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Summary
Evaluating off-policy decisions using batch data is challenging because of limited sample

sizes which lead to high variance. Identifying and addressing the sources of this variance is
crucial to improve off-policy evaluation in practice. Recent research on Concept Bottleneck
Models (CBMs) shows that using human-explainable concepts can improve predictions and
provide additional context for understanding decisions. In this paper, we propose incorporating
an analogous notion of concepts into OPE to provide additional context that may help us
identify specific areas where variance is high. We introduce a family of new concept-based
OPE estimators and show that these estimators have two key properties when the concepts
are known in advance: they remain unbiased whilst reducing variance of overall estimates.
Since real-world applications often lack predefined concepts, we further develop an end-to-end
algorithm to learn interpretable, concise, and diverse concepts optimized for variance reduction
in OPE. Our experiments on synthetic and real-world datasets show that both known and learnt
concept-based estimators significantly improve OPE performance. Crucially, our concept-based
estimators offer two advantages over existing OPE methods. First, they are easily interpretable.
Second, they allow us to isolate specific concepts contributing to variance. Upon performing
targeted interventions on these concepts, we can further enhance the quality of OPE estimators.

Contribution(s)
1. We introduce a new family of IS estimators based on interpretable concepts. [Section 4]

Context: Previous works perform IS in the state representations, we explicitly define what is
a concept representation and tie the original definition of IS under concepts.

2. We derive theoretical conditions ensuring lower variance compared to existing IS estimators.
[Section 5]
Context: We compare the variance of the Concept-OPE estimators with traditional IS/PDIS
and MIS estimators and devise conditions under which the variance is reduced.

3. We propose an end-to-end algorithm for optimizing parameterized concepts when concepts
are unknown, using OPE characteristics like variance. [Section 6]
Context: Under real-world scenarios, the concepts are typically unknown or hard to define,
which adds to the complexity of performing OPE. In this section, we propose a novel
algorithm which learns concepts that satisfy the desidarata: Explainability, Conciseness,
Diversity while optimizing for variance.

4. We show, through synthetic and real experiments, that our estimators for both known and
unknown concepts outperform existing ones. [Sections 5,6]
Context: None

5. We interpret the learned concepts to explain OPE characteristics and suggest intervention
strategies to further improve OPE estimates. [Section 7]
Context: Interventions have been typically studied in the context of improving the CBM
performance in a supervised learning regime, we instead use interpretations to explain where
a concept-OPE estimator has high variance and intervene to reduce variance.
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Abstract
Evaluating off-policy decisions using batch data is challenging because of limited1
sample sizes which lead to high variance. Identifying and addressing the sources of2
this variance is crucial to improve off-policy evaluation in practice. Recent research3
on Concept Bottleneck Models (CBMs) shows that using human-explainable concepts4
can improve predictions and provide additional context for understanding decisions.5
In this paper, we propose incorporating an analogous notion of concepts into OPE6
to provide additional context that may help us identify specific areas where variance7
is high. We introduce a family of new concept-based OPE estimators and show that8
these estimators have two key properties when the concepts are known in advance:9
they remain unbiased whilst reducing variance of overall estimates. Since real-world10
applications often lack predefined concepts, we further develop an end-to-end algorithm11
to learn interpretable, concise, and diverse concepts optimized for variance reduction in12
OPE. Our experiments on synthetic and real-world datasets show that both known and13
learnt concept-based estimators significantly improve OPE performance. Crucially, our14
concept-based estimators offer two advantages over existing OPE methods. First, they15
are easily interpretable. Second, they allow us to isolate specific concepts contributing16
to variance. Upon performing targeted interventions on these concepts, we can further17
enhance the quality of OPE estimators.18

1 Introduction19

In domains like healthcare, education, and public policy, where interacting with the environment can20
be risky, prohibitively expensive, or unethical (Sutton & Barto, 2018; Murphy et al., 2001; Mandel21
et al., 2014), estimating the value of a policy from batch data before deployment is essential for the22
practical application of RL. OPE aims to estimate the effectiveness of a specific policy, known as the23
evaluation or target policy, using offline data collected beforehand from a different policy, known24
as the behavior policy (e.g., Komorowski et al. (2018a); Precup et al. (2000); Thomas & Brunskill25
(2016); Jiang & Li (2016)).26

