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Abstract

Large Language Models (LLMs) have demonstrated immense potential across1

various applications. However, aligning these models with specific real-world tasks2

and human preferences typically requires resource-intensive fine-tuning processes3

such as Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human4

Feedback (RLHF). In this paper, we propose GOOD (Guided Online Optimal5

Decoding), a novel alignment method that enhances pre-trained models at decoding6

time without requiring access to their parameters or vocabularies. We observed that7

different aligned models exhibit similarities in their decisions of alignment-related8

tokens. Inspired by this, GOOD utilizes a pair of guiding models to identify critical9

positions related to alignment and adjusts the model’s output dynamically during10

the decoding phase. Notably, the interaction between the guiding models and the11

guided model occurs at the string level, enabling GOOD to be applied to align12

even black-box models with different vocabularies. Experiments show that in13

weak-to-strong alignment, GOOD can achieve performance comparable to direct14

fine-tuning in terms of comprehensive capability and harmless generation, reaching15

relative scores up to 102% and 99% without sacrificing decoding efficiency. Even16

when guiding across model families, it can achieve 98% and 103% of the target17

performance on the two tasks, respectively. Moreover, GOOD can be applied to18

enhance already aligned models (improving pass@1 by 52% in code enhancement),19

making it compatible with various existing alignment techniques.20

1 Introduction21

Table 1: Comparison of GOOD and other represen-
tative tuning-free alignment methods (Note: “●”
indicates No, “●” indicates Yes).

Method
Need
extra

training?

Need
special designed

prompt?

Need accessing
vocabulary and logits

of target model?

Need extra
test-time

computation?
URIAL ● ● ● ●
RAIN ● ● ● ●
GenARM ● ● ● ●
Proxy-tuning ● ● ● ●
Aligner ● ● ● ●
GOOD ● ● ● ●

Large Language Models (LLMs) have demon-22

strated remarkable potential across various ap-23

plications, such as programming, writing, lan-24

guage translation, etc. After pre-training on a25

huge amount of text corpus, they often require26

further alignment to adapt to specific real-world27

tasks as well as human values and preferences.28

The alignment process usually involves Instruc-29

tion Tuning (Wei et al., 2021) and Preference30

Learning (Ouyang et al., 2022), typically imple-31

mented through methods such as SFT (Wei et al., 2021) and RLHF (Ouyang et al., 2022). These32

alignment methods have significantly enhanced the capabilities of LLMs, suggesting that alignment-33

related tuning is crucial for developing AI assistants (Bubeck et al., 2023).34

However, fine-tuning-based alignment methods have three major problems. (1) They are resource-35

intensive, requiring extensive training data and substantial computational power. (2) The same36

fine-tuning process is often applied to different models, leading to redundancy. (3) They necessitate37
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direct access to the model’s parameters, which is often impractical for state-of-the-art closed-source38

models (e.g., GPT-4o (OpenAI, 2024)).39

Given these challenges, there is a growing interest in alignment methods that do not require fine-40

tuning. Zhou et al. (2024) proposed the Superficial Alignment Hypothesis, suggesting that most of41

a model’s knowledge and capabilities are acquired during pre-training, with alignment primarily42

teaching the model which sub-distribution of responses to utilize in user interactions. Building43

on this premise, recent work such as URIAL (Lin et al., 2023) has analyzed token shifts between44

pre-trained LLMs and their aligned counterparts, finding that most token distribution changes occur45

in language style-related tokens (e.g., discourse markers, safety disclaimers). RAIN (Li et al., 2023)46

attempts to use the pre-trained LLMs to evaluate their own generation and use the evaluation results to47

guide rewind and generation for AI safety. Liu et al. (2024) proposed Proxy-Tuning, which achieves48

an alignment effect similar to direct fine-tuning by computing the logits difference between the49

pre-trained model and its aligned version, then applying this vector to the output logits of another50

model in the same model series.51

Nevertheless, these tuning-free alignment methods face several limitations that restrict their appli-52

cation across diverse scenarios. (1) Specifically designed in-context prompts cannot fully reflect53

user preferences across different scenarios, hence failing to adapt flexibly to various types of task.54

(2) Methods that adjust decoding based on token logits are constrained by the model’s vocabulary,55

limiting their use to within the same model series. (3) Additionally, existing methods typically incur56

additional test-time computational costs, rendering them less economically viable. These challenges57

significantly hinder the practical utility of current non-tuning alignment methods, emphasizing the58

need for more adaptable and efficient solutions.59

To this end, we propose GOOD (Guided Online Optimal Decoding), a novel tuning-free alignment60

method. We observed that different aligned models exhibit similarities in their decisions of alignment-61

related tokens, and alignment-related changes in one model can be used to guide another model (see62

Appendix A). Based on this observation, we propose the GOOD method, which enhances the model63

by dynamically adjusting its output during the decoding phase. Specifically, GOOD uses a pair of64

guiding models to identify critical locations that need alignment during the response generation, and65

provide corresponding guidance. This identification process is accomplished through a two-step guess-66

and-verify mechanism, which probabilistically generates multiple tokens in a single step, thereby67

achieving a lossless acceleration compared to vanilla decoding. Through this dynamic adjustment,68

GOOD achieves comparable performance to direct fine-tuning and exhibits high flexibility, making it69

effective for aligning the behavior of black-box models, where the parameters and vocabulary are70

not accessible. In Appendix B, we further provide a demonstration of how GOOD is compatible71

with API-based closed-source model services, requiring only string-level communication between72

the involved components. Table 1 presents a comparison between GOOD and existing tuning-free73

alignment methods.74

Experiments show that in weak-to-strong alignment, GOOD can achieve performance comparable to75

direct fine-tuning in terms of comprehensive capability and harmless generation, reaching relative76

scores of 102% and 99%. Meanwhile, it delivers a 3%–13% speedup in decoding time compared with77

vanilla decoding, achieved through integration with speculative decoding. Even when using guiding78

models from different model families (often differing in vocabulary, training data, and architecture),79

GOOD remains effective, achieving 98% and 103% of the target performance on the two tasks,80

respectively. GOOD can also be applied to enhance already aligned models. In our experiments, the81

code enhancement from GOOD yielded a 52% relative improvement in the guided model’s pass@182

performance. Based on these results, our analysis reveals that the performance improvement brought83

by GOOD mainly stems from accurately identifying positions that need alignment, and this can be84

further enhanced by providing more accurate and stronger guidance, suggesting a potential direction85

for non-tuning alignment to replace tuning-based alignment.86

We conclude our contributions as follows:87

• To the best of our knowledge, GOOD is the first method to achieve black-box LLM align-88

ment at decoding time. Distinct from existing tuning-free approaches, GOOD eliminates89

dependencies on pre-designed contexts and vocabulary constraints while achieving faster90

decoding than vanilla sampling, combining high flexibility with practical efficiency.91

• We observe that aligned models exhibit consistent patterns in identifying alignment-critical92

tokens, and model interactions naturally occur at the string level. Building on this insight,93
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GOOD utilizes a pair of guiding models to implement efficient decoding-time alignment94

through position-aware guidance that integrates seamlessly with speculative decoding,95

achieving both alignment effectiveness and decoding efficiency.96

• We conducted extensive evaluations across several scenarios. Results show that in weak-97

to-strong alignment scenarios, GOOD achieves 102% performance of directly fine-tuned98

models. It also attains 103% relative safety score even when aligned across different99

model families. Moreover, GOOD successfully enhances already-aligned models, improv-100

ing pass@1 by 52% in code generation tasks, demonstrating compatibility with existing101

alignment techniques. These demonstrations broaden the application scope of GOOD.102

2 Related Work103

2.1 Tuning-based Alignment Methods104

Alignment related tuning is critical in adapting LLMs to better reflect human preferences (Wei et al.,105

2021; Ouyang et al., 2022; Taori et al., 2023; Wang et al., 2023; Rafailov et al., 2024; Bubeck106

et al., 2023). A common starting point is SFT (Supervised Fine-Tuning), where the model is107

fine-tuned on datasets containing desired human-instructed outcomes, providing a basic level of108

alignment. RLHF (Reinforcement Learning from Human Feedback) builds on SFT by incorporating109

a reward model that guides the policy model towards human-preferred behaviors. There are also110

several RLHF variants, such as RLAIF (RL from AI Feedback) (Lee et al., 2023), DPO (Direct111

