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Abstract

We propose an optimistic model-based algorithm, dubbed SMRL, for finite-horizon
episodic reinforcement learning (RL) when the transition model is specified by
exponential family distributions with d parameters and the reward is bounded and
known. SMRL uses score matching, an unnormalized density estimation technique
that enables efficient estimation of the model parameter by ridge regression. Under
standard regularity assumptions, SMRL achieves Õ(d

√
H3T ) online regret, where

H is the length of each episode and T is the total number of interactions (ignoring
polynomial dependence on structural scale parameters).

1 Introduction

This paper studies the regret minimization problem for finite horizon, episodic reinforcement learning
(RL) with infinitely large state and action spaces. Empirically, RL has achieved success in diverse
domains, even when the problem size (measured in the number of states and actions) explodes
[35, 41, 28]. The key to developing sample-efficient algorithms is to leverage function approximation,
enabling us to generalize across different state-action pairs. Much theoretical progress has been
made towards understanding function approximation in RL. Existing theory typically requires
strong linearity assumptions on transition dynamics [e.g., 51, 26, 8, 36] or action-value functions
[e.g., 30, 52] of the Markov Decision Process (MDP). However, most real world problems are
nonlinear. Our theoretical understanding of these settings remains limited. Thus, we ask the question:

Can we design provably efficient RL algorithms in nonlinear environments?

Recently, Chowdhury et al. [11] introduced a nonlinear setting where the state-transition measures are
finitely parameterized exponential family models, and they proposed to estimate model parameters
via maximum likelihood estimation (MLE). The exponential family is a well-studied and powerful
statistical framework, so it is a natural model class to consider beyond linear models. Chowdhury
et al. study exponential family transitions of the form:

PW0(s′|s, a) = q(s′) exp (〈ψ(s′),W0φ(s, a)〉 − Zsa(W0)) , (1)

where ψ ∈ Rdψ and φ ∈ Rdφ are known feature mappings, q is a known base measure, W0 is the
unknown parameter to be learned, and Zsa is the log partition function that ensures the density
integrates to 1. This transition model covers both linear dynamical systems as well as the nonlinear
dynamical system (nonLDS), introduced by Mania et al. [33]. Linear dynamical systems with
quadratic rewards, i.e., the linear quadratic regulator (LQR), have received much attention recently as
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an important testbench for RL in unknown, complex environments [19, 42, 27]. Thus, the work of
Chowdhury et al. is a crucial step in bridging the gap between RL and continuous control.

However, MLE has several shortcomings. In order to estimate the parameter W0 in (1), MLE
requires estimating the log partition function Zsa, which is computationally intensive. Practical
implementations for MLE which estimate the log partition function via Markov Chain Monte Carlo
(MCMC) methods can be slow and induce approximation errors [10]. These approximation errors
can propagate in undesirable ways to the algorithm’s planning procedure. Since the MLE Ŵ cannot
be computed in closed form, Chowdhury et al. leave their estimator implicitly defined as solutions of
the likelihood equations. As is typical for upper confidence RL (UCRL) algorithms, one constructs
high probability confidence sets around the estimator. Due to the challenging modeling assumption,
Chowdhury et al. employ confidence sets which are sums of KL divergences taken over the dataset.

In this work, we bypass these difficulties by instead proposing to learn the model parameters with
score matching, an unnormalized density estimation technique introduced by Hyvärinen [22]. Score
matching provides an explicit, easily computable closed form estimator for the model parameters by
solving a certain ridge regression problem (Theorem 1). Moreover, we can employ high probability
confidence sets which are ellipsoids centered at the estimator, a standard component in prior theoretical
work on linear bandits and linear MDPs [e.g., 2, 26].

Our main results are as follows:

• We extend prior work on the score matching estimator in the i.i.d. setting by proving nonasymptotic
concentration guarantees for non-i.i.d. data (Theorem 2).

• We consider regret minimization for the setting of exponential family transitions and bounded
and known rewards. We design a model-based algorithm, dubbed SMRL, which achieves regret
of Õ(d

√
H3T ), with polynomial dependence on structural scale parameters (Theorem 3). Here,

d = dψ × dφ is the total number of parameters of W0, H is the episode length, and T is the total
number of interactions. In each episode, SMRL uses score matching as a computationally efficient
subroutine to estimate W0 from data, then it constructs elliptic confidence regions around the
estimator which contain W0 w.h.p. and chooses policies optimistically based on such confidence
regions. (This work assumes computational oracle access to an optimistic planner.)

