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Abstract

The Unaligned Multi-view Clustering (UMC) aims to learn a discriminative cluster
structure from unaligned multi-view data, where the features of samples are not
completely aligned across multiple views. Most existing methods usually prioritize
employing various alignment strategies to align sample representations across
views and then conduct cross-view fusion on aligned representations for subsequent
clustering. However, due to the heterogeneity of representations across different
views, these alignment strategies often fail to achieve ideal view-alignment results,
inevitably leading to unreliable alignment-based fusion. To address this issue, we
propose an alignment-free consistency fusion framework named AF-UMC, which
bypasses the traditional view-alignment operation and directly extracts consistent
representations from each view to perform global cross-view consistency fusion.
Specifically, we first construct a cross-view consistent basis space by a cross-view
reconstruction loss and a designed Structural Clarity Regularization (SCR), where
autoencoders extract consistent representations from each view through projecting
view-specific data to the constructed basis space. Afterwards, these extracted
representations are globally pulled together for further cross-view fusion according
to a designed Instance Global Contrastive Fusion (IGCF). Compared with previous
methods, AF-UMC directly extracts consistent representations from each view for
global fusion instead of alignment for fusion, which significantly mitigates the
degraded fusion performance caused by undesired view-alignment results while
greatly reducing algorithm complexity and enhancing its efficiency. Extensive
experiments on various datasets demonstrate that our AF-UMC exhibits superior
performance against other state-of-the-art methods.

1 Introduction

Multi-view data is usually collected from multiple sources, which is represented by several het-
erogeneous features. For instance, in personalized online recommendations, diversified individual
preferences are collected from various e-commerce platforms. To recommend reliable products, it is
necessary to comprehensively integrate all these preferences. However, in practical scenarios, the
collected multi-view preference data is usually unaligned since different platforms do not store data
in a unified order in general. Under such conditions, the traditional multi-view learning methods lose
their capability to fuse the unaligned multi-view data [38, 37].
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Figure 1: The drawbacks of existing feature-based and structure-based methods. (a) The unintended
mismatched basis spaces of feature-based methods. Triangles in different colors denote samples
of different categories, and solid arrows in different colors denote different basis vectors {zvi }ci=1.
Since Z1 and Z2 are independently constructed in each view without any cross-view constraints, the
correspondences between basis vectors {(z1i , z2i )|1 ≤ i ≤ c} are often incorrect across views (i.e.,
Z1 and Z2 are often mismatched across views), which induces the heterogeneity of projected feature
representations (H1, H2) across views. (b) The undesired structural equivalence across basis vectors
of structure-based methods. Circles in different colors denote different basis vectors {xv

i }ci=1 (i.e.,
the nodes on structure Sv), and thicker black lines indicate a closer structural relationship between
the basis vectors. x2

2 and x2
3 are structurally equivalent when they have the coincident structural

correspondence on S2 (i.e., they share the coincident neighbor node x2
1 and have the coincident

relationship with x2
1) [39]. When x1

1 tries to match the corresponding basis vector x2
3 on S2 through

structural correspondence, it will find two candidates (x2
2, x2

3) that have the coincident structural
correspondence on S2, which induces non-unique matching results. This easily leads to structural
mismatched basis spaces (X1, X2) and heterogeneous structure representations (S1, S2).

The key to learn from unaligned multi-view data lies in how to fuse cross-view information with the
unaligned sample features across different views. Existing unaligned multi-view clustering (UMC)
methods, mainly divided into feature-based and structure-based, provide an effective solution, which
prioritizes employing various alignment strategies on sample representations and then fuses these
aligned representations into a cross-view consistent representation for clustering. For instance, feature-
based UMC methods [35, 3, 8], construct an orthogonal matrix Zv ∈ Rc×Dv to represent a basis
space with c basis vectors {zvi }ci=1 in each view v, and obtain c-dimensional feature representation
Hv ∈ RN×c by projecting samples Xv ∈ RN×Dv onto Zv , formally expressed as ∥Xv −HvZv∥2F .
After that, Hv is used for cross-view representation alignment through various alignment strategies,
such as introducing a learnable alignment matrix with O(N2) memory or Hungarian algorithm, and
then the aligned feature representations are used to fuse the cross-view consistent representation H∗:

min

V∑
v=1

∥Xv −HvZv∥2F +

V∑
v=1

∥H∗ − Φ(Hv)∥2F ,

s.t. ∀v,Zv(Zv)
T
= I.