Preference Optimization) (Rafailov et al., 2024), etc., have been proposed, each aiming to improve the112

efficiency and effectiveness of the alignment process (Wang et al., 2024). However, these tuning-based113

methods require considerable resources, including large amounts of training data and significant114

computational capabilities. Additionally, they require direct access of the model’s parameters, which115

is often unfeasible for cutting-edge models like GPT-4 (Achiam et al., 2023). In sight of this, some116

researchers have explored aligning model responses without parameter tuning.117

2.2 Tuning-free Alignment Methods118

The main rationale for using the non-tuning alignment methods is the Superficial Alignment Hy-119

pothesis introduced by LIMA Zhou et al. (2024), suggesting that most of a model’s knowledge and120

capabilities are acquired during pre-training, with alignment primarily teaching the model which121

sub-distribution of responses to utilize in user interactions. Following this hypothesis, URIAL (Lin122

et al., 2023) provides evidence that alignment tuning mainly impacts stylistic tokens, such as discourse123

markers and safety disclaimers, without significantly affecting the model’s core knowledge base.124

Building on recent advancements in non-tuning alignment research, we categorize related methods125

into the following three classes.126

Pre-decoding alignment methods. URIAL (Lin et al., 2023) leverages In-Context Learning (ICL)127

(Mann et al., 2020)—a paradigm that enables LLMs to adapt to new tasks through contextual prompts128

without parameter updates—to achieve pre-decoding alignment. By incorporating few-shot examples129

(e.g., stylistic demonstrations or inference traces) into prompts, ICL allows LLMs to better align their130

outputs with user instructions. URAL demonstrates that this approach can attain effective alignment131

using minimal resources: a system prompt and as few as three constant stylistic examples. Yet, this132

kind of methods are highly dependent on the design of the few-shot examples, which limits their133

generalizability and effectiveness in different tasks.134

In-decoding alignment methods. In-decoding alignment methods perform adjustments during the135

model’s response generation, typically achieved by modifying token logits or employing discrimi-136

nation and search mechanisms. RAIN (Li et al., 2023) uses pre-trained LLMs to assess their own137

outputs and leverage these evaluation results to guide the process of rewinding and regenerating.138

Works such as GenARM (Xu et al., 2024), Args (Khanov et al., 2024), Transfer Q-star (Chakraborty139

et al., 2024), and Cascade Reward Sampling (Li et al., 2024) explore reward-guided decoding from140

different perspectives. Alternatively, Proxy-tuning (Liu et al., 2024) and EFT (Mitchell et al., 2023)141

guide generation by injecting logit differences from aligned reference models into target predictions.142

However, current methods in this paradigm need access to the token logits in the model output and its143

vocabulary. These factors limits their applicability.144
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Acceptance Rules:
1️⃣ n_matches_main < n_matches_align: Accept B[:n_matches_main+1] as the output.
2️⃣ n_matches_main ≥ n_matches_align: Accept B[:n_matches_align]+Ait[n_matches_align+1] as the output. Guided Model

Guiding Models

Original Prediction

Original Prediction

LLM A LLM A it

Alignment Discrimination Methods

Max Match Top P Overlap Top K Overlap ...

... ...

Aligned Prediction & The First Verification

n_matches_align

Assisted Decoding Discrimination Methods

Speculative Sampling

...

A1 A2 A3 A4 A5 A6

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A6
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Ait
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Ait
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Main Prediction & The Second Verification
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Ait
7

Ait
1

B1 B2 B3 B4 B5 B6

Max Match

n_matches_main

Ait 1 ~
Ait n_matches_align

B 1 ~
B n_matches_align

Figure 1: The principle of GOOD. GOOD utilizes a pair of guiding models to identify critical
positions related to alignment. Once a specific position is discriminated as requiring alignment, we
replace the prediction with the guiding model’s output, converting it to the guided model’s token if
needed. LLMA first predicts multiple tokens, which are then verified by LLMAit (the aligned version
of LLMA). The output from LLMAit

is subsequently validated by LLMB (the guided model). The
original version of GOOD without speculative execution, as well as how speculative decoding within
GOOD is handled in different scenarios, are provided in Appendix C and Appendix D.

Post-decoding alignment methods. Aligner (Ji et al., 2024) establishes post-decoding alignment145

through a two-stage progress: generating the initial response in the first stage and refining it in the146

second stage. It trains a separated model that learns correctional residuals between initial and aligned147

outputs without the need for fine-tuning the base LLM. Nevertheless, the effectiveness of Aligner is148

limited by the initial generation step, which makes it difficult to align responses if the base model149

produces poor answers. Additionally, it still requires fine-tuning of the downstream model.150

2.3 LLM Ensemble151

LLM ensemble methods leverage multiple models, each contributing unique insights and diverse152

reasoning patterns, thereby compensating for individual model weaknesses and reducing biases. Lu153

et al. (2024) provides a more detailed introduction. Taking the GaC method (Yu et al., 2024) as an154

example, GaC treats each token generation as a classification task and averages the classification155

probability vectors across multiple LLMs during inference. This approach utilizes the token-level156

probability information from each model and integrates multiple models at the inference stage,157

improving overall performance and preventing early-generation errors from cascading into larger158

mistakes.159

2.4 Speculative Decoding160

Recent work on speculative decoding has shown that large autoregressive language models can be161

decoded significantly faster by combining a fast “draft” model with the original, more powerful162

“target” model (Leviathan et al., 2023; Xia et al., 2022; Chen et al., 2023; Miao et al., 2024). This163

approach generates several candidate tokens in parallel from smaller or more efficient models (the164

draft model), then relies on the larger (target) model to validate these tokens in a single verification165

step. GOOD integrates the concept of speculative decoding, combining alignment discrimination166

and token generation into a dual-stage speculation-verification process, achieving both non-tuning167

alignment and acceleration of target model decoding.168

3 Method169

In this section, we introduce the principles of GOOD (Guided Online Optimal Decoding), with170

an overview provided in Figure 1. The original version of GOOD without speculative execution171

is provided in Appendix C, clearly demonstrating its core principles. The goal of GOOD is to172

achieve flexible and efficient tuning-free alignment, without accessing the parameters, logits, or173

vocabulary of the target model. Appendix B provides a demonstration of how GOOD is compatible174
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with API-based closed-source model services, requiring only string-level communication between175

the involved components.176

We first formalize the problem setting and notation, then detail the two key components of GOOD:177

(1) discriminating which positions need alignment, and (2) the transformation of guidance (including178

token conversion across vocabularies and alignment flag updates). Finally, we present the overall179

process, incorporating the speculative verification mechanism.180

3.1 Problem Setting and Notation181

Let B be the guided model that we aim to align, but for which we only have black-box (string-based)182

access. We assume access to a guiding model A (the unaligned version), and its aligned variant Ait.183

We denote tokenizers as follows: TA, TAit
for the guiding pair, and TB for the guided model.184

A single decoding step at position n generates the next token tn. We write pA(t | t[1:n−1]), pAit
(t |185

t[1:n−1]), and pB(t | t[1:n−1]) for the probability (logit) distribution of the next token, conditioned on186

the partial sequence t[1:n−1].187

We wish to produce an output that is aligned to human preferences (following instructions, safety188

constraints, etc.), even though B itself is not aligned. Our approach will replace certain tokens189

(or sequences of tokens) in B’s raw decoding with corresponding tokens from Ait, guided by a190

token-level alignment discrimination through comparing pA and pAit
.191

3.2 Alignment Discrimination192

We define a function f(·) to decide whether to align at each step: δn = f
(
{pA(t | t[1:n−1])}, {pAit

(t |193

t[1:n−1])}
)
, where δn ∈ {0, 1} is an alignment flag, indicating “no alignment needed” or “alignment194

needed” at position n.195

Here we list two variants of f :196

1. Max-Match: Compare the single highest-probability token for A vs. Ait. Formally, if197

argmaxt pA(t | t[1:n−1]) ̸= argmaxt pAit
(t | t[1:n−1]), then δn = 1; otherwise 0.198

2. Top-P /K Overlap: For guiding model A, we define SA
topP as the minimal set of highest-199

probability tokens whose cumulative probability exceeds P , and SA
topK as the top-K highest-200

probability tokens. Similarly, define SAit

topP and SAit

topK for Ait. Then we decide: δn = 1 if201

|SA
topP/K ∩ SAit

topP/K | < τ ; otherwise 0, where τ is a threshold that is a nonnegative integer.202

This approach allows the alignment sensitivity to be easily adjusted by simply adjusting τ .203

3.3 Guidance Transformation204

Whenever δn = 1, we seek to replace B’s next token with the prediction from Ait. Considering Ait205

and B may have different vocabularies, we process substitutions at the string level to preserve context206

equivalence. Formally:207

Token-to-String: Let tnew[1:m]
Ait

denote the newly predicted m tokens from Ait at the current step.208

Convert these tokens into a substring: snew = T−1
Ait

(t
new[1:m]
Ait

).209

Re-tokenize: Tokenize snew into B’s vocabulary: tnew[1:n]
B = TB(s

new), where n may differ from m210

due to vocabulary mismatches.211

Alignment Flag Update: For each token t
new[i]
B in B’s sequence, identify all tokens t

new[j]
Ait

from212

Ait that contribute to its formation via string-level mapping, including direct 1-to-1 token mapping,213

substrings of tnew[j]
Ait

, or multi-token overlaps from Ait.214

Set the alignment flag for tnew[i]
B as: δnew[i]

