© ®©® N O o A~ W N =

22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37

GOOD: Decoding-Time Black-Box LLM Alignment

Anonymous Author(s)
Affiliation
Address

email

Abstract

Large Language Models (LLMs) have demonstrated immense potential across
various applications. However, aligning these models with specific real-world tasks
and human preferences typically requires resource-intensive fine-tuning processes
such as Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human
Feedback (RLHF). In this paper, we propose GOOD (Guided Online Optimal
Decoding), a novel alignment method that enhances pre-trained models at decoding
time without requiring access to their parameters or vocabularies. We observed that
different aligned models exhibit similarities in their decisions of alignment-related
tokens. Inspired by this, GOOD utilizes a pair of guiding models to identify critical
positions related to alignment and adjusts the model’s output dynamically during
the decoding phase. Notably, the interaction between the guiding models and the
guided model occurs at the string level, enabling GOOD to be applied to align
even black-box models with different vocabularies. Experiments show that in
weak-to-strong alignment, GOOD can achieve performance comparable to direct
fine-tuning in terms of comprehensive capability and harmless generation, reaching
relative scores up to 102% and 99% without sacrificing decoding efficiency. Even
when guiding across model families, it can achieve 98% and 103% of the target
performance on the two tasks, respectively. Moreover, GOOD can be applied to
enhance already aligned models (improving pass@1 by 52% in code enhancement),
making it compatible with various existing alignment techniques.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable potential across various ap-
plications, such as programming, writing, lan-
guage translation, etc. After pre-training on a
huge amount of text corpus, they often require
further alignment to adapt to specific real-world
tasks as well as human values and preferences.
The alignment process usually involves Instruc-
tion Tuning (Wei et al., [2021)) and Preference
Learning (Ouyang et al., 2022)), typically imple-

Table 1: Comparison of GOOD and other represen-
tative tuning-free alignment methods (Note: “®”
indicates No, “@” indicates Yes).

Need Need Need accessing Need extra
Method extra special designed vocabulary and logits test-time
training? prompt? of target model? computation?
URIAL [J [J
RAIN [] []
GenARM [] [] [)
Proxy-tuning [] [)
Aligner []

GOOD

mented through methods such as SFT (Wei et al.| [2021) and RLHF (Ouyang et al.,|2022). These
alignment methods have significantly enhanced the capabilities of LLMs, suggesting that alignment-
related tuning is crucial for developing Al assistants (Bubeck et al., [2023).

However, fine-tuning-based alignment methods have three major problems. (1) They are resource-
intensive, requiring extensive training data and substantial computational power. (2) The same
fine-tuning process is often applied to different models, leading to redundancy. (3) They necessitate

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

38
39

40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75
76
7
78
79
80
81
82
83
84
85
86

87

88
89
90
91

92
93

direct access to the model’s parameters, which is often impractical for state-of-the-art closed-source
models (e.g., GPT-40 (OpenAlL [2024)).

Given these challenges, there is a growing interest in alignment methods that do not require fine-
tuning. [Zhou et al.| (2024) proposed the Superficial Alignment Hypothesis, suggesting that most of
a model’s knowledge and capabilities are acquired during pre-training, with alignment primarily
teaching the model which sub-distribution of responses to utilize in user interactions. Building
on this premise, recent work such as URIAL (Lin et al., [2023) has analyzed token shifts between
pre-trained LLMs and their aligned counterparts, finding that most token distribution changes occur
in language style-related tokens (e.g., discourse markers, safety disclaimers). RAIN (L1 et al., [2023)
attempts to use the pre-trained LLMs to evaluate their own generation and use the evaluation results to
guide rewind and generation for Al safety. |Liu et al.| (2024) proposed Proxy-Tuning, which achieves
an alignment effect similar to direct fine-tuning by computing the logits difference between the
pre-trained model and its aligned version, then applying this vector to the output logits of another
model in the same model series.

Nevertheless, these tuning-free alignment methods face several limitations that restrict their appli-
cation across diverse scenarios. (1) Specifically designed in-context prompts cannot fully reflect
user preferences across different scenarios, hence failing to adapt flexibly to various types of task.
(2) Methods that adjust decoding based on token logits are constrained by the model’s vocabulary,
limiting their use to within the same model series. (3) Additionally, existing methods typically incur
additional test-time computational costs, rendering them less economically viable. These challenges
significantly hinder the practical utility of current non-tuning alignment methods, emphasizing the
need for more adaptable and efficient solutions.

To this end, we propose GOOD (Guided Online Optimal Decoding), a novel tuning-free alignment
method. We observed that different aligned models exhibit similarities in their decisions of alignment-
related tokens, and alignment-related changes in one model can be used to guide another model (see
Appendix E]) Based on this observation, we propose the GOOD method, which enhances the model
by dynamically adjusting its output during the decoding phase. Specifically, GOOD uses a pair of
guiding models to identify critical locations that need alignment during the response generation, and
provide corresponding guidance. This identification process is accomplished through a two-step guess-
and-verify mechanism, which probabilistically generates multiple tokens in a single step, thereby
achieving a lossless acceleration compared to vanilla decoding. Through this dynamic adjustment,
GOOD achieves comparable performance to direct fine-tuning and exhibits high flexibility, making it
effective for aligning the behavior of black-box models, where the parameters and vocabulary are
not accessible. In Appendix [B| we further provide a demonstration of how GOOD is compatible
with API-based closed-source model services, requiring only string-level communication between
the involved components. Table[I|presents a comparison between GOOD and existing tuning-free
alignment methods.

Experiments show that in weak-to-strong alignment, GOOD can achieve performance comparable to
direct fine-tuning in terms of comprehensive capability and harmless generation, reaching relative
scores of 102% and 99%. Meanwhile, it delivers a 3%—13% speedup in decoding time compared with
vanilla decoding, achieved through integration with speculative decoding. Even when using guiding
models from different model families (often differing in vocabulary, training data, and architecture),
GOOD remains effective, achieving 98% and 103% of the target performance on the two tasks,
respectively. GOOD can also be applied to enhance already aligned models. In our experiments, the
code enhancement from GOOD yielded a 52% relative improvement in the guided model’s pass@1
performance. Based on these results, our analysis reveals that the performance improvement brought
by GOOD mainly stems from accurately identifying positions that need alignment, and this can be
further enhanced by providing more accurate and stronger guidance, suggesting a potential direction
for non-tuning alignment to replace tuning-based alignment.

We conclude our contributions as follows:

* To the best of our knowledge, GOOD is the first method to achieve black-box LLM align-
ment at decoding time. Distinct from existing tuning-free approaches, GOOD eliminates
dependencies on pre-designed contexts and vocabulary constraints while achieving faster
decoding than vanilla sampling, combining high flexibility with practical efficiency.

* We observe that aligned models exhibit consistent patterns in identifying alignment-critical
tokens, and model interactions naturally occur at the string level. Building on this insight,

94
95
96

97
98
99
100
101
102

103

104

105
106
107
108
109
110
111
112
113
114
115
116
117

118

119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134

135

137
138
139
140
141
142
143
144

GOOD utilizes a pair of guiding models to implement efficient decoding-time alignment
through position-aware guidance that integrates seamlessly with speculative decoding,
achieving both alignment effectiveness and decoding efficiency.

* We conducted extensive evaluations across several scenarios. Results show that in weak-
to-strong alignment scenarios, GOOD achieves 102% performance of directly fine-tuned
models. It also attains 103% relative safety score even when aligned across different
model families. Moreover, GOOD successfully enhances already-aligned models, improv-
ing pass@1 by 52% in code generation tasks, demonstrating compatibility with existing
alignment techniques. These demonstrations broaden the application scope of GOOD.

2 Related Work

2.1 Tuning-based Alignment Methods

Alignment related tuning is critical in adapting LLMs to better reflect human preferences (Wei et al.,
20215 |Ouyang et al.l 2022; Taori et al.| 2023} [Wang et al.l 2023 Rafailov et al., 2024} Bubeck
et al., 2023). A common starting point is SFT (Supervised Fine-Tuning), where the model is
fine-tuned on datasets containing desired human-instructed outcomes, providing a basic level of
alignment. RLHF (Reinforcement Learning from Human Feedback) builds on SFT by incorporating
a reward model that guides the policy model towards human-preferred behaviors. There are also
several RLHF variants, such as RLAIF (RL from AI Feedback) (Lee et al., 2023, DPO (Direct
Preference Optimization) (Rafailov et al.,[2024), etc., have been proposed, each aiming to improve the
efficiency and effectiveness of the alignment process (Wang et al.,[2024)). However, these tuning-based
methods require considerable resources, including large amounts of training data and significant
computational capabilities. Additionally, they require direct access of the model’s parameters, which
is often unfeasible for cutting-edge models like GPT-4 (Achiam et al.,[2023)). In sight of this, some
researchers have explored aligning model responses without parameter tuning.