Importance sampling (IS) methods are a popular class of methods for OPE which adjust for distri-27
butional mismatches between behavior and target policies by reweighting historical data, yielding28
generally unbiased and consistent estimates (Precup et al., 2000). Despite their desirable properties29
(Thomas & Brunskill, 2016; Jiang & Li, 2016; Farajtabar et al., 2018), IS methods often face high30
variance, especially with limited overlap between behavioral samples and evaluation targets or in31
data-scarce conditions. Evaluation policies may outperform behavior policies for specific individuals32
or subgroups (Keramati et al., 2021b), making it misleading to rely solely on aggregate policy value33
estimates. In practice however, these groups are often unknown, prompting the need for methods to34
learn interpretable characterizations of the circumstances where the evaluation policy benefits certain35
individuals over others.36

In this paper, we propose performing OPE using interpretable concepts (Koh et al., 2020; Madeira37
et al., 2023) instead of relying solely on state and action information. We demonstrate that this38
approach offers significant practical benefits for evaluation. These concepts can capture critical39
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aspects in historical data, such as key transitions in a patient’s treatment or features affecting short-40
term outcomes that serve as proxies for long-term results. By learning interpretable concepts from41
data, we introduce a new family of concept-based IS estimators that provide more accurate value42
estimates and stronger statistical guarantees. Additionally, these estimators allow us to identify which43
concepts contribute most to variance in evaluation. When the evaluation is unreliable, we can modify,44
intervene on, or remove these high-variance concepts to assess how the resulting evaluation improves45
(Marcinkevičs et al., 2024; Madeira et al., 2023).46

A physician treating two patients infected with the same virus, with similar disease dynamics focuses47
on overall trends rather than precise viral load values when administering treatments. That is, if a48
drug lowers one patient’s viral load below a threshold, it may also help the other, whereas it may be49
ineffective for a patient with a different disease trajectory. This distinction between a concept — a50
generalizable trend, such as viral load reduction — and a state — specific measurements at individual51
time points e.g. viral load — is key. Learning concepts that capture these trends, rather than isolated52
values, can better guide treatment decisions and evaluation. This idea is illustrated in Figure 1.53

Figure 1: Simple example of a state vs concept. In this scenario,
the state is the viral load in a patient’s blood, whereas the concept
is defined as the viral load being above or below a certain threshold
x. The concept divides patients into two groups, in which different
treatments are administered, indicated by the frequency of syringes.
We do evaluation based on these two concepts, rather than the
unique values of the viral loads.

Our work makes the following contri-54
butions: i) We introduce a new fam-55
ily of IS estimators based on inter-56
pretable concepts; ii) We derive theo-57
retical conditions ensuring lower vari-58
ance compared to existing IS estima-59
tors; iii) We propose an end-to-end al-60
gorithm for optimizing parameterized61
concepts when concepts are unknown,62
using OPE characteristics like vari-63
ance; iv) We show, through synthetic64
and real experiments, that our estima-65
tors for both known and unknown con-66
cepts outperform existing ones; v) We67
interpret the learned concepts to ex-68
plain OPE characteristics and suggest69
intervention strategies to further im-70
prove OPE estimates.71

2 Related Work72

Off-Policy Evaluation. There is a long history of methods for performing OPE, broadly categorized73
into model-based or model-free (Sutton & Barto, 2018). Model-based methods, such as the Direct74
Method (DM), learn a model of the environment to simulate trajectories and estimate the policy value75
(Paduraru, 2013; Chow et al., 2015; Hanna et al., 2017; Fonteneau et al., 2013; Liu et al., 2018b).76
These methods often rely on strong assumptions about the parametric model for statistical guarantees.77
Model-free methods, like IS, correct sampling bias in off-policy data through reweighting to obtain78
unbiased estimates (e.g., Precup et al. (2000); Horvitz & Thompson (1952); Thomas & Brunskill79
(2016)). Doubly robust (DR) estimators (e.g., Jiang & Li (2016); Farajtabar et al. (2018)) combine80
model-based DM and model-free IS for OPE but may fail to reduce variance when both DM and IS81
have high variance. Various methods have been developed to refine estimation accuracy in IS, such82
as truncating importance weights and estimating weights from steady-state visitation distributions83
(Liu et al., 2018a; Xie et al., 2019; Doroudi et al., 2017; Bossens & Thomas, 2024).84

Off-Policy Evaluation based on Subgroups. Keramati et al. (2021b) extend OPE to estimate85
treatment effects for subgroups and provide actionable insights on which subgroups may benefit86
from specific treatments, assuming subgroups are known or identified using regression trees. Unlike87
regression trees, which are limited in scalability, our approach learns interpretable concepts to88
characterize individuals, on the basis of which we introduce a new family of IS estimators. Similarly,89
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Shen et al. (2021) propose reducing variance by omitting likelihood ratios for certain states. Our90
work complements this by summarizing relevant trajectory information using concepts, rather than91
explicitly omitting states irrelevant to the return. The advantage of using concepts as opposed to92
states is that we can easily interpret and intervene on these concepts unlike the states.93

