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Abstract

Recent advancements in multimodal techniques and large language models (LLMs) offer a
new perspective on handling biological sequences through biological language modeling. One
particularly critical yet underexplored challenge lies in modeling the tripartite interaction
among peptide, MHC, and TCR—an essential step in understanding T cell-mediated immu-
nity and improving immunogenicity prediction. In this paper, we propose Fusion-pMT, a
biological language modeling framework that (1) learns unified representations of the three
molecular inputs by leveraging their common structure as amino acid sequences, and (2) fuses
the representations of each sequence to enable interaction among heterogeneous molecular
inputs, aligning with the stepwise nature of immune recognition. Built on this foundation,
Fusion-pMT effectively supports both pairwise and tripartite interaction modeling among
peptide, MHC, and TCR. Moreover, its parameter-sharing design reduces memory usage
during inference, making it lightweight and practical for biological applications. To validate
its effectiveness, we conduct comprehensive experiments covering both pairwise and tripartite
interactions (including out-of-distribution evaluation) and demonstrate that Fusion-pMT
consistently outperforms state-of-the-art baselines across all the benchmarks.

1 Introduction

The success of multimodal techniques and large language models (LLMs) has demonstrated the remarkable
ability of Transformers to process diverse sequential data, including biological languages (Ji et al., 2021). This
breakthrough has catalyzed a growing body of research in the data mining and machine learning community
to model molecules through bio-sequence representations (Pei et al., 2024; Park et al., 2024), paving the way
for deeper explorations of complex biomolecular interactions in immunology.

Among these problems, one of the critical challenges is understanding how biological sequences dictate
immune recognition—particularly the intricate interactions among the ❶ antigenic peptide, ❷ major
histocompatibility complex (MHC), and ❸ T cell receptor (TCR). Although structural data can provide
valuable insights into molecular recognition, annotated peptide–MHC–TCR complex structures are extremely
scarce, and AlphaFold (Jumper et al., 2021) struggles to accurately model these complexes without docking
priors (Bryant et al., 2022; Bradley, 2023; Chen et al., 2024). These limitations motivate us to continue
exploring immunogenicity prediction from a language perspective. In particular, immunogenicity prediction
can be viewed as an immunological conversation, where the core principle is self–foreign discrimination (Wortel
et al., 2020). The distinction between non-self and self peptides parallels the distinction between foreign and
native languages (Vu et al., 2024), as illustrated in Figure 1a.

Although a number of prior studies have investigated immunogenicity interaction prediction (Montemurro
et al., 2021; Chu et al., 2022; Yang et al., 2023), their discussions were limited to two of the three molecules,
i.e., pairwise interactions. This limited scope restricts their clinical applicability, both from a biological
perspective—which requires capturing the complete biological process—and from a computational standpoint,
where the law of total variance (Weiss et al., 2006) emphasizes the need to account for all sources of variation.
This further highlights the urgent need to model the full tripartite interaction, especially given the increasing
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Figure 1: The role of pMHC–TCR in adaptive immunity and the correspondence between our model
architecture and the biological process. (More details will be introduced in Section 3.1.) (a) The immunological
conversation. The self–foreign discrimination relies on the sequences of immunological molecules. (b) The
model training workflow dissects peptide-MHC binding and pre-trains the corresponding module for subsequent
pMHC–TCR binding predictions (right panel), mimicking the real biological process (left panel). The dashed
box indicates the module that requires pre-training.

demand in areas like designing cancer vaccines (Rojas et al., 2023; Yarchoan et al., 2024) and guiding
personalized immunotherapy (Hassel et al., 2023; D’Angelo et al., 2024; Mullard, 2022).

In response to this critical problem, pMTnet (Lu et al., 2021) is one of the earliest works to explore the
interaction between peptides, MHC, and TCRs for immunogenicity prediction. However, despite the significant
length differences in TCR sequences, their approach represents the TCR as a separate vector, distinct from the
other two sequences, leading to suboptimal modeling of the complex trimolecular binding. Built on this work,
PISTE (Feng et al., 2024) directly encodes the three sequences using a sliding-attention transformer. However,
neglecting the underlying biological process raises concerns that this design may compromise performance.

Guided by the goal of improving biological alignment for trimolecular binding (Molnar, 2020), we design a model
that 1 preserves sequence-specific characteristics and 2 mirrors the biological binding process.Specifically,
we introduce a strong architectural inductive bias that enforces the hierarchical dependency of immune
recognition—peptide-MHC binding must precede TCR interaction—thereby solving the information bottleneck
inherent in traditional late-fusion models. For 1 , inspired by LLMs that process variable-length sequences
while retaining structure (Devlin et al., 2019), we adopt the sequence modeling techniques within for capturing
peptides, MHCs, and TCRs. We further employ a shared embedding layer and encoder for Fusion-pMT
to learn unified amino-acid representations across all three inputs, capturing cross-molecular dependencies
and improving immunogenicity prediction. Removing per-molecule encoders reduces parameters by about
two-thirds, cutting storage and memory usage and simplifying the architecture. For 2 , we follow the two-step
activation in Figure 1b: (a) peptide–MHC binding to form pMHC (Kammertoens & Blankenstein, 2013),
then (b) TCR binding to pMHC (Huppa et al., 2010). A new multimodal fusion module we propose respects
this order, aligning the model with the biological process.

Overall, leveraging representation learning approaches from language modeling, we present Fusion-pMT,
which integrates information from all three sequences and offers a template for modeling richer biological
“languages.” We validate its efficacy through extensive experiments and ablations on real-world datasets,
covering pairwise and tripartite interactions. In summary:

• We propose Fusion-pMT for peptide–MHC–TCR triad binding that preserves sequence form and
aligns the model with biological steps.

• We introduce unified token embeddings and a step-aware multimodal fusion for sequence integration,
improving immunogenicity prediction.
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Table 1: Comparison of common models for immunological sequence binding, highlighting differences in
model components and concatenation methods.

Model MHC Modeling Peptide Modeling TCR Modeling Binding Mechanism

STMHCpan (2023) Peptide–MHC Graph Peptide–MHC Graph N/A Star-Transformer
TransPHLA (2021; 2022) Self-Attention Self-Attention N/A Self-Attention

PISTE (2024) Self-Attention Self-Attention Self-Attention Sliding-Attention
netMHCpan (2024) LSTM LSTM N/A Concat

CcBHLA (2023) BiLSTM BiLSTM N/A CNN
ESM-2 (2023) Transformer Transformer Transformer Concat

UniTCR (2024) N/A N/A Self-Attention Cross-Attention
DeepAIR (2023) N/A N/A Self-Attention Gate-Based Attention
NetTCR (2021) N/A 1D CNN 1D CNN Concat
pMTnet (2021) LSTM LSTM Autoencoder Concat

Fusion-pMT (This work) Shared Embedding Shared Embedding Shared Embedding Cross-Attention

• We empirically ablate and evaluate these components, demonstrating effectiveness, versatility, and
practical relevance.

2 Related Works

The prediction of interactions among peptides, MHC, and TCR is crucial in immunoinformatics. However,
most methods focus on TCR–antigen specificity or peptide–MHC class I binding, with only a few addressing
peptide–MHC–TCR triad binding due to its complexity and the scarcity of experimental data. We identify
immunological language modeling and molecular binding mechanisms as key factors and review related work
accordingly (summarized in Table 1 for the reader’s convenience). In addition, we discuss the opportunities
and challenges of incorporating structural information into pMHC–TCR modeling.