2.2 Tuning-free Alignment Methods

The main rationale for using the non-tuning alignment methods is the Superficial Alignment Hy-
pothesis introduced by LIMA [Zhou et al.| (2024), suggesting that most of a model’s knowledge and
capabilities are acquired during pre-training, with alignment primarily teaching the model which
sub-distribution of responses to utilize in user interactions. Following this hypothesis, URIAL (Lin
et al.L[2023)) provides evidence that alignment tuning mainly impacts stylistic tokens, such as discourse
markers and safety disclaimers, without significantly affecting the model’s core knowledge base.
Building on recent advancements in non-tuning alignment research, we categorize related methods
into the following three classes.

Pre-decoding alignment methods. URIAL (Lin et al.,[2023) leverages In-Context Learning (ICL)
(Mann et al.| 2020)—a paradigm that enables LLMs to adapt to new tasks through contextual prompts
without parameter updates—to achieve pre-decoding alignment. By incorporating few-shot examples
(e.g., stylistic demonstrations or inference traces) into prompts, ICL allows LLMs to better align their
outputs with user instructions. URAL demonstrates that this approach can attain effective alignment
using minimal resources: a system prompt and as few as three constant stylistic examples. Yet, this
kind of methods are highly dependent on the design of the few-shot examples, which limits their
generalizability and effectiveness in different tasks.

In-decoding alignment methods. In-decoding alignment methods perform adjustments during the
model’s response generation, typically achieved by modifying token logits or employing discrimi-
nation and search mechanisms. RAIN (Li et al.l|2023) uses pre-trained LLMs to assess their own
outputs and leverage these evaluation results to guide the process of rewinding and regenerating.
Works such as GenARM (Xu et al.} 2024), Args (Khanov et al., 2024])), Transfer Q-star (Chakraborty,
et al.,[2024), and Cascade Reward Sampling (L1 et al., [2024)) explore reward-guided decoding from
different perspectives. Alternatively, Proxy-tuning (Liu et al.,[2024) and EFT (Mitchell et al., 2023)
guide generation by injecting logit differences from aligned reference models into target predictions.
However, current methods in this paradigm need access to the token logits in the model output and its
vocabulary. These factors limits their applicability.

145
146
147
148
149
150

151

152
153
154
155

157
158
159

160

161
162
163
164
165
166
167
168

169

170
171
172
173
174

Guiding Models

* Discriminated as need aliy

No alignment required W Unused

Ait Ait
6 7

LLMA it
| f
| - i
! Ait 1
| 7 i
: riginal Prediction R Aligned Prediction & The First Verification 1 ain Prediction & The Second Verification
: : i (
; ‘ “Assisted Decoding Discrimination Methods

“Alignment Discrimination Methods

Max Match
Max Match Top P Overlap Top K Overlap - I:> n_matches_align
Acceptance Rules: B‘J

Speculative Sampling
n_matches_main < n_matches_align: Accept B[:n_matches_main+1] as the output. :'_'_'_'_'_'_'_ ____
n_matches_main > n_matches_align: Accept B[:n_matches_align]+Ait[n_matches_align+1] as the output.

Figure 1: The principle of GOOD. GOOD utilizes a pair of guiding models to identify critical
positions related to alignment. Once a specific position is discriminated as requiring alignment, we
replace the prediction with the guiding model’s output, converting it to the guided model’s token if
needed. LLM 4 first predicts multiple tokens, which are then verified by LLM 4,, (the aligned version
of LLM 4). The output from LLM 4,, is subsequently validated by LLM g (the guided model). The
original version of GOOD without speculative execution, as well as how speculative decoding within
GOOD is handled in different scenarios, are provided in Appendix [C|and Appendix D}

Guided Model

Post-decoding alignment methods. Aligner establishes post-decoding alignment
through a two-stage progress: generating the initial response in the first stage and refining it in the
second stage. It trains a separated model that learns correctional residuals between initial and aligned
outputs without the need for fine-tuning the base LLM. Nevertheless, the effectiveness of Aligner is
limited by the initial generation step, which makes it difficult to align responses if the base model
produces poor answers. Additionally, it still requires fine-tuning of the downstream model.

2.3 LLM Ensemble

LLM ensemble methods leverage multiple models, each contributing unique insights and diverse
reasoning patterns, thereby compensating for individual model weaknesses and reducing biases.
(2024) provides a more detailed introduction. Taking the GaC method [2024) as an
example, GaC treats each token generation as a classification task and averages the classification
probability vectors across multiple LLMs during inference. This approach utilizes the token-level
probability information from each model and integrates multiple models at the inference stage,
improving overall performance and preventing early-generation errors from cascading into larger
mistakes.

2.4 Speculative Decoding

Recent work on speculative decoding has shown that large autoregressive language models can be
decoded significantly faster by combining a fast “draft” model with the original, more powerful
“target” model (Leviathan et al., [2023}; [Xia et al.| 2022} [Chen et al., 2023} [Miao et al.,[2024). This
approach generates several candidate tokens in parallel from smaller or more efficient models (the
draft model), then relies on the larger (target) model to validate these tokens in a single verification
step. GOOD integrates the concept of speculative decoding, combining alignment discrimination
and token generation into a dual-stage speculation-verification process, achieving both non-tuning
alignment and acceleration of target model decoding.

3 Method

In this section, we introduce the principles of GOOD (Guided Online Optimal Decoding), with
an overview provided in Figure [I] The original version of GOOD without speculative execution
is provided in Appendix [C| clearly demonstrating its core principles. The goal of GOOD is to
achieve flexible and efficient tuning-free alignment, without accessing the parameters, logits, or
vocabulary of the target model. Appendix [B]provides a demonstration of how GOOD is compatible

175
176

177
178
179
180

181

182
183
184

185
186
187

188
189
190
191

192

193

194
195

196

197
198
199

200

201

202

203

204

205

206

207

208

209

210
211

212
213

214

215

216

with API-based closed-source model services, requiring only string-level communication between
the involved components.

We first formalize the problem setting and notation, then detail the two key components of GOOD:
(1) discriminating which positions need alignment, and (2) the transformation of guidance (including
token conversion across vocabularies and alignment flag updates). Finally, we present the overall
process, incorporating the speculative verification mechanism.

3.1 Problem Setting and Notation

Let B be the guided model that we aim to align, but for which we only have black-box (string-based)
access. We assume access to a guiding model A (the unaligned version), and its aligned variant A ;.
We denote tokenizers as follows: T4, T'4,, for the guiding pair, and T’g for the guided model.

A single decoding step at position n generates the next token ¢”. We write p (¢ | 1), pa,, (¢ |
tn=11) and pp (¢ | t1#"~1) for the probability (logit) distribution of the next token, conditioned on
the partial sequence /'~ 1,

We wish to produce an output that is aligned to human preferences (following instructions, safety
constraints, etc.), even though B itself is not aligned. Our approach will replace certain tokens
(or sequences of tokens) in B’s raw decoding with corresponding tokens from A, guided by a
token-level alignment discrimination through comparing p4 and p4,, .

3.2 Alignment Discrimination

We define a function f(-) to decide whether to align at each step: 6, = f({pa(t | t'" =}, {pa,, (¢ |

t[l:”_l])}), where d,, € {0,1} is an alignment flag, indicating “no alignment needed” or “alignment
needed” at position n.

Here we list two variants of f:

1. Max-Match: Compare the single highest-probability token for A vs. A;;. Formally, if
argmax; pa(t | 1= 1) £ argmax; pa,, (t |t~ 1), then 6,, = 1; otherwise 0.

2. Top-P/K Overlap: For guiding model A, we define ng‘)p p as the minimal set of highest-
probability tokens whose cumulative probability exceeds P, and St“ép % as the top-K highest-

probability tokens. Similarly, define Sg?); p and SQ;K for A;;. Then we decide: §,, = 1 if

|S’t“c‘)p P/K N S:}Jgp / K| < T; otherwise 0, where 7 is a threshold that is a nonnegative integer.
This approach allows the alignment sensitivity to be easily adjusted by simply adjusting 7.

3.3 Guidance Transformation

Whenever §,, = 1, we seek to replace B’s next token with the prediction from A ;. Considering A ;;
and B may have different vocabularies, we process substitutions at the string level to preserve context
equivalence. Formally:

new[1:m)]

Token-to-String: Let ¢, denote the newly predicted m tokens from A;; at the current step.

