SAM. (b) Masks produced
without a detection model: Here, SAM is set to segment all entities in the image. Excessively large masks are
filtered out during post-processing in our pipeline. (c) Division paths are derived using the masks generated
by GroundingDINO and SAM. (d) Division paths based on SAM-only segmentation effectively partition the
image without cutting through any penguins. Note that the slight difference in the area of the images on the
left is due to the existence of area detection stage.

In Figure 16, two images from industrial scenes are analyzed using LVLM-Count. The top row shows a
sectional image of a stockpile of tree logs, and the bottom row shows an image from an industrial area
containing barrels of various colors. For the top image, the objects of interest are the tree logs, while for
the bottom image, LVLM-Count is tasked with counting the blue barrels. In both cases, LVLM-Count’s
predictions are significantly closer to the ground truth values than those of the base LVLM, particularly for
the tree logs, where the ground truth number is too large for the base LVLM to estimate accurately.

Figure 17 shows an image sourced from a dataset (Penguin Research, 2016) created as part of an ongoing
initiative to monitor the penguin population in Antarctica. This dataset comprises images captured hourly
by a network of fixed cameras installed at over 40 locations. Over several years, this effort has accumulated
over 500,000 images. Zoologists use these images to identify trends in penguin population sizes at each site,
facilitating studies on potential correlations with factors such as climate change. Thus, determining the
number of penguins in each image is crucial. Given the challenges of engaging human annotators to process
such a vast dataset, automating the counting task is highly desirable (Arteta et al., 2016). LVLM-Count is
prompted to count the number of penguins in the image, and as observed, its predictions are significantly
closer to the ground truth than those of the base LVLM.

23

Published in Transactions on Machine Learning Research (02/2026)

Figure 15: Performance of LVLM-Count on real-world applications in biology/health. The top row shows an
image of simulated bacterial cells from fluorescence-light microscopy (Lempitsky & Zisserman, 2010), with
the objects of interest being “bacterial cells.” The bottom row shows an image of bone marrow, with the
nuclei of various cell types highlighted in blue (Kainz et al., 2015), and the objects of interest being “bone
marrow nuclei.”

F LVLM-Count’s Power in Handling Multiple Object Categories in the Same Image

LVLM-Count is a highly effective method for handling counting tasks that involve multiple objects in the
same image. Its strength in such scenarios stems from the capabilities of LVLMs to answer numerous visual
questions about an image and its objects. Depending on the given text prompt, it can count instances of a
single object category among others or instances of multiple object categories simultaneously. In this section,
we demonstrate how LVLM-Count performs in counting different objects of interest, determined simply by a
prompt, using an image with multiple object categories.

The image in Figure 18 contains three object categories: person, cow, and horse. In the top row, the object
of interest is “cow.” We prompt LVLM-Count to count the cows. First, the masks are produced through the
initial stages of our pipeline, and then the cluster-based approach is used to automatically determine the
start and end points of the division paths. It can be observed that horses have also been masked as cows.
Nonetheless, this does not negatively impact the final answer; it merely causes the division lines to avoid
cutting through the horses as well. The counting in LVLM-Count is performed by an LVLM (GPT-4o in this
figure) and does not rely on the masks. We observe that GPT-4o successfully counts the number of cows in
the resulting subimages, leading to the correct final answer.

In the middle row of Figure 18, the object of interest is “person.” LVLM-Count again successfully counts the
number of people accurately. A more interesting case is the bottom row of Figure 18, where both cows and
persons are objects of interest. We prompt LVLM-Count to count the number of “cows and persons.” Similar
to the first row of the figure, there are false positive masks here as well. However, LVLM-Count successfully

24

Published in Transactions on Machine Learning Research (02/2026)

Figure 16: Performance of LVLM-Count on real-world applications in industry/warehousing. The top row
shows an image of a stockpile of tree logs, with the objects of interest being “tree logs.” The bottom row
shows an aerial image of an industrial area containing barrels of various colors, with the objects of interest
being “blue barrels.”

Figure 17: Performance of LVLM-Count on real-world applications in environmental monitoring. The image
is sourced from (Penguin Research, 2016), an initiative to monitor the penguin population in Antarctica,
with the objects of interest being “penguins.”

counts the number of instances from both categories combined since the counting is ultimately performed
by the LVLM. Note that the number of objects in this image is limited, and GPT-4o might answer these
questions correctly without the need for the LVLM-Count pipeline. This image has been chosen to illustrate

25

Published in Transactions on Machine Learning Research (02/2026)

LVLM-Count’s power in handling multiple objects in a counting task rather than for comparison with the
baseline LVLM.

Figure 18: Illustration of the ability of LVLM-Count in counting an object of interest determined by a prompt
when multiple object categories exist in a single image. Top row: Object of interest is “cow”. Middle row:
Object of interest is “person”. Bottom row: Object of interest is “person and cow”

G False Positive Masks at the Target Segmentation Stage

One of the reasons we task an LVLM to count the objects in the subimages instead of using the number of
generated masks at the target segmentation stage as the final count of the objects of interest is the existence
of false positive masks. The GroundingDINO model is responsible for detecting the objects of interest,
determined by expression E, and passing the output bounding boxes to SAM for producing segmentation

26

Published in Transactions on Machine Learning Research (02/2026)

masks. Nonetheless, GroundingDINO is not as strong as an LVLM in understanding expressions extracted
from complex questions. Thus, it often returns bounding boxes for all instances of the object category
mentioned in the expression, even if those instances do not satisfy other conditions in the expression.