Immunological language modeling. Previously, traditional methods represented immunological sequences
in non-sequential forms. For instance, Montemurro et al. (2021, NetTCR) employed CNN encoders for TCR
and antigenic peptides, and models such as DeepAttentionPan (Jin et al., 2021) and CapsNet-MHC (Kalemati
et al., 2023) enhanced traditional CNNs with attention layers to improve feature extraction. With advances
in representation learning, sequence modeling techniques have gained popularity. TransPHLA (Chu et al.,
2022; 2021) incorporated self-attention modules to capture complex dependencies. STMHCpan (Ye et al.,
2023) instead modeled peptide–MHC interactions as graphs, introducing graph neural networks to the field.

Molecular binding mechanisms. NetTCR (Montemurro et al., 2021) employed direct concatenation of
hidden embeddings, while TransPHLA (Chu et al., 2022) utilized self-attention. UniTCR (Gao et al., 2024)
integrated RNA sequence data with TCR analytics via cross-attention, though its clinical relevance is limited
by not accounting for the peptide–MHC binding prior to TCR interaction.

Models for Peptide–MHC–TCR Triad Binding. pMTnet (Lu et al., 2021) is the first model proposed
for directly modeling peptide–MHC–TCR triad binding. This model relies heavily on two pre-trained modules,
netMHCpan (Jurtz et al., 2017; Reynisson et al., 2020) and Tessa (Zhang et al., 2021), to encode the
three sequences. Specifically, it employs a vector concatenation strategy to model TCR–pMHC interactions.
PISTE (Feng et al., 2024) further introduced the direct feeding of the three sequences into a sliding-attention
transformer for prediction, while leveraging sliding-attention to capture physics-driven dynamics. Nevertheless,
this approach neglects the two sequential steps of the real biological process involved in the immune response,
compromising its biological alignment.

Incorporating Structural Information: Opportunities and Challenges. While combining sequence
and structural information is generally advantageous in protein modeling, structural annotations for pMHC–
TCR complexes are extremely scarce (≈350 known 3D structures (Kaas et al., 2004); covering 1% of
our sequence data). Furthermore, to the best of our knowledge, only a single study (Bradley, 2023) has
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attempted to incorporate structural information into tripartite immunogenicity prediction. They used
AlphaFold 2 (Jumper et al., 2021) to predict pMHC–TCR complex structures, with 12 known docking
templates guiding the folding process and thereby introducing strong structural priors. Given that the method
was validated on 130 samples, its applicability to broader scenarios remains uncertain. Although structure
prediction tools such as AlphaFold (Jumper et al., 2021; Abramson et al., 2024) have achieved remarkable
success in modeling individual protein structures, accurately capturing trimolecular pMHC–TCR complexes
remains a challenge. In this study, we therefore focus on sequence-level modeling across peptide, MHC,
and TCR sequences, aiming to prioritize biologically meaningful candidates for downstream immunological
investigation and targeted experimental validation.

3 Preliminaries

In this section, we first outline the core molecules of the immune system in Section 3.1, then discuss the
computational challenges of multi-sequence biological problems in Section 3.2, and finally introduce the
cross-attention mechanism in Section 3.3.

3.1 Biological Sequences in Immune Systems

Adaptive immunity hinges on two key processes: antigen presentation and antigen recognition. Antigen-
presenting cells (APCs) first bind antigenic peptides to MHC, forming peptide-MHC (pMHC) complexes,
and then T cells recognize these complexes via the T-cell receptor (TCR), forming pMHC–TCR complexes
(Huppa et al., 2010). T cells harbor highly diverse TCRs composed of α and β chains, wherein β-chain
diversity is central to distinguishing self from non-self antigens (Mora & Walczak, 2019).

Consequently, successful immune responses require both MHC-mediated presentation and TCR-mediated
recognition. A broader overview of immune molecules is provided in Appendix B.1, and the embedding
methods of amino acids are deferred to Appendix B.2.

3.2 Molecular Binding Tasks

Research on immunological sequence binding highlights several challenges: ❶ Peptide-MHC binding is
crucial for antigen presentation, and useful for vaccine development. However, not all peptides binding to
MHC can form a pMHC complex that also binds to TCR, limiting the model’s reflection of entire cellular
immunity. ❷ Peptide-TCR binding is critical for T-cell activation and T-cell therapies. However, we
notice Peptide-TCR binding requires a suitable MHC, which is missed in this task. Therefore, we specifically
dismiss this task. ❸ Peptide-MHC-TCR binding is vital for understanding cellular immunity, and useful
for vaccine development. It offers a holistic view of immune recognition, facilitating better disease-combating
strategies. Our paper is therefore committed to this holistic challenge ❸, and a quick adaptation can be
applicable to task ❶ (see the discussion of Fusion-pM / Stage 1 in Section 4.3) due to the alignment of our
method with the real biological process.

In general, for the input sequences Xp, XM , XT (corresponding to peptide, MHC, and TCR sequences
respectively), the binding task ❸ can be formulated as modeling the following probability:

P {Xp, XM , XT altogether trigger an immune response} ,

which matches the modeling in language tasks and justifies the usage of representation learning techniques
within. Similarly, task ❶ induces the modeling of the probability

P {Xp, XM form a pMHC complex} ,

which corresponds to “antigen presentation” and is the necessary step for the tri-molecular binding process.
Moreover, real-world immunogenicity experiments provide non-binary and probabilistic assessments as
supervised signals, different from regular deep learning tasks; nonetheless, common cross-entropy loss can
already cater such irregular labels, considering that cross-entropy loss refers to the KL divergence between
the label distribution (i.e., non-binary and probabilistic assessments) and the model estimation distribution.
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Figure 2: An overview of our model structure. The figure illustrates our complete model architecture for
remodeling peptide–MHC–TCR triad binding as a representation learning and sequence fusion task. Notably
in (a), the modules in the dashed box that involve peptide and MHC are first pre-trained on a peptide–MHC
binding task (cf. the details in Section 4.3), which provides a robust initialization prior to the core fine-tuning
(which concerns all the modules in (a)) for pMHC–TCR binding predictions. Additionally, (b) illustrates the
“Fusion-Physicochemical Embedding” module, (c) demonstrates the “Projection Encoder” module, and (d)
depicts the “Cross-Attention” module. These components collaboratively enhance feature extraction and
cross-sequence interactions.

For the reader’s convenience, Table 4 in Appendix B.1 provides a comprehensive overview of the key molecules
involved in antigen presentation, detailing their cellular locations, structural properties, primary functions,
theoretical diversity, and sequence homology.

3.3 Cross-Attention

Cross-attention (Hou et al., 2019; Chen et al., 2021) gains prominence in various sequence interaction tasks,
including text translation (Gheini et al., 2021), image captioning (Zhang et al., 2023), and voice recognition
(Sun et al., 2021). Its core advantage lies in enabling one sequence to selectively attend to relevant parts of
another, thus enhancing interaction modeling (Ju et al., 2021; Jin et al., 2023). This characteristic happens
to parallel the biological selectivity and specificity of immune responses, aiding in accurate prediction of
binding affinities and antigen presentation (Kurata & Tsukiyama, 2022).

Formally, a cross-attention module is given as:

Attn(Q, K, V) = softmax
(

QKT/
√

d
)

V, (1)

where Q, K, and V are the query, key, and value matrices derived from the input sequences with dimension
d. Following Chen et al. (2022a), K and V typically originate from the same sequence, enabling the
model to align context across biological sequences such as TCRs, MHCs, and antigens.