(1)

In Eq. (1), Φ(·) indicates the associated alignment strategies, V and N are the number of views and
samples, respectively. However, the constructed basis spaces {Zv}Vv=1 are often mismatched across
views due to the independent construction process ∥Xv−HvZv∥2F without any cross-view constraints,
as shown in Figure 1 (a), which induces the heterogeneity of projected representations {Hv}Vv=1, and
the heterogeneity makes trouble for subsequent alignment strategies to achieve ideal view-alignment
results, leading to unreliable cross-view fusion. For structure-based methods [18, 40, 32], they project
structure representation Sv by a self-representation term ∥Xv − SvXv∥2F , which is an analogue
of the projection operation ∥Xv − HvZv∥2F in feature-based methods. Consequently, each row
vector of Xv can be regarded as both a sample feature and a basis vector, and the obtained structure
representation Sv for Xv indicates the structure of both samples and basis vectors. In this case, their
alignment strategies Φ(·) on {Sv}Vv=1 simultaneously perform both multi-view sample alignment
and basis space matching, and then the aligned sample structures {Φ(Sv)}Vv=1 are used to fuse the
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cross-view consistent structure S∗:

min

V∑
v=1

∥Xv − SvXv∥2F +

V∑
v=1

∥S∗ − Φ(Sv)∥2F . (2)

Nevertheless, since the basis space Xv is directly constructed using view-specific sample features,
the view-specific inherent heterogeneity is completely reserved and induces the heterogeneity for
structures {Sv}Vv=1 across different views, where the alignment strategies on {Sv}Vv=1 also lose their
expected capability. In addition, it is difficult to obtain ideally matched basis spaces through structural
match, since structurally equivalent basis vectors disrupt the ideal matching results, as shown in Figure
1 (b), which also induces the heterogeneity of representations {Sv}Vv=1, deceiving the alignment
and the subsequent multi-view fusion towards a biased direction. To sum up, the current methods,
whether feature-based or structure-based, suffer from the common limitation: Their cross-view
fusion operation depends on aligned representations, but the ideal view-alignment results often
fail to be obtained by alignment strategies due to the heterogeneity of representations across
views, inevitably inducing unreliable alignment-based fusion.

To address the above issues, in this paper, we propose an alignment-free consistency fusion framework
AF-UMC for unaligned multi-view clustering, which directly extracts consistent representations
from each view for globally fusing a cross-view consistent representation and does not require
additional alignment strategies. Specifically, we first construct a cross-view consistent basis space.
On one hand, the basis space is designed to capture cross-view shared information from multiple
views, where exclusive diversity is filtered out and the shared consistency is reserved. On the other
hand, a Structural Clarity Regularization (SCR) is designed to prevent the basis space from learning
structurally equivalent basis vectors and to encourage the basis space to capture matched information
from different views. Afterwards, autoencoders are employed to extract consistent representations
from each view by projecting view-specific data to the constructed basis space. Finally, these extracted
representations are globally pulled together for further fusing a cross-view consistent representation
by a designed Instance Global Contrastive Fusion (IGCF), and then the clustering results are obtained
by K-means clustering. During the whole process, different from previous methods that utilize
alignment strategies with O(N2) complexity to align representations for cross-view fusion, AF-UMC
directly extracts consistent representations from each view for global fusion, avoiding the additional
cost of alignment strategies while mitigating the risk of fusing non-corresponding representations. In
summary, the main contributions of this paper lie in:

• We analyze a common problem in existing unaligned multi-view clustering methods: align-
ment strategies often fail to achieve ideal view-alignment results due to the inherent hetero-
geneity of representations across different views, inevitably leading their alignment-based
cross-view fusion toward a biased direction.

• We propose an alignment-free consistency fusion framework AF-UMC, which does not
require additional alignment strategies and directly extracts consistent representations from
each view by projecting view-specific data to a constructed cross-view consistent basis
space, and then globally fuses them into a cross-view consistent representation.

• Extensive experimental results on various datasets demonstrate that our proposed model
exhibits superior performance against other state-of-the-art algorithms. Moreover, we
conduct comprehensive ablation studies on both loss functions and model components,
clearly demonstrating their effectiveness within our AF-UMC.

2 Related works

Multi-view clustering. Multi-view clustering aims to unsupervisedly fuse multi-view data to
differentiate crucial clusters, and is a fundamental task in the fields of data mining [20, 44, 30, 31, 25,
2, 12], pattern recognition [19, 29, 41, 13, 9, 6, 28], etc. The key to dealing with such a problem lies
in how to fuse cross-view information and obtain a consistent representation for clustering. Current
multi-view clustering methods are mainly divided into two categories, i.e., shallow methods and deep
learning-based methods. For instance, Wu et al. [34] propose a shallow method, which integrates
multi-view samples into a unified tensor through matrix factorization and then utilizes a low-rank
kernel tensor constraint to fuse cross-view consistent representation. Wang et al. [27] propose a
deep learning-based method, which employs graph autoencoders to pull together structurally similar
samples and then introduces contrastive learning for fusing cross-view consistent representation.
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Figure 2: The overview of AF-UMC, which consists of two main stages: alignment-free consistency
extraction and global contrastive fusion. In the first stage, we construct a cross-view consistent
basis space through a cross-view reconstruction and a designed Structural Clarity Regularization
(SCR), where autoencoders extract consistent representations from each view through projecting
view-specific data to the constructed basis space. In the second stage, these extracted representations
are globally pulled together for fusing a cross-view consistent representation Hcore according to a
designed Instance Global Contrastive Fusion (IGCF), and then the final clustering results are obtained
by K-means clustering.