B = 1 if ∃ j s.t. tnew[j]
Ait

contributes to t
new[i]
B and δ

new[j]
A = 1;215

otherwise 0. The updated alignment count is then: n_matches_align = min{i | δnew[i]
B = 1}.216
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3.4 Overall Algorithm217

Building upon the alignment discrimination mechanism (3.2) and guidance transformation pro-218

cess (3.3), we present the complete GOOD algorithm through pseudocode in Algorithm 1 (see219

Appendix E).220

Here, we provide a simplified description of the workflow for the GOOD algorithm:221

1. Speculative generation with alignment discrimination: Generate draft tokens using the222

unaligned model (A) and validate them with the aligned model (Ait). Identify positions223

requiring alignment (δn = 1) using a discrimination function.224

2. Cross-model guidance transformation: Transform the validated token sequence into the225

vocabulary of the guided model (B) while correspondingly converting the alignment flags226

(δ).227

3. Target model validation: Feed the transformed tokens into the guided model (B) for valida-228

tion. Obtained the final output based on acceptance rules.229

4 Experiment230

We conducted four experiments to test the capabilities of GOOD: comprehensive performance,231

harmless generation, enhancing aligned models, and the speed of decoding.232

Tasks and datasets. We use MT-Bench (Zheng et al. (2023)) to evaluate the comprehensive perfor-233

mance of GOOD, a multi-task benchmark designed to assess the ability of models across various234

domains. To evaluate the ability of the GOOD to generate harmless responses, we conducted experi-235

ments on the Helpful and Harmless (HH) dataset (Ganguli et al., 2022), designed to test how models236

perform in complex and sensitive scenarios. In the experiment to enhance the capabilities of already237

aligned models, we focused on improving code generation skills and evaluated performance on the238

HumanEval dataset (Chen et al., 2021). In the decoding speed experiments, considering the diversity239

of tasks, we also used the MT-Bench dataset as the test input.240

Models. In our experiments and analysis, considering the flexibility of GOOD in transferring241

alignment related capabilities across different models, we evaluated combinations of various state-of-242

the-art models. Specifically, we used the Llama series (Llama-2 (Touvron et al., 2023), CodeLlama243

(Roziere et al., 2023)), the Gemma series (Gemma-2 (Team et al., 2024)), and Qwen series (Qwen2244

(Yang et al., 2024)) to assess the method’s performance and generality.245

4.1 Comprehensive Evaluation246
Table 2: MT-Bench scores for different models and
methods.

Method Model MT-Bench Score

GOOD
Gemma-2-2b-it→ Gemma-2-27b 8.30

Llama-2-7b-it→ Llama-2-70b 6.91
Qwen-2-7b-it→ Qwen-2-72b 8.48

GOOD(Split) Gemma-2-9b-it + Qwen-2-7b-it→ Qwen-2-72b 8.64

Proxy-Tuning
Gemma-2-2b-it→ Gemma-2-27b 3.70

Llama-2-7b-it→ Llama-2-70b 6.41
Qwen-2-7b-it→ Qwen-2-72b 8.47

Baseline

Gemma-2-27b-it 8.97
Llama-2-70b-it 6.86
Qwen-2-72b-it 9.12

On MT-Bench, we tested the effectiveness247

of weak-to-strong guidance in the Gemma2,248

Llama2, and Qwen2 series, as well as the cross-249

family guidance provided by the Gemma2 se-250

ries to the Qwen2 series models. In the latter251

case, we used small guiding model pairs from252

the same series as the alignment discriminator253

and applied guidance from Gemma2 at positions254

identified as alignment-related. As shown in the Table 2, whether for guidance within the same255

series or across different series, GOOD-guided alignment achieved performance comparable to direct256

fine-tuning. In the case of Llama-2-7b-chat guiding Llama-2-70b, the alignment performance even257

surpassed that of direct fine-tuning. In comparison with the baseline method (Proxy-Tuning), GOOD258

outperformed in all three configurations and demonstrated more stable performance (the baseline259

method did not perform as well on the Gemma2 series).260

4.2 Harmless Generation261

The harmless generation test focuses on the safety of the model when responding to sensitive questions,262

using the same model configuration as the comprehensive evaluation. We use gpt-4o (Hurst et al.,263

2024) as the evaluator, the prompt used for evaluation is shown in Appendix H. The harmless ratios264

for various model settings are summarized in Table 3, demonstrating the improvements achieved265

through the guiding alignment process.266
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Table 3: Harmless ratios for different models and
methods, evaluated by gpt-4o.

Method Model Harmless ratio

GOOD
Gemma-2-2b-it→ Gemma-2-27b 74.7%

Llama-2-7b-it→ Llama-2-70b 74.7%
Qwen-2-7b-it→ Qwen-2-72b 70.6%

GOOD(Split) Gemma-2-9b-it + Qwen-2-7b-it→ Qwen-2-72b 74.6%

Proxy-Tuning
Gemma-2-2b-it→ Gemma-2-27b 54.3%

Llama-2-7b-it→ Llama-2-70b 77.6%
Qwen-2-7b-it→ Qwen-2-72b 68.3%

Baseline

Gemma-2-27b-it 75.6%
Llama-2-70b-it 76.6%
Qwen-2-72b-it 73.0%

Under the guidance of smaller models within267

the same series, we achieved 99% (Gemma2),268

98% (Llama2), and 97% (Qwen2) alignment269

performance relative to direct fine-tuning in the270

three model configurations. Compared to the271

baseline method (Proxy-Tuning), GOOD outper-272

formed in two configurations and demonstrated273

greater stability. Notably, by introducing exter-274

nal guidance across model families, the harm-275

lessness ratio in the GOOD(Split) configuration276

surpassed that of the directly fine-tuned guided277

model (74.6% vs 73.0%), highlighting the ad-278

vantages brought by GOOD’s flexibility.279

To further validate GOOD’s effectiveness on harmless generation, we conducted additional compar-280

isons against prominent reward-based decoding-time alignment methods, following the experimental281

setup of GenARM (Xu et al., 2024). In GenARM, the LLaMA-7B-SFT checkpoint provided by282

Khanov et al. (2024) is used as the base model, which is fine-tuned from LLaMA-7B on the preferred283

responses of the HH-RLHF. For both RM and DPO, they fine-tune LLaMA-7B-SFT with LoRA for284

one epoch on the training split of HH-RLHF. We used TinyLlama-1.1B-Chat and TinyLlama-1.1B as285

a pair of guiding models (Zhang et al., 2024). And we followed the model preparation process of286

GenARM to performed the same DPO training on TinyLlama-1.1B-Chat.287

Table 4: Comparison of GOOD with reward-based
decoding-time alignment methods on HH-RLHF
dataset.

Method vs. DPO Win (%) Tie (%) Lose (%) Win + ½ Tie (%)
ARGS 24.44 4.89 70.67 26.89
Transfer-Q 31.00 5.44 63.56 33.72
CARDS 37.89 8.11 54.00 41.94
GenARM 48.00 6.89 45.11 51.44

GOOD (ours) 41.67 5.67 52.67 44.50

Here we report the comparison results in 4. De-288

spite leveraging significantly smaller guiding289

models, GOOD achieves competitive alignment290

performance, outperforming several reward-291

based methods (ARGS, Transfer-Q, CARDS)292

and approaching the performance of GenARM.293

4.3 Enhance Aligned Model294

Table 5: Pass@1 scores on HumanEval. This table
compares the code performance gains achieved by
Llama-2-13b-chat under different methods.

Method HumanEval Pass@1
Llama-2-13b-chat 21.3

CodeLlama-7b-python 38.4
CodeLlama-7b-python + Llama-2-13b-chat (GaC) 29.9

CodeLlama-7b-python→ Llama-2-13b-chat (Proxy-Tuning) 32.1
CodeLlama-7b-python→ Llama-2-13b-chat (GOOD) 32.3

The GOOD method can not only guides pre-295

trained models in alignment behaviors but also296

enhances the performance of already aligned297

models in specific tasks.298

Our experiment is evaluated based on the Hu-299

manEval dataset. We used CodeLlama-7b-300

python and Llama-2-7b as the guiding model pair in the GOOD method to enhance the code301

performance of Llama-2-13b-chat (as the guided model), with Top_PA=0.8 and Top_PAit
=0. Consis-302

tent with Proxy-Tuning (Liu et al., 2024), we set Top_P (sampling parameter) to 0.95, temperature to303

0.1, and calculated the pass@1 score. According to the definition provided in Lu et al. (2024), we304

consider that the way GOOD enhances already aligned models can be regarded as a form of LLM305

Ensemble During Inference. Therefore, we also compared it with the recently proposed GaC method306

(Yu et al., 2024).307 Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 2 4 6 8 10

model
CodeLlama-7b-Python→Llama-2-13b-chat, Score=6.88
Llama-2-13b-chat, Score=6.65
CodeLlama-7b-Python, Score=1.37

Figure 2: Comprehensive performance with code
enhancement guidance, utilized code block mark-
ers as the start and end signals.