4 Remodeling Peptide–MHC–TCR Triad Binding as Sequence Fusion

To comprehensively understand and predict peptide–MHC–TCR interactions, accurate representation of
protein sequences is indispensable. This section delineates our approach to capturing both the spatial relations
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among distinct sequences (Section 4.1) and the inherent characteristics of amino acids (Section 4.2). Through
the model proposed in Section 4.3, we aim to preserve the innate sequential characteristics of proteins, which
are crucial for understanding their biological functions and interactions. Important implementation details
are discussed in Section 4.4.

4.1 Representing Biological Sequences

In this subsection, we outline protein sequence representation methods used within our model, emphasizing
the critical need to accurately capture both the amino acids and their positional information. In general,
our approach preserves the intrinsic sequential nature of biological sequences throughout the encoding and
transformation processes; the comparison with the traditional vector representation is presented below, and
more details on positional encoding and context-aware embeddings are provided in Appendix A.

Issues with a vector representation. The transformation of protein sequences into vector representations,
as adopted in Lu et al. (2021) and other pioneering works, poses several challenges. One major issue is the
potential loss of sequential context and structural information, which are critical for understanding
protein functionality. Traditional vectorization methods often flatten the sequence, treating it as a mere
collection of features without considering the natural order and interactions between amino acids. This results
in significant information loss, particularly in cases where the spatial arrangement and chemical properties of
amino acid residues dictate their interactions and functions. A notable limitation of pMTnet (Lu et al., 2021)
is its reliance on LSTM-based encoder, which, while effective for capturing local sequential dependencies,
struggles to preserve long-range dependencies and structural interactions crucial for binding prediction.

Importance of Sequence Form. The structural form of a protein sequence–its sequence of amino acids
and their respective positions–plays a pivotal role in determining its biological function. Proper representation
of these sequences is crucial for computational models to predict protein interactions. Our method emphasizes
the maintenance of the sequential integrity of protein sequences to ensure that both local and global structural
characteristics are accurately represented, which is essential for predicting interactions. As an empirical
justification, we verify the benefit of maintaining the sequence form for biological sequences through ablation
studies in Section 5.5.

4.2 Unified Encoders for Heterogeneous Sequences

In a representation learning study, Chen et al. (2022b) argued that similar representations can enable more
effective use of the attention mechanism. Following this observation, we accordingly suggest that MHC and
antigenic peptide sequences share the same encoder, so that the cross-attention mechanism we propose can
be more effective in modeling sequence fusion.

In more detail, for the one-hot embedding matrix of a sequence X, whether it corresponds to a peptide,
MHC, or TCR, the linear transformation matrix W is identical (as shown in Figure 2(a)). We note
that this technique enforces the same encoding for different biological sequences, which aligns with the real
binding process, considering that the underlying amino acids are identical across biological sequences.

4.3 Complete Learning Mechanisms

We incorporate the representation learning techniques above and present the full process of our proposed
model, Fusion-pMT, which is further elaborated in Figure 2. On the learning side, we follow a common
“pre-training + fine-tuning” paradigm to handle the three input sequences; on the architecture side, we first
fuse the peptide and MHC and then fuse with the TCR sequence, which not only resembles the biological
process but also effectively utilizes the abundant data for peptide–MHC interactions. Specifically, in Stage 1,
we pre-train the peptide and MHC modules, yielding a model we denote as Fusion-pM, which can already
serve as a standalone predictor for the peptide–MHC binding task; in Stage 2, this backbone is extended by
incorporating the TCR sequence, resulting in the full Fusion-pMT model for trimolecular binding prediction.
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Stage 1: Pre-training via peptide–MHC binding. As depicted in Figure 2(a), we first train only
the modules in the dashed box that involve the peptide and MHC sequences on a peptide–MHC binding
prediction task. Specifically, we use pre-training data (peptide and MHC sequences along with their binding
labels) from Chu et al. (2022) and feed these sequences into the partial model.

As illustrated in Figure 2(b), we first encode the amino acid sequences with one-hot and physicochemical
property embeddings (Yang et al., 2018). The model then transforms peptide and MHC sequences into
high-dimensional embeddings via linear transformations, and further incorporates structural information
via sinusoidal positional encodings (cf. Appendix A.2), which help preserve sequence integrity and temporal
dynamics.

The projection encoder (illustrated in Figure 2(c)) further lifts the sequence dimension to d (so that it aligns
the dimensionality of different sequences) through an MLP module and provides extra flexibility. Ultimately,
we obtain the query matrix Qp (from the peptide sequence Xp) and the key and value matrices KM , VM

(from the MHC sequence XM ). A cross-attention module, as shown in Figure 2(d), then takes these three
matrices as inputs and dynamically integrates the peptide and MHC sequences through

Attn(Qp, KM , VM ) = softmax
(

QpKT
M /

√
d
)

VM ,

The sequence matrix Attn(Qp, KM , VM ) (which shares the same shape as the peptide query matrix Qp)
produced by the last cross-attention layer is then refined through normalization and feed-forward layers and
undergoes mean pooling; ultimately, the resulting vector is fed into a classifier and trained with cross-entropy
loss.

Remark. Through this stage, we obtain the intermediate model Fusion-pM, which effectively leverages
the readily available peptide–MHC binding data that is far more abundant than peptide–MHC–TCR triad
binding data. A similar practice was also adopted by Lu et al. (2021).

Stage 2: Full-parameter fine-tuning for peptide–MHC–TCR binding. We then train the whole
model. Here is how we handle the three sequences: As shown in Figure 2(a), we pass peptide and MHC
sequences to the pre-trained model from Stage 1, wherein the aforementioned mean-pooling module and
the classifier are removed; the sequence matrix produced by the last cross-attention layer in the pre-trained
peptide–MHC part is then transformed into a query matrix QpM and interacts with the TCR key and value
matrices KT , VT in a cross-attention module, yielding

Attn(QpM, KT , VT ) = softmax
(

QpMKT
T /

√
d
)

VT .

Remark. In this stage, the model is further trained on peptide–MHC–TCR binding data, resulting in the full
Fusion-pMT model. In particular, we preserve the sequence form for both the TCR and the peptide–MHC
interaction product as discussed in Section 4.1, and we apply the unified encoder consistently across all three
sequences (Section 4.2).

This two-stage paradigm allows realistic modeling of interactions among the peptide, MHC, and TCR
sequences. Initially, the peptide and MHC representations interact to produce an intermediate sequence
matrix, which is then used to interact with the TCR representation, capturing the complex dependencies
among these biological sequences.

4.4 Implementation details

For the architecture of Fusion-pMT, we set the embedding dimension to 64, use 4 attention heads. Here, we
would like to further discuss the practical issues and the related implementation details crucial to the model
performance, as a closing remark to this methodology section.

Gradient Vanishing. To mitigate the issue of gradient vanishing, we employ the LeakyReLU activation
function (Jha et al., 2022) in both the intermediate layers and the feedforward layers. Additionally, we
implemented residual connections that bypass the attention mechanism by directly connecting the encoded
sequence information to the fully connected layers, which reduces the risk of gradient vanishing.
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5 Experimental Results and Analysis

This section comprises three main parts. We first describe the experimental setup in Section 5.1, followed by
the baseline models and evaluation benchmarks in Section 5.2. Then we present the results on two core tasks:
Peptide–MHC Binding and Peptide–MHC–TCR Binding (respectively in Sections 5.3 and 5.4), which involve
out-of-distribution (OOD) evaluation (detailed in Section 5.1) to assess generalization. Finally, we conduct
ablation studies in Section 5.5 to examine the contributions of key model components, including the sequence
representation and the unified encoder.