Unaligned multi-view clustering. Unaligned multi-view clustering aims to cluster the multi-view
data where the sample features are not completely aligned across views [35, 3, 8, 18, 40, 32, 21].
The key to dealing with such a problem lies in how to fuse cross-view information for clustering
under the unaligned sample features. Existing methods can be divided into two main categories,
i.e., feature-based methods and structure-based methods. For instance, Ji et al. [8] propose a
feature-based method, which first introduces a learnable alignment matrix with O(N2) memory
to align multi-view feature representations, and then utilizes a low-rank kernel tensor constraint
to capture cross-view consistency while fusing a cross-view consistent feature representation. Xin
et al. [35] also propose a feature-based method, which employs the Hungarian algorithm to align
multi-view feature representations and then introduces a cross-view contrastive loss to pull together
cross-view positive representations for fusing a cross-view consistent feature representation. Wen
et al. [32] propose a structure-based method, which first extracts a structure representation by a
self-representation function in each view and introduces a learnable alignment matrix with O(N2)
memory to structurally align cross-view samples, and then introduces a low-rank kernel constraint
to fuse aligned sample structures into a cross-view consistent structure. Although these methods
have achieved competitive performance, they still suffer from the same drawback: Their alignment
strategies often fail to achieve ideal view-alignment results due to the heterogeneity of representations
across different views, inevitably leading to unreliable cross-view fusion.

3 Method

In this paper, we propose an alignment-free consistency fusion framework AF-UMC for unaligned
multi-view clustering, which eliminates the requirement for alignment strategies and directly extracts
consistent representations from each view to perform global cross-view consistency fusion. The
AF-UMC is decomposed into two stages: Alignment-Free Consistency Extraction and Global
Contrastive Fusion. In the first stage, we extract consistent representations from each view by
projecting view-specific samples to the constructed cross-view consistent basis space. In the second
stage, these extracted representations are globally pulled together to fuse the cross-view consistent
representation for clustering. Figure 2 illustrates the overview of our proposed method.
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3.1 Problem definition

Given an unaligned multi-view dataset X = {Xv}Vv=1 with V views, where Xv = {xv
i }Ni=1 ∈

RN×Dv denotes the sample features of v-th view, Dv is the dimension of Xv and N is the number
of samples. The goal of AF-UMC is to fuse multi-view information for separating multi-view data
to pre-define k clusters. Notably, the multi-view sample features cannot be directly fused since
{(xp

i ,x
q
i ), p ̸= q} are often derived from different samples in the unaligned multi-view dataset.

3.2 Alignment-free consistency extraction

In this stage, we construct a cross-view consistent basis space Z = {zi}ci=1 ∈ Rc×d to capture cross-
view consistency from multiple views and extract consistent representations from each view through
projecting view-specific samples to the basis space. Specifically, we first construct the cross-view
consistent basis space Z through multi-view samples reconstruction. As shown in Figure 2, Z is
involved in decoding samples from multiple views and captures cross-view shared consistency, while
filtering out view-specific diversity that does not overlap across the views. The decoding process
of view v is denoted by Dv(Hv,Z) : HvZ 7→ Xv

pre ∈ RN×Dv , where Hv = {hv
i }Ni=1 ∈ RN×c

indicates the latent representation that is extracted by encoder Ev(Xv) : Xv 7→ Hv. After that, we
aim to learn a cross-view consistent structure Scon = {sconi}ci=1 ∈ Rc×c to constrain the structural
consistency of captured information, which further facilitates Z to capture consistent information. To
achieve this purpose, we relax the widely used orthogonal constraint on Z to be linearly independent,
since it is difficult for orthogonal Z to learn structural relationships. This relaxation is formulated as:

ZZT = I =⇒ rank(Z) = c, (3)

where the similarity structure S = {si}ci=1 ∈ Rc×c of Z is obtained by a scaled exponential form of
cosine similarity ecos(·,·)/τf and is introduced to learn the consistent structure Scon, where cos(zi, zj)
indicates the cosine similarity between zi and zj , the exponential function is used to magnify the
difference across similarity scores for obtaining a clearer similarity structure and τf is a temperature
coefficient. However, directly introducing S as a structural constraint may cause Z to learn structurally
equivalent basis vectors, inducing structural mismatch of captured information [39]. To address
this issue, we design a Structure Clarity Regularization (SCR) to mitigate structural equivalence of
{zi}ci=1 on S. Considering that structurally equivalent basis vectors (zi, zj) share the coincident
neighbor nodes and the same structural relationships with each neighbor node zk [39], i.e., si,k = sj,k,
we measure the structural equivalence between zi and zj as follows:

φ(si, sj) =

c∑
k=1
k ̸=i,j

(si,k − sj,k)
2, (4)

where the higher value of φ(si, sj) indicates the lower structural equivalence between zi and zj .
After measuring the structural equivalence across {zi}ci=1, our Structure Clarity Regularization is
designed to penalize the structural equivalence as follows:

Ls =
∑

1⩽i<j⩽c

e−φ(si,sj)/τf , (5)

where the negative exponential function e−φ(,) encourages φ(, ) toward higher values to penalize
structural equvalence across {zi}ci=1. Through the above operations, Z can effectively capture
cross-view consistency from multiple views, promoting autoencoders to directly extract consistent
representations from each view through projecting view-specific samples to the basis space. To
strengthen the capability of autoencoders in extracting consistent representations, a reconstruction
loss between {Dv (Hv,Z)}Vv=1 and {Xv}Vv=1 is introduced as follows:

Lr =

V∑
v=1

∥Xv −Dv (Hv,Z)∥2F =

V∑
v=1

∥Xv −Dv (Ev (Xv) ,Z)∥2F . (6)

The extracted consistent representations {Hv}Vv=1 are used in the next stage for cross-view fusion.
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3.3 Global contrastive fusion

To further fuse the extracted representations {Hv}Vv=1 while avoiding fusing non-corresponding
representations that derive from different sample instances, we bypass instance-to-instance fusion
and perform cross-view fusion at a global level. Specifically, we first calculate the global center h̄v

of Hv in each view v, where h̄v =
∑N

i=1 h
v
i /N . After that, we select a view as central view core

and bring h̄core closer to global centers {{h̄v}Vv=1, v ̸= core} for promoting Hcore to be globally
consistent with {{Hv}Vv=1, v ̸= core}:

Lc =

V∑
v=1

v ̸=core

∥∥h̄core − h̄v
∥∥2
F
, (7)

where core is set to the view with the largest original feature dimension since it usually provides a
more comprehensive description of samples and a more representative global center for facilitating
cross-view global fusion, and Hcore is treated as the fused cross-view consistent representation
for subsequent clustering. However, such global-to-global operation only directly influences the
global center h̄core of Hcore, failing to ensure that each instance hcore

i effectively fuses multi-view
global information to achieve global consistency. To solve this issue, we design the Instance Global
Contrastive Fusion (IGCF) to introduce instance-to-global contrast, where {(hcore

i , h̄v), core ̸= v}
serves as positive pairs for bringing each instance of Hcore closer to global centers {{h̄v}Vv=1, v ̸=
core} while {(hcore

i ,hcore
j ), i ̸= j} serves as negative pairs for reinforcing the discriminability

across {hcore
i }Ni=1. Such a strategy encourages each instance of Hcore to effectively fuse multi-view

global information while prompting the extracted consistent cluster structure of Hcore to be clearer.
In addition, we mask the normally used cross-view negative pairs {(hcore

i ,hv
j ), core ̸= v}, since they

often include the representation pairs from the same sample in unaligned multi-view data and hinder
{(Hcore,Hv), core ̸= v} from achieving global consistency. Accordingly, our Instance Global
Contrastive Fusion is formulated as follows:

Lc = − 1

N

N∑
i=1

∑
1⩽v⩽V
v ̸=core

log
ed(h

core
i ,h̄v)/τl∑N

j=1
j ̸=i

ed(h
core
i ,hcore

j )/τl +Ned(h
core
i ,h̄v)/τl

, (8)

where τl is a temperature coefficient, Ned(h
core
i ,h̄v)/τl in denominator is used to prevent all instances

{hcore
i }Ni=1 from collapsing onto centers to avoid poor separability.

Theorem 1 Assuming that H̄v = {h̄v
j}Nj=1, h̄v

j = h̄v, j = 1, 2, . . . , N , and there exists a constant δ
such that p(h̄v

i |hcore
i ) > δ, i = 1, 2, . . . , N holds, then

V∑
v=1

v ̸=core

I(Hcore, H̄v) ≥ (V − 1) logN − δLc, (9)

Theorem 1 indicates that minimizing contrastive loss Lc is equal to maximizing mutual information
between Hcore and global centers {{h̄v}Vv=1, v ̸= core}, where the detailed proof is provided in
Appendix D. Finally, the fused cross-view consistent representation Hcore is used for clustering with
K-means. The whole loss function in our method AF-UMC is represented as:

L = Lr + λLs + γLc, (10)

where λ and γ are trade-off coefficients.

3.4 Optimization

Our designed AF-UMC, consisting of multiple autoencoders and a basis matrix that indicates
cross-view consistent basis space, is optimized by a gradient descent algorithm. Specifically, the
autoencoders and basis matrix are trained for reconstructing original samples, where the basis matrix
is optimized by Eqs. (5) and (6) for capturing structurally matched consistency, and autoencoders are
optimized by Eq. (6) for extracting consistent representations from each view. Afterwards, a global
contrastive fusion operation is conducted to fuse cross-view consistent representation by Eq. (8).
Finally, the cross-view consistent representation is used for clustering with the K-means algorithm.
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Table 1: Statistical characteristics of the ten datasets.