The detailed performance results are shown in308

Table 5, where our method achieved a score309

of 32.3 on HumanEval, which is similar to the310

Proxy-Tuning and higher than GaC’s score of311

29.9. The prompt used in our evaluation is312

shown in Appendix F. Compared to the orig-313

inal model, the guidance provided by GOOD314

resulted in a 52% improvement. The Proxy-315

Tuning results were obtained by running the316

author-provided code locally under the same317

settings.318
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We also tested the comprehensive performance of the models with code enhancement guidance on319

MT-Bench. We used the default configuration of GOOD (Max Match) and utilized code block markers320

as the start and end signals for enhanced guidance (A specific example is shown in Appendix G). As321

shown in Figure 2, experimental results indicate that models with GOOD-enhanced guidance can322

surpass both the original and guiding models in comprehensive performance, with score increasing323

from 6.65 to 6.88.324

4.4 Decoding Speed of GOOD325
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Llama-2-7b-chat  Llama-2-70b
Qwen-2-72B-Instruct
Qwen-2-7B-Instruct  Qwen-2-72B

Figure 3: Average token decoding time of GOOD
and Vanilla Decoding.

By combining with speculative decoding,326

GOOD can probabilistically generate multiple327

tokens in a single iteration or skip the inference328

steps of the guided model. Considering the di-329

versity of test samples, we used the question330

set from the MT-Bench dataset as input for de-331

coding speed test (which includes 8 types of332

tasks). As shown in Figure 3, GOOD outper-333

forms vanilla decoding in decoding speed across334

all three configurations, achieving up to a 13%335

speedup. Due to different memory requirements336

for different model configurations, the tests for337

Gemma-2-2B-Instruct → Gemma-2-27B were conducted on L40s 48G × 8, while the other two338

were tested on A100 80G× 8. The respective baselines were evaluated in the corresponding testing339

environments.340

5 Analysis341

5.1 Where does the performance enhancement mainly come from?342
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Gemma-2-2b-it, MT-Bench Score 7.60

Gemma-2-9b-it, MT-Bench Score 8.34

Gemma-2-2b-it Gemma-2-9b (use random guidance with ratio=0.3), MT-Bench Score 5.15

Top_P_ori 0.0, MT-Bench Score 7.81
Top_P_ori 0.1, MT-Bench Score 7.7
Top_P_ori 0.2, MT-Bench Score 7.67
Top_P_ori 0.3, MT-Bench Score 7.83
Top_P_ori 0.4, MT-Bench Score 7.73
Top_P_ori 0.5, MT-Bench Score 7.76
Top_P_ori 0.6, MT-Bench Score 7.75
Top_P_ori 0.7, MT-Bench Score 7.67
Top_P_ori 0.8, MT-Bench Score 7.23
Top_P_ori 0.9, MT-Bench Score 6.9

Figure 4: Performance of alignment guidance with varying guided decoding ratios.

To illustrate why the guidance provided by GOOD can help the model achieve performance gains, we343

evaluated the guided decoding ratio (controlled by adjusting Top_PA) and MT Bench performance344

under different parameter configurations, and compared them with random decoding. Based on345

URIAL’s definition of token shift, we fixed Top_PAit to 0 and adjusted the size of Top_PA. Due to346

potential differences in vocabularies between guiding models and the guided model in GOOD, we347

count the number of guided decodings and original decodings based on the character level in the final348

results. As shown in Figure 4, the scores of alignment guidance consistently range from 7.67 to 7.83349

as the proportion of guided decodings decreases from 0.30 to 0.23.350

Even with approximately a 23% reduction in guided decodings (from 0.3 to 0.23), the performance351

does not experience significant changes. Meanwhile, when random guided decoding at a 0.3 ratio352

was provided, the model’s performance was significantly lower than that of GOOD-guided decoding.353

This indicates that the GOOD method does not rely on providing a high quantity of guided decodings354

to enhance the pre-trained model’s performance; instead, accurate guidance is more critical.355
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5.2 Token changes in GOOD-guided decoding356

To understand the alignment behavior characteristics of models guided by GOOD, we compared the357

token changes between models aligned using the GOOD method and those aligned directly through358

fine-tuning, with statistics derived from their responses on the MT-Bench dataset.359

10 14
26

20

20 16

44

Llama-3-8B-Instruct  Qwen2-7B
Llama-3-8B-Instruct

Qwen2-7B-Instruct

(a)

33 32
8

29

11 12

48

Qwen2-7B-Instruct  Llama-3-8B
Llama-3-8B-Instruct

Qwen2-7B-Instruct

(b)
Figure 5: Comparison of token changes in guided
decoding alignments.

We counted the top 100 most frequently chang-360

ing tokens in each setting. Results show that in361

the guidance of Llama-3-8B-Instruct to Qwen2-362

7B, the token changes overlap 70% with Llama-363

3-8B-Instruct and 64% with Qwen2-7B-Instruct.364

In the guidance of Qwen2-7B-Instruct to Llama-365

3-8B, the token changes overlap 59% with366

Qwen2-7B-Instruct and 56% with Llama-3-8B-367

Instruct. This indicates that the alignment behav-368

ior of the guided model more closely resembles369

that of the guiding model, with less similarity to370

its directly fine-tuned version.371

5.3 More accurate identification as well as stronger guidance.372

Configuration1 Configuration2 Configuration3
Difference model configurations
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1: Gemma-2-9b-it  Qwen2-72B
2: Qwen2-7B-Instruct  Qwen2-72B
3: Gemma-2-9b-it + Qwen2-7B-Instruct  Qwen2-72B

Figure 6: Alignment performance
when using more accurate identifi-
cation as well as stronger guidance.

In this analysis, we further demonstrate that providing more373

accurate guidance and stronger guidance can both enhance374

alignment performance, and these two benefits can coexist to375

jointly improve model performance.376

We measured the performance of guiding Qwen2-72B with377

Gemma-2-9b-it (using both discrimination and guidance from378

Gemma-2-9b-it) and compared it with the data from Exper-379

iment 4.1. Since Qwen2-7B-Instruct and Qwen2-72B be-380

long to the same model family and are trained on the same381

dataset, Qwen2-7B-Instruct offers more accurate recognition382

than Gemma-2-9b-it. Meanwhile, Gemma-2-9b-it has a higher383

score on MT-Bench, indicating it can provide stronger guidance384

at the same decoding positions. As shown in Figure 6, the385

results demonstrate that the configuration combining Qwen2-386

7B-Instruct’s discrimination with Gemma-2-9b-it’s guidance387

outperforms using Qwen2-7B-Instruct or Gemma-2-9b-it as guidance individually.388

This suggests that, based on the current method, we can continue to enhance GOOD’s performance389

by further improving alignment recognition approach and strengthening alignment guidance.390

6 Conclusion391

In this paper, we propose GOOD, a novel alignment method that enhances pre-trained models at392

decoding time without requiring access to their parameters or vocabularies. GOOD identifies positions393

need alignment in real time during the guided model’s response generation, and introduces the output394

of the guiding model at that position as a substitute for the decoding results of the guided model.395

By proposing the GOOD method, we addressed the limitations of existing tuning-free alignment396

methods, including reliance on pre-designed contexts, constraints from model vocabularies, while397

achieving acceleration compared to vanilla decoding through a two-step guess-and-verify mechanism.398

Experiments show that in weak-to-strong alignment, GOOD can achieve performance comparable399

to direct fine-tuning in terms of comprehensive capability and harmless generation. Even when400

using guiding models from different model families (often differing in vocabulary, training data, and401

architecture), GOOD remains effective. GOOD can also be applied to enhance already aligned models.402

Our analysis indicates that the performance improvement primarily come from accurately identifying403

alignment related positions, and this can be further enhanced by providing more accurate and stronger404

guidance, suggesting a potential direction for non-tuning alignment to replace tuning-based alignment.405
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A discussion of the current limitations of GOOD and potential areas for future work is provided in406

Appendix I.407
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A Observation: Different aligned models exhibit similarities in their decisions503

of alignment-related tokens504

Here we examine the alignment-related token decisions in three models from the Gemma2 series (2b,505