Our regret guarantee matches that of Exp-UCRL, the model-based algorithm proposed by Chowdhury
et al. When specialized to the nonLDS with bounded costs and features, score matching and MLE
are equivalent estimators (Proposition 10). Here, the work of Kakade et al. [27] gives a tighter
guarantee of Õ(

√
dφ(dφ + dψ +H)H2T ); however we stress that our analysis applies to a broader

class of models. Broadly speaking, we view score matching and MLE as complementary estimation
techniques; while MLE relies on less assumptions, score matching enjoys computational efficiency
and allows us to simplify both the algorithm and proofs. A detailed comparison is deferred to
Section 5. In this work, we mainly compare against the papers [11, 27], but a broader summary of
related work can be found in Appendix A.

Notation. For a vector x ∈ Rd, we let ‖x‖ := ‖x‖2 denote the `2 norm. For a matrix M ∈ Rn×d,
we denote vec (M) ∈ Rnd to be the vectorized version of M . For a matrix M , we also denote
‖M‖2 to be the operator norm and ‖M‖F to be the Frobenius norm, i.e., ‖M‖F := ‖vec (M)‖.
We also let ei ∈ Rd and Eij ∈ Rn×d denote the canonical basis vectors and matrices respec-
tively. For positive semidefinite matrices A,B, we let A � B to be B − A � 0. For posi-
tive semidefinite matrix A and vector x we define ‖x‖A :=

√
x>Ax. For any n ∈ N, we let

[n] := {1, 2, . . . , n}. For a twice differentiable function f : Rm 7→ Rn and any i ∈ [m], we let

∂if(x) :=
(

∂
∂xi

f1(x), . . . , ∂
∂xi

fn(x)
)>
∈ Rn and ∂2

i f(x) :=
(
∂2

∂x2
i
f1(x), . . . , ∂

2

∂x2
i
fn(x)

)>
∈ Rn.

We use the word “algorithm” liberally, since methods discussed in this paper as well as other papers
require solving optimization procedures which can be computationally intractable.

2 Problem statement

We consider the setting of an episodic Markov Decision Process, denoted by MDP(S,A, H,P, r),
where S is the state space, A is the action space, H ∈ N is the horizon length of each episode, P is
state transition probability measure, and r : S ×A 7→ R is the reward function.
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The agent interacts with the episodic MDP as follows. At the beginning of each episode, a state s1

is chosen by an adversary and revealed to the agent. The agent picks a policy function, which is a
collection of (possibly random) functions π := {πh : S 7→ ∆(A)}h∈[H] that determines the agent’s
strategy for interacting with the world. For each step h ∈ [H], the agent observes the state sh and
plays action ah ∼ πh(sh). Afterwards, they observe reward rh(sh, ah), and the MDP evolves to a
new state sh+1 ∼ P (· | sh, ah). The episode terminates at state sH+1 after which the world resets.

The goal of the agent is to maximize their cumulative rewards through interactions with the MDP.
Concretely, in our model-based setting the agent knows the reward function r and that the transition
model P lies in some model class P , and they want to pick policies every episode to minimize regret,
which we formally define later on.

Now we define the value function and action-value function. For every policy π, we can define a
value function V πP,h : S 7→ R, which is the expected value of the cumulative future rewards when the
agent plays policy π starting from state s in step h, and the world transitions according to P. In this
paper, we include P in the subscript since we will analyze value functions for different models; if
clear from context, we will drop the subscript P. Specifically, we have:

V πP,h(s) := EP

[
H∑

h′=h

rh′ (sh′ , ah′)

∣∣∣∣∣ sh = s, ah:H ∼ π

]
, ∀s ∈ S, h ∈ [H].

Similarly, we define the action-value functions QπP,h(s, a) : S ×A 7→ R to be the expected value of
cumulative rewards starting from a state-action pair in step h, following π afterwards:

QπP,h(s, a) := EP

[
H∑

h′=h

rh′ (sh′ , ah′)

∣∣∣∣∣ sh = s, ah = a, ah+1:H ∼ π

]
, ∀(s, a) ∈ S×A, h ∈ [H].

An optimal policy π? is defined to be the policy such that the corresponding value function V π
?

P,h(s) is
maximized at every state s ∈ S and step h ∈ [H]. Without loss of generality, it suffices to consider
deterministic policies [48]. Given knowledge of the MDP (S,A, H,P, r), the optimal value function
and action-value function can be computed via dynamic programming [47]; then the optimal policy
can be computed as the policy that acts greedily with respect to the optional action-value function,
i.e., π?h(s) = arg maxa∈AQ

?
P,h(s, a).