5.1 Experiment Setups

The experiments along this section are mainly conducted to examine the performance of two important
variants featured with our proposed techniques: Fusion-pM (the model for predicting peptide–MHC
binding) and Fusion-pMT (the model for predicting tripartite peptide–MHC–TCR binding). Overall,
both of the models were implemented in PyTorch and conducted on an NVIDIA A100 40 GB. In training, we
used a batch size of 64 and a learning rate of 0.01, an Adam optimizer, and trained the models for 300 epochs.

Peptide–MHC binding. For the model training and testing, we align our testing protocols and datasets
with the ones from the previous work TransPHLA (Chu et al., 2022). Specifically, TransPHLA organizes
the data into multiple partitions: Training, Validation, Testing (called Independent in (Chu et al., 2022)),
where the testing set is used to test the model’s generalization to unseen alleles, and designated as pHLA
Testing Dataset.

Peptide–MHC–TCR binding. For model training, validation and testing, we used a dataset derived from
Lu et al. (2021), referred to as the pMT training, pMT validation and pMT testing, with a positive-to-
negative sample ratio of 1:10. For details, we closely follow the experimental setup used in pMTnet (Lu et al.,
2021) and pMTnet-omni (Han et al., 2023). We adhere to the original preprocessing protocols, including
sequence amendments and negative pair generation, to ensure consistency and comparability with prior work,
i.e., the positive samples were further augmented tenfold, resulting in an effective 1:1 ratio between positive
and negative samples during training. Specifically, this dataset includes 28,604 unique TCR CDR3 sequences,
426 peptides, and 63 HLA types (MHC alleles). Aligning with pMTnet (Lu et al., 2021), we utilized the same
pMT testing dataset from the GitHub of Lu et al. (2021), which contains 272 TCR sequences, 224 peptide
sequences, and 24 MHC sequences, selected to ensure that the peptides are entirely unseen in the training or
validation data. Overall, the dataset contains 32,607 pMHC–TCR positive pairs and a significantly larger set
of generated negative pairs. Similarly to Lu et al. (2021), we then partitioned the training data into a training
set and a validation set using an 80%:20% split to support model selection and hyperparameter tuning.

To further evaluate the model’s out-of-distribution (OOD) generalization, we curated an additional OOD
testing dataset using samples collected from VDJdb (Goncharov et al., 2022), which can be regarded as
arising from a distinct sampling process compared to the original datasets (Lu et al., 2021). This OOD
set consists of 1,346 TCR sequences, 239 peptide sequences, and 53 MHC sequences, and was designed to
challenge the model’s robustness when applied to data distributions not seen during training.

In both test datasets, negative samples were randomly generated (the negative samples in pMT testing
dataset were copied down from the official GitHub of Lu et al. (2021)), and all positive samples previously
included in the training or validation sets were explicitly excluded. This results in an imbalanced testing
setup, maintaining a 1:10 positive-to-negative ratio, which reflects real-world biological conditions (Lu et al.,
2021).

5.2 Baselines and Benchmarks

Despite the growing interest in computational immunology, the field still lacks standardized datasets and
benchmark protocols for evaluating interactions among T cell receptors (TCRs), major histocompatibility
complex (MHC) molecules, and antigenic peptides. This absence of widely accepted benchmarks hinders
robust comparison, reproducibility, and scientific progress. Establishing reliable baselines and benchmarks

8



Under review as submission to TMLR

98
.0

97
.9

95
.5

93
.2

92
.4

86
.6

86
.2

64
.9

61
.3

49
.3

93
.3

93
.1

80
.2

78
.0

70
.2

93
.4

93
.1

75
.7

72
.4

58
.4

pHLA Testing Dataset

ROC AUC MCC ACC F1 Score
40

50

60

70

80

90

100

Metrics

S
co

re

Model
Fusion−pM

TransPHLA NetMHCpan_BA ANN PickPocket

Figure 3: Comparison of peptide–MHC binding models based on multiple evaluation metrics (%), including
ROC AUC, MCC, ACC, and F1 Score. The models compared are Fusion-pM, TransPHLA, NetMHCpan_BA,
ANN, and PickPocket, evaluated on “pHLA Testing Dataset”, the testing dataset of TransPHLA (Chu et al.,
2022).

is thus crucial for advancing the predictive capabilities and practical impact of computational models in
immunology.

For the peptide–MHC (pMHC) binding task, we compare against several strong baselines, including
TransPHLA (Chu et al., 2022), netMHCpan (Borole & Rajan, 2024), ANN (Choi et al., 2011), Pick-
Pocket (Zhang et al., 2009), CcBHLA (Wu et al., 2023), and STMHCpan (Ye et al., 2023). We evaluate model
performance using multiple standard metrics, including Accuracy (ACC), F1 Score, Matthews Correlation
Coefficient (MCC), and Receiver Operating Characteristic Area Under the Curve (ROC AUC).

For the peptide–MHC–TCR binding task, we closely follow the experimental setups defined in pMTnet (Lu
et al., 2021) and pMTnet-omni (Han et al., 2023), using the same datasets, preprocessing protocols, and data
splits as described in Section 5.1. In this context, we benchmark our models against four state-of-the-art
baselines specifically designed for peptide–MHC–TCR binding prediction or general protein interaction
modeling: pMTnet (Lu et al., 2021), PISTE (Feng et al., 2024), ESM-2 (Lin et al., 2023), and ERGO
II (Montemurro et al., 2021). These baselines reflect diverse modeling approaches, including LSTM-based
architectures, sliding and cross attention mechanisms, and large-scale pretrained protein language models. We
evaluate model performance using multiple standard metrics, including Accuracy (ACC), F1 Score, Matthews
Correlation Coefficient (MCC), Receiver Operating Characteristic Area Under the Curve (ROC AUC), and
Precision–Recall Area Under the Curve (PR AUC).

In addition, we provide the complete evaluation results of our Fusion-pMT on the peptide–MHC–TCR binding
task across four distinct sets—pMT training, validation, testing, and OOD testing sets—not only covering
the five core metrics mentioned above but also including sensitivity, specificity, precision, and recall to offer a
more comprehensive assessment of our model performance.

5.3 Immune Presentation Prediction (Peptide–MHC Binding)

As a byproduct of Stage 1 pre-training, our peptide–MHC binding model Fusion-pM provides a lightweight
yet competitive alternative to existing methods. Unlike TransPHLA (Chu et al., 2022), which employs
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Figure 4: Performance (%) of the five tri-molecular binding prediction models on pMT and OOD testing
datasets in terms of ROC AUC, ACC and MCC. Here, ERGO II was developed and as well evaluated solely
for peptide-TCR binding prediction, serving as a sanity check that incorporating more molecules is beneficial;
other methods were tested on peptide–MHC–TCR triad binding prediction. “pMT Testing Dataset” is the
original testing dataset in Lu et al. (2021). “OOD Testing Dataset” is a new dataset collected from Goncharov
et al. (2022). Notably, the calculation of the metric “MCC” hinges on correlation, which thus can be negative.

Table 2: Performance (%) Metrics of Fusion-pMT Model: Mean and Standard Deviation of ROC AUC, ACC,
MCC, F1 Score, Sensitivity, Specificity, Precision, Recall, and PR AUC values on pMT validation, training,
Testing and OOD Datasets.