Data Samples Clusters View dimensions

Caltech7-5 1400 7 40/254/1984/512/928
Handwritten 2000 10 240/76/216/47/64/6

Scene 4485 15 20/59/40
Caltech102-5 9144 102 48/40/254/512/928

Hdigit 10000 10 784/256
Aloi 10800 100 77/13/64/125

NUSWIDEOBJ 30000 31 65/226/145/74/129
NoisyMNIST 50000 10 784/784

Cifar10 50000 10 512/2048/1024
YoutubeFace 101499 31 64/512/64/647/838

4 Experiments

4.1 Experimental settings

Datasets. We employ ten widely-used multi-view datasets for comparative studies, which includes
six small-scale datasets of Caltech7-5 [4], Handwritten [26], Scene [5], Caltech102-5 [4], Hdigit
[1], Aloi [15] and four large-scale datasets NUSWIDEOBJ [16], NoisyMNIST [24], Cifar10 [42],
YoutubeFace [7]. The specific characteristics of these datasets are listed in Table 1.

The compared methods. In order to verify the effectiveness of AF-UMC, we employ six state-
of-the-art unaligned multi-view clustering methods for comparative experiments on small-scale
datasets, including MVC-UM (KDD, 2021) [40], T-UMC (TCYB, 2022) [18], UPMGC (TNNLS,
2023) [32], FUMC (IJCAI, 2024) [14], OpVuC (TMM, 2024) [3], TUMCR (KDD, 2024) [8].
Besides, considering that most unaligned multi-view clustering methods cannot be employed on
large-scale datasets due to its excessive complexity, except for FUMC and OpVuC, we additionally
employ four state-of-the-art aligned multi-view clustering methods for unaligned large-scale datasets,
including LMVSC (AAAI, 2020) [10], MFLVC (CVPR, 2022) [37], GCFAgg (CVPR, 2023) [38]
and SCMVC (TMM, 2024) [33]. Moreover, for the reliability of our comparative experiments, all
compared methods are implemented according to the source codes released by the authors, and the
optimal parameters are set according to the suggestions in the corresponding literature.

Evaluation metrics. There are four widely-used metrics applied to quantitatively evaluate the
performance of unaligned multi-view clustering methods, including Accuracy (ACC), Normalized
Mutual Information (NMI), Purity (Pur) and Adjusted Rand Index (ARI), whose detailed definitions
are illustrated in [17]. For each of the above metrics, the higher value indicates the better performance.

Implementation details. The encoder Ev and decoder Dv are respectively formulated by MLPs
with dimensions {Dv, 500, 500, 2000, 512, c} and {d, 2000, 500, 500, Dv}, where the activation
function is ReLU. The consistent basis space Z is set to a matrix of c × d, where c is set to the
number of categories k and d is set to 512. During the whole process, AF-UMC trains 50 epochs on
mini-batches of size 256 by using Adam optimizer [11] with a learning rate of 0.0003 in PyTorch
[23] framework. The hyperparameters γ and λ are set to 1 and 1, respectively. All experiments are
conducted on the same machine with the Intel(R) Xeon(R) Gold 6148 2.40GHz CPU, 8 GeForce
RTX 3090 GPUs, and 512GB RAM.

4.2 Experimental results

Table 2 and Table 3 respectively record the experimental comparisons on small-scale datasets and
large-scale datasets, where the best and the second-best performance are highlighted in bold and
underlined, respectively. In addition, Figure 3 illustrates the visualization of clustering results of each
method on the Handwritten dataset. According to Tables 2-3 and Figure 3, we can observe that:

(1) In Tables 2-3, except for ARI on Scene dataset, our AF-UMC is superior to all comparing
methods on all evaluation metrics, even has a significant leading gap compared with second-best
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Table 2: Comparative results between AF-UMC and 6 state-of-the-art methods on six small-scale
datasets, where the best results are presented in bold and the second-best are in underline.

Dataset Metric Method
MVC-UM UPMGC FUMC OpVuC TUMCR T-UMC AF-UMC

Caltech7-5

ACC 0.2785 0.8079 0.2044 0.3279 0.2557 0.4079 0.8721
NMI 0.1038 0.7137 0.0269 0.1229 0.0721 0.3271 0.7798
ARI 0.0875 0.7034 0.0137 0.0820 0.0612 0.3180 0.7485
PUR 0.3014 0.8079 0.2098 0.3851 0.2771 0.2771 0.8721

Handwritten

ACC 0.7465 0.6270 0.1946 0.1465 0.4830 0.7720 0.9035
NMI 0.7230 0.5860 0.0652 0.0181 0.3853 0.6703 0.8205
ARI 0.6305 0.5014 0.0431 0.0052 0.3627 0.6564 0.8002
PUR 0.7465 0.6346 0.2004 0.1705 0.4980 0.7720 0.9035

Scene

ACC 0.2608 0.1386 0.1647 0.3275 0.2990 0.3882 0.4190
NMI 0.2787 0.0576 0.0904 0.3409 0.2488 0.3816 0.4217
ARI 0.1947 0.0434 0.0731 0.1836 0.2171 0.2856 0.2548
PUR 0.2791 0.1503 0.1727 0.3741 0.3398 0.4239 0.4593