In the online setting, we will measure the performance of an agent interacting with the MDP over
K episodes via the notion of regret. In every episode k ∈ [K], an adversary presents the agent
with a state sk1 , and the agent then chooses a policy πk. The regret over K episodes is the expected
suboptimality of the agent’s choice of policy πk compared to the optimal policy π?:

R(K) :=

K∑
k=1

(
V π

?

1 (sk1)− V π
k

1 (sk1)
)
.

Implicit in the notationR(K) are the adversary’s choice of initial states; our results for regret will
hold for any sequence of adversarially chosen {sk1}k∈[K]. We will also denote T := KH as the total
number of interactions the agent makes with the world.

2.1 Exponential family transitions

We consider the setting when the transition model class P is given by exponential family transitions
and the the reward function r : S ×A 7→ R is bounded a.s. in [0, 1] and known to the learner.1

Definition 1 (Exponential family transitions, c.f., [11]). Suppose S ⊆ Rds and A is any arbitrary
action set. Fix feature mappings ψ : S 7→ Rdψ and φ : S × A 7→ Rdφ , as well as base measure
q : S → R. For any matrix W ∈ Rdψ×dφ , let:

PW (s′|s, a) := q(s′) exp (〈ψ(s′),Wφ(s, a)〉 − Zsa(W )) , (2)

1Our results extend to settings where the rewards are not known but instead lie in some classR ⊆ (S ×A →
R) by including an additional reward estimation procedure in our algorithm; the regret would additionally
depend on the complexity ofR.
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where Zsa(·) is the log-partition function, which is completely determined once ψ, φ, q, and W are
specified. Then we define the exponential family transitions model class P(ψ, φ, q) as:

P(ψ, φ, q) :=

{
PW :

∫
S
q(s′) exp(〈ψ(s′),Wφ(s, a)〉) ds′ <∞, ∀(s, a) ∈ S ×A

}
.

Since ψ, φ, q are taken to be fixed and known to the learner, we will write the model class as P .

Along with this assumption, we introduce a notational convention. Given some real or vector-valued
measurable function f(s′), we will write EWsaf(s′) to denote the expected value of f when s′ is
drawn from the conditional distribution PW (·|s, a), i.e. EWsaf(s′) :=

∫
S f(s′)PW (s′|s, a)ds′.

Chowdhury et al. state their results for a setting where the unknown matrix W0 =
∑d
i=1 θiAi, where

the Ai ∈ Rdψ×dφ are known matrices and θ ∈ Rd is unknown. This setting can be viewed as a
nonlinear analog of the linear mixture model considered in [36, 5]. Definition 1 is a special case
with d = dψ × dφ and Aij := Eij . Our results can be extended to their general setting with minor
modification. Quantitatively, we would replace factors of dψ × dφ with d in both the concentration
and regret guarantees, and similar to Chowdhury et al. we would introduce constants which depend
on Ai. For simplicity of presentation, we study the fully unknown matrix setting.

2.2 Relationship to (non)linear dynamical systems

We now describe how Definition 1 generalizes the previously studied model class of (non)linear
dynamical systems which have been explored in reinforcement learning and control theory literature.

First, we take a step back and describe linear dynamical systems (LDS), which govern the transition
dynamics of the LQR problem.2 An LDS is defined by the following transition dynamics:

s′ = As+Ba+ ε, where ε ∼ N (0,Σ).

where s, s′ ∈ Rds , a ∈ Rda , A,B are appropriately sized parameter matrices, and Σ ∈ Rds×ds is a
known covariance matrix. The problem of estimating (A,B), known as system identification, has a
long history (see Appendix A for more details).

Recently, system identification and regret minimization have been studied for nonlinear generaliza-
tions of LDS [33, 27]. In this paper, we refer to this setting as the nonlinear dynamical system (or
nonLDS for short).3 The nonLDS is described by the state transition model:

s′ = W0φ(s, a) + ε, where ε ∼ N (0,Σ).

By setting φ(s, a) = [s, a]> and W0 = [A B], we recover the classical linear dynamical system. The
nonLDS (and by extension the LDS) are special cases of Definition 1. This can be seen by writing
out the pdf of the multivariate Gaussian distribution to get:

q(s′) = 1
(2π)ds/2 det(Σ)1/2 exp

(
− ‖

s′‖2
Σ−1

2

)
, ψ(s′) = Σ−1s′, Zsa(W0) =

‖W0φ(s,a)‖2
Σ−1

2 .

Lastly, note that Definition 1 is more general than that of the nonLDS, whose base measure q(·) and
feature mapping ψ(·) must take a specific form given by the multivariate Gaussian. Definition 1
gives extra flexibility in the functions q, ψ, and φ, which can be regarded as design choices for the
practitioner. For example, one can pick the mapping ψ the output of a neural network which captures
the relevant features for the transition to s′; this is not permitted under the nonLDS setting.