Datasets Metrics Score (mean ± std)

ROC AUC ACC MCC F1 Score Sensitivity Specificity Precision Recall PR AUC

pMT Validation 88.36 ± 0.25 79.04 ± 0.35 59.48 ± 0.84 80.96 ± 0.43 89.39 ± 2.43 68.75 ± 2.68 74.04 ± 1.16 89.39 ± 2.43 87.25 ± 0.19

pMT Training 92.70 ± 0.23 83.53 ± 0.41 68.01 ± 0.61 84.73 ± 0.27 91.43 ± 2.25 75.64 ± 2.86 79.02 ± 1.56 91.43 ± 2.25 92.40 ± 0.20

pMT Testing 88.63 ± 0.27 79.38 ± 0.34 60.01 ± 0.82 81.35 ± 0.43 89.45 ± 2.51 69.18 ± 2.79 74.66 ± 1.21 89.45 ± 2.51 87.85 ± 0.21

OOD Testing 88.35 ± 0.21 78.93 ± 0.18 59.19 ± 0.55 80.86 ± 0.38 89.05 ± 2.75 68.81 ± 3.04 74.13 ± 1.28 89.05 ± 2.75 87.40 ± 0.15

multi-layer self-attention with millions of parameters, Fusion-pM integrates two compact architectural
components—a Unified Encoder for peptides and MHCs, and a Cross-Attention Sequence Fusion Block.
This design enables consistent feature extraction across heterogeneous inputs and explicitly models dynamic
peptide–MHC interactions, all within a parameter budget of fewer than 700k parameters.

Despite being significantly smaller, Fusion-pM achieves stable and consistently strong results across all four
metrics. As shown in Figure 3, it slightly surpasses TransPHLA in accuracy (93.30% vs. 93.08%) and F1 score
(93.40% vs. 93.10%), while also yielding higher MCC (86.60 vs. 86.20) and ROC AUC (98.00 vs. 97.90). These
results highlight that Fusion-pM not only maintains predictive performance comparable to state-of-the-art
baselines, but also achieves superior efficiency in terms of parameter usage and inference speed—making it
highly practical for large-scale or resource-constrained biological applications.

5.4 Immunogenicity Prediction (Peptide-MHC-TCR Binding)

pMT testing dataset. Figure 4 presents results on the pMT test set across five peptide–MHC–TCR triad
models. Fusion-pMT attains a ROC AUC of 88.63% and a PR AUC of 87.85%, notably surpassing pMTnet
(71.28% and 70.30%), reflecting a stronger ability to capture peptide–MHC–TCR binding relationships. Its
MCC reaches 60.0% versus 30.7% for pMTnet. Because MCC balances TP, TN, FP, and FN and is robust to
class imbalance, this indicates Fusion-pMT learns meaningful immunogenicity patterns rather than overfitting
or relying on biased decision rules, and generalizes across both positive and negative classes.

Although ERGO II achieves relatively high ROC AUC and ACC (82.4%/73.2%), its MCC/F1/PR AUC
(14.2%/24.1%/26.6%) reveal strong negative-class bias under the ∼90% negative prevalence: high ACC/ROC
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Table 3: Statistical Comparison of Fusion-pMT Models: T-value and P-value for ACC, ROC AUC, and PR
AUC, on Peptide-MHC-TCR binding task. N indicates the model is equipped with the fusion technique from
netMHCpan (Jurtz et al., 2017).

Metrics Fusion-pMTN vs. pMTnet Fusion-pMT vs Fusion-pMTN

t-value p-value t-value p-value
PR AUC 55.00 0.000330 57.74 0.000001
ROC AUC 25.69 0.001512 10.32 0.008406
ACC 42.21 0.000561 85.98 0.000001

AUC can be attained by largely ranking and predicting negatives, while failing to capture true positive
binding events. In contrast, Fusion-pMT delivers balanced performance across all metrics, indicating a deeper
grasp of the underlying interactions.

To provide a fuller assessment, we also report sensitivity, specificity, precision, and recall in Table 2. Fusion-
pMT achieves 89.45% sensitivity (true positive rate) and 69.18% specificity (true negative rate), offering
a nuanced view of both detecting binders and rejecting non-binders, and confirming robust, consistent
performance.

Out-of-distribution testing dataset. Figure 4 summarizes OOD performance across five peptide–MHC–
TCR triad models. Fusion-pMT consistently surpasses pMTnet: on the pMT test set, ROC AUC 88.36% vs
78.91%, ACC 78.9% vs 53.7%, with pMTnet’s MCC only 8.2 (near chance). Fusion-pMT shows comparable
performance on the OOD set from Goncharov et al. (2022) and the in-distribution pMT test from Lu et al.
(2021), indicating it learns biologically meaningful features rather than memorizing. With fewer than 700k
parameters, it is compact and efficient. Statistical comparisons in Table 3 confirm significant gains across
ACC, ROC AUC, and PR AUC (all t > 25, p < 0.002), ruling out random fluctuations. Performance on pMT
testing dataset and OOD testing Dataset is a critical indicator of a model’s potential clinical applicability (Gao
et al., 2023).

Remark. Overall, Fusion-pMT achieves consistent and significant improvements over all four baselines
on both in-distribution and out-of-distribution testing datasets, demonstrating its strong generalization
ability. At the same time, its byproduct model Fusion-pM attains comparable results to state-of-the-art
methods on the peptide–MHC binding task with far fewer parameters. Together, these findings provide
strong empirical evidence for the effectiveness of our two key architectural components: the Unified Encoder
and the Cross-Attention Sequence Fusion Block.

5.5 Discussion: Sequence Representation Analysis

Compared with pMTnet using a bottleneck autoencoder model to encode the TCR sequence, we propose a
cross-attention-based transformer, Fusion-pMT (netMHCpan), to represent the TCR sequence and preserve
the sequence form until the binding prediction block (thus the pre-trained module netMHCpan is kept, as in
pMTnet, for fair comparison). The model architecture is in Section 4. Fusion-pMT (netMHCpan) shows
significant improvements in performance metrics over pMTnet, as evidenced from both numerical comparisons
(e.g., ACC, PR AUC, and ROC AUC in Figure 5) and statistical significance tests (e.g., t-tests in Table 3).
These considerable improvements demonstrate the critical importance of maintaining sequence integrity in
our model, which enables more effective capturing of complex, sequence-dependent interactions crucial for
accurate binding predictions.

5.6 Ablation studies: unified encoders

To ablate the usage of unified encoders, we introduce a model variant, Fusion-pM (w/o unified), which
employs distinct encoders for peptides and MHC sequences and similarly incorporates a cross-attention
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Figure 5: Ablation studies for (a) Peptide-MHC-TCR triad binding prediction with sequence representation
and (b) peptide–MHC models with unified encoders. Notably, “pMT / pHLA Testing Dataset” is the original
testing dataset in Lu et al. (2021) / Chu et al. (2022).

sequence fusion block. This specification allows a fair comparison with the base Fusion-pM (w/ unified)
variant, which we recall employs a unified encoder for both peptides and MHCs.

As shown in Figure 5(b), the results demonstrate that Fusion-pM (w/ unified) statistically significant
improvements across all metrics. The ACC scores exhibit minimal (though significant) variation between the
two model variants; however, both F1 and MCC metrics indicate more substantial gains with the Fusion-pM
(w/ unified) configuration, suggesting that employing the unified encoder for sequence fusion not only simplifies
the model architecture but may also enhance performance in terms of both prediction precision and class
balance handling (Cer et al., 2018). These results prompt further investigation into the benefits of encoder
uniformity in complex sequence fusion tasks in immunological prediction.

6 Conclusions

In this paper, we have proposed a new model Fusion-pMT for biological language modeling in peptide–
MHC–TCR triad binding, through a revisit of sequence fusion mechanisms in representation learning research.
A key insight is that maintaining the sequence form throughout the transformation not only aligns with
the real biological processes but also significantly improves immunogenicity prediction. Building on this,
we characterize interactions across different sequences through both a cross-attention mechanism and a
unified amino acid embedding vocabulary. This unified encoder design enables parameter sharing across
heterogeneous inputs, requiring fewer than 700k parameters in total. By avoiding multi-layer self-attention
stacks, Fusion-pMT remains lightweight and effective. Moreover, following the two-stage biological binding
pathway (1. peptides first bind MHCs and 2. the resulting complexes are then recognized by TCRs) allows us
to naturally obtain Fusion-pM in Stage 1, which serves as a strong peptide–MHC predictor.