Convert these tokens into a substring: speyw = T;l (t'ﬁz[lzm]).

it

Re-tokenize: Tokenize s"" into B’s vocabulary: tgw[l:”] = Tp(s""), where n may differ from m

due to vocabulary mismatches.
Alignment Flag Update: For each token tlgw[i] in B’s sequence, identify all tokens t'jf::[j I from

A ;; that contribute to its formation via string-level mapping, including direct 1-to-1 token mapping,
substrings of £

., or multi-token overlaps from Ay
Set the alignment flag for £3"7 as: 65 = 1if 3 js.t. tjf::[j ! contributes to #3"7 and 6"V = 1;

otherwise 0. The updated alignment count is then: n_matches_align = min{3 | 5"Bfw[i] =1}

217

218
219
220

221

222
223
224
225
226
227
228
229

231
232

234
235
236
237
238
239
240

241
242
243
244
245

246

247
248
249
250
251
252

254
255
256
257
258
259

261

262
263
264
265
266

3.4 Overall Algorithm

Building upon the alignment discrimination mechanism (3.2) and guidance transformation pro-
cess (3.3), we present the complete GOOD algorithm through pseudocode in Algorithm (1| (see

Appendix [E).
Here, we provide a simplified description of the workflow for the GOOD algorithm:

1. Speculative generation with alignment discrimination: Generate draft tokens using the
unaligned model (A) and validate them with the aligned model (A ;). Identify positions
requiring alignment (§,, = 1) using a discrimination function.

2. Cross-model guidance transformation: Transform the validated token sequence into the
vocabulary of the guided model (B) while correspondingly converting the alignment flags
).

3. Target model validation: Feed the transformed tokens into the guided model (B) for valida-
tion. Obtained the final output based on acceptance rules.

4 Experiment

We conducted four experiments to test the capabilities of GOOD: comprehensive performance,
harmless generation, enhancing aligned models, and the speed of decoding.

Tasks and datasets. We use MT-Bench (Zheng et al.|(2023)) to evaluate the comprehensive perfor-
mance of GOOD, a multi-task benchmark designed to assess the ability of models across various
domains. To evaluate the ability of the GOOD to generate harmless responses, we conducted experi-
ments on the Helpful and Harmless (HH) dataset (Ganguli et al., [2022), designed to test how models
perform in complex and sensitive scenarios. In the experiment to enhance the capabilities of already
aligned models, we focused on improving code generation skills and evaluated performance on the
HumanEval dataset (Chen et al.;,|2021)). In the decoding speed experiments, considering the diversity
of tasks, we also used the MT-Bench dataset as the test input.

Models. In our experiments and analysis, considering the flexibility of GOOD in transferring
alignment related capabilities across different models, we evaluated combinations of various state-of-
the-art models. Specifically, we used the Llama series (Llama-2 (Touvron et al.,2023)), CodeLlama
(Roziere et al.,[2023)), the Gemma series (Gemma-2 (Team et al., [2024)), and Qwen series (Qwen2
(Yang et al.;,|2024))) to assess the method’s performance and generality.

. . Table 2: MT-Bench scores for different models and
4.1 Comprehensive Evaluation

methods.

On MT-Bench, we tested the effectiveness Method Model MT-Bench Score
of weak-to-strong guidance in the Gemma2, GOOD G{;;Q::i:%‘;:;::fﬁ:n?z?;élb st
Llama2, and Qwen2 series, as well as the cross- Quwen-2-7b-it = Qwen-2-72b 848
f 1 d d d b th G 2 GOOD(Split) Gemma-2-9b-it + Qwen-2-7b-it — Qwen-2-72b 8.64
?ml y guidance prov1. €d Dy the Uemmas se- Gemma-2-2b-it — Gemma-2-27b 3.70
ries to the Qwen?2 series models. In the latter Proxy-Tuning Llama-2-7b-it — Llama-2-70b 641
. . Qwen-2-7b-it — Qwen-2-72b 8.47
case, we used small guiding model pairs from Gemma 22701 597
the same series as the alignment discriminator Baseline Llama-2-70b-it 686
Qwen-2-72b-it 9.12

and applied guidance from Gemma? at positions
identified as alignment-related. As shown in the Table 2] whether for guidance within the same
series or across different series, GOOD-guided alignment achieved performance comparable to direct
fine-tuning. In the case of Llama-2-7b-chat guiding Llama-2-70b, the alignment performance even
surpassed that of direct fine-tuning. In comparison with the baseline method (Proxy-Tuning), GOOD
outperformed in all three configurations and demonstrated more stable performance (the baseline
method did not perform as well on the Gemma?2 series).

4.2 Harmless Generation

The harmless generation test focuses on the safety of the model when responding to sensitive questions,
using the same model configuration as the comprehensive evaluation. We use gpt-4o (Hurst et al.|
2024) as the evaluator, the prompt used for evaluation is shown in Appendix |H} The harmless ratios
for various model settings are summarized in Table [3] demonstrating the improvements achieved
through the guiding alignment process.

267
268
269
270
271
272
273
274
275
276
277
278
279

280
281
282
283
284
285
286
287

288
289

291
292
293

294

304

310
311
312
313
314
315
316
317
318

Under the guidance of smaller models within

the same series, we achieved 99% (Gemma2), Table 3: Harmless ratios for different models and
98% (Llama2), and 97% (Qwen2) alignment ethods, evaluated by gpt-4o.
performance relative to direct fine-tuning in the

. Method Model Harmless ratio
three. model conﬁguratlons: Compared to the o ahi o G)
baseline method (Proxy-Tuning), GOOD outper- GOOD Dama 270t Llama 2700 7T

. . wen-2-7b-1t — Qwen-2- .0%
formed in tw(? configurations ?nd dempnstrated GOOD(Split) Gemma-2-9b-it + Qwen-2-7b-it — Qwen-2-72b 74.6%
greater stability. Notably, by introducing exter- Gemma-2-2b-it — Gemma-2-27b 543%

. 13 Proxy-Tuning Llama-2-7b-it — Llama-2-70b 71.6%
nal guldange across model fanyhes, the haym- Quen2.Thiit — Gwon2.72b 68.30%
lessness ratio in the GOOD(Split) configuration Gemma-2-27b-it 75.6%
surpassed that of the directly fine-tuned guided Baseline P e

model (74.6% vs 73.0%), highlighting the ad-
vantages brought by GOOD’s flexibility.

To further validate GOOD’s effectiveness on harmless generation, we conducted additional compar-
isons against prominent reward-based decoding-time alignment methods, following the experimental
setup of GenARM (Xu et al.| [2024). In GenARM, the LLaMA-7B-SFT checkpoint provided by
Khanov et al.|(2024) is used as the base model, which is fine-tuned from LLaMA-7B on the preferred
responses of the HH-RLHF. For both RM and DPO, they fine-tune LLaMA-7B-SFT with LoRA for
one epoch on the training split of HH-RLHF. We used TinyLlama-1.1B-Chat and TinyLlama-1.1B as
a pair of guiding models (Zhang et al.,[2024)). And we followed the model preparation process of
GenARM to performed the same DPO training on TinyLlama-1.1B-Chat.

Here we report the comparison results inff] De- Table 4: Comparison of GOOD with reward-based
spite leveraging significantly smaller guiding decoding-time alignment methods on HH-RLHF
models, GOOD achieves competitive alignment dataset.

performance, outperforming several reward- “Vemodvs. DPO Win (%) Tie(%) Lose(%) Win + Y Tie (%)

based methods (ARGS, Transfer-Q, CARDS) “aracs 24.44 489 70.67 26.89
1 Transfer-Q 31.00 5.44 63.56 33.72

and approaching the performance of GenARM. [we ah S s
GenARM 48.00 6.89 45.11 51.44

GOOD (ours) 41.67 5.67 52.67 44.50

4.3 Enhance Aligned Model
Table 5: Pass@1 scores on HumanEval. This table

The GOOD method can not only guides pre- compares the code performance gains achieved by
trained models in alignment behaviors but also L1ama-2-13b-chat under different methods.

enhances the performance of already aligned Method HumanEval Pass@1
1 1 Llama-2-13b-chat 213
mOdelS mn SpeCIﬁC taSkS' CodeLlama-7b-python 384
. . CodeLlama-7b-python + Llama-2-13b-chat (GaC) 299
Our experiment is evaluated based on the Hu- codeLiama-7b-python — Liama-2-13b-chat (Proxy-Tuning) 321
CodeLlama-7b-python — Llama-2-13b-chat (GOOD) 323

manEval dataset. We used CodeLlama-7b-
python and Llama-2-7b as the guiding model pair in the GOOD method to enhance the code
performance of Llama-2-13b-chat (as the guided model), with Top_P 4=0.8 and Top_P 4,,=0. Consis-
tent with Proxy-Tuning (Liu et al., 2024), we set Top_P (sampling parameter) to 0.95, temperature to
0.1, and calculated the pass@1 score. According to the definition provided in|Lu et al.| (2024)), we
consider that the way GOOD enhances already aligned models can be regarded as a form of LLM
Ensemble During Inference. Therefore, we also compared it with the recently proposed GaC method
(Yu et al., 2024). o

The detailed performance results are shown in =~ unaniies Rokpy — Uama 3o Sove-65

Table B} where our method achieved a score e

of 32.3 on HumanEval, which is similar to the

Proxy-Tuning and higher than GaC’s score of ™ S L

29.9. The prompt used in our evaluation is

shown in Appendix [F| Compared to the orig-

inal model, the guidance provided by GOOD Eracton et

resulted in a 52% improvement. The Proxy- cating

Tuning results were obtained by running the Figure 2: Comprehensive performance with code
author-provided code locally under the same enhancement guidance, utilized code block mark-
settings. ers as the start and end signals.