For example, in the top row of Figure 19, E = “brown egg”. However, all the eggs have been segmented
regardless of their color. Thus, counting the masks results in a significant error. Interestingly, as we can
see, the false positive masks do not negatively affect LVLM-Count’s final answer, as the counting is done
by an LVLM at the final stage, which is much stronger than GroundingDINO at understanding referring
expressions. The only effect is that the white eggs have not been cut through by the division lines either. In
the bottom row, we have chosen an image from the challenging Emoji-Count benchmark. The image contains
icons, all of which have an arrow but point in different directions. However, the objects of interest are only
“right arrows curving left.” Similar to the eggs example, taking the masks used for object-aware division
results in a significant error.

Figure 19: Top row: The object of interest is “brown egg.” However, all the eggs have been segmented because
of the limitation of the GroundingDINO model in understanding complex referring expressions. Regardless,
LVLM-Count provides a significantly more accurate number compared to the number of masks. Bottom row:
The object of interest is “right arrows curving left.” Similar to the image of the eggs, counting the number of
masks results in a very large error, while LVLM-Count provides a much more accurate number.

H Performance Analysis of LVLM-Count for different ground truth ranges on
FSC-147 dataset

To further investigate the performance of our pipeline, we divide the ground truth values in the FSC-147 test
set into intervals and plot the MAE for the base GPT-4o, Qwen2, and Gemma 3 models alongside the results
from LVLM-Count using each model, as shown in Figure 20. The first interval contains relatively small
ground truth values, a range in which LVLMs already perform well. As the ground truth values increase, the

27

Published in Transactions on Machine Learning Research (02/2026)

base models exhibit increasingly larger errors compared to LVLM-Count, with the margin growing rapidly.
This behavior is consistent with our observations of counting errors on the blue circles in Figure 2.

(a) LVLM-Count using GPT-4o (b) LVLM-Count using Gemma 3 (c) LVLM-Count using Qwen2

Figure 20: Performance analysis of our method, LVLM-Count, on the FSC-147 test set using GPT-4o
(Figure 20a), Gemma 3 (Figure 20b), and Qwen2 (Figure 20c). In the first interval, all base LVLMs exhibit
a lower MAE. However, in intervals with higher ground truth values, LVLM-Count achieves a lower MAE
compared to the base LVLMs. Note that as the ground truth values grow higher, the margin of improvement
increases rapidly.

I Report of Various Accuracy Metrics for the Performance of LVLM-Count on the
FSC-147 Dataset, PASCAL VOC, Emoji-Count, and Penguin Benchmarks

This section presents various accuracy measures for the experiments reported in Tables 1, 2, 3, and 4. The
accuracy metrics are defined in Table 7. Following these definitions, Table 8 shows the measured accuracies
for the FSC-147 test set. Similarly, Tables 9, 10, and 11 present the accuracy metrics for the PASCAL VOC,
Emoji-Count, and Penguin benchmarks, respectively. The results in the tables demonstrate that LVLM-Count
generally achieves a higher accuracy than the base LVLM it employs.

Table 7: Definitions of Various Accuracy Metrics. GT denotes the ground truth number.

Metric Definition
Acc Percentage of answers such that answer = GT
Acc±1 Percentage of answers such that |answer − GT | ≤ 1
Acc±3 Percentage of answers such that |answer − GT | ≤ 3
Acc±5 Percentage of answers such that |answer − GT | ≤ 5
Acc±10 Percentage of answers such that |answer − GT | ≤ 10

J Inference Time Comparison

LVLM-Count is a pipeline consisting of multiple stages. However, in this section, we demonstrate that the
dominant portion of the time during inference with the LVLMs tested in this paper, i.e. GPT4o, Gemma 3,

28

Published in Transactions on Machine Learning Research (02/2026)

Table 8: FSC-147 Dataset. A (↑) next to the measured accuracies for LVLM-Count indicates improvement
over the base LVLM it uses, while a (↓) indicates degradation compared to the corresponding base LVLM.

Method Acc (%) Acc±1 (%) Acc±3 (%) Acc±5 (%) Acc±10 (%)
GPT4o 12.24 26.22 42.10 52.41 66.58
LVLM-Count (GPT4o as LVLM) 14.45 (↑) 28.99 (↑) 47.25 (↑) 57.03 (↑) 70.45 (↑)
Gemma 3 27B 8.71 18.94 32.55 41.57 55.15
LVLM-Count (Gemma 3 as LVLM) 11.37 (↑) 25.46 (↑) 41.51 (↑) 52.07 (↑) 67.09 (↑)
Qwen2 VL 72B AWQ 9.19 20.81 36.83 46.95 62.07
LVLM-Count (Qwen2 VL 72B AWQ as LVLM) 9.61 (↑) 23.95 (↑) 43.05 (↑) 53.78 (↑) 69.08 (↑)

Table 9: PASCAL VOC Benchmark. A (↑) next to the measured accuracies for LVLM-Count indicates
improvement over the base LVLM it uses, while a (↓) indicates degradation compared to the corresponding
base LVLM.