Caltech102-5

ACC 0.0638 0.0930 0.0576 0.1355 0.0977 0.1017 0.2275
NMI 0.2150 0.1883 0.1472 0.2974 0.2066 0.2512 0.4528
ARI 0.0571 0.0742 0.0431 0.0958 0.0639 0.0741 0.1755
PUR 0.1846 0.1704 0.1226 0.2794 0.1943 0.2348 0.4269

Hdigit

ACC 0.4627 0.4087 0.3603 0.3994 0.1551 0.4993 0.6950
NMI 0.4418 0.3700 0.3355 0.3151 0.0255 0.4387 0.6000
ARI 0.3987 0.2943 0.0216 0.2054 0.0203 0.3708 0.5194
PUR 0.5031 0.4545 0.4289 0.4173 0.1679 0.5398 0.6980

Aloi

ACC 0.3543 0.0383 0.0874 0.1432 0.2330 0.5057 0.5399
NMI 0.6039 0.1118 0.2220 0.4105 0.3363 0.6536 0.7590
ARI 0.2381 0.0213 0.0351 0.0897 0.1853 0.3859 0.4151
PUR 0.3692 0.0402 0.0897 0.1747 0.2429 0.5238 0.5816

MVC-UM UPMGC FUMC OpVuC TUMCR T-UMC AF-UMC

Figure 3: The visualizations of the clustering results of different methods on Handwritten dataset.

methods. Especially on the Hdigit dataset, the improvements over the second-best method are 19.57%,
15.57%, 10.99%, and 15.82% on ACC, NMI, ARI and PUR, respectively. These experimental results
demonstrate the effectiveness of AF-UMC and we attribute such success to our designed alignment-
free consistency fusion framework, which bypasses undesired alignment strategies and obtains a
cross-view consistent representation with a clearer cluster structure through global fusion.

(2) In Figure 3, we select all unaligned multi-view clustering methods to conduct the visualization
comparisons of clustering results with our proposed AF-UMC. We can observe that our AF-UMC
exhibits a clearer cluster structure than all other methods, which demonstrates the superiority of
AF-UMC in fusing consistent representation from unaligned multi-view data.

4.3 Model analysis

Convergence analysis. Figure 4 shows the convergence curves of AF-UMC on Caltech7-5, NoisyM-
NIST datasets, where the values of loss and evaluation metrics are illustrated in each subfigure.
According to Figure 4, we can observe that the loss drops significantly at the beginning of the
iteration process and then gradually reaches a stable value as the number of iterations increases. And
the evaluation metrics gradually increase and fluctuate in a narrow range. These results verify the
convergence of our proposed AF-UMC.
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Table 3: Comparative results between AF-UMC and 6 state-of-the-art methods on four large-scale
datasets. "-" means that the code can’t be run due to its excessive time or space complexity.

Dataset Metric Method
LMVSC MFLVC GCFAgg SCMVC FUMC OpVuC AF-UMC

NUSWIDEOBJ

ACC 0.0674 0.0973 0.0455 0.0474 0.0945 0.1016 0.1216
NMI 0.0263 0.0047 0.0057 0.0089 0.0775 0.0864 0.1041
ARI 0.0158 0.0004 0.0002 0.0008 0.0193 0.0213 0.0306
PUR 0.0842 0.1268 0.1223 0.1269 0.1914 0.2041 0.2208

NoiyMNIST

ACC 0.2416 0.1131 0.1078 0.1311 0.2843 0.5111 0.5899
NMI 0.1512 0.0015 0.0006 0.0099 0.2329 0.4241 0.4982
ARI 0.1835 0.0007 0.0001 0.0051 0.2231 0.3308 0.4154
PUR 0.2908 0.1137 0.1088 0.1357 0.3457 0.5377 0.6247

Cifar10

ACC 0.3961 0.3550 0.1284 0.3831 0.2174 0.8008 0.8453
NMI 0.3323 0.1779 0.0067 0.1975 0.0892 0.6872 0.7025
ARI 0.3178 0.1074 0.0033 0.1464 0.0747 0.6284 0.6932
PUR 0.4966 0.3552 0.1324 0.3969 0.2191 0.8008 0.8453

YoutubeFace

ACC 0.0405 0.0737 0.0414 0.0510 0.0717 - 0.1625
NMI 0.0169 0.0049 0.0029 0.0187 0.0366 - 0.1444
ARI 0.0105 0.0008 0.0001 0.0018 0.0068 - 0.0270
PUR 0.1132 0.2662 0.2662 0.2662 0.2662 - 0.2851

(a) Caltech7-5 (b) NoisyMNIST (c) Caltech7-5 (d) NoisyMNIST

Figure 4: The convergence analysis and parameter analysis on Caltech7-5 and NoisyMNIST datasets.

Parameter sensitivity analysis. We experimentally evaluate the effect of hyperparameters on the
clustering performance of AF-UMC, which includes γ and λ. Figure 4 shows the NMI metric value
of AF-UMC on Caltech7-5, NoisyMNIST datasets, where γ and λ are varied from 10−3 to 103.
According to Figure 4, the clustering results of AF-UMC are insensitive to both γ and λ ranging from
0.1 to 10. In our experiments, we set γ and λ to 1.