3 Model estimation via score matching

In this section, we present the score matching method, the subroutine in our RL algorithm that
estimates model parameters. We also introduce structural assumptions that enable us to derive a
nonasymptotic concentration guarantee for the score matching estimator.

2Strictly speaking, our results do not handle unbounded costs, so they do not apply to the LQR problem.
3Kakade et al. [27] study kernelized version of this model, which they call the kernelized nonlinear regulator.
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3.1 Background on score matching

Suppose we want to estimate the conditional density P(s′|s, a) of the form (2), given a dataset
D = {(st, at, st+1)}t∈[T ]. MLE is the natural candidate for this estimation procedure, but it suffers
from pitfalls. Solving for the MLE requires computing the log-partition function Zsa(·). If the
log-partition function is not known in closed form, it can be estimated using Markov Chain Monte
Carlo methods [7, 10, 14]; however, this procedure may be computationally expensive. For some
settings such as kernelized exponential families, MLE fails due to ill-posedness [21, 44].

Hyvärinen [22, 23] proposed score matching as an alternative to minimizing the log likelihood. Score
matching minimizes the Fischer divergence, which is the expected squared distance between the
score functions∇s′ logPW (s′|s, a). Specifically, we define the divergence between PW0

and PW for
fixed (s, a) as:

J(PW0(·|s, a)‖PW (·|s, a)) :=
1

2

∫
S
PW0(s′|s, a)

∥∥∥∇s′ log
PW0

(s′|s,a)

PW (s′|s,a)

∥∥∥2

ds′. (3)

Before proceeding with the exposition of the score matching estimator, we list standard regularity
conditions that are required for the analysis of score matching [cf., 44, 4].
Assumption 1 (Regularity conditions).

(A) S is a non-empty open subset of Rds with piecewise smooth boundary ∂S := S − S , where
S is the closure of S.

(B) (Differentiability): ψ(·) is twice continuously differentiable on S with respect to each
coordinate i ∈ [ds], and ∂jiψ(s) is continuously extensible to S for all j ∈ {1, 2}, i ∈ [ds].

(C) (Boundary Condition): For all (s, a) ∈ S ×A and i ∈ [ds], as s′ → ∂S, we have:

‖∂iψ(s′)‖PW0(s′|s, a) = o(‖s′‖1−ds).

(D) (Integrability): For all i ∈ [ds], (s, a) ∈ S ×A, let psa := PW0
(·|s, a). Then:

‖∂iψ(s′)‖ ∈ L2(S, psa),
∥∥∂2

i ψ(s′)
∥∥ ∈ L1(S, psa), ‖∂iψ(s′)‖ ∂i log q(s′) ∈ L1(S, psa).

The key insight of Hyvärinen is that via an integration by parts trick, the divergence can be rewritten
in a more amenable form. Essentially, these regularity conditions allow us to rewrite the conditional
score function J(W ) := J(PW0

(·|s, a)‖PW (·|s, a)) as:

J(W ) =
1

2

∫
S
PW0

(s′|s, a) ·
ds∑
i=1

[
(∂i logPW (s′|s, a))2 + 2∂2

i logPW (s′|s, a)
]
ds′ + C, (4)

where C does not depend on the parameter W . In Appendix B.1 we provide a more formal derivation
of (4) for exponential family densities as well as further discussion on Assumption 1.

Crucially, (4) can be estimated with samples without requiring computation of the partition
function, since the partition function vanishes when taking partial derivatives with respect to s′.
This gives rise to the following formulation of the empirical score matching loss for a dataset
D = {(st, at, s′t)}t∈[n]:

Ĵn(W ) :=
1

2

n∑
t=1

ds∑
i=1

(
(∂i logPW (s′t|st, at))2 + 2∂2

i logPW (s′t|st, at)
)
. (SM-L)

Furthermore, for any regularizer λ > 0, we can define the empirical score matching estimator:

Ŵn,λ := arg min
W

Ĵn(W ) + λ
2 ‖W‖

2
F . (SM-E)

The following theorem gives a closed form expression for the empirical score matching estimator,
when specialized to densities given by Definition 1.
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Theorem 1. For a dataset D = {(st, at, s′t)}t∈[n], (SM-L) can be written as:

Ĵn(W ) =
1

2

〈
vec (W ) , V̂nvec (W )

〉
+
〈
vec (W ) , b̂n

〉
+ C,

where:

V̂n :=

n∑
t=1

ds∑
i=1

vec
(
∂iψ(s′t)φ(st, at)

>) vec (∂iψ(s′t)φ(st, at)
>)> ∈ Rdψdφ×dψdφ ,

b̂n := vec

(
n∑
t=1

ds∑
i=1

(
∂i log q(s′t)∂iψ(s′t) + ∂2

i ψ(s′t)
)
φ(st, at)

>

)
∈ Rdψdφ ,

and C does not depend on W . In addition, (SM-E) can be computed as:

vec
(
Ŵn,λ

)
= −(V̂n + λI)−1b̂n. (5)

Theorem 1 is a typical result in score matching literature, and can be derived as a corollary of Arbel
and Gretton [4, Thm. 3]. For completeness, we give a proof in Appendix B.2.