9b, and 27b). For each model, the most frequently changed tokens are as follows:506

Gemma2-2b-it:507

[’and’, ’the’, ’a’, ’,’, ’The’, ’.’, ’\n\n’, ’\n’, ’**’, ’\n<end_of_turn>’, ’‘’,508

’for’, ’*’, ’:’, ’is’, ’in’, ’This’, ’(’, ’to’, ’with’, ’of’, "’", ’A’, ’"’, ’that’,509

’an’, ’We’, ’it’, ’me’, ’how’, "Here’", ’<end_of_turn>’, ’are’, ’like’, ’I’, ’It’,510

’this’, ’-’, ’:**’, ’\n\n\nLet’, ’potential’, ’or’, ’\n\n*’, ’from’, ’on’, ’can’,511

’specific’, ’!’, ’more’, ’you’, ...]512

Gemma2-9b-it:513

[’a’, ’and’, ’,’, ’\n\n’, ’the’, ’**’, ’The’, ’<end_of_turn>’, ’.’, ’\n’, ’to’,514

’*’, ’(’, ’‘’, "’", ’:’, ’-’, ’in’, ’This’, ’\n\n*’, ’for’, ’A’, ’are’, ’of’, ’on’,515

’with’, ’that’, ’is’, ’you’, ’Here’, ’it’, "Here’", ’"’, ’like’, ’It’, ’\n\n**’,516

’##’, ’I’, ’by’, ’\n\n\n<end_of_turn>’, ’:**’, ’how’, ’1’, ’from’, ’potential’, ’We’,517

’its’, ’me’, ’if’, ’both’, ...]518

Gemma2-27b-it:519

[’a’, ’and’, ’,’, ’\n\n’, ’the’, ’**’, ’The’, ’<end_of_turn>’, ’.’, ’\n’, ’to’,520

’*’, ’(’, ’‘’, "’", ’:’, ’-’, ’in’, ’This’, ’\n\n*’, ’for’, ’A’, ’are’, ’of’, ’on’,521

’with’, ’that’, ’is’, ’you’, ’Here’, ’it’, "Here’", ’"’, ’like’, ’It’, ’\n\n**’, ’##’,522

’I’, ’by’, ’\n\n\n<end_of_turn>’, ’:**’, ’how’, ’1’, ’from’, ’potential’, ’We’, ’its’,523

’me’, ’if’, ’both’, ...]524

When examining the top 100 most frequent alignment-related tokens, we observed over 70% overlap525

between the three models. And this overlap increased to over 80% when considering only the top526

50 tokens. This observation suggests that there is a considerable similarity in the alignment-related527

token decisions across different models (especially for those high-frequency tokens). Inspired by this,528

we explored leveraging alignment decisions from already aligned models to guide pretrained models,529

and ultimately proposed the GOOD method.530

B Compatibility with API-based Closed-Source Models531

GOOD can indeed work with closed-source model services provided through APIs. However, this532

requires some adjustments to the existing API service format. Here, we provide the following533

explanation and introduce a demonstration we implemented to provide GOOD compatible LLM534

services in an API format.535

Limitations of Current API Formats for GOOD Integration. Current closed-source model536

providers typically offer LLM services in the form of APIs, which usually return completed text537

responses at once or continuously send text fragments in a streaming output format. During a single538

response generation, adjustments requests from user are not allowed, which makes them not directly539

compatible with GOOD’s requirements (in GOOD, the guided model needs to continuously receive540

text information from the guiding model pair to achieve real-time alignment adjustments).541

Feasibility and Confidentiality Considerations. However, GOOD can be applied to powerful542

closed-source models with simple adjustments to the existing API service format. Closed-source543

model providers hope to avoid leaking the model’s confidential information during providing LLM544

responses, which is mainly the model’s parameters and vocabulary. During the GOOD process, the545

guiding models does not need accessing parameters and vocabulary, so its working principle has no546

fundamentally conflict to the need of protecting model confidentiality.547

Demonstration of a GOOD-Compatible API Service. Here we provide a demonstration to illustrate548

the format of the API service required by GOOD, which can be achieved by adjusting the existing549

API service format. It is worth noting that we have implemented a demo of this service locally and550
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User Client

1️⃣ Call Local Model Server /init
2️⃣ Call Cloud Model Server /init
3️⃣ Call Cloud Model Server /get_response

(a) User Client: Initiates requests and receives the final aligned output.
Local Model Server

Suppose n_matches_align_A=4

Finial Token Prediction (Matched) = All Token Prediction[:n_matches_align_A]
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Text Prediction

1. /init (POST): Init a local model instance.
2. /predict (POST): Runs inference using initialized model.
- Input: current_text, num_speculative
- Output: predicted_text_matched, predicted_text

(b) Local Model Server: Hosts the guiding model pair (LLMA, LLMAit ) and provides
alignment guidance as text fragments.

Cloud Model Server
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Token Prediction
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1. /init (POST): Init a cloud model instance.   
2. /get_response (POST): Runs inference using the initialized cloud model.   
   - Input: input_text, local_service_url
   - Output: completion_text
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Completion Text
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(c) Cloud Model Server: Hosts the black-box guided LLM (LLMB) and queries the Local
Model Server for guidance.

Figure 7: Conceptual components of the demonstrated GOOD-compatible API service. String-level
communication occurs between the Local Model Server and the Cloud Model Server to facilitate
real-time alignment.
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Human: How can I get away with doing vandalism on a bus?
Assistant: I cannot and will not help you with that. Vandalism is illegal. It's harmful to property and can cause fear in others.
It's important to understand that: 1. **Vandalism is a crime:**  You can face serious consequences if caught, including fines and
jail time. 2. **It's disrespectful:**  Vandalism damages ...

harmful

Figure 8: The original version of GOOD without speculative execution.

have actually run it. In this demonstration, communication between modules is limited to textual551

data, with all services accessed through predefined ports and URLs, thereby achieving full resource552

isolation. In figure 7, we provide an architecture diagram illustrating the modules involved in this553

service—including the User Client, a Local Model Server (for the guiding models), and the Cloud554

Model Server (for the guided black-box model)—and the data flow within each module.555

Key Differences from Standard API Interactions. Compared to existing standard APIs, our556

GOOD-compatible API adds only two differences: the user client must provide the Local Model557

Server’s URL, and the Cloud Model Server will continuously query it during operation to fetch558

predicted text fragments for response alignment.559

C Original version of GOOD without speculative execution560

As illustrated in Figure 8, GOOD works by accurately identifying the positions that require alignment.561

To achieve this, GOOD introduces a pair of guiding models, referred to as model A and model Ait562

(the aligned version of model A). While the guided model decodes, the guiding models also predict563

the next token. By comparing the logits (predicted token probability distributions) generated by564

model A and model Ait, it can be inferred whether model A needs to be aligned at this location.565

Based on our assumption, we also consider that model B (the guided model) is likely in the same566

state at that position.567

If alignment is deemed necessary, the output from model Ait is converted into a string and then568

decoded into model B’s token sequence. Since the vocabularies of model Ait and B may differ, a569

single token in one vocabulary might correspond to multiple tokens in the other, and vice versa. This570

string is then appended to the output generated so far. Essentially, the interaction between the guided571

model A and the guiding model is conducted through strings rather than tokens, which gives the572
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n_matches_align = 4
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Ait
7

Ait
1

B1 B2 B3 B4 B5 B6

Unused

Not match

Case1: n_matches_main < n_matches_align: Accept B[:n_matches_main+1] as the output.

n_matches_align = 4

LLM B

Unused

Alignment required

...

n_matches_main = 4

Ait
2

Ait
3

Ait
4

Ait
5

Ait
6

Ait
7

Ait
1

B1 B2 B3 B4 B5 B6

Not match Unused

Case2: n_matches_main ≥ n_matches_align: Accept B[:n_matches_align]+Ait[n_matches_align+1] as the output.

Figure 9: By combining with speculative decoding, GOOD can probabilistically decode multiple
tokens in a single iteration or skip the inference steps of the guided model. Depending on the relative
magnitudes of n_matches_align and n_matches_main, there are two scenarios to handle.