Method Acc (%) Acc±1 (%) Acc±3 (%) Acc±5 (%) Acc±10 (%)
GPT4o 30.39 47.06 61.11 71.90 89.87
LVLM-Count (GPT4o as LVLM) 32.35 (↑) 51.96 (↑) 73.20 (↑) 82.35 (↑) 93.46 (↑)
Gemma 3 27B 29.41 54.58 75.49 85.62 92.16
LVLM-Count (Gemma 3 27B as LVLM) 30.39 (↑) 50.98 (↓) 78.43 (↑) 85.62 (-) 94.77 (↑)
Qwen2 VL 72B AWQ 24.18 42.48 60.13 72.22 86.60
LVLM-Count (Qwen2 VL 72B AWQ as LVLM) 28.76 (↑) 46.73 (↑) 67.32 (↑) 78.43 (↑) 89.87 (↑)

Table 10: Emoji-Count Benchmark. A (↑) next to the measured accuracies for LVLM-Count indicates
improvement over the base LVLM it uses, while a (↓) indicates degradation compared to the corresponding
base LVLM.

Method Acc (%) Acc±1 (%) Acc±3 (%) Acc±5 (%) Acc±10 (%)
GPT4o 1.85 5.54 13.73 21.12 43.94
LVLM-Count (GPT4o as LVLM) 2.81 (↑) 9.88 (↑) 23.53 (↑) 36.22 (↑) 60.24 (↑)
Gemma 3 27B 0.80 1.77 4.10 7.07 16.14
LVLM-Count (Gemma 3 27B as LVLM) 2.49 (↑) 5.30 (↑) 13.33 (↑) 19.92 (↑) 38.63 (↑)
Qwen2 VL 72B AWQ 0.88 2.89 7.55 11.41 19.76
LVLM-Count (Qwen2 VL 72B AWQ as LVLM) 2.33 (↑) 6.75 (↑) 16.22 (↑) 25.70 (↑) 43.86 (↑)

Table 11: Penguin Benchmark. A (↑) next to the measured accuracies for LVLM-Count indicates improvement
over the base LVLM it uses, while a (↓) indicates degradation compared to the corresponding base LVLM.

Method Acc (%) Acc±1 (%) Acc±3 (%) Acc±5 (%) Acc±10 (%)
GPT4o 2.00 3.67 8.33 12.00 22.00
LVLM-Count (GPT4o as LVLM) 2.67 (↑) 6.33 (↑) 14.33 (↑) 18.67 (↑) 33.00 (↑)
Gemma 3 27B 1.33 1.67 7.00 8.67 16.00
LVLM-Count (Gemma 3 27B as LVLM) 1.00 (↓) 3.67 (↑) 9.33 (↑) 12.67 (↑) 23.67 (↑)
Qwen2 VL 72B AWQ 1.67 2.00 6.33 10.33 16.67
LVLM-Count (Qwen2 VL 72B AWQ as LVLM) 1.67 (-) 5.33 (↑) 11.67 (↑) 18.00 (↑) 31.00 (↑)

and Qwen2, is spent querying the LVLM to count objects, and the additional steps in the pipeline comprise a
small portion in comparison.

In the four stages of the pipeline, the following main steps are taken: making a call to an LLM/LVLM to
extract the object of interest from Q, calling GroundingDINO for area detection, calling GroundingDINO
and SAM for target segmentation, performing some post-processing on the masks, running the mean-shift
clustering algorithm, running the A∗ search, and querying the LVLM for the sub-images. From the listed

29

Published in Transactions on Machine Learning Research (02/2026)

steps, the running time of the post-processing on masks is negligible. The time required for the rest of the
steps in an optimized pipeline is demonstrated in Table 12. To obtain the inference time for each step, we
evaluated it on 1,000 images from the FSC-147 dataset and calculated the average.

Table 12: Inference time breakdown of the LVLM-Count pipeline for different LVLMs (Time in seconds)

Method Extract E from Q Area Detection Target Segmentation Clustering A∗ Subimage Analysis3 Total
LVLM-Count (GPT4o) 0.11

0.10 0.43 0.24 0.03
1.65 2.56

LVLM-Count (Gemma 3 27B) 0.11 1.11 2.02
LVLM-Count (Qwen2 VL 72B AWQ) 0.10 1.17 2.07

As shown in Table 12, the dominant term in the inference time comes from calling the LVLM to count objects
of interest in the sub-images. This occupies more than half of the total inference time. However, a similar
step occurs when querying the base LVLM to count objects of interest in the main image. The additional
steps present in LVLM-Count but absent in the base LVLM constitute a smaller portion of the time. Table 13
presents a comparison between the total inference time of LVLM-Count and the base LVLMs. This increase
in inference time may be acceptable for most applications, given the substantial improvements in counting
accuracy when using LVLM-Count.

Table 13: Comparison of the inference time between the base LVLM and LVLM-Count

Method Inference (s)
Base GPT4o 1.68
LVLM-Count (Using GPT-4o) 2.56
Base Gemma 3 27B 1.52
LVLM-Count (Using Gemma 3 27B) 2.01
Base Qwen2 VL 72B AWQ 1.46
LVLM-Count (Using Qwen2 VL 72B AWQ) 2.07

K Comparison of Base LVLMs and LVLM-Count’s Counting Performance with SOTA
Counting Models as a Reference Point

LVLM-Count is designed to enhance the counting performance of LVLMs. Tables 1, 2, 3, and 4 in the
main paper present extensive experimental results demonstrating LVLM-Count’s accuracy improvements
over the base LVLMs. In this section, we include the results of state-of-the-art (SOTA) dedicated counting
models for the experiments reported in the main paper. Specifically, we compare the performance of
GroundingREC Dai et al. (2024), CountGD Amini-Naieni et al. (2024), and DAVEprm Pelhan et al.
(2024), as well as TFOC Shi et al. (2024). The first three models have counting-specific training, while
the latter, though a dedicated counting model, does not require counting-specific training. Reporting these
results provides additional insights into the progress of counting performance in LVLMs and their enhanced
performance with LVLM-Count.