Marginalized Importance Sampling (MIS) estimators (Uehara et al., 2020; Liu et al., 2018a; Nachum94
et al., 2019; Zhang et al., 2020b;a) mitigate the high variance of traditional IS by reweighting data95
tuples using density ratios computed from the state visitation at each time step. These estimators96
enhance robustness by focusing on states with high visitation density ratios, thereby marginalizing97
out less visited states. However, MIS has its challenges: computing density ratios can introduce98
high variance, particularly in complex state spaces, and it obscures which aspects of the state space99
contribute directly to variance. Some studies, such as Katdare et al. (2023) and Fujimoto et al.100
(2023), improve MIS by decomposing density ratio estimation into components like large density101
ratio mismatch and transition probability mismatch. Our work differs from MIS by characterizing102
trends in a trajectory using interpretable concepts rather than solely relying on density ratios. This103
approach enables targeted interventions on specific concepts of interest, leading to more accurate104
return estimates and reduced variance in OPE. Unlike MIS, our method provides interpretability,105
which becomes increasingly important as problem complexity grows. Proposals for hybrid estimators,106
such as those in Pavse & Hanna (2022a), suggest using low-dimensional abstractions of state spaces107
with MIS to manage high-dimensional spaces more effectively. Our work differs in the sense that108
we use concepts instead of state abstractions which can be easily plugged into the existing IS OPE109
definitions as elaborated in Sections 4.2 and Supplementary Material C.110

Concept Bottleneck Models. Concept Bottleneck Models (CBMs) (Koh et al., 2020) are a class of111
prediction models that first predict a set of human interpretable concepts, and subsequently use these112
concepts to predict a downstream label. Variations of these models include learning soft probabilistic113
concepts (Mahinpei et al., 2021), learning hierarchical concepts (Panousis et al., 2023) and learning114
concepts in a semi-supervised manner (Sawada & Nakamura, 2022). The key advantage of these115
models is they allow us to explicitly intervene on concepts and interpret what might happen to a116
downstream label if certain concepts were changed (Marcinkevičs et al., 2024). Unlike previous works,117
we leverage this idea to introduce a new class of estimators for OPE where we group trajectories118
based on interpretable concepts which are relevant for the downstream evaluation task.119

3 Preliminaries120

Concept Bottleneck Models Conventional CBMs learn a mapping from some input features121
x ∈ Rd to targets y via some interpretable concepts c ∈ Rk based on training data of the form122
{xn, cn, yn}Nn=1. This mapping is a composition of a mapping from inputs to concepts, f : Rd → Rk,123
and a mapping from concepts to targets, g : Rk → R. These may be trained via independent,124
sequential or joint training (Marcinkevičs et al., 2024). Variations which consider learning concepts125
in a greedy fashion or in a semi-supervised way include Wu et al. (2022); Havasi et al. (2022).126

Markov Decision Processes (MDP). An MDP is defined by a tuple M = (S,A, P,R, γ, T ).127
S and A are the state and action spaces, P : S × A → ∆(S) and R : S × A → ∆(R) are128
the transition and reward functions, γ ∈ [0, 1] is the discount factor, T ∈ Z+ is the fixed time129
horizon. A policy π : S → ∆(A) is a mapping from each state to a probability distribution over130
actions in A. A T -step trajectory following policy π is denoted by τ = [(st, at, rt, st+1)]

T
t=1 where131

s1 ∼ d1, at ∼ π(st), rt ∼ r(st, at), st+1 ∼ p(st, at). The value function of policy π, denoted by132
Vπ : S → R, maps each state to the expected discounted sum of rewards starting from that state133
following policy π. That is, Vπ(s) = Eπ[

∑T
t=1 γ

t−1rt|s1 = s].134

Off-Policy Evaluation. In OPE, we have a dataset of T -step trajectories D = {τ (n)}Nn=1 inde-135
pendently generated by a behaviour policy πb. Our goal is to estimate the value function of another136
evaluation policy, πe. We aim to use D to produce an estimator, V̂πe , that has low mean squared137
error, MSE(Vπe

, V̂πe
) = ED∼P τ

πb
[(Vπe

− V̂πe
)2]. Here, P τ

πb
denotes the distribution of trajectories138

τ , under πb, from which D is sampled.139
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4 Concept-Based Off-Policy Evaluation140