Our extensive experiments further corroborate that Fusion-pMT consistently outperforms strong baselines
across both in-distribution and out-of-distribution datasets, while Fusion-pM achieves results comparable
to or even surpassing state-of-the-art peptide–MHC binding models. These results highlight that our
framework attains strong performance while remaining highly efficient, making it well-suited for potential
applications to diverse and dynamic biological scenarios. Overall, our work presents a biologically motivated
and computationally efficient framework for modeling peptide–MHC–TCR interactions, offering valuable
insights and a foundation for future models that aim to integrate more complex and heterogeneous biological
languages.
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A Protein Sequence Embedding

In this appendix, we introduce the tedious notations for the concrete protein sequence embedding in our
models. Our approach is designed to preserve the intrinsic sequential integrity of these sequences throughout
the encoding and transformation processes; these details are vital for understanding the complex interactions
within biological sequences.

A.1 Protein Sequences

We start with the embedding of protein sequences in this subsection, and then introduce the positional
encoding method we adopt in Appendix A.2.

A protein sequence S is composed of L amino acids, which can be mathematically represented as

S = [a1, a2, a3, . . . , aL] .

Here, each ai indicates a certain amino acid, and the collection of the 21 standard amino acids is denoted as

A := {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, X, Y}

in terms of letter abbreviations of amino acids.

One-hot encoding. Following Devlin et al. (2019), we first transform a protein sequence into a binary
vector representation, which is a common practice in the representation of textual sequences. Here, each
amino acid ai corresponds to a one-hot encoded vector h(ai) of length |A|:

h(ai) = [h1, h2, . . . , h|A|]T ,

where hj = 1 if ai is the j-th amino acid in A, and hj = 0 otherwise. The entire protein sequence S is thus

HT (S) = [h(a1), h(a2), . . . , h(aL)],

where the sequence matrix H(S) ∈ {0, 1}L×|A|.

Encoding Notably, each amino acid ai can be encoded using another specific numerical representation that
captures its chemical properties and contributes to its role within the protein structure. This encoding might
utilize techniques ranging from simple categorical encoding schemes to more complex embeddings derived
from machine learning models.

Transformation processes The encoded representations are processed through computational models
(e.g., convolutional neural networks or recurrent neural networks) designed to capture the interactions between
amino acids and to preserve their positional information.

Aggregation The transformed representations are ultimately aggregated to form a comprehensive vector
representation of the entire sequence. This step may involve methods like pooling.

Overall, these steps, which are well-studied in representation learning literature, ensure that our model not
only captures the individual characteristics of each amino acid but also their contextual relationships within
the entire sequence.

A.2 Positional Encoding for Protein Sequences

The positional encoding provides the model with information about the relative or absolute position of the
tokens in the sequence. Let s denote the position within the biological sequence, i be the dimension within
the embedding spaces, and d indicate the dimensionality of the model embeddings. One can then apply the
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sine and cosine functions for positional encoding as follows Vaswani et al. (2017):

p(s, 2i) = sin
( s

100002i/d

)
,

p(s, 2i + 1) = cos
( s

100002i/d

)
,

The encoding mechanism ensures that the model can effectively interpret the sequential order of the sequences
for biological interactions, and we apply this positional encoding in computing the cross-attention modules.

B Useful Facts

B.1 Biological Molecules of Adaptive Immunity

In adaptive immunity, the major players are the highly diverse B and T cells, with unique surface receptors
known as B cell receptors (BCRs) and T cell receptors (TCRs), respectively. These cells recognize specific
parts of an antigen, referred to as epitopes. However, the mechanisms of antigen recognition differ between
B and T cells. B cells target a fragment of the antigen known as a B cell epitope. Recognition by BCRs
primarily depends on three-dimensional conformational information from the fragment, which contains mainly
non-contiguous amino acid residues. On the other hand, T cell epitopes, recognized by TCRs, depend on
their binding to major histocompatibility complex (MHC) molecules. These epitopes are linear, formed by
contiguous amino acid residues.

Major Histocompatibility Complex (MHC) The major histocompatibility complex (MHC)
is a type of cell surface proteins essential for the adaptive immunity. In humans, MHC genes are called
human leukocyte antigens (HLAs). The MHC class I molecules present endogenous peptides from proteins
self-generated intracellularly, while The MHC class II molecules are mainly expressed on antigen presenting
cells. The MHC class I molecules contain an α chain from MHC class I genes and β2 microglobulin (β2m),
which can present peptides ranging from 8 to 12 amino acids. MHC class II molecules consist of one α and
one β chain, allowing the binding of longer peptides ranging from 9 to 25 amino acid residues, or even longer.
The MHC class I and MHC class II are also highly diverse, with approximately 6 × 206−7 and 12 × 2010 alleles,
respectively (Rock et al., 2016). The MHC class I molecules present endogenous peptides from proteins
self-generated intracellularly, while The MHC class II molecules are mainly expressed on antigen presenting
cells.

T Cell Receptor (TCR) The T cell receptor (TCR) is a type of protein complex on the surface of
T cells responsible for recognizing fragments of antigen as peptides bound to MHCs. Classically, the TCR
consists of an α chain and a β chain, which are encoded by gene TRA and TRB, respectively. The high
diversity of TCR is generated by rearrangements of the V and J segments of the TRA gene and V, D, and J
segments of the TRB gene in the thymus, with 1023 possible rearrangements theoretically (Mora & Walczak,
2019). Within the TCRs, the indices for α and β chains have been separately estimated to be 109 and 1014

(Mora & Walczak, 2019). Consequently, β chains garner a greater degree of attention and are the focus of
significant experiments in TCR sequencing, making β chains a core component in data-driven modeling. In
another estimation, the number of potential rearrangements can be up to 1061 (Chi et al., 2024). While
at one moment, there are around 1011 per human with around 109 distinct TCRs (Chi et al., 2024), which
requires the highly precise prediction of pMHC–TCR for further drug development based on TCRs.

B Cell Receptor (BCR) The B cell receptor (BCR) from B cells contains multiple forms, including
the secreted form and the membrane-bound form. Secreted BCRs are usually called antibody (Ab), while
both membrane-bound and secreted BCRs can be called immunoglobulin (Ig). BCRs are arranged in three
globular regions that roughly form a Y shape. In humans, one BCR unit consists of four chains, two heavy
chains (H) and two light chains (L). Each heavy chain’s variable region is approximately 110 amino acids in
length. There are five types of mammalian BCR heavy chains denoted by Greek letters: α, δ, ε, γ and µ.
These chains are found in IgA, IgD, IgE, IgG, and IgM antibodies, respectively. Heavy chains differ in size
and composition. α and γ contain approximately 450 amino acids, while ε and µ have about 550 amino acids.
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Table 4: Overview of Molecules Involved in Antigen Presentation.