Table 14 presents the results of dedicated counting models alongside LVLMs and their corresponding LVLM-
Count variants on the FSC-147 test set. Note that GroundingREC, CountGD, and DAVEprm are the
top three highest-performing text-based trained models on FSC-147 in the literature. Moreover, TFOC is
the best-performing training-free model on FSC-147. We observe that, in general, the dedicated counting
models (henceforth referred to simply as counting models) outperform the base LVLMs. However, the use of
LVLM-Count significantly narrows this performance gap.

Results on the PASCAL VOC dataset are reported in Table 15. For training-based counting models, this
is considered a cross-dataset evaluation, meaning that they are trained on the training set of FSC-147 and
tested on the PASCAL VOC benchmark. We observe that some trained counting models still outperform

3This is for a case where sub-image queries to the LVLM are made in parallel

30

Published in Transactions on Machine Learning Research (02/2026)

Table 14: Evaluation of SOTA counting models on the FSC-147 test set serves as a reference point for assessing
the performance of LVLMs and their corresponding LVLM-Count variants. The column “Trained Model”
indicates whether a model has been trained on FSC-147. Columns marked with ∆ show the performance
difference between LVLM-Count and its base LVLM. Improvements are shown in green, while degradations
are shown in red.

Method Trained Model MAE ↓ ∆ RMSE ↓ ∆
TFOC (Shi et al., 2024) ✗ 24.79 - 137.15 -
DAVEprm (Pelhan et al., 2024) ✓ 14.90 - 103.42 -
CountGD (Amini-Naieni et al., 2024) ✓ 14.76 - 120.42 -
GroundingREC (Dai et al., 2024) ✓ 10.12 - 107.19 -
GPT-4o ✗ 25.57 - 137.26 -
LVLM-Count (GPT-4o as LVLM) ✗ 17.86 ↓ 7.71 91.71 ↓ 45.55
Gemma 3 27B ✗ 30.59 - 132.61 -
LVLM-Count (Gemma 3 27B as LVLM) ✗ 20.25 ↓ 10.34 110.45 ↓ 22.16
Qwen2 VL 72B AWQ ✗ 34.48 - 149.49 -
LVLM-Count (Qwen2 VL 72B AWQ as LVLM) ✗ 22.29 ↓ 11.89 119.46 ↓ 30.44

LVLMs; however, this is likely due to the significant overlap between the categories in PASCAL VOC and
FSC-147. Nevertheless, LVLM-Count is very effective in narrowing the performance gap. Additionally, the
results on the Emoji-Count benchmark are reported in Table 16. This is also a cross-dataset evaluation. In
contrast to PASCAL VOC, Emoji-Count consists of complex concepts and categories that do not overlap with
FSC-147. As a result, LVLMs, which have far stronger generalization power for unseen data and complex
concepts, outperform counting models by a large margin. Employing LVLM-Count widens this gap even
further.

Table 15: Evaluation of SOTA counting models on the PASCAL VOC counting benchmark as a reference
point for the performance of LVLMs and their corresponding LVLM-Count performance.

Method MAE ↓ ∆ RMSE ↓ ∆
TrainingFree (Shi et al., 2024) 12.03 - 18.18 -
DAVEprm (Pelhan et al., 2024) 12.39 - 22.81 -
CountGD (Amini-Naieni et al., 2024) 2.81 - 7.01 -
GroundingRec (Dai et al., 2024) 4.05 - 7.80 -
GPT4o 4.64 - 8.56 -
LVLM-Count (GPT4o as LVLM) 3.42 ↓ 1.22 7.17 ↓ 1.39
Gemma 3 27B 3.40 - 7.54 -
LVLM-Count (Gemma 3 27B as LVLM) 2.97 ↓ 0.0.43 6.16 ↓ 1.38
Qwen2 VL 72B AWQ 4.80 - 8.71 -
LVLM-Count (Qwen2 VL 72B AWQ as LVLM) 4.12 ↓ 0.68 7.76 ↓ 0.95

Finally, Table 17 presents the results of prior counting models on the Penguin benchmark alongside the counting
performance of LVLMs. We observe that prior training-based counting models significantly outperform
LVLMs on this benchmark. However, similar to other datasets, LVLM-Count narrows this performance gap.

L LVLM-Count’s Ability to Handle Visual Exemplars

Exemplar-based counting methods face challenges due to the difficulty of acquiring representative exemplars.
Additionally, they often struggle with intra-class variability, as objects within the same category may exhibit
diverse appearances, leading to noisy matches and reduced accuracy. In contrast, text-based methods offer

31

Published in Transactions on Machine Learning Research (02/2026)

Table 16: Evaluation of SOTA counting models on the Emoji-Count benchmark, serving as a reference point
for the performance of LVLMs and their corresponding LVLM-Count performance.