The goal of our work is to incorporate the notion of concepts into off-policy evaluation for improved141
interpretability and variance reduction. In this section, we formally define the notion of a concept,142
outline its desiderata and formally introduce a class of OPE estimators. In subsequent sections, we143
discuss how these estimators can be used when a) concepts are known from domain expertise (see144
Section 5), and b) concepts are unknown and must be learnt using a parametric representation (see145
Section 6).146

4.1 Defining a Concept for OPE147

Given a dataset D = {τ (n)}Nn=1 of N T -step trajectories, let ϕ : S × A × R × S → C ∈ Rd148
denote a function that maps trajectory histories ht to interpretable concepts in d-dimensional concept149
space C. This mapping results in the concept vector ct = [c1t , c

2
t , ..., c

d
t ] at time t, defined by ϕ(ht).150

These concepts can capture various vital information in the history ht, such as transition dynamics,151
short-term rewards, influential states, inter-dependencies in actions across time steps, etc. Without152
loss of generality, we consider concepts ct as functions of current state st, however this could be153
extended to include historical information. This considers the scenario where concepts capture154
important information based on the criticality of the state. The concept function ϕ satisfies the155
following desiderata: explainability, conciseness, better trajectory coverage and diversity. A detailed156
description of these desiderata is provided in Supplementary Material A.157

4.2 Concept-Based Estimators for OPE.158

We propose a new class of concept-based OPE estimators, adapting existing non-concept-based159
methods to integrate concepts into OPE. Here, we present the results specifically for per-decision160
IS and standard IS estimators, as these serve as the foundation for several other estimators. We also161
demonstrate in Supplementary Material C how these methods can be extended to other estimators.162

Definition 4.1 (Concept-Based Importance Sampling (CIS)).

V̂ CIS
πe

=
1

N

N∑
n=1

ρ
(n)
0:T

T∑
t=0

γtr
(n)
t ; ρ

(n)
0:T =

T∏
t′=0

πc
e(a

(n)
t′ |c

(n)
t′ )

πc
b(a

(n)
t′ |c

(n)
t′ )

Definition 4.2 (Concept-based Per-Decision Importance Sampling, (CPDIS)).

V̂ CPDIS
πe

=
1

N

N∑
n=1

T∑
t=0

γtρ
(n)
0:t r

(n)
t ; ρ

(n)
0:t =

t∏
t′=0

πc
e(a

(n)
t′ |c

(n)
t′ )

πc
b(a

(n)
t′ |c

(n)
t′ )

Concept-based variants of IS replace the traditional IS ratio with one that leverages the concept ct at163
time t instead of the state st. This enables customized evaluations for various concept types, such as:164
1) subgroups with similar short-term outcomes, 2) cases with comparable state-visitation densities,165
and 3) subjects with high-variance transitions. Details on selecting concept types are provided in166
Supplementary Material B.167

5 Concept-based OPE under Known Concepts168

We first consider the scenario where the concepts are known apriori using domain knowledge and169
human expertise. These concepts must satisfy the desiderata defined in Supplementary Material A.170

5.1 Theoretical Analysis of Known Concepts171

In this subsection, we discuss the theoretical guarantees of OPE under known concepts. We make172
the completeness assumption where every action of a particular state has a non-zero probability of173
appearing in the batch data. When this assumption is satisfied, we obtain unbiasedness and lower174
variance when compared with traditional estimators. Proofs follow in Supplementary Material D.175
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Assumption 5.1 (Completeness). ∀s ∈ S,a ∈ A, if πb(a|s), πc
b(a|c) > 0 then πe(a|s), πc

e(a|c) > 0.176

This assumption states that if an action appears in the batch data with some probability, it also has a177
chance of being evaluated with some probability.178

Assumption 5.2. ∀s ∈ S, a ∈ A, |πc
e(a|c) − πe(a|s)| < β and |πc

b(a|c) − πb(a|s)| < β. This179
assumption states that for all states s, the policies conditioned on concepts are allowed to differ from180
the state policies by atmost β, which is defined by the practitioner.181

This assumption constrains concept-based policies to be close to state-based policies, with a maximum182
allowable difference of β, defined by the practitioner. This is to ensure that the evaluation policy183
πc
e under concepts is reflective of the original policy πe. If the practitioner is confident in the184

state representation, they may set a lower β to find concepts that align closely with state policies.185
Conversely, a higher β allows for more deviation between concept and state policies.186

Theorem 5.3 (Bias). Under known-concepts, when assumption 5.1 holds, both V̂ CIS
πe

and V̂ CPDIS
πe

187
are unbiased estimators of the true value function Vπe .188

Theorem 5.4 (Variance comparison with traditional OPE estimators). When Cov(ρc0:trt, ρ
c
0:krk) ≤189