Ablation study. We conduct two series of ablation studies from the perspective of loss functions
and model components on Caltech7-5 and NoisyMNIST datasets. Table 4 records the ablation
studies of different loss functions, where Lr is the loss to reconstruct original samples, Ls is the
loss to capture structurally matched consistency and Lc is the loss to globally fuse the extracted
representations. Table 5 records the ablation studies of different model components, where BAE
represents the autoencoders with consistent basis space and Ins-Glo represents the instance-to-global
contrast operation. According to Tables 4-5, we can find that:

(1) In Table 4, (C) is superior to (B), which indicates that capturing structurally matched consistency
into basis space is helpful in autoencoders extracting consistent representations from each view and
further improves the performance of cross-view fusion. Meanwhile, (C) also shows better clustering
performance than (A), which indicates that our globally fused cross-view consistent representation
contains a clearer cluster structure for achieving better clustering performance.

(2) In Table 5, (a) replaces the designed instance-to-global contrast operation with global-to-global
operation as Eq. (7), and (b) replaces the BAE with traditional autoencoders. According to Table 5,
(c) shows better performance than (a), which indicates that our designed instance-to-global contrast
operation effectively fuses multi-view samples into a cross-view consistent representation for more
effective clustering. Meanwhile, (c) outperforms (b), which demonstrates that the BAE successfully
extracts consistent representations from each view for promoting subsequent global cross-view fusion.
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Table 4: Ablation studies on loss functions of AF-UMC on Caltech7-5 and NoisyMNIST datasets.

Loss Caltech7-5 NoisyMNIST
Lr Ls Lc ACC NMI PUR ARI ACC NMI PUR ARI

(A) ✓ ✓ 0.8079 0.7422 0.8164 0.6880 0.4860 0.4063 0.5257 0.2835
(B) ✓ ✓ 0.8014 0.6983 0.8014 0.6406 0.5046 0.4573 0.5501 0.3297
(C) ✓ ✓ ✓ 0.8721 0.7798 0.8721 0.7485 0.5899 0.4982 0.6247 0.4154

Table 5: Ablation studies on model components of AF-UMC on Caltech7-5 and NoisyMNIST datasets.

Components Caltech7-5 NoisyMNIST
BAE Ins-Glo ACC NMI PUR ARI ACC NMI PUR ARI

(a) ✓ 0.8107 0.7498 0.8107 0.6820 0.4826 0.4256 0.5328 0.2919
(b) ✓ 0.7107 0.5989 0.7107 0.5312 0.4793 0.4136 0.5202 0.2862
(c) ✓ ✓ 0.8721 0.7798 0.8721 0.7485 0.5899 0.4982 0.6247 0.4154

5 Conclusion

In this paper, we propose an alignment-free consistency fusion framework named AF-UMC for
unaligned multi-view clustering. Different from previous methods that conduct view-alignment then
fuse aligned feature representations, our proposed method directly extracts consistent representations
from each view for global multi-view fusion. Our proposed method significantly mitigates the
degraded performance caused by undesired view-alignment results in previous methods while greatly
reducing algorithm complexity and enhancing its efficiency. Extensive experimental results on various
datasets have verified the effectiveness of our proposed method.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction provide a clear and accurate overview of the
paper’s contributions and scope, aligning with the main claims made throughout the text.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: The paper predominantly highlights the development of a new unaligned
multi-view clustering model, which, in comparison to state-of-the-art methods, doesn’t
appear to exhibit any limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Appendix A presents the proof of mutual information maximization for our
designed Instance Global Contrastive Fusion.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have thoroughly disclosed the experimental details in the experimental
section of the paper. Additionally, the code is provided in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the source code and datasets in the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed experimental settings have been introduced in subsection 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Almost all compared baselines do not include the statistical significance in
experiments thus we do not report it.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to section 4.1

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms to the NeurIPS Code of Ethics
in all respects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper does not involve applications with direct societal implications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the description of safeguards for responsible release
of data or models with a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code for the comparison methods in the experimental section all includes
proper citations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have provided the source code of our algorithm, which is included in the
supplementary materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper focuses on machine learning algorithm research and does not involve
crowdsourcing or research with human subjects at all.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our manuscript focuses on algorithmic research, and it does not involve
crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The method in this paper does not involve LLMs as any important, original, or
non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

We provide more details and results about our work in the appendices. Here are the contents:

• Appendix A: Commonly used notations.
• Appendix B: Training process of AF-UMC.
• Appendix C: Complexity analysis of AF-UMC.
• Appendix D: Proof of Theorem 1.
• Appendix E: Additional experiment results.

A Commonly used notations

Table 6 shows the commonly used notations and the associated definitions.