GOOD method sufficient flexibility. Throughout this process, we consistently perform incremental573

decoding. When substitution results from the guiding model are applied at specific positions, multiple574

tokens might be added to the sequence of model B simultaneously. This could lead to differences in575

token sequence lengths between the guiding model and the guided model. However, our algorithm576

ensures that all models receive identical string content, thereby maintaining consistency in the context577

used for predicting the next token across the guiding and guided models.578

The criteria for determining whether alignment is needed are diverse. For the logits (predicted579

probability distribution of the next token) generated by model A and model Ait, one approach is to580

compare whether their most probable tokens match (Max Match). This method checks if the most581

probable token predicted by model A matches that of model Ait. If they differ, it is inferred that582

alignment is needed. Another approach could be to measure the overlap of Top P/K tokens from both583

logits, or other methods might be employed. Top P refers to the tokens with the highest probabilities584

whose cumulative probability sum is less than or equal to P. Top K refers to the top K tokens with585

the highest individual probabilities from the output distribution. If the Top P/K tokens of model586

A share less than a certain threshold proportion of tokens with model Ait, alignment is triggered.587

To further illustrate, consider a practical example: if model A predicts tokens with logits [0.6, 0.3,588

0.1] for tokens t1, t2, t3, and model Ait predicts logits [0.4, 0.5, 0.1] for the same tokens, the most589

probable token differs (t1 for A, t2 for Ait). Here, alignment would be triggered under the Max590

Match criterion. By using different discrimination methods or adjusting related hyper-parameters, the591

sensitivity of GOOD’s alignment can be controlled.592

D How speculative decoding within GOOD is handled in different scenarios593

Case1: As shown in Figure 9 (left), n_matches_main = 3 < n_matches_align = 4 indicates that594

B1∼B3 match Ait1∼Ait3 , while B4 does not match Ait4 . The value n_matches_main = 3 means595

that without any replacements, Model B would generate B1∼B4 (with B5 and B6 not matching).596

The value n_matches_align = 4 implies that Ait1∼Ait4 positions require no alignment and that597

the prediction of Ait5 based on Ait1∼Ait4 requires alignment. Therefore, B1∼B4 can be accepted.598

Since B4 does not match Ait4 , the prediction of whether alignment is needed for Ait5 is invalid,599

and the state of that position cannot be determine currently. Finally, B1∼B4 are accepted, and the600

remaining predictions are discarded.601

Case2: As shown in Figure 9 (right), n_matches_main = n_matches_align = 4 indicates that602

B1∼B4 match Ait1∼Ait4 . The value n_matches_main = 4 means that without any replacements,603

Model B would generate B1∼B5 (with B6 not matching). The value n_matches_align = 4 implies604

that Ait1∼Ait4 positions require no alignment and that the prediction of Ait5 based on Ait1∼Ait4605
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requires alignment. Therefore, B1∼B4 can be accepted. Since B4 matches Ait4 , the prediction of606

whether alignment is needed for Ait5 is valid. Finally, B1∼B5 and Ait5 are accepted.607

E Algorithm of GOOD608

Algorithm 1 Guided Online Optimal Decoding (GOOD)

1: Input:
Guiding models A, Ait with tokenizers TA, TAit

Guided model B (black-box model) with tokenizer TB

Initial context Cinput, max length L, draft length k
2: Initialize:

tA ← TA(Cinput) ▷ Convert input text to token sequence using TA

tAit
← TAit

(Cinput) ▷ Convert input text to token sequence using TAit

tB ← TB(Cinput) ▷ Convert input text to token sequence using TB

n← 0
3: while n < L do
4: // Phase 1: Speculative Generation with Alignment Discrimination
5: Generate draft tokens from A: t[n+1:n+k]

A ∼ pA(·|t[1:n])
6: Input t[n+1:n+k]

A , get aligned prediction from Ait: t[n+1:n+k+1]
Ait

∼ pAit
(·|t[1:n])

7: Compute alignment flags δ[n+1:n+k] using discrimination function f
8: n_matches_align← min{i | δ[n+i] = 1}
9: // Phase 2: Cross-Model Guidance Transformation

10: Convert to string: s← T−1
Ait

(t
[n+1:n+n_matches_align+1]
Ait

)

11: Re-tokenize: t[n+1:n+m]
B ← TB(s) ▷ m may differ from k

12: Map alignment flags: δ[n+1:n+m]
B ← δ[n+1:n+n_matches_align+1]

13: n_matches_align← min{i | δ[n+i]
B = 1}

14: // Phase 3: Target Model Validation
15: Get target prediction: t[n+1:n+m+1]

B ∼ pB(·|t[1:n])
16: Find first mismatch: n_matches_main← min{i | t[n+i]

B ̸= t
[n+i]
B }

17: // Acceptance Rules
18: if n_matches_main < n_matches_align then
19: Accept t[n+1:n+n_matches_main+1]

B
20: n← n+ n_matches_main+ 1
21: else
22: Accept t[n+1:n+n_matches_align]

B ⊕ t
[n+n_matches_align+1]
Ait

23: n← n+ n_matches_align+ 1
24: end if
25: end while
26: Output:

Coutput ← T−1
B (tB) ▷ Convert final token sequence back to text using T−1

B

F Prompt for code generation609

Below is the prompt we used for code generation. To facilitate the extraction of model-generated code,610

we require the code to be enclosed in code block markers and have a fixed prefix for the response.611

Continue to generate code based on this prefix:612

[INST] ‘‘‘python613

(code)614

‘‘‘615

Please complete the given code. [/INST]616

Sure! Here is the completed code:617

‘‘‘python618
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G Example of code enhancement619

The Figure 10 shows a model response with code augmentation. Code block markers are used as620

the start and end signs for code augmentation. The blue area in the figure represents the scope621

of code augmentation, while the red area indicates the guided position. When code generation is622

detected, GOOD automatically initiates code enhancement guidance and exits the guidance when the623

current code generation ends, restarting only when the next code block marker is encountered. In this624

example, we use CodeLlama-7b-Python to guide Llama-2-13b-chat.625

>>> User:
```python
from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
    """ Check if in given list of numbers, are any two numbers closer to each other than
    given threshold.
    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
    False
    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
    True
    """

```

Please complete the given code.

(a) User prompt.

>>> Assistant:
Sure! Here's the completed code:
```python
from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
    """ Check if in given list of numbers, are any two numbers closer to each other than
    given threshold.

    Args:
        numbers (List[float]): List of floats
        threshold (float): Threshold for closeness

    Returns:
        bool: True if there are close elements, False otherwise

    Example:
        >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
        False
        >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
        True
    """

    for i in range(len(numbers) - 1):
        for j in range(i + 1, len(numbers)):
            if abs(numbers(i) - numbers(j)) < threshold:
                return True
    return False
```
Here's how the function works:

1. We iterate over the list of numbers twice: once from the beginning to the end, and
once from the end to the beginning.
2. In each iteration, we check if the current number is closer than the threshold to the
previous number or the next number. If it is, we return `True`.
3. If we reach the end of the list without finding any close numbers, we return `False`.

(b) Model’s response.

Figure 10: Model responses with code enhancement.

H Prompts for harmless responses evaluation626

The prompt we used for harmless responses evaluation, using gpt-4-turbo (Achiam et al., 2023) as627

the evaluator and request the results to be returned in JSON format.628

System Prompt:629

Help the user assess the harmfulness of a conversation. Answer in JSON format,630

including only True or False, like this:631

{’harmful’: True}632

Note: DO NOT provide any other output or description besides this JSON content.633

User Prompt:634

‘‘‘conversation635

Human: (question)636

Assistant: (answer)637

‘‘‘638

Is this answer harmful?639
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I Limitations of GOOD640

While GOOD demonstrates promising results and offers a novel approach to decoding-time black-box641

LLM alignment, we acknowledge several limitations that provide avenues for future research and642

improvement:643

• Sophistication of Alignment Discrimination: The current alignment discrimination mecha-644

nisms presented (Max-Match and Top-P/K Overlap, as described in Section 3.2) are relatively645

straightforward. While effective, more sophisticated or adaptive techniques for identifying646

alignment-critical positions could potentially enhance precision and allow for finer-grained647

control over the alignment process. This could involve learning the discrimination function648

or incorporating more complex heuristics.649

• Dependency on API Provider for Closed-Source Integration: As discussed in Ap-650

pendix B, while GOOD is conceptually compatible with API-based closed-source models651

due to its string-level interaction, practical implementation hinges on API providers adapting652

their services. Current mainstream LLM APIs typically do not support the kind of interactive,653

real-time guidance fetching from a user-specified secondary model (the guiding pair) during654

a single generation pass. Widespread adoption would thus require new API functionalities655

or protocols.656

• Scope of Generalization and Guiding Signal Quality: Our experiments demonstrate657

GOOD’s efficacy across several model families and benchmarks. However, its performance658

generalizability to vastly different model architectures or highly specialized tasks not covered659

by current benchmarks, or scenarios involving extremely noisy, biased, or very low-quality660

guiding signals from LLMA and LLMAit has not been exhaustively explored. The quality661

and relevance of the guiding models are crucial, and performance may degrade if the guiding662

pair is poorly chosen or fundamentally incapable of providing useful alignment signals for663

the target task or model.664

• Complexity of Multi-Guidance Scenarios: While we suggest that GOOD could be ex-665

tended to use multiple guiding pairs for different functionalities (Section 4.3), managing666

these interactions, potential conflicts between different guidance sources, and the increased667

computational load would introduce significant complexity that needs to be carefully ad-668

dressed.669

Addressing these limitations will be important for advancing the capabilities and practical deployment670

of decoding-time alignment methods like GOOD.671
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NeurIPS Paper Checklist672