Cov(ρ0:trt, ρ0:krk), the variance of known concept-based IS estimators is lower than traditional190
estimators, i.e. Vπb

[V̂ CIS ] ≤ Vπb
[V̂ IS ], Vπb

[V̂ CPDIS ] ≤ Vπb
[V̂ PDIS ].191

As noted in Jiang & Li (2016), the covariance assumption across timesteps is crucial yet challenging192
for OPE variance comparisons. Concepts being interpretable allows a user to design policies which193
align with this assumption, thereby reducing variance. We also compare concept-based estimators to194
the MIS estimator, the gold standard for minimizing variance via steady-state distribution ratios.195

Theorem 5.5 (Variance comparison with MIS estimator). When Cov(ρc0:trt, ρ
c
0:krk) ≤196

Cov(d
πe (st,at)

dπb (st,at)
rt,

dπe (sk,ak)
dπb (sk,ak)

rk), the variance of known concept-based IS estimators is lower than197

the Variance of MIS estimator, i.e. Vπb
[V̂ CIS ] ≤ Vπb

[V̂MIS ], Vπb
[V̂ CPDIS ] ≤ Vπb

[V̂MIS ].198

Finally, we evaluate the CR-bounds on the MSE and quantify the tightness achieved using concepts.199

Theorem 5.6 (Confidence bounds for Concept-based estimators). The Cramer-Rao bound on the200
Mean-Square Error of CIS and CPDIS estimator under known-concepts is tightened by a factor of201
K2T , where K is the ratio of the cardinality of the concept-space and state-space.202

With limited samples, certain relevant states are underrepresented in the behavior policy, leading to a203
low πb(.|s) and corresponding high IS ratio. However, an alternative state s′ in the data may closely204
resemble s (e.g., similar blood pressure values). Thus, even if s is missing, it can be characterized by205
s′ through the concept function ϕ(s′), as ϕ(s) ≈ ϕ(s′). Consequently, while πb(.|s) is low, πc

b(.|s) is206
higher, as s is effectively represented via s′. This reduces the IS ratio in concept space and tightens207
the overall bounds.208

5.2 Experimental Setup and Metrics209

Environments: We consider a synthetic domain: WindyGridworld and the real world MIMIC-III210
dataset for acutely hypotensive ICU patients as our experiment domains for the rest of the paper.211

WindyGridworld: The goal is to reach the top-right corner of the grid. The states are defined by212
the 2D co-ordinates, and actions are directions up, down, left, right. We (as human experts) define213
a concept ct = ϕ(distance to target,wind) as a function of the distance to the target and the wind214
acting on the agent at a given state. This concept can take 25 unique values, ranging from 0 to 24.215
For example: ct = 0 when distance to target ∈ [15, 19] × [15, 19] and wind = [0, 0]. The first and216
second co-ordinates represent the horizontal and vertical features respectively. Detailed description217
of known concepts in Supplementary Material G.218

MIMIC: The goal is to treat and manage hypotensive patients. The state space consists of the physio-219
logical quantities of the patient while actions correspond to quantities of IV-fluids and vasopressors.220
Concepts ct ∈ Z15 are a function of 15 different vital signs (interpretable features) of a patient221
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at a given timestep. The vital signs considered are: Creatinine, FiO2, Lactate, Partial Pressure of222
Oxygen (PaO2), Partial Pressure of CO2, Urine Output, GCS score, and electrolytes such as Calcium,223
Chloride, Glucose, HCO3, Magnesium, Potassium, Sodium, and SpO2. Each vital sign is binned into224
10 discrete levels, ranging from 0 (very low) to 9 (very high).225

For example, a patient with the concept representation [0, 2, 1, 1, 2, 0, 9, 5, 2, 0, 6, 2, 1, 5, 9] shows226
the following conditions: acute kidney injury-AKI (very low creatinine), severe hypoxemia (very low227
PaO2), metabolic alkalosis (very high SpO2), and critical electrolyte imbalances (low potassium and228
magnesium), along with severe hypoglycemia. The normal GCS score indicates preserved neurologi-229
cal function, but over-oxygenation and potential respiratory failure are likely. The combination of230
anuria, AKI, and hypoglycemia points strongly toward hypotension or shock as underlying causes.231

Policy descriptions: In the case of WindyGridworld, we run a PPO Schulman et al. (2017) algorithm232
for 10k epochs and consider the evaluation policy πe as the policy at epoch 10k, while the behavior233
policy πb is taken as the policy at epoch 5k. For the MIMIC case, we generate the behavior234
policy πb by running an Approximate Nearest Neighbors algorithm with 200 neighbors, using235
Manhattan distance as the distance metric. The evaluation policy πe involves a more aggressive use236
of vasopressors (10% more) compared to the behavior policy. See Supplementary Material F for237
further details.238