Writing

319
320
321
322
323
324

325

326
327

329
330
331
332
333

335
336
337
338
339
340

341

342

343
344
345
346
347
348
349
350

351
352
353
354
355

We also tested the comprehensive performance of the models with code enhancement guidance on
MT-Bench. We used the default configuration of GOOD (Max Match) and utilized code block markers
as the start and end signals for enhanced guidance (A specific example is shown in Appendix [G). As
shown in Figure 2] experimental results indicate that models with GOOD-enhanced guidance can
surpass both the original and guiding models in comprehensive performance, with score increasing
from 6.65 to 6.88.

mm Gemma-2-27B-Instruct
Gemma-2-2B-Instruct - Gemma-2-278

. = (lama-2-70b-chat

4.4 Decoding Speed of GOOD 023 Uama-2-7b-chat ~ Liama-2-70

Qwen-2-72B-Instruct

Qwen-2-7B-Instruct -» Qwen-2-72B

o
N
3

By combining with speculative decoding,
GOOD can probabilistically generate multiple
tokens in a single iteration or skip the inference
steps of the guided model. Considering the di-
versity of test samples, we used the question
set from the MT-Bench dataset as input for de-
coding speed test (which includes 8 types of 005
tasks). As shown in Figure [3] GOOD outper-
forms vanilla decoding in decoding speed across 000 - = —

all three configurations, achieving up to a 13% Model Settings

speedup. Due to different memory requirements Figure 3: Average token decoding time of GOOD
for different model configurations, the tests for and Vanilla Decoding.

Gemma-2-2B-Instruct — Gemma-2-27B were conducted on L40s 48G x &, while the other two
were tested on A100 80G x 8. The respective baselines were evaluated in the corresponding testing
environments.

Average Token Decoding Time
°
&

o
S

5 Analysis

5.1 Where does the performance enhancement mainly come from?

Gemma-2-9b-it, MT-Bench Score 8.34

Gemma-2-2b-it, MT-Bench Score 7.60

Gemma-2-2b-it--Gemma-2-8b (use random guidance with ratio=0.3), MT-Bench Score 5.15

MT Bench Score

Gemma- 2-9b, MT:Bench Score 2.69

0.3 0.29 0.28 0.25 0.23 0.2 0.16
Different Guided Decoding Ratio on Gemma-2-2b-it-»Gemma-2-9b

Figure 4: Performance of alignment guidance with varying guided decoding ratios.

To illustrate why the guidance provided by GOOD can help the model achieve performance gains, we
evaluated the guided decoding ratio (controlled by adjusting Top_P 4) and MT Bench performance
under different parameter configurations, and compared them with random decoding. Based on
URIAL’s definition of token shift, we fixed Top_P 4,, to 0 and adjusted the size of Top_P 4. Due to
potential differences in vocabularies between guiding models and the guided model in GOOD, we
count the number of guided decodings and original decodings based on the character level in the final
results. As shown in Figure[d} the scores of alignment guidance consistently range from 7.67 to 7.83
as the proportion of guided decodings decreases from 0.30 to 0.23.

Even with approximately a 23% reduction in guided decodings (from 0.3 to 0.23), the performance
does not experience significant changes. Meanwhile, when random guided decoding at a 0.3 ratio
was provided, the model’s performance was significantly lower than that of GOOD-guided decoding.
This indicates that the GOOD method does not rely on providing a high quantity of guided decodings
to enhance the pre-trained model’s performance; instead, accurate guidance is more critical.

356

357
358
359

360
361
362
363

365
366
367
368
369
370
371

372

373
374
375
376

377
378
379
380

382
383
384
385
386
387
388

389
390

391

392
393
394
395

396
397
398

399
400
401
402

404
405

5.2 Token changes in GOOD-guided decoding

To understand the alignment behavior characteristics of models guided by GOOD, we compared the
token changes between models aligned using the GOOD method and those aligned directly through
fine-tuning, with statistics derived from their responses on the MT-Bench dataset.

We counted the top 100 most frequently chang-

ing tokens in each setting. Results show that in = usmssssinstruct - awenz7s Qwen2-7B-Instruct - Llama-3-88

the guidance of Llama-3-8B-Instruct to Qwen2- il Lama-3-85-Instruct
7B, the token changes overlap 70% with Llama- 1 B s
3-8B-Instruct and 64% with Qwen2-7B-Instruct. - *

In the guidance of Qwen2-7B-Instruct to Llama- “ @

3-8B, the token changes overlap 59% with * 1 H ”

Qwen2-7B-Instruct and 56% with Llama-3-8B-

Instruct. This indicates that the alignment behav-

ior of the guided model more closely resembles

that of the guiding model, with less similarity to (@) (b)

its directly fine-tuned version. Figure 5: Comparison of token changes in guided
decoding alignments.

20 29

Qwen2-7B-Instruct Qwen2-7B-Instruct

5.3 More accurate identification as well as stronger guidance.

In this analysis, we further demonstrate that providing more o7 — o —

accurate guidance and stronger guidance can both enhance oo | S e g s + 28
alignment performance, and these two benefits can coexist to '

jointly improve model performance.

8.64
8.48

@
0

8.12

We measured the performance of guiding Qwen2-72B with
Gemma-2-9b-it (using both discrimination and guidance from
Gemma-2-9b-it) and compared it with the data from Exper-
iment @] Since Qwen2-7B-Instruct and Qwen2-72B be-
long to the same model family and are trained on the same 70
dataset, Qwen2-7B-Instruct offers more accurate recognition o
than Gemma-2-9b-it. Meanwhile, Gemma-2-9b-it has a higher O SN otonguratona
score on MT-Bench, indicating it can provide stronger guidance Fjgure 6: Alignment performance
at the same decoding positions. As shown in Figure [6] the hen using more accurate identifi-
results demonstrate that the configuration combining Qwen2- cation as well as stronger guidance.
7B-Instruct’s discrimination with Gemma-2-9b-it’s guidance

outperforms using Qwen2-7B-Instruct or Gemma-2-9b-it as guidance individually.

MT-Bench Score
@
o

N
n

This suggests that, based on the current method, we can continue to enhance GOOD’s performance
by further improving alignment recognition approach and strengthening alignment guidance.

6 Conclusion

In this paper, we propose GOOD, a novel alignment method that enhances pre-trained models at
decoding time without requiring access to their parameters or vocabularies. GOOD identifies positions
need alignment in real time during the guided model’s response generation, and introduces the output
of the guiding model at that position as a substitute for the decoding results of the guided model.

By proposing the GOOD method, we addressed the limitations of existing tuning-free alignment
methods, including reliance on pre-designed contexts, constraints from model vocabularies, while
achieving acceleration compared to vanilla decoding through a two-step guess-and-verify mechanism.

Experiments show that in weak-to-strong alignment, GOOD can achieve performance comparable
to direct fine-tuning in terms of comprehensive capability and harmless generation. Even when
using guiding models from different model families (often differing in vocabulary, training data, and
architecture), GOOD remains effective. GOOD can also be applied to enhance already aligned models.
Our analysis indicates that the performance improvement primarily come from accurately identifying
alignment related positions, and this can be further enhanced by providing more accurate and stronger
guidance, suggesting a potential direction for non-tuning alignment to replace tuning-based alignment.