For the rest of the paper, it is useful to derive matrix expressions for V̂n and b̂n. We define the
following functions:

Φ(s, a) := [E11φ(s, a), E12φ(s, a), . . . Eijφ(s, a), . . . Edψ·dφφ(s, a)]> ∈ Rdψdφ×dψ ,

C(s′) :=

ds∑
i=1

∂iψ(s′)∂iψ(s′)> ∈ Rdψ×dψ , ξ(s′) :=

ds∑
i=1

∂i log q(s′)∂iψ(s′) + ∂2
i ψ(s′) ∈ Rdψ .

In addition, we use the subscript t to denote the value of the above expressions on sample (st, at, s
′
t).

We succintly represent V̂n =
∑n
t=1 ΦtCtΦ

>
t and b̂n =

∑n
t=1 Φtξt.

Computational efficiency. We make a few remarks on the computation of the score matching
estimator. From Theorem 1, we see that computing Ŵn does not require estimation of the log-
partition function Zsa. The objective is a quadratic function in W , which we can solve for via
Equation (5). However, Equation (5) requires us to invert a dφdψ × dφdψ matrix, which takes time
O(d3

φd
3
ψ) and memory O(d2

φd
2
ψ). This can be disappointing from a practical perspective, where the

dimensionality of φ and ψ can be large. Several additional considerations may remedy this. First,
using the representer theorem, it is possible to show that Ŵ is the solution of a linear system of n · dS
variables, thus taking time O(n3d3

S) and space O(n2d2
S) [4, Thm. 1]. One can further reduce the

dependence on n using Nyström approximations [46]. Second, if we are in the structured setting
where W0 =

∑d
i=1 θiAi, where θ ∈ Rd is unknown but the matrices Ai ∈ Rdψ×dφ are known.

Theorem 1 can be adapted to this setting, and solving for θ̂n will take time O(d3) and space O(d2).

3.2 Concentration guarantee

We provide concentration guarantees for score matching under some structural assumptions:
Assumption 2 (Structural scaling).

(A) For any (s, a) ∈ S ×A and s′ ∼ PW0(·|s, a): we have ξ(s′) is Bψ-subgaussian.

(B) For any (s, a) ∈ S ×A and s′ ∼ PW0
(·|s, a): we have C(s′)W0φ(s, a) is Bc-subgaussian.

(C) For any s′ ∈ S: α1I � C(s′) � α2I , where α2 ≥ α1 > 0.

(D) For any (s, a) ∈ S ×A: EW0
sa ψ(s′)ψ(s′)> − EW0

sa ψ(s′)EW0
sa ψ(s′)> ≤ κI .

The conditions in Assumption 2 are mostly adapted from prior work [44, 4, 11], with suitable
modifications to accomodate our non-i.i.d. setting. Notably, Assumption 2 holds for nonLDS (when
Σ = σ2I) with Bψ = σ−6, Bc = 0, α1 = α2 = σ−4 and κ = σ−2. Due to space considerations, we
defer further discussion on Assumption 2 to Appendix B.3.

We can prove the following concentration guarantee.
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Theorem 2. Suppose Assumptions 1 and 2 hold. Let {Ft}∞t=1 be a filtration such that (st, at) is Ft
measurable, s′t is Ft+1 measurable, and s′t ∼ PW0(·|st, at).

For any δ ∈ (0, 1) and λ > 0, let:

βn :=

√
2(Bψ+Bc)

α2
1

·
√

log det(λ−1V̂n+I)1/2

δ +
√
λ ‖W0‖F .

With probability at least 1− δ, the score matching estimators of (SM-E) satisfy:∥∥∥vec(Ŵn,λ

)
− vec (W0)

∥∥∥
V̂n+λI

≤ βn, for all n ∈ N.

Theorem 2 is a self-normalized concentration guarantee, since the parameter error is rescaled by
a data-dependent term V̂n + λI . The proof is provided in Appendix B.4. The proof relies on the
method of mixtures argument developed in the linear bandit literature [see, e.g., 2, 29].