Metrics: In the case of the synthetic domain, we measure bias, variance, MSE, and the effective239
sample size (ESS) to assess the quality of our concept-based OPE estimates. The ESS is defined as240

N × Vπe [V̂
on−policy
πe

]

Vπb
[V̂πe ]

, where N is the number of trajectories in the off-policy data, and V̂ on−policy
πe

241

and V̂πe are the on-policy and OPE estimates of the value function, respectively. For MIMIC, where242
the true on-policy estimate is unknown due to the unknown transition dynamics and environment243
model, we only consider variance as the metric. Additionally, we compare the Inverse Propensity244
scores (IPS) under concepts and states to better underscore the reasons for variance reduction.245

5.3 Results and Discussion246

Good concept-based estimators demonstrate reduced variance, improved ESS, and lower MSE247
compared to traditional estimators, although they come with slightly higher bias. Figure 2248
compares known-concept and traditional OPE estimators. We observe a consistent reduction in249
variance and an increase in ESS across all sample sizes for the concept-based estimators. Although250
our theoretical analysis suggests that known-concept estimators are unbiased in the asymptotic case,251
practical results indicate some bias due to finite sample size. While unbiased estimates are generally252
preferred, they can lead to higher errors when the behavior policy does not cover all states. This253
issue is especially pronounced in limited data settings, which are common in medical applications.254
Despite this bias-variance trade-off, the MSE for concept-based OPE estimators shows a 1-2 order255
of magnitude improvement over traditional estimators due to significant variance reduction. In the256
real-world MIMIC example, concept-based estimators exhibit a variance reduction of one order of257
magnitude compared to traditional OPE estimators. This shows that characterizing diverse states,258
such as varying grid world positions or patient vital signs, in terms of shared concepts based on259
common attributes, improves OPE characterization.260

The frequency of higher IPS scores is reduced in good concepts compared to states. Figure 2c261
compares IPS scores in good concept and state estimators. We observe, the frequency of lower IPS262
scores is higher under concepts as opposed to states. This indicates the source of variance reduction263
in Concept-based OPE lies in the lowering of the IPS scores, which is also backed theoretically in264
Theorem 5.4 when the rewards rt equal 1.265

Imperfect concepts baseline: While known concepts display superior OPE performance, in real266
world scenarios, concepts are often poorly described. We thus, perform an experiment where the267
concepts known but poor and study the resulting OPE performance. For Windygridworld, we define268
concepts as functions solely of the horizontal distance to the target. This approach neglects critical269
information such as vertical distance to the target, wind effects, and region penalties. As a result,270
these concepts violate one of the primary desiderata: diversity. By capturing only one important271
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(a) Windy Gridworld: Known Concepts

(b) MIMIC: Known Concepts (c) IPS frequency comparison

Figure 2: Known Concepts. (a) Windy Gridworld: Concept-based estimators with good concepts have lower
variance and MSE, and higher ESS compared to traditional OPE estimators, with a higher bias. For poor
concepts, we observe the OPE performance to be poor across all metrics compared to traditional estimators. (b)
MIMIC: Good Concept-based estimators have lower variance compared to traditional OPE estimators, while poor
concepts have higher variance. (c) Under good concepts, the frequency of high IPS scores is lower compared to
traditional estimators, whereas for poor concepts, the frequency is higher across both domains. This indicates
the source of variance reduction in good concept estimators lies in the lowered IPS scores.

concept dimension while disregarding others, these poor concepts fail to represent the full complexity272
of the environment.273

Poor concepts exhibit inferior OPE characteristics across all metrics. From figures 2a and 2b, we274
observe that poor concepts exhibit higher bias, variance, and MSE, along with lower ESS, compared275
to traditional OPE estimators. Additionally, figure 2c shows an increased frequency of high IPS scores276
for poor concepts. This demonstrates that not all concept-based estimators improve performance;277
their quality is crucial and depends on the desiderata they satisfy. It also underscores the need for an278
algorithm that learns concepts with favorable OPE characteristics, particularly in complex domains or279
scenarios with imperfect experts. We explore this in the next section. Nonetheless, poor concepts still280
allow for interventions, as their impact on OPE metrics can be systematically analyzed and addressed.281

6 Concept-based OPE under Unknown Concepts282

While domain knowledge and predefined concepts can enhance OPE, in real-world situations concepts283
are typically unknown. In this section, we address cases where concepts are unknown and must be284
estimated. We learn a parametric representation of concepts via CBMs, which initially may not meet285
the required desiderata. This section introduces a methodology to optimize parameterized concepts286
to meet explicitly these desiderata, alongside improving OPE metrics like variance.287