406
407

408

409
410

411
412
413
414

415
416
417

418
419

420
421
422

423
424
425

426
427

428
429

430
431

432
433
434

435
436

437
438

439
440

441
442
443

444
445

446
447
448

449
450
451

A discussion of the current limitations of GOOD and potential areas for future work is provided in
Appendix

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt,
J., Altman, S., Anadkat, S., et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J. A., Horvitz, E., Kamar, E., Lee, P, Lee,
Y. T., Li, Y.-F,, Lundberg, S. M., Nori, H., Palangi, H., Ribeiro, M. T., and Zhang, Y. Sparks of
artificial general intelligence: Early experiments with gpt-4. ArXiv, abs/2303.12712, 2023. URL
https://api.semanticscholar.org/CorpusID: 257663729,

Chakraborty, S., Ghosal, S. S., Yin, M., Manocha, D., Wang, M., Bedi, A. S., and Huang, F. Transfer
g-star: Principled decoding for 1lm alignment. Advances in Neural Information Processing Systems,
37:101725-101761, 2024.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre, L., and Jumper, J. Accelerating large
language model decoding with speculative sampling. arXiv preprint arXiv:2302.01318, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., Edwards, H., Burda, Y.,
Joseph, N., Brockman, G., et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021.

Ganguli, D., Lovitt, L., Kernion, J., Askell, A., Bai, Y., Kadavath, S., Mann, B., Perez, E., Schiefer,
N., Ndousse, K., et al. Red teaming language models to reduce harms: Methods, scaling behaviors,
and lessons learned. arXiv preprint arXiv:2209.07858, 2022.

Hurst, A., Lerer, A., Goucher, A. P, Perelman, A., Ramesh, A., Clark, A., Ostrow, A., Welihinda, A.,
Hayes, A., Radford, A., et al. Gpt-40 system card. arXiv preprint arXiv:2410.21276, 2024.

Ji, J., Chen, B., Lou, H., Hong, D., Zhang, B., Pan, X., Dai, J., and Yang, Y. Aligner: Achieving
efficient alignment through weak-to-strong correction. arXiv preprint arXiv:2402.02416, 2024.

Khanov, M., Burapacheep, J., and Li, Y. Args: Alignment as reward-guided search. arXiv preprint
arXiv:2402.01694, 2024.

Lee, H., Phatale, S., Mansoor, H., Mesnard, T., Ferret, J., Lu, K. R., Bishop, C., Hall, E., Carbune,
V., Rastogi, A., et al. Rlaif vs. rlhf: Scaling reinforcement learning from human feedback with ai
feedback. In Forty-first International Conference on Machine Learning, 2023.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference from transformers via speculative decoding.
In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.

Li, B., Wang, Y., Lochab, A., Grama, A., and Zhang, R. Cascade reward sampling for efficient
decoding-time alignment. arXiv preprint arXiv:2406.16306, 2024.

Li, Y., Wei, F.,, Zhao, J., Zhang, C., and Zhang, H. Rain: Your language models can align themselves
without finetuning. arXiv preprint arXiv:2309.07124,2023.

Lin, B. Y., Ravichander, A., Lu, X., Dziri, N., Sclar, M., Chandu, K., Bhagavatula, C., and Choi, Y.
The unlocking spell on base 1lms: Rethinking alignment via in-context learning. In The Twelfth
International Conference on Learning Representations, 2023.

Liu, A, Han, X., Wang, Y., Tsvetkov, Y., Choi, Y., and Smith, N. A. Tuning language models by
proxy. arXiv preprint arXiv:2401.08565, 2024.

Lu, J., Pang, Z., Xiao, M., Zhu, Y., Xia, R., and Zhang, J. Merge, ensemble, and cooperate! a survey
on collaborative strategies in the era of large language models. arXiv preprint arXiv:2407.06089,
2024.

Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,
G., Askell, A., Agarwal, S., et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 1, 2020.

10

https://api.semanticscholar.org/CorpusID:257663729

452
453
454
455
456

457
458

459

460
461
462

463
464
465

466
467
468

469
470

471
472
473

474
475
476

477
478
479
480

481
482
483

484
485

486
487

488
489
490

491
492

493
494
495

496
497

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z., Zhang, Z., Wong, R. Y. Y., Zhu, A., Yang, L.,
Shi, X, et al. Specinfer: Accelerating large language model serving with tree-based speculative
inference and verification. In Proceedings of the 29th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Volume 3, pp. 932-949,
2024.

Mitchell, E., Rafailov, R., Sharma, A., Finn, C., and Manning, C. D. An emulator for fine-tuning
large language models using small language models. arXiv preprint arXiv:2310.12962, 2023.

OpenAl. Gpt-4o system card. arXiv preprint arXiv:2410.21276, 2024.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S.,
Slama, K., Ray, A., et al. Training language models to follow instructions with human feedback.
Advances in neural information processing systems, 35:27730-27744, 2022.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Ermon, S., and Finn, C. Direct preference
optimization: Your language model is secretly a reward model. Advances in Neural Information
Processing Systems, 36, 2024.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I, Tan, X. E., Adi, Y., Liu, J., Sauvestre, R.,
Remez, T., et al. Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950,
2023.

Taori, R., Gulrajani, 1., Zhang, T., Dubois, Y., Li, X., Guestrin, C., Liang, P., and Hashimoto, T. B.
Stanford alpaca: An instruction-following llama model, 2023.

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin, C., Bhupatiraju, S., Hussenot, L., Mesnard,
T., Shahriari, B., Ramé, A., et al. Gemma 2: Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118, 2024.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S.,
Bhargava, P., Bhosale, S., et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

Wang, Y., Ivison, H., Dasigi, P, Hessel, J., Khot, T., Chandu, K. R., Wadden, D., MacMillan,
K., Smith, N. A., Beltagy, 1., and Hajishirzi, H. How far can camels go? exploring the state
of instruction tuning on open resources. ArXiv, abs/2306.04751, 2023. URL https://api.
semanticscholar.org/CorpusID:259108263,

Wang, Z., Bi, B., Pentyala, S. K., Ramnath, K., Chaudhuri, S., Mehrotra, S., Mao, X.-B., Asur, S.,
et al. A comprehensive survey of 1lm alignment techniques: RIhf, rlaif, ppo, dpo and more. arXiv
preprint arXiv:2407.16216, 2024.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W,, Lester, B., Du, N., Dai, A. M., and Le, Q. V.
Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652, 2021.

Xia, H., Ge, T., Chen, S.-Q., Wei, F.,, and Sui, Z. Speculative decoding: Lossless speedup of
autoregressive translation. 2022.

Xu, Y., Sehwag, U. M., Koppel, A., Zhu, S., An, B., Huang, F., and Ganesh, S. Genarm: Reward
guided generation with autoregressive reward model for test-time alignment. arXiv preprint
arXiv:2410.08193, 2024.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C., Li, C., Li, C., Liu, D., Huang, F., et al.
Qwen? technical report. arXiv preprint arXiv:2407.10671, 2024.

Yu, Y.-C., Kuo, C.-C., Ye, Z., Chang, Y.-C., and Li, Y.-S. Breaking the ceiling of the Ilm community
by treating token generation as a classification for ensembling. arXiv preprint arXiv:2406.12585,
2024.

Zhang, P., Zeng, G., Wang, T., and Lu, W. Tinyllama: An open-source small language model. arXiv
preprint arXiv:2401.02385, 2024.

11

https://api.semanticscholar.org/CorpusID:259108263
https://api.semanticscholar.org/CorpusID:259108263
https://api.semanticscholar.org/CorpusID:259108263

498
499
500

501
502

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E.,
et al. Judging 1lm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Information
Processing Systems, 36:46595-46623, 2023.

Zhou, C., Liu, P, Xu, P, Iyer, S., Sun, J., Mao, Y., Ma, X., Efrat, A., Yu, P,, Yu, L., et al. Lima: Less
is more for alignment. Advances in Neural Information Processing Systems, 36, 2024.

12

ss. A Observation: Different aligned models exhibit similarities in their decisions
504 of alignment-related tokens

505 Here we examine the alignment-related token decisions in three models from the Gemma?2 series (2b,
s06 9b, and 27b). For each model, the most frequently changed tokens are as follows:

507 Gemma2-2b-it:

so8 [’and’, ’the’, ’a’, ’,’, ’The’, ’.’, ’\n\n’, ’\n’, ’x*’, ’\n<end_of_turn>’, ’>¢’,

509 7for)’)*)’ 7:7, 7is7,)in), 7This7,)(7’)to7, ,With,,)of)’ ll)ll, 7A7, 7Il)’ 7that7’
510 ’an’, ’We’, ’it’, ’me’, ’how’, "Here’", ’<end_of_turn>’, ’are’, ’like’, °I°, °It’,
511 ’this’, -, ?:#x’, ’\n\n\nLet’, ’potential’, ’or’, ’\n\nx’, ’from’, ’on’, ’can’,
si2 ’specific’, ’!’, ’more’, ’you’, ...]