Table 6: Notations and Definitions
Notation Definition

Xv The samples of the v-th view
Zv The basis space of the v-th view
Z The cross-view consistent basis space

{zi}ci=1 The c basis vectors in Z
Ev(·) The encoder of the v-th view
Dv(·) The decoder of the v-th view
Hv The extracted representation of the v-th view
S The similarity structure across basis vectors {zi}ci=1

h̄v The global center of Hv

B Training process of AF-UMC

Algorithm 1 outlines the execution flow for AF-UMC. At each training epoch t, autoencoders first
extract consistent representations {Hv}Vv=1 by projecting multi-view samples {Xv}Vv=1 onto the
cross-view consistent basis space Z. Then, global contrastive fusion globally pulled together these
extracted representations {Hv}Vv=1 to fuse a cross-view consistent representation Hcore. After T
training epochs, the final clustering results are obtained by performing K-means clustering on Hcore.

Algorithm 1 The Training Process of AF-UMC.

Input: Unaligned multi-view data X = {Xv}Vv=1, number of clusters c, training epochs T .
Output: Clustering results

1: Initialize autoencoders {Ev(·), Dv(·)}Vv=1 and cross-view consistent basis space Z.
2: for epoch t = 1 to T :
3: for view v = 1 to V :
4: Extract consistent representation Hv by projecting Xv onto Z.
5: end for
6: Globally bring {Hv}Vv=1 closer to fuse a cross-view consistent representation Hcore.
7: Optimize model by Lr, Ls and Lc.
8: end for
9: Perform K-means clustering on Hcore.

C Complexity analysis of AF-UMC

We analyze our proposed AF-UMC in terms of space/time complexity.

Space Complexity: In our method, the memory costs contain a basis space matrix Z ∈ Rc×d, V
autoencoders and V representation matrices {Hv}Vv=1 ∈ RN×c, where the space complexity of an
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autoencoder is O(lNd) and l is the number of MLP layers. As a result, the total space complexity of
our AF-UMC is O(cd+ V lNd+ V Nc).

Time Complexity: The time cost of AF-UMC arises from three parts: (1) O(V Nd+ c3 +NV 2d),
the cost of computing three loss functions. (2) O(V lNd), the cost of optimizing V autoencoders. (3)
O(cd), the cost of optimizing a cross-view consistent basis space Z. Therefore, the total time cost of
AF-UMC is O(V Nd+ c3 +NV 2d+ V lNd+ cd).

D Proof of theorem 1

In this part, we want to prove that minimizing contrastive loss Lc is equal to maximizing mutual
information. For expressing more clearly, we first construct H̄v = {h̄v

j}Nj=1, where H̄v ∈ RN×c and
h̄v
j = h̄v indicates the j-th row of H̄v . The proof is motivated by [22, 43].

Proof. Lc is our designed contrastive loss, which is formulated as:
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E Additional experiment results

Visual comparison on large-scale dataset. Figure 5 shows the visual comparison between our
AF-UMC and the existing SOTA methods (LMVSC [10], MFLVC [37], GCFAgg [38], SCMVC
[33], FUMC [14], OpVuC [3]) on the large-scale dataset Cifar10. We can observe that our AF-UMC
exhibits a clearer cluster structure than all other methods, which demonstrates the superiority of
AF-UMC in fusing large-scale unaligned multi-view data.

LMVSC MFLVC GCFAgg SCMVC FUMC OpVuC AF-UMC

Figure 5: The visualizations of the clustering results of different methods on Cifar10 dataset.

Additional Ablation study. (1) Ablation study on reconstruction loss Lr: Table 7 shows the
ablation study on Lr. From Table 7, (B) shows a significant performance improvement over (A),
indicating that Lr plays a critical role in improving representation quality. (2) Ablation study on
cross-view consistent basis space Z: Considering that ablating Z also removes the loss Ls defined
on Z, it is difficult to directly evaluate the impact of the individual basis space Z. To address this
issue, we design the following ablation study in Table 8, where (a) ablates both Ls and Z, and (b)
only ablates Ls. From Table 8, (b) shows better performance than (a), demonstrating the effectiveness
of cross-view consistent basis space in prompting autoencoders to extract consistent representations
from each view.

Table 7: Ablation studies on loss functions of AF-UMC on Caltech7-5 and NoisyMNIST datasets.

Loss Caltech7-5 NoisyMNIST
Lr ACC NMI PUR ARI ACC NMI PUR ARI

(A) 0.5014 0.4366 0.5429 0.3056 0.4637 0.3924 0.5057 0.2826
(B) ✓ 0.8721 0.7798 0.8721 0.7485 0.5899 0.4982 0.6247 0.4154

Table 8: Ablation studies on model components of AF-UMC on Caltech7-5 and NoisyMNIST datasets.

Components Caltech7-5 NoisyMNIST
Z ACC NMI PUR ARI ACC NMI PUR ARI

(a) w/o (Ls & Z) 0.7107 0.5989 0.7107 0.5312 0.4793 0.4136 0.5202 0.2862
(b) w/o Ls 0.8014 0.6983 0.8014 0.6406 0.5046 0.4573 0.5501 0.3297
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