Learning concepts that characterize relevant trajectory information. Algorithm 1 outlines the288
training methodology. We split the batch of trajectoriesD into training trajectories Ttrain and evaluation289
trajectories TOPE, with the evaluation policy πe, the behavior policy πb, and an OPE estimator (e.g.290
CIS/CPDIS) known beforehand. We aim to learn our concepts using a CBM parameterized by θ. The291
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Algorithm 1 Unknown Concept-based Off Policy Evaluation

Require: Trajectories {Ttrain,TOPE}, Policies {πe, πb}, OPE Estimator.
Ensure: CBM θ, concept policies π̃c {θb, θe}

Loss terms: {Loutput, Linterpretability, Ldiversity, LOPE-metric, Lpolicy}= 0
1: while Not Converged do
2: for trajectory in Ttrain do
3: for (s, a, r, s′, o) in trajectory do ▷ Choices for o: s′ (Next state) / r (Next reward)

4: c′, o′ ← CBM(s) ▷ CBM predicts concept c′ and output label o′

5: Loutput += Coutput(o, o
′) ▷ Eg: MSE/Cross-entropy between true next state and predicted next state

6: Linterpretability += Cinterpretability(c
′) ▷ Eg: L1-loss over weights

7: Ldiversity += Cdiversity(c
′) ▷ Eg: Cosine distance between sub-concepts

8: Lpolicy += Cpolicy(c
′) ▷ Eg: MSE/Cross-entropy between predicted logits and true logits in Assn 5.2

9: end for
10: end for
11: Returns← Estimator(Ttrain, πe, πb,CBM) ▷ Eg: CIS/CPDIS

12: Loss(θ, θb, θe) = Loutput + Linterpretability + Ldiversity + COPE-metric(Returns) ▷ Eg: Variance

13: Gradient Descent on {θ, θb, θe} using Loss(θ, θb, θe)
14: end while
15: Return Concept OPE Returns← OPE Estimator(TOPE, πe, πb, CBM)

CBM maps states to outputs through an intermediary concept layer. In this work, the output o is the292
next state, indicating that the bottleneck concepts capture transition dynamics. Other possible outputs293
could include short-term rewards, long-term returns, or any user-defined information of interest294
present in the batch data. In addition to learning concepts, we also learn parameterized concept295
policies π̃c which maps concepts to actions parameterized by θb, θe for πb, πe respectively.296

Optimizing concepts for variance reduction in OPE. For each transition tuple (s, a, r, s′), the297
CBM computes a concept vector c′ and an output o′. Since the concepts are initially unknown, they298
do not inherently satisfy the concept desiderata and must be learned through constraints. Lines 5-7299
impose soft constraints on the concepts to meet these desiderata using loss functions. The losses300
are updated based on output, interpretability, and diversity, with MSE used for Coutput, L1 loss for301
Cinterpretability, and cosine distance for Cdiversity. In Line 8, we constrain the difference between the302
concept policies and the original policies to satisfy Assumption 5.2. For our experiments, we take303
maximum allowable difference β = 0, however a user can choose a different value to allow for304
more deviation in the concept policies π̃c and original policies π. In line 11, we evaluate the OPE305
estimator’s returns based on the concepts at the current iteration with metrics like variance. The306
aggregate loss, Loss(θ), guides gradient descent on CBM parameters θ. Finally, the OPE estimator is307
applied to TOPE using learned concepts, yielding concept-based OPE returns. Integrating multiple308
competing loss components makes this problem complex, and, to our knowledge, this is the first309
approach that incorporates the OPE metric directly into the loss function.310

6.1 Theoretical Analysis of Unknown Concepts311

The theoretical implications mainly differ in the bias, consequently MSE and their Confidence bounds312
on moving from known to unknown concepts, as analyzed below. Proofs are listed in Supplementary313
material E.314

Theorem 6.1 (Bias). Under Assumptions 5.1, 5.2, the unknown concept-based estimators are biased.315
The change of measure theorem from probability distributions πb to πc

b is not applicable on moving316
from known to unknown concepts, leading to bias. In the special case where πc

b(.|ct) = πb(.|st), the317
estimator is unbiased.318

Theorem 6.2 (Variance comparison with traditional OPE estimators). Under Assumption 5.2, when319
Cov(ρc0:trt, ρ

c
0:krk) ≤ Cov(ρ0:trt, ρ0:krk), the variance of concept-based IS estimators is lower320

than the traditional estimators, i.e. Vπb
[V̂ CIS ] ≤ Vπb

[V̂ IS ], Vπb
[V̂ CPDIS ] ≤ Vπb

[V̂ PDIS ].321
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(a) Windy Gridworld: Learned Concepts

(b) MIMIC: Learned Concepts (c) IPS frequency comparison

Figure 3: Learned Concepts. (a-b) Windy Gridworld and MIMIC: In both environments, we see a reduction in
variance in learned concepts compared to both traditional and known concept estimators, at a cost of higher bias.
(c) The frequency of high IPS scores is lower for learned concepts compared to traditional and known concept
estimators. This indicates our proposed algorithm learns alternative concepts which further reduce variance.