4 Algorithm and main result

In this section, we present our main results, which introduce the Score Matching for RL (SMRL)
algorithm (Algorithm 1) and provide regret guarantees.

4.1 Algorithm specification

Our algorithm works as follows. In each episode k = 1, 2, . . . ,K, we compute a elliptic confidence
setWk centered at our score matching estimator. In particular, we consider the n := (k − 1)H state
transitionsD = {st, at, s′t}nt=1 the agent has observed up until the beginning of episode k and run the
score matching estimator to get the prediction Ŵk := arg minW Ĵ(W ) + λ

2 ‖W‖
2
F , via (Equation (5).

In discussing our RL algorithm and its regret guarantees, we choose to index Ŵ and V̂ by k rather
than n to emphasize that these quantities are computed once per episode. We also drop the subscript
λ because it is fixed across the run of the algorithm.

Let B? is some known upper bound on ‖W0‖F . We define the confidence set

Wk :=

{
W ∈ Rdψ×dφ :

∥∥∥vec(Ŵk

)
− vec (W )

∥∥∥
V̂k+λI

≤ βk
}
, (6)

where

βk :=

√
2(Bψ+Bc)

α2
1

·
√

log 2 det(λ−1V̂k+I)1/2

δ +
√
λB?.

Once the agent computes the confidence set Wk, they observe a new state sk1 and compute an
optimistic policy πk (line 5-6), which is the optimal policy with respect to the “best model” inWk.
As long as W0 ∈ Wk, the optimistic planning procedure gives us an overestimate of the true value
function V ?P,1(sk1), ensuring sufficient exploration of the MDP. Lastly, the agent runs policy πk on the
MDP to collect a new trajectory of data, which is added to the dataset D.

4.2 Computational complexity

Algorithm 1 has two main components: model estimation (line 9) via score matching and optimistic
planning (line 6). We have already discussed in Section 3 that the model estimation can be computed
efficiently. Planning is a different story. Even planning with a known model, i.e., solving the problem
πk = arg maxπ V

π
PW ,1(sk1), is already challenging without imposing further structure. However, it

can be approximated with model predictive control [34, 49]. Furthermore, even with access to a
planning oracle, optimistic planning is known to be NP-hard in the worst case [15]. In this work, we
assume computational oracle access to the optimistic planner that solves (line 6) and leave developing
efficient approximation algorithms to future work. One alternative to optimistic planning is to employ
posterior sampling methods in conjunction with (approximate) planning oracles; the Bayesian regret
can be theoretically analyzed using well-established techniques [e.g., 37, 11].
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Algorithm 1 Score Matching for RL (SMRL)

1: Input: Regularizer λ and constants Bψ, Bc, B?, κ, α1.
2: Initialize: starting confidence setW1 = Rdψ×dφ , confidence widths {βk}k≥1, dataset D = ∅.
3: for episode k = 1, 2, 3, · · · ,K do
4: Planning:
5: Observe initial state sk1
6: Choose the optimistic policy: πk = arg maxπ maxW∈Wk

V πPW ,1(sk1)
7: Execution:
8: Execute πk to get a trajectory {skh, akh, rkh, skh+1}h∈[H], and add it to D.
9: Solve for score matching estimator Ŵk = argminW Ĵ(W ) + λ

2
‖W‖2

F via (5)
10: Update confidence set Wk+1 via (6)

4.3 Regret guarantee

We now provide our main result, which is a
√
T -regret guarantee on the performance of SMRL.

Theorem 3 (SMRL Regret Guarantee). Suppose Assumptions 1 and 2 hold. Set λ := 1/B2
? and fix

δ ∈ (0, 1). Then with probability at least 1− δ:

R(K) ≤ C
√
γK+1 ·

(
κ(Bψ+Bc)

α3
1

(γK+1 + log 1/δ) + κ
α1

+H
)
·
√
H2T ,

where C > 0 is an absolute constant and γK+1 := log det(λ−1V̂K+1 +I). If ‖φ(s, a)‖ ≤ Bφ for all
(s, a), thenR(K) ≤ Õ(dψdφ ·

√
H3T ), where the Õ hides log factors and poly(κ,Bψ, Bc, α

−1
1 ).

The proof is presented in Appendix C. A few remarks are in order. Our regret guarantee depends on
the number of model parameters dψ · dφ and not on the state and action space sizes, thus making our
algorithm sample-efficient in large-scale environments where |S| and |A| are infinite. Additionally, it
is easy to redo the analysis when the parameter matrix is structured, i.e., W0 =

∑d
i=1 θiAi, to see

that the regret guarantee depends on d instead of dψ × dφ. Thus, we can recover the same regret
guarantee of Õ(d

√
H3T ) that Chowdhury et al. provide.