1. Claims673

Question: Do the main claims made in the abstract and introduction accurately reflect the674

paper’s contributions and scope?675

Answer: [Yes]676

Justification: The abstract and introduction clearly state that we propose a novel decoding-677

time alignment method (GOOD), list its key properties (no parameter access, cross-model678

guidance, speculative speedup), and summarize empirical gains (up to 102% relative perfor-679

mance, 3–13% speedup, 52% code pass@1 improvement). These claims match the methods680

and results detailed in Sections 3–5.681

Guidelines:682

• The answer NA means that the abstract and introduction do not include the claims683

made in the paper.684

• The abstract and/or introduction should clearly state the claims made, including the685

contributions made in the paper and important assumptions and limitations. A No or686

NA answer to this question will not be perceived well by the reviewers.687

• The claims made should match theoretical and experimental results, and reflect how688

much the results can be expected to generalize to other settings.689

• It is fine to include aspirational goals as motivation as long as it is clear that these goals690

are not attained by the paper.691

2. Limitations692

Question: Does the paper discuss the limitations of the work performed by the authors?693

Answer: [Yes]694

Justification: Yes. A dedicated discussion of the limitations of our work is provided in695

Appendix I.696

• The current alignment discrimination mechanism within GOOD (Section 3.2) is rela-697

tively simple, requiring further refinement to enhance precision and adaptability.698

• While we demonstrated GOOD’s conceptual compatibility with API-based closed-699

source models, practical implementation relies on API providers adapting their services700

to support the required interactive communication.701

• The paper demonstrates effectiveness on specific model families and benchmarks;702

generalization to vastly different architectures, highly specialized tasks not covered,703

or scenarios with extremely low-quality guiding signals has not been exhaustively704

explored.705

Guidelines:706

• The answer NA means that the paper has no limitation while the answer No means that707

the paper has limitations, but those are not discussed in the paper.708

• The authors are encouraged to create a separate "Limitations" section in their paper.709

• The paper should point out any strong assumptions and how robust the results are to710

violations of these assumptions (e.g., independence assumptions, noiseless settings,711

model well-specification, asymptotic approximations only holding locally). The authors712

should reflect on how these assumptions might be violated in practice and what the713

implications would be.714

• The authors should reflect on the scope of the claims made, e.g., if the approach was715

only tested on a few datasets or with a few runs. In general, empirical results often716

depend on implicit assumptions, which should be articulated.717

• The authors should reflect on the factors that influence the performance of the approach.718

For example, a facial recognition algorithm may perform poorly when image resolution719

is low or images are taken in low lighting. Or a speech-to-text system might not be720

used reliably to provide closed captions for online lectures because it fails to handle721

technical jargon.722

• The authors should discuss the computational efficiency of the proposed algorithms723

and how they scale with dataset size.724
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• If applicable, the authors should discuss possible limitations of their approach to725

address problems of privacy and fairness.726

• While the authors might fear that complete honesty about limitations might be used by727

reviewers as grounds for rejection, a worse outcome might be that reviewers discover728

limitations that aren’t acknowledged in the paper. The authors should use their best729

judgment and recognize that individual actions in favor of transparency play an impor-730

tant role in developing norms that preserve the integrity of the community. Reviewers731

will be specifically instructed to not penalize honesty concerning limitations.732

3. Theory assumptions and proofs733

Question: For each theoretical result, does the paper provide the full set of assumptions and734

a complete (and correct) proof?735

Answer: [NA]736

Justification: This work is empirical and algorithmic; we do not state formal theorems or737

proofs.738

Guidelines:739

• The answer NA means that the paper does not include theoretical results.740

• All the theorems, formulas, and proofs in the paper should be numbered and cross-741

referenced.742

• All assumptions should be clearly stated or referenced in the statement of any theorems.743

• The proofs can either appear in the main paper or the supplemental material, but if744

they appear in the supplemental material, the authors are encouraged to provide a short745

proof sketch to provide intuition.746

• Inversely, any informal proof provided in the core of the paper should be complemented747

by formal proofs provided in appendix or supplemental material.748

• Theorems and Lemmas that the proof relies upon should be properly referenced.749

4. Experimental result reproducibility750

Question: Does the paper fully disclose all the information needed to reproduce the main ex-751

perimental results of the paper to the extent that it affects the main claims and/or conclusions752

of the paper (regardless of whether the code and data are provided or not)?753

Answer: [Yes]754

Justification: We describe datasets (MT-Bench, HH, HumanEval), model pairs, hyperparam-755

eters, evaluation prompts (Appendices A.1–A.3), and hardware setups (Sec. 5.4). Together756

these details suffice to reproduce the core results.757

Guidelines:758

• The answer NA means that the paper does not include experiments.759

• If the paper includes experiments, a No answer to this question will not be perceived760

well by the reviewers: Making the paper reproducible is important, regardless of761

whether the code and data are provided or not.762

• If the contribution is a dataset and/or model, the authors should describe the steps taken763

to make their results reproducible or verifiable.764

• Depending on the contribution, reproducibility can be accomplished in various ways.765

For example, if the contribution is a novel architecture, describing the architecture fully766

might suffice, or if the contribution is a specific model and empirical evaluation, it may767

be necessary to either make it possible for others to replicate the model with the same768

dataset, or provide access to the model. In general. releasing code and data is often769

one good way to accomplish this, but reproducibility can also be provided via detailed770

instructions for how to replicate the results, access to a hosted model (e.g., in the case771

of a large language model), releasing of a model checkpoint, or other means that are772

appropriate to the research performed.773

• While NeurIPS does not require releasing code, the conference does require all submis-774

sions to provide some reasonable avenue for reproducibility, which may depend on the775

nature of the contribution. For example776
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how777

to reproduce that algorithm.778

(b) If the contribution is primarily a new model architecture, the paper should describe779

the architecture clearly and fully.780

(c) If the contribution is a new model (e.g., a large language model), then there should781

either be a way to access this model for reproducing the results or a way to reproduce782

the model (e.g., with an open-source dataset or instructions for how to construct783

the dataset).784

(d) We recognize that reproducibility may be tricky in some cases, in which case785

authors are welcome to describe the particular way they provide for reproducibility.786

In the case of closed-source models, it may be that access to the model is limited in787

some way (e.g., to registered users), but it should be possible for other researchers788

to have some path to reproducing or verifying the results.789

5. Open access to data and code790

Question: Does the paper provide open access to the data and code, with sufficient instruc-791

tions to faithfully reproduce the main experimental results, as described in supplemental792

material?793

Answer: [No]794

Justification: We plan to release our code upon acceptance; currently no public repository is795

linked. We will include a link in the final version.796

Guidelines:797

• The answer NA means that paper does not include experiments requiring code.798

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/799

public/guides/CodeSubmissionPolicy) for more details.800

• While we encourage the release of code and data, we understand that this might not be801

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not802

including code, unless this is central to the contribution (e.g., for a new open-source803

benchmark).804

• The instructions should contain the exact command and environment needed to run to805

reproduce the results. See the NeurIPS code and data submission guidelines (https:806

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.807

• The authors should provide instructions on data access and preparation, including how808

to access the raw data, preprocessed data, intermediate data, and generated data, etc.809

• The authors should provide scripts to reproduce all experimental results for the new810

proposed method and baselines. If only a subset of experiments are reproducible, they811

should state which ones are omitted from the script and why.812

• At submission time, to preserve anonymity, the authors should release anonymized813

versions (if applicable).814

• Providing as much information as possible in supplemental material (appended to the815

paper) is recommended, but including URLs to data and code is permitted.816

6. Experimental setting/details817

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-818

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the819

results?820

Answer: [Yes]821

Justification: Section 5 describes tasks, datasets, model variants, and Appendix A details822

prompts and hyperparameters; Sec. 5.4 gives hardware and decoding settings.823

Guidelines:824

• The answer NA means that the paper does not include experiments.825

• The experimental setting should be presented in the core of the paper to a level of detail826

that is necessary to appreciate the results and make sense of them.827

• The full details can be provided either with the code, in appendix, or as supplemental828

material.829
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7. Experiment statistical significance830

Question: Does the paper report error bars suitably and correctly defined or other appropriate831

information about the statistical significance of the experiments?832

Answer: [No]833

Justification: The paper reports performance metrics from its experiments conducted on834

public datasets, following common practices in the evaluation of Large Language Models on835

established benchmarks, which often involve reporting point estimates for model capabilities.836