513 Gemma2-9b-it:

st4 [’a’, ’and’, ’,’, ’\n\n’, ’the’, ’*x’, ’The’, ’<end_of_turn>’, ’.’, ’\n’, ’to’,

515 %7, 7(:,)(;, mom o> 5 5 0 349n? This?, 7\n\n*7, >for?, ’A’, ’are’, ’of’, ’on’,
st6 ’with’, ’that’, ’is’, ’you’, ’Here’, ’it’, "Here’", "7, ’like’, ’It’, ’\n\n**’,

517 ##7, °I’, ’by’, ’\n\n\n<end_of_turn>’, ’:*x’, ’how’, ’1’, ’from’, ’potential’, ’We’,
518 ’its’, ’me’, ’if’, ’both’, ...]

519 Gemma2-27b-it:

s20 [’a’, ’and’, ’,’, ’\n\n’, ’the’, ’*x’, ’The’, ’<end_of_turn>’, ’.’, ’\n’, ’to’,

521 7*:, 7(:,)‘:, n:u’ 7:7’ :_7’ ’in’, ’ThiS’, :\n\n*a’ ’for’, ’A’,)area’ ’Of’, ’on’,

522 ’with’, ’that’, ’is’, ’you’, ’Here’, ’it’, "Here’", ’"’, ’like’, ’It’, ’\n\n*x’, ’##’,
523 ’I’, ’by’, ’\n\n\n<end_of_turn>’, ’:**’, ’how’, ’1’, ’from’, ’potential’, ’We’, ’its’,
524 ’me’, ’if’, ’both’, ...]

525 When examining the top 100 most frequent alignment-related tokens, we observed over 70% overlap
526 between the three models. And this overlap increased to over 80% when considering only the top
527 50 tokens. This observation suggests that there is a considerable similarity in the alignment-related
s28 token decisions across different models (especially for those high-frequency tokens). Inspired by this,
529 we explored leveraging alignment decisions from already aligned models to guide pretrained models,
s30 and ultimately proposed the GOOD method.

s31. B Compatibility with API-based Closed-Source Models

532 GOOD can indeed work with closed-source model services provided through APIs. However, this
533 requires some adjustments to the existing API service format. Here, we provide the following
s34 explanation and introduce a demonstration we implemented to provide GOOD compatible LLM
535 services in an API format.

s3s Limitations of Current API Formats for GOOD Integration. Current closed-source model
537 providers typically offer LLM services in the form of APIs, which usually return completed text
538 responses at once or continuously send text fragments in a streaming output format. During a single
539 response generation, adjustments requests from user are not allowed, which makes them not directly
s40 compatible with GOOD’s requirements (in GOOD, the guided model needs to continuously receive
541 text information from the guiding model pair to achieve real-time alignment adjustments).

s42 Feasibility and Confidentiality Considerations. However, GOOD can be applied to powerful
543 closed-source models with simple adjustments to the existing API service format. Closed-source
s44 model providers hope to avoid leaking the model’s confidential information during providing LLM
545 responses, which is mainly the model’s parameters and vocabulary. During the GOOD process, the
s46 guiding models does not need accessing parameters and vocabulary, so its working principle has no
s47 fundamentally conflict to the need of protecting model confidentiality.

s4s Demonstration of a GOOD-Compatible API Service. Here we provide a demonstration to illustrate
s49 the format of the API service required by GOOD, which can be achieved by adjusting the existing
s50 API service format. It is worth noting that we have implemented a demo of this service locally and

13

User Client

Call Local Model Server /init
Call Cloud Model Server /init
Call Cloud Model Server /get_response

(a) User Client: Initiates requests and receives the final aligned output.

Local Model Server

1. /init (POST): Init a local model instance.

2. /predict (POST): Runs inference using initialized model.
- Input: current_text, num_speculative

- Output: predicted_text_matched, predicted_text

1 Original Token Prediction

Tokenizer A/ A it

Encode (Incrementally)

Current Token Sequence

EEHEB

Aligned Token Prediction

Tokenizer A/ A it

Decode (Incrementally) Max Match || Top P Overlap || Top K Overlap n_matches_align_A

Suppose n_matches_align_A=4

. SUppose
Finial Token Prediction (Matched) Finial Token Prediction

. - n n

Finial Token Prediction (Matched) = All Token Prediction|:n_matches_align_A]
Finial Token Prediction = All Token Prediction|:n_matches_align_A+1]

S

N I

(b) Local Model Server: Hosts the guiding model pair (LLM 4, LLM 4,,) and provides
alignment guidance as text fragments.

Cloud Model Server

‘Text Prediction Token Prediction

Matched Matched]
Call Local Model Server SULLLL Tokenizer B (Matched)
Jpredict Encode (Incrementally)

Text Prediction Token Prediction

]
“Token Prediction

- - ! - - - MaxMateh

Speculative Sampling

Tokenizer B
Encode (Incrementally)

[— ﬁ E ﬂ
Main Prediction To Compare.

[N
Accepted Token Sequence

n_matches_main

Incomplete

Acceptance Rules:
Tokenizer B n_matches_main <n_matches_align: Accept B[:n_matches_main+1] as the output.
Decode (Incrementally) n_matches_main > n_matches_align: Accept B[:n_matches_align]-+Ait[n_matches_align+1] as the output.

Accepted Text

New Current Text = Current Text + Accepted Text

1. /init (POST): Init a cloud model instance.

2. /get_response (POST): Runs inference using the initialized cloud model.
- Input: input_text, local_service_url
- Output: completion_text

(c) Cloud Model Server: Hosts the black-box guided LLM (L L Mpg) and queries the Local
Model Server for guidance.

Figure 7: Conceptual components of the demonstrated GOOD-compatible API service. String-level
communication occurs between the Local Model Server and the Cloud Model Server to facilitate
real-time alignment.

14

551
552
553
554
555

556
557
558
559

560

562
563
564
565
566

568
569
570
571
572

INPUT
Y

Human: How can I get away with doing vandalism on a bus?
Assistant: I cannot and will not help you with that. Vandalism is illegal. It's

{"Alignment Module ['Guided Model
Guiding Mod Predict Logits Discrimination Methods

LIMA Max Top P
» » Match Overlap
LLM A it L0pL
Overlap

OouTPUT ‘ Guiding String ’ <:I ‘ Decision ’ » ‘ Original String ’

Human: How can I get away with doing vandalism on a bus? v
Assistant: I cannot and will not help you with that. Vandalism is illegal. It's harmful

FINAL OUTPUT
v

Human: How can I get away with doing vandalism on a bus?

Assistant: I cannot and will not help you with that. Vandalism is illegal. It's harmful to property and can cause fear in others.

It's important to understand that: 1. **Vandalism is a crime:** You can face serious consequences if caught, including fines and
jail time. 2. **It's disrespectful:** Vandalism damages ...

Figure 8: The original version of GOOD without speculative execution.

have actually run it. In this demonstration, communication between modules is limited to textual
data, with all services accessed through predefined ports and URLs, thereby achieving full resource
isolation. In figure[7] we provide an architecture diagram illustrating the modules involved in this
service—including the User Client, a Local Model Server (for the guiding models), and the Cloud
Model Server (for the guided black-box model)—and the data flow within each module.

Key Differences from Standard API Interactions. Compared to existing standard APIs, our
GOOD-compatible API adds only two differences: the user client must provide the Local Model
Server’s URL, and the Cloud Model Server will continuously query it during operation to fetch
predicted text fragments for response alignment.

C Original version of GOOD without speculative execution

As illustrated in Figure[§] GOOD works by accurately identifying the positions that require alignment.
To achieve this, GOOD introduces a pair of guiding models, referred to as model A and model A
(the aligned version of model A). While the guided model decodes, the guiding models also predict
the next token. By comparing the logits (predicted token probability distributions) generated by
model A and model Aj, it can be inferred whether model A needs to be aligned at this location.
Based on our assumption, we also consider that model B (the guided model) is likely in the same
state at that position.

If alignment is deemed necessary, the output from model A;; is converted into a string and then
decoded into model B’s token sequence. Since the vocabularies of model A;; and B may differ, a
single token in one vocabulary might correspond to multiple tokens in the other, and vice versa. This
string is then appended to the output generated so far. Essentially, the interaction between the guided
model A and the guiding model is conducted through strings rather than tokens, which gives the

15

573
574
575
576
577
578

579
580

582
583
584
585
586
587
588
589
590
591
592

593

595
596
597
598
599
600
601

602
603
604
605

Alignment required Alignment required
Y ‘ Y
n_matches_align = 4

n_matches_align = 4

)

1
T
I
||
i
I
i
I

BB

T '

| n_matches_main =3 \ ! !
[y A A

Not match Not match Unused

----- »Casel: n_matches_main < n_matches_align: Accept B[:n_matches_main+1] as the output.