On the more technical side, in Theorem 3, we require φ to be a bounded feature mapping, which linear
dynamical systems do not satisfy in general (recall φ = [s, a]>, and s, a can have unbounded norm).
We need this to provide a bound on a certain “information gain” quantity γk = log det(λ−1V̂k + I)
[cf., 43, 27]; however, the bounded φ assumption can be substantially weakened because our proof
only requires

∑H
h=1 ‖φh‖

2 to be bounded in every episode with high probability. In particular, if
one restricts to controllable policies which do not blow up norm of the state [e.g., 13], then the
information gain term can be bounded.

5 Score matching vs maximum likelihood estimation

In this section, we provide a detailed comparison of score matching with maximum likelihood
approaches. First we compare for exponential family transitions of Definition 1; then we specialize
our comparison for the nonLDS setting. Lastly, we provide numerical evidence to demonstrate a
setting where (a variant of) SMRL is superior.

5.1 General comparison for exponential family transitions

Score matching and MLE can be viewed as complementary techniques for density estimation; we
highlight the relative pros and cons of SMRL vs Exp-UCRL.

In general, Exp-UCRL can be applied to more settings than score matching, due to the fact that
score matching requires regularity conditions (Assumption 1) that are needed for the derivation of
(4). In particular, we require S to be a Euclidean space and the feature vector ψ : S → Rdψ to
be a twice-differentiable mapping. In this sense, the scope of SMRL is more limited than that of
Exp-UCRL. For example, while tabular and factored MDPs can be modeled as exponential family
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transitions via the softmax parameterization,4 we cannot prove regret guarantees for SMRL due to
the differentiability requirement. Since the MLE estimator of Chowdhury et al. can be computed in
poly(S,A) time, in the tabular and factored MDP settings we would prefer to run Exp-UCRL.

Among models given by Definition 1 where both score matching and MLE can be applied, score
matching is preferred because the estimator can be computed in closed form as the solution to a
ridge regression problem, and elliptic confidence sets can be constructed around it using Theorem 2.
For the MLE, this is not possible in general. Chowdhury et al. implicitly define the estimator as the
solution to the likelihood equations, and their confidence set is constructed in a complicated fashion,
in terms of sums of KL divergences taken over the dataset. Thus, while we are unable to claim
overall computational tractability of Algorithm 1 due to the computational difficulty of optimistic
planning, score matching enables us to estimate model parameters efficiently, an improvement from
Exp-UCRL.

We now compare the regret guarantee of Theorem 3 with previous results; the detailed calculations are
deferred to Appendix D.1. We achieve the same order-wise guarantee as Chowdhury et al.(Thm. 2) of
Õ(dφdψ ·

√
H3T ). In terms of problem constants, both bounds depend on

√
κ, but we (1) require the

constants Bψ and Bc, (2) replace dependence on strict convexity of the log partition function with
the parameter α1.

5.2 Comparison with prior work for nonLDS

Now we compare our results for SMRL with the results for Exp-UCRL (Chowdhury et al.) and LC3

(Kakade et al.) for the nonLDS problem with bounded and known rewards. For simplicity we will take
the transition noise to be N (0, σ2Ids). We will also assume that ‖W0‖F ≤ B? and that the feature
vectors are bounded as ‖φ(s, a)‖ ≤ Bφ for all (s, a) ∈ S × A. All three are similar UCRL-style
algorithms, and we compare the parameter estimation, confidence sets, and regret guarantee.

Estimation and confidence set construction. For nonLDS, score matching and MLE are equivalent
estimators (see Proposition 10 for a formal statement). Thus, in all three algorithms, the parameter
estimation procedure is identical, up to rescaling of regularization parameter λ. To further facilitate
comparison, we will hereafter fix the λ of each algorithm such that the parameter estimation is the
same as LC3 (for any fixed dataset). Our choices are detailed in Appendix D.2.

Once we have fixed the parameter λ for each algorithm, the main distinction lies in the confidence set
construction. While all three algorithms essentially utilize the same optimistic planning procedure,
optimistic planning depends on the confidence sets constructed in each episode. The chosen policies
and the resulting trajectories will be different in all three algorithms. The confidence sets constructed
for each paper are essentially the tightest self-normalized bound one can prove, so it is hard to directly
compare the confidence sets from paper to paper due to the difference in analyses. Generally speaking,
SMRL uses Frobenius norm bounds (Theorem 2), Exp-UCRL uses a mixture of both Frobenius and
spectral [11, Sec. 3.1], and LC3 uses only spectral norm bounds [27, Eq. 3.2].