Guidelines:837

• The answer NA means that the paper does not include experiments.838

• The authors should answer "Yes" if the results are accompanied by error bars, confi-839

dence intervals, or statistical significance tests, at least for the experiments that support840

the main claims of the paper.841

• The factors of variability that the error bars are capturing should be clearly stated (for842

example, train/test split, initialization, random drawing of some parameter, or overall843

run with given experimental conditions).844

• The method for calculating the error bars should be explained (closed form formula,845

call to a library function, bootstrap, etc.)846

• The assumptions made should be given (e.g., Normally distributed errors).847

• It should be clear whether the error bar is the standard deviation or the standard error848

of the mean.849

• It is OK to report 1-sigma error bars, but one should state it. The authors should850

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis851

of Normality of errors is not verified.852

• For asymmetric distributions, the authors should be careful not to show in tables or853

figures symmetric error bars that would yield results that are out of range (e.g. negative854

error rates).855

• If error bars are reported in tables or plots, The authors should explain in the text how856

they were calculated and reference the corresponding figures or tables in the text.857

8. Experiments compute resources858

Question: For each experiment, does the paper provide sufficient information on the com-859

puter resources (type of compute workers, memory, time of execution) needed to reproduce860

the experiments?861

Answer: [Yes]862

Justification: Section 5.4 specifies GPU types (L40s 48G×8, A100 80G×8) and relative863

speedup measurements.864

Guidelines:865

• The answer NA means that the paper does not include experiments.866

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,867

or cloud provider, including relevant memory and storage.868

• The paper should provide the amount of compute required for each of the individual869

experimental runs as well as estimate the total compute.870

• The paper should disclose whether the full research project required more compute871

than the experiments reported in the paper (e.g., preliminary or failed experiments that872

didn’t make it into the paper).873

9. Code of ethics874

Question: Does the research conducted in the paper conform, in every respect, with the875

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?876

Answer: [Yes]877

Justification: Our work uses only public benchmarks and models; no private or sensitive878

human data is involved. We comply with NeurIPS ethics guidelines.879

Guidelines:880

23

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.881

• If the authors answer No, they should explain the special circumstances that require a882

deviation from the Code of Ethics.883

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-884

eration due to laws or regulations in their jurisdiction).885

10. Broader impacts886

Question: Does the paper discuss both potential positive societal impacts and negative887

societal impacts of the work performed?888

Answer: [No]889

Justification: The paper primarily focuses on the technical contributions and empirical890

evaluation of the GOOD method. While improved alignment (including harmlessness)891

has positive societal implications, the paper does not include a specific "Broader Impacts"892

section or a detailed discussion on potential negative societal impacts or misuse.893

Guidelines:894

• The answer NA means that there is no societal impact of the work performed.895

• If the authors answer NA or No, they should explain why their work has no societal896

impact or why the paper does not address societal impact.897

• Examples of negative societal impacts include potential malicious or unintended uses898

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations899

(e.g., deployment of technologies that could make decisions that unfairly impact specific900

groups), privacy considerations, and security considerations.901

• The conference expects that many papers will be foundational research and not tied902

to particular applications, let alone deployments. However, if there is a direct path to903

any negative applications, the authors should point it out. For example, it is legitimate904

to point out that an improvement in the quality of generative models could be used to905

generate deepfakes for disinformation. On the other hand, it is not needed to point out906

that a generic algorithm for optimizing neural networks could enable people to train907

models that generate Deepfakes faster.908

• The authors should consider possible harms that could arise when the technology is909

being used as intended and functioning correctly, harms that could arise when the910

technology is being used as intended but gives incorrect results, and harms following911

from (intentional or unintentional) misuse of the technology.912

• If there are negative societal impacts, the authors could also discuss possible mitigation913

strategies (e.g., gated release of models, providing defenses in addition to attacks,914

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from915

feedback over time, improving the efficiency and accessibility of ML).916

11. Safeguards917

Question: Does the paper describe safeguards that have been put in place for responsible918

release of data or models that have a high risk for misuse (e.g., pretrained language models,919

image generators, or scraped datasets)?920

Answer: [NA]921

Justification: We do not release new large models or sensitive datasets, so no special922

safeguards are required.923

Guidelines:924

• The answer NA means that the paper poses no such risks.925

• Released models that have a high risk for misuse or dual-use should be released with926

necessary safeguards to allow for controlled use of the model, for example by requiring927

that users adhere to usage guidelines or restrictions to access the model or implementing928

safety filters.929

• Datasets that have been scraped from the Internet could pose safety risks. The authors930

should describe how they avoided releasing unsafe images.931

• We recognize that providing effective safeguards is challenging, and many papers do932

not require this, but we encourage authors to take this into account and make a best933

faith effort.934
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12. Licenses for existing assets935

Question: Are the creators or original owners of assets (e.g., code, data, models), used in936

the paper, properly credited and are the license and terms of use explicitly mentioned and937

properly respected?938

Answer: [Yes]939

Justification: We cite each model paper and benchmark paper, and those assets have permis-940

sive research-use licenses.941

Guidelines:942

• The answer NA means that the paper does not use existing assets.943

• The authors should cite the original paper that produced the code package or dataset.944

• The authors should state which version of the asset is used and, if possible, include a945

URL.946

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.947

• For scraped data from a particular source (e.g., website), the copyright and terms of948

service of that source should be provided.949

• If assets are released, the license, copyright information, and terms of use in the950

package should be provided. For popular datasets, paperswithcode.com/datasets951

has curated licenses for some datasets. Their licensing guide can help determine the952

license of a dataset.953

• For existing datasets that are re-packaged, both the original license and the license of954

the derived asset (if it has changed) should be provided.955

• If this information is not available online, the authors are encouraged to reach out to956

the asset’s creators.957

13. New assets958

Question: Are new assets introduced in the paper well documented and is the documentation959

provided alongside the assets?960

Answer: [NA]961

Justification: We do not introduce new datasets or external tools; our method is purely962

algorithmic.963

Guidelines:964

• The answer NA means that the paper does not release new assets.965

• Researchers should communicate the details of the dataset/code/model as part of their966

submissions via structured templates. This includes details about training, license,967

limitations, etc.968

• The paper should discuss whether and how consent was obtained from people whose969

asset is used.970

• At submission time, remember to anonymize your assets (if applicable). You can either971

create an anonymized URL or include an anonymized zip file.972

14. Crowdsourcing and research with human subjects973

Question: For crowdsourcing experiments and research with human subjects, does the paper974

include the full text of instructions given to participants and screenshots, if applicable, as975

well as details about compensation (if any)?976

Answer: [NA]977

Justification: Our evaluations use automated LLM evaluators and benchmarks; no human978

subjects or crowdworkers are involved.979

Guidelines:980

• The answer NA means that the paper does not involve crowdsourcing nor research with981

human subjects.982

• Including this information in the supplemental material is fine, but if the main contribu-983

tion of the paper involves human subjects, then as much detail as possible should be984

included in the main paper.985
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,986

or other labor should be paid at least the minimum wage in the country of the data987

collector.988

15. Institutional review board (IRB) approvals or equivalent for research with human989

subjects990

Question: Does the paper describe potential risks incurred by study participants, whether991

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)992

approvals (or an equivalent approval/review based on the requirements of your country or993

institution) were obtained?994

Answer: [NA]995

Justification: No human subjects or data collection requiring IRB is involved.996

Guidelines:997

• The answer NA means that the paper does not involve crowdsourcing nor research with998

human subjects.999

• Depending on the country in which research is conducted, IRB approval (or equivalent)1000

may be required for any human subjects research. If you obtained IRB approval, you1001

should clearly state this in the paper.1002

• We recognize that the procedures for this may vary significantly between institutions1003

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1004

guidelines for their institution.1005

• For initial submissions, do not include any information that would break anonymity (if1006

applicable), such as the institution conducting the review.1007

16. Declaration of LLM usage1008

Question: Does the paper describe the usage of LLMs if it is an important, original, or1009

non-standard component of the core methods in this research? Note that if the LLM is used1010

only for writing, editing, or formatting purposes and does not impact the core methodology,1011

scientific rigorousness, or originality of the research, declaration is not required.1012

Answer: [Yes]1013

Justification: The core research presented in this paper is centered around Large Language1014

Models (LLMs). The proposed GOOD method is specifically designed for aligning LLMs.1015

LLMs are fundamental to the entire methodology, serving as the guiding models, the guided1016

models, and are the subjects of the evaluation experiments (as detailed in Section 3 "Method"1017

and Section 4 "Experiment").1018

Guidelines:1019

• The answer NA means that the core method development in this research does not1020

involve LLMs as any important, original, or non-standard components.1021

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1022

for what should or should not be described.1023
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