Molecule Location Total Length (aa) Active Region Main Function Theoretic Diversity Homology

MHC Class I Cell Surface α: ∼360
β2m: ∼120

Relevant:
α chain Present peptides to CD8+ T cells 6 × 206−7 Varies

MHC Class II Cell Surface α & β:
260–280

Relevant:
α1 and β1 domains Present peptides to CD4+ T cells 12 × 2010 Varies

T Cell Receptor T Cell Surface α: 223
β: 247

Variable regions:
110–120 each chain Recognize peptide–MHC complexes 1023 Low

B Cell Receptor B Cell Surface
or Secreted Form

Light: 211–217
Heavy: ∼450/∼550

Variable domain:
110 Recognize antigens 1021 Low

In mammals, there are only two types of light chains, λ and κ, which have minor differences in the sequence.
A light chain has two successive domains, constant (CL) and variable (VL). The approximate length of a light
chain is 211–217 amino acids. The diversity of BCR is generated from V(D)J recombination and somatic
hypermutation, with 1021 possible rearrangements theoretically (Mora & Walczak, 2019). Another estimation
suggested that the total paired-sequence diversity is 1016−18, while there are 5 × 109 B cells in the peripheral
blood of a healthy human.

B.2 Amino Acids Embedding

Accurately embedding amino acids is key to modeling protein interactions, as it preserves each amino
acid residue’s biochemical properties and positional context. Approaches include position-specific scoring
matrices (Madrigal et al., 2024) and deep learning-based embeddings (Cao et al., 2021; Tu et al., 2022;
Lee et al., 2021), which help maintain the structural and functional integrity of the sequence. Advanced
embeddings often integrate attention mechanisms to capture long-range dependencies among amino acid
residues, thereby improving representation of spatial relationships crucial for protein functionality (Reynisson
et al., 2020).

B.3 Protein Interactions and Prediction Methods

In our computational study, we developed a specialized neural network model, termed Fusion-pMT, to
understand the interactions within the peptide–MHC–TCR complex. The model’s architecture leverages a
custom-built submodule, which employs an advanced multi-head attention mechanism (with eight attention
heads and a dropout rate of 0.1) to process and integrate features from peptide and MHC sequences. The
sequences are embedded into a 64-dimensional space, facilitating a detailed representation of their complex
biological characteristics.

The model encapsulates the dynamics of peptide–MHC interactions through its cross-attention mechanism,
which is crucial for capturing the nuanced dependencies between these biomolecules. Further processing is
performed by a fully connected neural network, which integrates the attention outputs with flattened peptide
and MHC sequence features. This integration feeds into a deep learning pipeline that includes multiple layers
of nonlinear transformations and dropout regularization, aiming to predict interaction outcomes robustly.

Training of the pMHC Model is meticulously orchestrated over 200 epochs, employing a binary cross-entropy
loss function optimized via stochastic gradient descent with a learning rate of 0.1. This training regimen
includes a patience mechanism set to 10 epochs to prevent overfitting and ensure model generalizability.
Model performance is evaluated through both training and validation phases, with checkpoints saved upon
achieving new best validation accuracies, underscoring the model’s progressive learning capability.

C Training Details

The integration model processes combined features through a carefully designed series of fully connected
layers, reducing the dimensionality from the combined inputs to a singular output that signifies the likelihood
of interaction. To mitigate the risk of overfitting, given the model’s complexity and the intricate nature
of the immunological data, dropout layers with a rate of 0.1 are included following each activation phase.
Following the implementation details in the main text, we employ LeakyReLU activations in intermediate and
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feed-forward layers and use residual connections to alleviate gradient vanishing. The transformer components
use an embedding dimension of 64 and 4 attention heads.

All models are implemented in PyTorch and trained on NVIDIA A100 40 GB GPUs. Unless otherwise noted,
models are trained for 300 epochs with a batch size of 64. We use the Adam optimizer with a learning rate of
0.01 and the Binary Cross-Entropy with Logits loss function (nn.BCEWithLogitsLoss()). The validation split
is used for model selection and hyperparameter tuning as described in the main text.

Despite occasional fluctuations in validation loss, the combination of dropout regularization, residual con-
nections, and the compact parameterization contributed to stable training dynamics. The resulting models
exhibit strong generalization, including on out-of-distribution evaluations reported in the main text.

Avoiding Overfitting. We primarily rely on dropout (rate 0.1), residual connections, and a compact
parameter budget to reduce overfitting risk. Model selection is conducted on the validation set. No early
stopping is used in the main experiments unless explicitly stated.

Table 5: Hyperparameter settings for the Peptide–MHC–TCR interaction model

Parameter Value Description
Embedding Dimension 64 Dimensionality of sequence embeddings
Attention Heads 4 Number of heads in the multi-head attention layers
Optimizer Adam Optimization algorithm
Learning Rate 0.01 Step size at each iteration of model weights
Batch Size 64 Number of samples per batch
Dropout Rate 0.1 Proportion of neurons disabled during training
Training Epochs 300 Number of complete passes through the training dataset
Loss Function BCEWithLogits Binary Cross-Entropy with Logits loss

D Miscellanies

D.1 Impacts on immunology and medicine

By using cross attention to address multi-sequence biological problems, the prediction of pMHC–TCR has
implications in various fields. In immunology, an AI4Sci model understanding the TCR-pMHC interaction
can help in the study of diseases, including autoimmune diseases, infections, and cancers. In medicine,
AI-empowered predictions of TCR-pMHC interactions can potentially lead to individualized treatments in
precision medicine.

D.2 Broader Impact and Limitations

While Fusion-pMT shows promise, we acknowledge reliance on databases like IEDB/VDJdb, which historically
overrepresent European-descent HLA alleles. This data bias may affect predictive accuracy for underrepre-
sented populations. Clinical application requires rigorous experimental validation to prevent potential health
disparities.

D.3 Impacts in Healthcare

In healthcare, the prediction of pMHC–TCR interactions has significant implications in the development of
advanced therapies against cancers or infectious diseases. (Figure 6) .

Vaccine Development. Understanding which peptides can bind to MHC molecules and be recognized
by TCRs can help in the design of more effective vaccines, especially the neoantigen-based cancer vaccine.
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(a) Vaccine Development 

(b) TCR-T Cellular Therapy Development
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Figure 6: The Application of pMHC–TCR Binding Prediction in Healthcare (a) Schematic
Representation of the Therapeutic Cancer Vaccine. (b) Schematic Representation of the Engineered TCR-T
Cell Therapy.

Neoantigens are newly generated peptides from somatic mutations that can be recognized by TCRs of tumor-
specific T cells. Once all mutations are identified, they must be computationally predicted from matched
tumor-normal sequencing data, and then ranked according to their predicted capability in stimulating a T
cell response. Neoantigen-based cancer has shown promising results in a phase IIb study (Weber et al., 2024).
This selection of effective neoantigen candidates relies on the precise prediction of pMHC–TCR interactions
(Rojas et al., 2023; Yarchoan et al., 2024).

In addition to cancers, pMHC–TCR prediction can also accelerate the development of infectious disease
vaccines. During the COVID-19 pandemic, T-cell-directed vaccines has been designed in the form of peptides
(Heitmann et al., 2022) and mRNA (Arieta et al., 2023). More precise prediction of pMHC–TCR interactions
can improve the development of T-cell-directed vaccines in patients with immunodeficiency in phase I/II
study (Heitmann et al., 2023) (Figure 6(a)).

TCR-T Cellular Therapy. The prediction of pMHC–TCR interactions can also aid in the development
of T cell therapies, where the goal is to enhance the immune system’s ability to recognize and destroy
abnormal cells. The development of TCR-T therapies against cancer involves identifying a specific TCR
that recognizes the tumor antigen by analyzing TCR sequencing data. Subsequently, this TCR gene can be
manipulated to be expressed in autologous T cells. These engineered tumor-specific T cells can be expanded
to induce tumor killing by recognizing pMHC on tumor cells (Hassel et al., 2023; D’Angelo et al., 2024). Two
drug based on this therapy has been approve by the Food and Drug Administration of USA on January
25, 2022 (Mullard, 2022) and August 2, 2024, respectively. Additionally, the proof-of-concept for using
TCR-T therapies against infectious diseases have been validated in treating cytomegalovirus infection after
hematopoietic stem cell transplantation (Liu et al., 2022), which sheds light on the broader application of
TCR-T cellular therapies(Figure 6(b)).
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D.4 Asset Licenses

• TransPHLA-AOMP (Chu et al., 2022): TransPHLA-AOMP (transformer-based model for pHLA binding
prediction and the automatically optimized mutated peptides program) is an algorithm designed to predict
peptide and HLA binding. TransPHLA-AOMP is licensed under the GNU GENERAL PUBLIC license 3.0.