Regret guarantee. In terms of the regret guarantee, Theorem 3 gives us a regret guarantee of
Õ
(√

dφdψ · (σ4dφdψ +H)H2T
)
, while a bound of Õ

(√
d2
φd

2
ψ(1 + σ−2B2

?B
2
φH)H2T

)
can be

derived for Exp-UCRL. Note that the latter bound depends polynomially on the scale of W0 and
φ. Kakade et al. (Remark 3.5) give a bound for LC3 of Õ(

√
dφ(dφ + dψ +H)H2T ), without

polynomial dependence on σ2 and the scale of W0 and φ. We conjecture that the σ2 dependence is
an artifact of our analysis, but it is less clear whether the dependence on dφ, dψ can be improved.

5.3 Experiments on synthetic MDP

We demonstrate end-to-end benefits of using score matching in a (highly stylized) synthetic MDP;
see Figure 1. In our constructed MDP, the transition function is multimodal; the action choice affects
the location of the modes of the next state density. The reward is constructed so that a = +1 leads
to higher reward than a = −1 at most states. To enable fair comparison, we fix a simple random
sampling shooting planner [39] and evaluate three model estimation procedures: score matching with

4There is a mild technical issue, since Definition 1 cannot capture transitions with probability 0, so we must
assume that the support of the transitions is known in advance. See the paper [11] for more details.
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Figure 1: Comparing SM vs fitting an LDS for a synthetic MDP, with S = R, A = {+1,−1}, H = 10,
initial state distribution Unif([−1,+1]), P(s′|s, a) = exp(−s′1.7/1.7) · exp(sin(4s′)(s+ a)), and r(s, a) =
exp(−10(s− π/8)2) + exp(−10(s+ 3π/8)2). (a) plots P for a single starting state s = 0.5 for a = +1 and
a = −1; the reward r is superimposed. Taking a = +1 is more likely to transition to states with high reward.
(b) plots cumulative reward for fixed planner with varying model estimation: SM with the given P , fitting an
LDS, and a baseline with the ground truth model. (c) plots the number of steps in every episode where a = +1
is picked by the planner. In (b) and (c), shaded areas correspond to 95% confidence intervals.

the given class P , fitting an LDS via MLE, and a baseline where planner is supplied the ground truth
P. (For this simple one-dimensional RL task, one can also numerically compute the MLE with the
given P . However, this approach does not scale to RL tasks with high-dimensional states.) Fitting an
LDS does poorly because the LDS density is not expressive enough to differentiate between a = +1
and a = −1, while score matching estimates the density well, so the planner quickly learns to pick
a = +1. Our experiments suggest that modeling the transition P via the richer Definition 1 can yield
end-to-end benefits for RL tasks. Further experimental details can be found in Appendix F.

6 Conclusion

In this paper, we show
√
T -regret guarantees for a reinforcement learning setting when the state

transition model is an exponential family model, a challenging nonlinear setting. Under this modeling
assumption, the commonly employed MLE may be intractable; we bypass such issues by proposing
to learn the model via the score matching method.

We conclude with a few possible directions for future work.

• Model Misspecification: Proving guarantees for SMRL when the underlying transition P do not
lie in the model class P but instead is well-approximated by P̃ ∈ P is an interesting direction.

• Arbitrary State Spaces: A key limitation of the score matching estimator is that it requires that
the state space S must be a subset of the Euclidean space Rds and the feature mapping ψ to be
twice differentiable; therefore it cannot handle arbitrary state spaces. One important direction is
extending the score matching algorithm to discrete state spaces such as tabular/factored MDPs
through a suitable modification of the estimation procedure [e.g., 23, 31].

• Kernelization: We would like to extend our guarantees to the kernel conditional exponential
family (KCEF) setting of Arbel and Gretton [4], i.e., when the conditional model is Pf (s′|s, a) :=
q(s′) · exp (〈f,Γsak(s′, ·)〉 − Zsa(f)), where f lies in some vector valued Reproducing Kernel
Hilbert Space (RKHS) H, k(s′, ·) lies in an RKHS HS , and Γsa : HS → H is an operator that
depends on (s, a). This generalizes our finite dimensional setting and is a special case of the
conditional family where the inner product is 〈f, φ(s, a, s′)〉, studied by Canu and Smola [9].
In the KCEF setting, MLE becomes computationally intractable; yet score matching can be
kernelized and efficiently computed, and fast approximation methods exist [46]. Our theory does
not hold for the KCEF because the parameter α1 = 0. Instead, one might be able to adapt the
range-space assumption from the paper [4] to the non-i.i.d. setting.
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