Method MAE ↓ ∆ RMSE ↓ ∆
TFOC (Shi et al., 2024) 64.64 - 87.45 -
DAVEprm (Pelhan et al., 2024) 198.99 - 208.08 -
CountGD (Amini-Naieni et al., 2024) 137.93 - 156.80 -
GroundingREC (Dai et al., 2024) 143.22 - 158.74 -
GPT-4o 23.57 - 36.97 -
LVLM-Count (GPT-4o as LVLM) 16.57 ↓ 7 33.11 ↓ 3.86
Gemma 3 27B 21.39 - 24.04 -
LVLM-Count (Gemma3 27B as LVLM) 16.16 ↓ 5.23 21.27 ↓ 2.77
Qwen2 VL 72B AWQ 78.05 - 159.22 -
LVLM-Count (Qwen2 VL 72B AWQ as LVLM) 24.43 ↓ 53.62 43.38 ↓ 115.84

Table 17: Evaluation of SOTA counting models on the Penguin benchmark, serving as a reference point for
the performance of LVLMs and their corresponding LVLM-Count performance.

Method MAE ↓ ∆ RMSE ↓ ∆
TFOC (Shi et al., 2024) 59.34 - 74.40 -
DAVEprm (Pelhan et al., 2024) 22.29 - 31.38 -
CountGD (Amini-Naieni et al., 2024) 17.07 - 25.08 -
GroundingREC (Dai et al., 2024) 22.04 - 26.75 -
GPT4o 35.18 - 45.76 -
LVLM-Count (GPT-4o as LVLM) 26.76 ↓ 8.42 38.60 ↓ 7.16
Gemma 3 27B 49.44 - 60.20 -
LVLM-Count (Gemma 3 27B as LVLM) 34.13 ↓ 15.31 44.11 ↓ 16.09
Qwen2 VL 72B AWQ 44.02 - 65.59 -
LVLM-Count (Qwen2 VL 72B AWQ as LVLM) 28.21 ↓ 15.81 40.40 ↓ 25.19

greater flexibility, as textual descriptions are easily provided, modifiable, and capable of encoding abstract or
fine-grained concepts. This adaptability makes text-based approaches particularly suitable for dynamic or
open-set scenarios, where predefined exemplars are impractical.

Our focus in this work, similar to many recent works Liu et al. (2023); Amini-Naieni et al. (2023), is on
text-based counting due to the above-mentioned reasons. Nevertheless, LVLM-Count is capable of working
with visual exemplars alone as well as combinations of text prompts and visual exemplars, in addition to
its text-only capabilities. The adaptation is straightforward, as most LVLMs also accept visual prompts.
In Table 18, we evaluate the base GPT-4o and LVLM-Count (which uses GPT-4o) on Emoji-Count with
text-only prompts, visual exemplars, and combinations of text and visual exemplars. For the visual-exemplar
version, a single image of the target emoji icon is provided, and the LVLM is required to count similar
instances. For the combined text-and-visual version, an image of the target emoji icon alongside its name is
provided to the model. The results show higher accuracy when combining text and visual exemplars, while
the text-only and exemplar-only versions achieve approximately the same performance.

M Chain of Thought Prompting for LVLM-Count

In this work, our primary focus is on developing a pipeline to enhance the counting ability of LVLMs for
counting prompts in general, rather than optimizing for a specific prompting method. Nevertheless, we
investigated the impact of Chain-of-Thought (CoT) prompting Wei et al. (2022) on visual counting task. For
our experiments, we appended the phrase "think step-by-step" to the counting prompt. As shown in Table 19,

32

Published in Transactions on Machine Learning Research (02/2026)

Table 18: Evaluation of LVLM-Count’s performance using text-only inputs, exemplar-only inputs, and a
combination of text and exemplars on the Emoji-Count dataset.

Method MAE ↓ ∆ RMSE ↓ ∆
GPT4o 22.51 - 35.94 -
LVLM-Count (GPT4o as LVLM, text) 16.29 ↓ 6.22 32.47 ↓ 3.47
LVLM-Count (GPT4o as LVLM, visual exemplars) 15.66 ↓ 6.85 31.69 ↓ 4.25
LVLM-Count (GPT4o as LVLM, text + visual exemplars) 13.46 ↓ 9.05 24.35 ↓ 11.59

the results on the PASCAL VOC benchmark reveal that CoT negatively affects counting performance—not
only for LVLM-Count but also for the base LVLM.

Table 19: Evaluation of CoT prompting for visual counting on PASCAL VOC.

Method MAE ↓ RMSE ↓
GPT4o 4.46 8.35
GPT4o with CoT prompting 5.69 10.10
LVLM-Count (GPT4o as LVLM) 3.31 7.11
LVLM-Count with CoT prompting (GPT4o as LVLM) 3.89 7.70

N Illustration of the Complete Workflow of the LVLM-Count for an Additional Image

In this section, we demonstrate the same steps illustrated for the example image of eggs in Figures 3, 4, 5,
and 6 for an image of zebras drinking water.

The zebra image is passed to the pipeline along with the question Q =“how many zebras are in the image?”.
First, E =“zebra” is extracted using the LLM. Then the zebra image is passed to the area detection stage,
where the prompt given to GroundingDINO is “zebras”. The output bounding boxes are merged, and
the resulting area is cropped, as illustrated in Figure 21. The cropped area is then passed to the target
segmentation stage. At this stage, GroundingDINO detects the objects of interest defined by E as the input
prompt. SAM then uses the output bounding boxes to produce segmentation masks for the zebras, as shown
in Figure 22.