• pMTnet (Lu et al., 2021): pMTnet (the pMHC–TCR binding prediction network) is an algorithm to predict
TCR binding specificities of the neoantigens and T cell antigens in general presented by class I major
histocompatibility complexes. pMTnet is licensed under the GNU GENERAL PUBLIC license 2.0.

• NetMHCpan (Reynisson et al., 2020): NetMHCpan (pan-specific binding of peptides to MHC class I
proteins of known sequence) is an algorithm to predict the binding of peptides to any MHC molecule of
a known sequence using artificial neural networks. NetMHCpan is licensed under the GNU GENERAL
PUBLIC license 3.0.

• VDJdb (Goncharov et al., 2022): VDJdb is a curated database of T-cell receptor sequences of known
antigen specificity. This database is licensed under the Attribution-NoDerivatives 4.0 International.

E Additional Experimental Analysis

In this appendix, we provide supplementary experiments and analyses to further validate the efficiency,
robustness, and design choices of Fusion-pMT. These results address specific inquiries regarding model
parameterization, out-of-distribution (OOD) validity, and the impact of the pre-training stage.

E.1 Model Efficiency Analysis

To validate the “lightweight” design claim of Fusion-pMT, we conducted a direct parameter count comparison
against state-of-the-art baselines, including domain-specific models (PISTE, pMTnet) and general protein
language models (ESM-2).

As presented in Table 6, Fusion-pMT utilizes a compact architecture with fewer than 0.7 million parameters.
In stark contrast, even the smallest version of ESM-2 requires approximately 8 million parameters, while
the standard version reaches 650 million. Our model achieves competitive predictive performance with
approximately 0.1% of the parameters required by large PLMs. This high parameter efficiency makes
Fusion-pMT significantly more suitable for high-throughput screening scenarios where inference speed and
memory constraints are critical factors.

Table 6: Parameter Efficiency Comparison. Fusion-pMT achieves state-of-the-art performance with signifi-
cantly fewer parameters compared to large Protein Language Models (PLMs) and other baselines.

Model Type Backbone Architecture Parameters (Approx.) Relative Size
ESM-2 (Standard) PLM Transformer (33 layers) ∼650 M 928x
ESM-2 (Smallest) PLM Transformer (6 layers) ∼8 M 11.4x
PISTE Domain-Specific Sliding Attention ∼4.5 M 6.4x
pMTnet Domain-Specific VAE-CNN-ANN ∼1.5 M 2.1x
Fusion-pMT (Ours) Domain-Specific Cross Attention Transformer < 0.7 M 1x

E.2 Out-of-Distribution Validity

To ensure that the high performance observed on the OOD Testing Dataset stems from the model’s
generalization capability rather than data leakage or similarity, we performed a t-SNE analysis on the feature
representations of the peptides.

Figure 7 visualizes the distribution of peptide sequences from the Training set (Blue) and the OOD Testing
set (Orange). The visualization reveals a clear distributional shift between the two datasets, confirming that
the OOD dataset occupies a distinct region in the feature space. Despite this shift, Fusion-pMT maintains
high predictive accuracy, demonstrating its robustness in learning generalized interaction rules rather than
memorizing training samples.
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Figure 7: t-SNE visualization of peptide representations. The clear separation between Training samples
(Blue) and OOD samples (Orange) confirms the validity of the out-of-distribution evaluation.

E.3 Impact of Pre-training (Ablation Study)

To assess the necessity of the two-stage framework and the specific contribution of the pre-training stage
(Fusion-pM), we conducted an ablation study by training a variant of Fusion-pMT from scratch (random
initialization) without the Stage 1 constraint.

The results on the OOD dataset are summarized in Table 7. We observe that removing the pre-training stage
leads to a performance drop in ROC AUC. This suggests that explicitly modeling the peptide-MHC binding
event (Stage 1) acts as a crucial regularizer. It helps the model converge to a more biologically plausible
minimum, thereby enhancing stability and generalization to unseen data. While the unified encoder and
cross-attention mechanism provide the structural foundation, the pre-training strategy ensures the model
respects the hierarchical nature of immune recognition.

Table 7: Ablation study on the OOD dataset. The “Drop” column indicates the decrease in ROC AUC
compared to the full Fusion-pMT model.

Model Variant Description ROC AUC Drop
Fusion-pMT (Full) Proposed model with full two-stage training -
w/o Pretraining Trained from scratch (random init.) -0.21%
w/o Shared Encoder Separate encoders for Peptide, MHC, TCR -0.40%
w/o Cross-Attention Replaced with concatenation -1.52%
w/o Bio-Workflow Simultaneous processing (no stages) -0.26%

E.4 Comparison with Pre-trained Protein Language Models

To further validate the design choices of Fusion-pMT, we address the potential alternative of utilizing large
pre-trained protein language models (PLMs), such as ESM-2 (Lin et al., 2023). While replacing our domain-
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specific encoder with a PLM might seem intuitive, our analysis and additional experiments demonstrate that
simply fine-tuning ESM-2 is not an optimal solution for immunogenicity prediction.

We conducted comprehensive experiments using ESM-2 (8M and 35M parameters) as the backbone encoder
under various settings. The results on the OOD Testing Dataset are summarized in Table 8. Our analysis
reveals that ESM-2 lacks two critical design choices required for this specific task:

• Lack of Native Interaction Mechanism: ESM-2 is architecturally designed as a single-sequence
Masked Language Model (MLM). It lacks the inductive bias to model the tripartite interaction
between distinct molecules. As shown in Table 8, simply concatenating the embeddings from a frozen
ESM-2 model (“Concat”) yields suboptimal performance (≈ 66.5% ACC), which is significantly
outperformed by Fusion-pMT (78.90% ACC). This confirms that the Early Interaction mechanism in
our framework is essential.

Table 8: Performance comparison between Fusion-pMT and ESM-2 variants on the OOD Testing Dataset.
“Bio-Workflow” denotes equipping the backbone with our proposed 2-stage Cross-Attention framework.

Backbone Encoder Fusion Strategy Training Mode ACC
Fusion-pMT (Ours) Bio-Workflow Train from Scratch 0.7890
ESM-2 (8M) Concat Frozen 0.6650
ESM-2 (35M) Concat Frozen 0.6654
ESM-2 (8M) Concat Fine-tune 0.6723
ESM-2 (35M) Concat Fine-tune 0.7194
ESM-2 (8M) Bio-Workflow Frozen 0.8105
ESM-2 (8M) Bio-Workflow Fine-tune 0.6170

• Fine-tuning ESM-2 introduces significant computational overhead (increasing parameter count from
<0.7M to >8M or >35M) without guaranteeing performance gains. The marginal gain observed with
the frozen ESM-2 backbone equipped with our Bio-Workflow (0.8105 vs 0.7890) comes at the cost of
massive model size, rendering it less suitable for high-throughput screening applications. Therefore,
our domain-specific architecture, designed to learn binding physics from scratch, represents a more
efficient and effective solution for this task.
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