Case2: n_matches_main > n_matches_align: Accept B[:n_matches_align]|+Ait[n_matches_align+1] as the output. <

Figure 9: By combining with speculative decoding, GOOD can probabilistically decode multiple
tokens in a single iteration or skip the inference steps of the guided model. Depending on the relative
magnitudes of n_matches_align and n_matches_main, there are two scenarios to handle.

GOOD method sufficient flexibility. Throughout this process, we consistently perform incremental
decoding. When substitution results from the guiding model are applied at specific positions, multiple
tokens might be added to the sequence of model B simultaneously. This could lead to differences in
token sequence lengths between the guiding model and the guided model. However, our algorithm
ensures that all models receive identical string content, thereby maintaining consistency in the context
used for predicting the next token across the guiding and guided models.

The criteria for determining whether alignment is needed are diverse. For the logits (predicted
probability distribution of the next token) generated by model A and model A;¢, one approach is to
compare whether their most probable tokens match (Max Match). This method checks if the most
probable token predicted by model A matches that of model A;;. If they differ, it is inferred that
alignment is needed. Another approach could be to measure the overlap of Top P/K tokens from both
logits, or other methods might be employed. Top P refers to the tokens with the highest probabilities
whose cumulative probability sum is less than or equal to P. Top K refers to the top K tokens with
the highest individual probabilities from the output distribution. If the Top P/K tokens of model
A share less than a certain threshold proportion of tokens with model A, alignment is triggered.
To further illustrate, consider a practical example: if model A predicts tokens with logits [0.6, 0.3,
0.1] for tokens t1, t2, t3, and model A;; predicts logits [0.4, 0.5, 0.1] for the same tokens, the most
probable token differs (¢, for A, t5 for Ajt). Here, alignment would be triggered under the Max
Match criterion. By using different discrimination methods or adjusting related hyper-parameters, the
sensitivity of GOOD’s alignment can be controlled.

D How speculative decoding within GOOD is handled in different scenarios

Casel: As shown in Figure(left), n_matches_main = 3 < n_matches_align = 4 indicates that
Bj1~DB3 match A;;, ~A;,, while By does not match A;;,. The value n_matches_main = 3 means
that without any replacements, Model B would generate B~ B, (with Bs and Bg not matching).
The value n_matches_align = 4 implies that A;;, ~A;;, positions require no alignment and that
the prediction of A;;, based on A;;, ~A;;, requires alignment. Therefore, B1~ By can be accepted.
Since B, does not match A;;,, the prediction of whether alignment is needed for A;;, is invalid,
and the state of that position cannot be determine currently. Finally, By~ B, are accepted, and the
remaining predictions are discarded.

Case2: As shown in Figure (right), n_matches_main = n_matches_align = 4 indicates that
Bi1~B,4 match A;;, ~A;;,. The value n_matches_main = 4 means that without any replacements,
Model B would generate B~ Bs (with Bg not matching). The value n_matches_align = 4 implies
that A;;, ~A;;, positions require no alignment and that the prediction of A;;, based on A;;, ~A;,

16

606
607

608

609

610

611

612

613

614
615

617
618

requires alignment. Therefore, B~ B, can be accepted. Since B4 matches A;¢,, the prediction of
whether alignment is needed for A;;_ is valid. Finally, B;~Bj and A;,_ are accepted.

E Algorithm of GOOD

Algorithm 1 Guided Online Optimal Decoding (GOOD)

1: Input:
Guiding models A, A;; with tokenizers T4, T'4,,
Guided model B (black-box model) with tokenizer T’z
Initial context Cjp,py,t, max length L, draft length &
2: Initialize:
ta « Ta(Cinput) > Convert input text to token sequence using 7’4
ta,, < Ta,, (Cinput) > Convert input text to token sequence using 74,
tg < TB(Cinput) > Convert input text to token sequence using T'g
n<+ 0
while n < L do

// Phase 1: Speculative Generation with Alignment Discrimination

Generate draft tokens from A: tEZ+1:n+k] ~ pa(-[ttm)

3:
4
5
6: Input {7 gt aligned prediction from Aje: tEZILnMH] ~ pa,, (-[tHm])
7
8
9

Compute alignment flags 51"+ "+*] using discrimination function f
n_matches_align < min{i | 61"+ =1}

: // Phase 2: Cross-Model Guidance Transformation
10: Convert to string: s < T;ilt (t[fjl:"Jr”*m““hes*““g"*l])
11: Re-tokenize: t5 ™ Ty (s) > m may differ from k

12: Map alignment flags: 5%”“:"””] + §[ntLntn_matches_align+1]

13: n_matches_align + min{i | 55;“1 =1}
14: // Phase 3: Target Model Validation

15: Get target prediction: ¢/ L o (]gltn])

16: Find first mismatch: n_matches_main < min{i | t%ﬂ'z] # t[gﬂ]}
17: // Acceptance Rules

18: if n_matches_main < n_matches_align then

19: ACCCpt t[g+l:n+n7matchesfmazn+l]

20: n < n + n_matches_main + 1

21: else))

2. ACCCpt t[g#»l:n#»n_matches_alzgn] ® t[z:n_matches_alzgn#»l]

23: n < n + n_matches_align + 1

24: end if

25: end while
26: Output:
Coutput < Ty ! (t) > Convert final token sequence back to text using 75 !

F Prompt for code generation

Below is the prompt we used for code generation. To facilitate the extraction of model-generated code,
we require the code to be enclosed in code block markers and have a fixed prefix for the response.

Continue to generate code based on this prefix:

[INST] ¢¢‘python

(code)

(1

Please complete the given code. [/INST]
Sure! Here is the completed code:
¢¢¢python

17

619

621
622
623
624
625

626

627
628

629

630
631
632
633

634

635
636

638
639

G Example of code enhancement

The Figure [I0]shows a model response with code augmentation. Code block markers are used as
the start and end signs for code augmentation. The blue area in the figure represents the scope
of code augmentation, while the red area indicates the guided position. When code generation is
detected, GOOD automatically initiates code enhancement guidance and exits the guidance when the
current code generation ends, restarting only when the next code block marker is encountered. In this
example, we use CodeLlama-7b-Python to guide Llama-2-13b-chat.

>>> Assistant:

Sure! Here's the completed code:
*python

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool
""" Check if in given list of numbers, are any two numbers closer to each other than
given threshold

Args
s User: numbers (List(float]): List of floats
threshold (float): Threshold for closeness
python
from typing import List
yping fmp Returns
bool: True if there are close elements, False otherwise
defhas_close_elements(numbers: List[float], threshold: float) -> bool: Example
""" Check if in given list of numbers, are any two numbers closer to each other than ! 50 -
. has_close_elements([1.0, 2.0, 3.0], 0.5)
given threshold. False

>>>has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>>has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

- has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

for i in range(len(numbers) - 1)
for j in range(i + 1, len(numbers)):
if abs(numbers(i) - numbers(j)) < threshold:

. return True
Please complete the given code.

return False

(a) User prompt. Here's how the function works:

1. We iterate over the list of numbers twice: once from the beginning to the end, and
once from the end to the beginning.

2. In each iteration, we check if the current number is closer than the threshold to the
previous number or the next number. If it is, we return "True'.

3. If we reach the end of the list without finding any close numbers, we return 'False".

(b) Model’s response.

Figure 10: Model responses with code enhancement.

H Prompts for harmless responses evaluation

The prompt we used for harmless responses evaluation, using gpt-4-turbo (Achiam et al., |2023) as
the evaluator and request the results to be returned in JSON format.

System Prompt:

Help the user assess the harmfulness of a conversation. Answer in JSON format,
including only True or False, like this:

{’harmful’: True}

Note: DO NOT provide any other output or description besides this JSON content.

User Prompt:
¢¢¢conversation
Human: (question)

Assistant: (answer)
[

Is this answer harmful?

18

640

641
642
643

644
645
646
647
648

650
651

653
654
655
656

657
658
659
660
661

663
664

665
666
667
668
669

670
671

I Limitations of GOOD

While GOOD demonstrates promising results and offers a novel approach to decoding-time black-box
LLM alignment, we acknowledge several limitations that provide avenues for future research and
improvement:

* Sophistication of Alignment Discrimination: The current alignment discrimination mecha-
nisms presented (Max-Match and Top-P/K Overlap, as described in Section[3.2) are relatively
straightforward. While effective, more sophisticated or adaptive techniques for identifying
alignment-critical positions could potentially enhance precision and allow for finer-grained
control over the alignment process. This could involve learning the discrimination function
or incorporating more complex heuristics.

* Dependency on API Provider for Closed-Source Integration: As discussed in Ap-
pendix [B] while GOOD is conceptually compatible with API-based closed-source models
due to its string-level interaction, practical implementation hinges on API providers adapting
their services. Current mainstream LLM APIs typically do not support the kind of interactive,
real-time guidance fetching from a user-specified secondary model (the guiding pair) during
a single generation pass. Widespread adoption would thus require new API functionalities
or protocols.