Figure 21: Illustration of the area detection step of LVLM-Count for the zebra image. For this image, Q is
set to “How many zebras are in the image?”. The LLM used in this step returns an E, which is “zebra”. The
plural form of E, “zebras”, and the original image are given as input to GroundingDINO, which returns some
bounding boxes (left and upper right images) that are merged to form the final detected area.

33

Published in Transactions on Machine Learning Research (02/2026)

(a) GroundingDINO output (b) SAM output

Figure 22: Illustration of the target segmentation step of LVLM-Count for the zebra image. The goal is to
produce all the instance masks for E set to “zebra”. The cropped image from Figure 21, together with E, is
given as input to GroundingDINO, which produces the output shown in Figure 22a. Figure 22a is then given
as input to SAM, which produces the output shown in Figure 22b.

After the target segmentation stage, the masks are passed to the object-aware division stage. First, the masks
are used in the cluster-based approach to find the location of the start and end points of the division paths,
i.e., (P 1

s , P 1
e) and (P 2

s , P 2
e). Then these masks are turned into a black-and-white image, which, in turn, is

mapped to a graph. The division paths are then found by connecting each start point to its corresponding
end point by running the A∗ search algorithm on the graph. The found paths are mapped back into the
image domain and drawn in red, as depicted in Figure 23. The image contours are determined based on the
drawn red paths, and each contour’s interior is masked out independently to obtain the subimages. Finally,
the subimages are given to the LVLM to count the number of zebras in each.

Figure 23: Left: Illustration of the unsupervised and non-parametric method to obtain the division points
(P 1

s , P 1
e) and (P 2

s , P 2
e). First, a few pixels are sampled (shown as points inside the segmented objects) from the

pixels composing each mask. The samples are projected onto the x-axis. The projected points are clustered
using mean-shift clustering. The point in the middle of two consecutive clusters is considered a vertical
division point. The straight vertical lines are drawn just for better visualization of the division points. Right:
Illustration of object-aware division. The masks from Figure 22b are turned into a black-and-white image. A
dividing path is found by connecting Ps to Pe using the A∗ search algorithm in a graph that corresponds to
the binary image, where the only nodes in the graph are white pixels, which are connected to all of their
white neighboring pixels. The path is mapped back to the pixel domain.

O Emoji-Count Benchmark Details

In this section, we provide further details about the Emoji-Count benchmark. The full benchmark, including
all images and corresponding annotations, is publicly available in our GitHub repository. The emoji icons
used in daily chats can be placed in classes closely related to a specific topic. While the icons within these
groups often appear very similar, they possess subtle yet important differences. Identifying a specific emoji
among others based on these fine distinctions requires a complex level of understanding from the counting
model.

Our dataset was built from the 1,816 standard Apple emojis available at the time of its creation. Each emoji
has a unique descriptive name. We first grouped these emojis into 82 non-overlapping classes based on their
name’s topic. To prevent ambiguity for a counting model, we then removed confusing icons, such as those
with names that could also refer to a more specific emoji in the class. This cleaning process left us with 1,197

34

Published in Transactions on Machine Learning Research (02/2026)

icons. From each class, we randomly selected six icons for inclusion; classes with fewer than six retained all
their icons. Figure 25b shows the six selected icons from two example classes.

To generate the benchmark images, we began with an empty 1024 × 1024 pixel white canvas for each class.
We then populated each canvas with instances of the icons from that class. Note that each icon may also
be referred to as an object category. The procedure was as follows: for each of the six icons in a class, we
generated a random number between 30 and 50. A number of instances equal to this random value were then
placed at random positions on the canvas, ensuring that the icons did not overlap and remained completely
within the canvas borders. Each image is annotated with the count for every icon type it contains. The
benchmark comprises 415 questions in total. Table 20 provides additional statistics for the benchmark, while
Figure 25a shows the distributions of the ground truth counts.

Table 20: Statistics of the Emoji-Count benchmark dataset.

Metric Value
Total Questions 415
Total Classes 82
Total Images 82
Total Categories 415
Average Questions per Image 5.06
Answer Range 30-50
Average Answer Value 39.87 ± 6.33

P Parsing Strategy for the Output of Open-source LVLMs

Unlike GPT-4o, which provides the user with the ability to format the output answer using a JSON schema,
the open-source models used in this work, i.e., Qwen2 VL 72B AWQ and Gemma 3 27B, do not have such an
option. When we prompt these models to count the number of instances of an object of interest, the answer
is often accompanied by descriptive text that does not follow a specific format, making the extraction of the
predicted object count difficult. To solve this issue, we include a sentence in the counting prompt given to
the LVLM that asks the model to put its final prediction inside double brackets. The template prompt is:
“How many object-of-interest are in the image? Report your final answer with only one number inside
[[Double Brackets]]”.

After the model generates an answer, we use Python’s regular expression package to extract the predicted
number from within the double brackets. Often, this number is a word rather than a numeral. Therefore, after
extraction, we use Python’s text2num package to convert the word into its numerical form. The following
code snippet shows this number extraction process. Details unrelated to the regular expression have been
omitted.