* Scope of Generalization and Guiding Signal Quality: Our experiments demonstrate
GOOD’s efficacy across several model families and benchmarks. However, its performance
generalizability to vastly different model architectures or highly specialized tasks not covered
by current benchmarks, or scenarios involving extremely noisy, biased, or very low-quality
guiding signals from LLM 4 and LLM 4,, has not been exhaustively explored. The quality
and relevance of the guiding models are crucial, and performance may degrade if the guiding
pair is poorly chosen or fundamentally incapable of providing useful alignment signals for
the target task or model.

e Complexity of Multi-Guidance Scenarios: While we suggest that GOOD could be ex-
tended to use multiple guiding pairs for different functionalities (Section {.3), managing
these interactions, potential conflicts between different guidance sources, and the increased
computational load would introduce significant complexity that needs to be carefully ad-
dressed.

Addressing these limitations will be important for advancing the capabilities and practical deployment
of decoding-time alignment methods like GOOD.

19

672

673

674
675

676

677
678
679
680
681

682

683
684
685
686
687
688
689
690
691

692

693

695
696

697
698
699
700
701
702
703
704
705

706

707
708
709
710
71
712
713
714

715
716
7

718
719
720
721
722

723
724

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state that we propose a novel decoding-
time alignment method (GOOD)), list its key properties (no parameter access, cross-model
guidance, speculative speedup), and summarize empirical gains (up to 102% relative perfor-
mance, 3—-13% speedup, 52% code pass@1 improvement). These claims match the methods
and results detailed in Sections 3-5.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes. A dedicated discussion of the limitations of our work is provided in
Appendix [I}

* The current alignment discrimination mechanism within GOOD (Section 3.2) is rela-
tively simple, requiring further refinement to enhance precision and adaptability.

* While we demonstrated GOOD’s conceptual compatibility with API-based closed-
source models, practical implementation relies on API providers adapting their services
to support the required interactive communication.

* The paper demonstrates effectiveness on specific model families and benchmarks;
generalization to vastly different architectures, highly specialized tasks not covered,
or scenarios with extremely low-quality guiding signals has not been exhaustively
explored.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

20

725 * If applicable, the authors should discuss possible limitations of their approach to

726 address problems of privacy and fairness.

727 * While the authors might fear that complete honesty about limitations might be used by
728 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
729 limitations that aren’t acknowledged in the paper. The authors should use their best
730 judgment and recognize that individual actions in favor of transparency play an impor-
731 tant role in developing norms that preserve the integrity of the community. Reviewers
732 will be specifically instructed to not penalize honesty concerning limitations.

733 3. Theory assumptions and proofs

734 Question: For each theoretical result, does the paper provide the full set of assumptions and
735 a complete (and correct) proof?

736 Answer: [NA]

737 Justification: This work is empirical and algorithmic; we do not state formal theorems or
738 proofs.

739 Guidelines:

740 * The answer NA means that the paper does not include theoretical results.

741 * All the theorems, formulas, and proofs in the paper should be numbered and cross-
742 referenced.

743 * All assumptions should be clearly stated or referenced in the statement of any theorems.
744 * The proofs can either appear in the main paper or the supplemental material, but if
745 they appear in the supplemental material, the authors are encouraged to provide a short
746 proof sketch to provide intuition.

747 * Inversely, any informal proof provided in the core of the paper should be complemented
748 by formal proofs provided in appendix or supplemental material.

749 * Theorems and Lemmas that the proof relies upon should be properly referenced.

750 4. Experimental result reproducibility

751 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
752 perimental results of the paper to the extent that it affects the main claims and/or conclusions
753 of the paper (regardless of whether the code and data are provided or not)?

754 Answer: [Yes]

755 Justification: We describe datasets (MT-Bench, HH, HumanEval), model pairs, hyperparam-
756 eters, evaluation prompts (Appendices A.1-A.3), and hardware setups (Sec. 5.4). Together
757 these details suffice to reproduce the core results.

758 Guidelines:

759 * The answer NA means that the paper does not include experiments.

760 * If the paper includes experiments, a No answer to this question will not be perceived
761 well by the reviewers: Making the paper reproducible is important, regardless of
762 whether the code and data are provided or not.

763 * If the contribution is a dataset and/or model, the authors should describe the steps taken
764 to make their results reproducible or verifiable.

765 * Depending on the contribution, reproducibility can be accomplished in various ways.
766 For example, if the contribution is a novel architecture, describing the architecture fully
767 might suffice, or if the contribution is a specific model and empirical evaluation, it may
768 be necessary to either make it possible for others to replicate the model with the same
769 dataset, or provide access to the model. In general. releasing code and data is often
770 one good way to accomplish this, but reproducibility can also be provided via detailed
77 instructions for how to replicate the results, access to a hosted model (e.g., in the case
772 of a large language model), releasing of a model checkpoint, or other means that are
773 appropriate to the research performed.

774 * While NeurIPS does not require releasing code, the conference does require all submis-
775 sions to provide some reasonable avenue for reproducibility, which may depend on the
776 nature of the contribution. For example

21

77
778
779

781
782
783
784
785
786
787

789

790

791
792
793

794

795

797

798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816

817

818
819
820

821

822
823

824

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We plan to release our code upon acceptance; currently no public repository is
linked. We will include a link in the final version.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5 describes tasks, datasets, model variants, and Appendix A details
prompts and hyperparameters; Sec. 5.4 gives hardware and decoding settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

830

831
832

833

834
835
836

837

838

839
840
841

842

844

845
846

847

848
849

850
851
852

853
854
855

856
857

858

859
860
861

862

863
864

865

866

867
868

869
870

871
872
873

874

875
876

877

879

880

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper reports performance metrics from its experiments conducted on
public datasets, following common practices in the evaluation of Large Language Models on
established benchmarks, which often involve reporting point estimates for model capabilities.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 5.4 specifies GPU types (L40s 48Gx8, A100 80Gx8) and relative
speedup measurements.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work uses only public benchmarks and models; no private or sensitive
human data is involved. We comply with NeurIPS ethics guidelines.

Guidelines:

23

https://neurips.cc/public/EthicsGuidelines

881
882
883
884
885

886

887
888

889

890
891
892
893

894

895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916

917

918
919
920

921

922
923

924

925

926
927
928

930
931

933
934

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper primarily focuses on the technical contributions and empirical
evaluation of the GOOD method. While improved alignment (including harmlessness)
has positive societal implications, the paper does not include a specific "Broader Impacts"
section or a detailed discussion on potential negative societal impacts or misuse.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

¢ If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release new large models or sensitive datasets, so no special
safeguards are required.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

24

935

936
937
938

939

940
941

942

943
944

945
946

947

948
949

950
951
952
953

954
955

956
957

958

959
960

961

962
963

964

965

966
967
968

969

971
972

973

974
975
976

977

978
979

980

981

983
984
985

12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite each model paper and benchmark paper, and those assets have permis-
sive research-use licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce new datasets or external tools; our method is purely
algorithmic.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our evaluations use automated LLLM evaluators and benchmarks; no human
subjects or crowdworkers are involved.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

25

paperswithcode.com/datasets

986
987
988

989
990

992
993
994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007

1008

1009
1010
1011
1012

1013

1014
1015
1016
1017
1018

1019

1020
1021
1022
1023

15.

16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects or data collection requiring IRB is involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The core research presented in this paper is centered around Large Language
Models (LLMs). The proposed GOOD method is specifically designed for aligning LLMs.
LLMs are fundamental to the entire methodology, serving as the guiding models, the guided
models, and are the subjects of the evaluation experiments (as detailed in Section 3 "Method"
and Section 4 "Experiment").

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

26

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Tuning-based Alignment Methods
	Tuning-free Alignment Methods
	LLM Ensemble
	Speculative Decoding

	Method
	Problem Setting and Notation
	Alignment Discrimination
	Guidance Transformation
	Overall Algorithm

	Experiment
	Comprehensive Evaluation
	Harmless Generation
	Enhance Aligned Model
	Decoding Speed of GOOD

	Analysis
	Where does the performance enhancement mainly come from?
	Token changes in GOOD-guided decoding
	More accurate identification as well as stronger guidance.

	Conclusion
	Observation: Different aligned models exhibit similarities in their decisions of alignment-related tokens
	Compatibility with API-based Closed-Source Models
	Original version of GOOD without speculative execution
	How speculative decoding within GOOD is handled in different scenarios
	Algorithm of GOOD
	Prompt for code generation
	Example of code enhancement
	Prompts for harmless responses evaluation
	Limitations of GOOD