1 import re
2 from text_to_num import alpha2digit
3

4 text_prompt = ("How many object-of-interest are in the image. "
5 "Report your final answer with only one number inside [[Double Brackets]]")
6 while True:
7 try:
8 output_text = LVLM(text_prompt, image)
9 answer = re.search("\[\[(.+)\]\]", output_text[0]).group(1)

10 count = alpha2digit(answer, "en")
11 count = int(count)
12 break

35

Published in Transactions on Machine Learning Research (02/2026)

Figure 24: This pie chart illustrates the 82 classes in the Emoji-Count benchmark. Inside each class there are
3 to 6 type of emoji icons that are related to the topic of the class. For example, the emoji icons inside the
plants and hands classes, have been demonstrated in Figure 25b

13 except Exception:
14 pass

Despite the format instruction in the prompt, the models might occasionally fail to produce an answer in the
required format. This results in an error, which is handled by the code above. The model is then asked to
generate a new output until a successful prediction is extracted.

Let us refer to an unsuccessful attempt to extract the predicted number as a failure. We measure the average
failure rate per image and report it for each of the datasets in the main paper for the two open-source models
that we use, i.e., Qwen2 VL 72B AWQ and Gemma 3 27B. These results are reported in Table 21.

Q Non-zero Prediction of LVLMs for Subimages with No Objects of Interest

As mentioned, LVLMs occasionally predict non-zero values for images that contain no object of interest. In
our pipeline, it is very rare for subimages generated from images that contain a non-zero number of objects of
interest to not contain any objects of interest. The area detection stage ensures that areas containing objects
of interest are cropped, and the clustering step in the object-aware division stage finds the division points so

36

Published in Transactions on Machine Learning Research (02/2026)

(a) Emoji-Count ground truth count distribution (b) Two class examples from Figure 24

Figure 25: The figure illustrates: (a) the distribution of ground truth counts in the images of Emoji-Count
benchmark, and (b) the object categories of two example classes, plants and hands

Table 21: Average failure rate of extracting the predicted number of open-source models across different
benchmarks

Method Failure Rate
FSC-147 PASCAL VOC Emoji-Count Penguin

Base Gemma 3 27B ≈ 0 0 ≈ 0 ≈ 0
LVLM-Count (Using Gemma 3 27B) ≈ 0 0 ≈ 0 0
Base Qwen2 VL 72B AWQ 0.07 0.06 0.09 0.13
LVLM-Count (Using Qwen2 VL 72B AWQ) 0.07 0.08 0.01 0.12

that the distribution of potential objects of interest in different subimages is balanced. However, we provide
quantitative information on this phenomenon for our PASCAL VOC benchmark.

In total, for only 9.80% of the images in the benchmark, at least one of the subimages generated through our
pipeline contains no instance of the queried objects. Half of these cases are images that have a zero ground
truth count to begin with. Excluding those cases, the percentage drops to 4.90%. We report the average
non-zero prediction rate for the subimages with a zero ground truth count and the average predicted values
in Table 22. For each LVLM, we report two cases. In one case, the input text is simply a counting prompt; in
the other case, the input text includes the following sentence in addition to the counting prompt: “Say 0
if you do not see any.” For the sake of brevity in the table entries, let us refer to this simple technique as
Zero-aware prompt. As observed in the table, this simple technique is quite effective in reducing the error.
Note that the standard LVLM-Count uses this technique.

Table 22: Average non-zero prediction rate and average predicted values for the subimages with zero ground
truth count in PASCAL VOC benchmark.

Method Average Non-zero Prediction Rate ↓ Average Predicted Value ↓
LVLM-Count (GPT4o w/o Zero-aware prompt) 0.39 0.78
LVLM-Count (GPT4o) 0.15 0.15
LVLM-Count (Gemma 3 27B w/o Zero-aware prompt) 0.45 2.24
LVLM-Count (Gemma 3 27B) 0.18 0.69
LVLM-Count (Qwen2 VL 72B AWQ w/o Zero-aware prompt) 0.42 0.51
LVLM-Count (Qwen2 VL 72B AWQ) 0.24 0.27

37

Published in Transactions on Machine Learning Research (02/2026)

R Reproducibility Table for Implementation Parameter

This section provides Table 23, which lists the values of key parameters used in our implementation.

• Detection threshold for area detection: This threshold controls the acceptance of bounding
boxes proposed by GroundingDINO, based on the probability of each box during the area detection
stage.

• Detection threshold for target segmentation: This parameter is defined similarly but applies
to the target segmentation stage.

• Mask NMS IoU threshold: This sets the maximum acceptable Intersection over Union (IoU)
value between two masks in the NMS algorithm. If two masks exceed this IoU, the one with the
lower probability is removed.

• Mask erosion thickness: This determines the size of a square kernel (cv2.erode) used to erode
the outer layer of masks. This prevents obstructions for division paths when two adjacent masks
overlap.

• Mask refinement thickness: This defines the size of a square kernel (cv2.morphologyEx) used to
refine the surface of potentially pitted masks.

Table 23: Reproducibility table for implementation parameters

Parameter Value
Detection threshold for area detection 0.1
Detection threshold for target segmentation 0.1
Mask NMS IoU threshold 0.4
Mask erosion thickness 2 pixels
Mask refinement thickness 3 pixels

S Dividing Images Along Both the Horizontal and Vertical Axes

As described in Section 3.3, in the object-aware division stage of LVLM-Count, the divisions are vertical.
This is to keep the pipeline simple. Nonetheless, it is possible to perform the same steps to obtain horizontal
division paths. In Table 24, we report the performance of a variant of LVLM-Count that leverages horizontal
divisions in addition to vertical divisions on the FSC-147 dataset. Additionally, Figure 26 shows a visual
example of this variant’s performance on a sample from the FSC-147 dataset.

Table 24: Evaluation of a version of LVLM-Count that leverages divisions along both vertical and horizontal
axes on the FSC-147 dataset.

Method MAE ↓ ∆ RMSE ↓ ∆
GPT-4o 24.48 - 125.38 -
LVLM-Count (GPT-4o as LVLM, vertical & horizontal divisions) 17.67 ↓ 6.81 90.61 ↓ 34.47
Gemma 3 27B 30.59 - 132.61 -
LVLM-Count (Gemma 3 27B as LVLM, vertical & horizontal divisions) 18.44 ↓ 12.15 103.91 ↓ 28.7
Qwen2 VL 72B AWQ 34.18 - 149.49 -
LVLM-Count (Qwen2 VL 72B AWQ as LVLM, vertical & horizontal divisions) 18.19 ↓ 15.99 104.12 ↓ 45.37

38

Published in Transactions on Machine Learning Research (02/2026)

Figure 26: A visual example of the performance of LVLM-Count on a sample from FSC-147 when it leverages
both horizontal and vertical divisions

T Evaluation of the counting methods on TallyQA-Complex

TallyQA (Acharya et al., 2019) is an open-world counting dataset that includes complex counting questions
involving relationships between objects, attribute identification, reasoning, and more. It is a fairly large
dataset, with the training set containing 249318 questions and the test set having 22991 simple and 22991
complex counting questions. The number of objects in each image ranges from 0 to 15. We randomly sampled
10 questions per ground truth count from the complex counting questions in the test set. This resulted in 149
complex counting questions in total, since some ground truth values have fewer than 10 samples available.
We refer to this benchmark as the TallyQA-Complex benchmark.

We compare our method, using GPT-4o and Qwen2 VL 72B AWQ as the LVLM, against their corresponding
base models. For reference, we also report the cross-domain performance of three of the best-performing
trained counting models—GroundingREC, CountGD, and DAVEprm—as well as the only prior training-free
model, TFOC. The results are shown in Table 25. Note that CountGD and DAVEprm use weights trained on
FSC-147, while GroundingREC uses weights trained on the REC-8K dataset (Dai et al., 2024), which its
authors introduced alongside the model. Our method improves the MAE over the base LVLMs. Moreover,
note that SOTA counting models are outperformed by the base LVLM models, further confirming that LVLMs
possess better generalization and complex reasoning capabilities for counting tasks.

Table 25: Evaluation of the performance of LVLMs and their corresponding LVLM-Count as well as SOTA
counting models on the TallyQA-Complex counting benchmark.

Method MAE ↓ ∆ RMSE ↓ ∆
TFOC (Shi et al., 2024) 12.41 - 22.80 -
DAVEprm (Pelhan et al., 2024) 28.36 - 57.56 -
CountGD (Amini-Naieni et al., 2024) 9.78 - 17.21 -
GroundingRec (Dai et al., 2024) 5.83 - 10.13 -
GPT4o 2.60 - 4.74 -
LVLM-Count (GPT4o as LVLM) 2.28 ↓ 0.32 4.18 ↓ 0.56
Qwen2 VL 72B AWQ 3.21 - 5.35 -
LVLM-Count (Qwen2 VL 72B AWQ as LVLM) 2.47 ↓ 0.74 4.35 ↓ 1.00

39

	Introduction
	Related Work
	LVLM-Count
	Area Detection
	Target Segmentation
	Object-aware Division
	Target Counting

	Experiments
	Datasets and Benchmarks
	Results

	Limitations
	Ablation Study
	Visual Examples of LVLM-Count’s Performance on the FSC-147 Dataset, PASCAL VOC, and Emoji-Count Benchmarks
	Robustness to Crowded Scenes and Heavy Occlusion
	Additional Information and Visual Examples from the Penguin Benchmark
	Real-world Application of LVLM-Count
	LVLM-Count's Power in Handling Multiple Object Categories in the Same Image
	False Positive Masks at the Target Segmentation Stage
	Performance Analysis of LVLM-Count for different ground truth ranges on FSC-147 dataset
	Report of Various Accuracy Metrics for the Performance of LVLM-Count on the FSC-147 Dataset, PASCAL VOC, Emoji-Count, and Penguin Benchmarks
	Inference Time Comparison
	Comparison of Base LVLMs and LVLM-Count's Counting Performance with SOTA Counting Models as a Reference Point
	LVLM-Count's Ability to Handle Visual Exemplars
	Chain of Thought Prompting for LVLM-Count
	Illustration of the Complete Workflow of the LVLM-Count for an Additional Image
	Emoji-Count Benchmark Details
	Parsing Strategy for the Output of Open-source LVLMs
	Non-zero Prediction of LVLMs for Subimages with No Objects of Interest
	Reproducibility Table for Implementation Parameter
	Dividing Images Along Both the Horizontal and Vertical Axes
	Evaluation of the counting methods on TallyQA-Complex