Theorem 6.3 (Variance comparison with MIS estimator). Under Assumption 5.2, when322
Cov(ρc0:trt, ρ

c
0:krk) ≤ Cov(d

πe (st,at)
dπb (st,at)

rt,
dπe (sk,ak)
dπb (sk,ak)

rk), like known concepts, the variance is lower323

than the Variance of MIS estimator, i.e. Vπb
[V̂ CIS ] ≤ Vπb

[V̂MIS ], Vπb
[V̂ CPDIS ] ≤ Vπb

[V̂MIS ].324

Similar to known concepts, when the covariance assumption is satisfied, even unknown concept-based325
estimators can provide lower variances than traditional and MIS estimators. In known concepts326
however, this assumption has to be satisfied by the practitioner, whereas in unknown concepts, this327
assumption can be used as a loss function in our methodology to implicitly reduce variance. (Line 12)328

Theorem 6.4 (Confidence bounds for Concept-based estimators). The Cramer-Rao bound on the329
Mean-Square Error of CIS and CPDIS estimator loosen by ϵ(|Eπc

e
[V̂πe ]|2), under unknown concepts330

over known-concepts. Here, Eπc
e
[V̂πe ] is the on-policy estimate of concept-based IS (PDIS) estimator.331

The confidence bounds of unknown concepts mirror that of known-concepts, with the addition of332
the bias term whose maximum value is the true on-policy estimate of the estimator. This is typically333
unknown in real-world scenarios and requires additional domain knowledge to mitigate.334

6.2 Experimental setup335

Environments, Policy descriptions, Metrics: Same as those in known concepts section.336

Concept representation: In both examples, we use a 4-dimensional concept ct ∈ R4, where each337
sub-concept is a linear weighted function of human-interpretable features f , i.e., cit = w · f(st), with338
w optimized as previously discussed. Detailed descriptions of the features and optimized concepts339
after CBM training are provided in Supplementary material H. For MIMIC, features f are normalized340
vital signs, as threshold information for discretization is unavailable. In brevity of space, we move341
the training and hyperparameter details to Supplementary material G.342
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6.3 Results and Discussion343

Learned concepts using Algorithm 1 yield improvements across all metrics except bias compared344
to traditional OPE estimators. Significant improvements in variance, MSE, and ESS are observed345
for the Windy Gridworld and MIMIC datasets, with gains of 1-2 and 2-3 orders of magnitude,346
respectively. This improvement is due to our algorithm’s ability to identify concepts that satisfy the347
desiderata, including achieving variance reduction as specified in line 12 of the algorithm. However,348
like known concepts, optimized concepts show a higher bias than traditional estimators. This is349
because, unlike variance, bias cannot be optimized in the loss function without the true on-policy350
estimate, which is typically unavailable in real-world settings. As a result, external information may351
be essential for further bias reduction.352

Learned concepts yield improvements across all metrics besides bias over353
known concept estimators. From Fig 3a,3b, we observe that our methodology improves354
variance, MSE, and ESS by 1–2 orders of magnitude compared to known concepts. This suggests our355
algorithm can learn concepts that outperform human-defined ones in OPE metrics. Fig 3c further356
supports this, showing a lower frequency of high IPS scores for learned concepts than for known357
ones. This indicates our algorithm discovers novel concepts that satisfy concept desiderata in Section358
A while enhancing OPE characteristics, particularly variance. Such capability is valuable in domains359
with imperfect experts or complex real-world settings where perfect expertise is unattainable.360
However, these learned concepts introduce higher bias, as the training algorithm prioritizes variance361
reduction over bias minimization. This could be mitigated by regularizing variance during training.362

Learned concepts are interpretable, show conciseness and diversity. We list the optimized363
concepts in Supplementary material H. These concepts exhibit sparse weights, enhancing their con-364
ciseness, with significant variation in weights across different dimensions of the concepts, reflecting365
diversity. This work focuses on linearly varying concepts, but more complex concepts, such as366
symbolic representations (Majumdar et al., 2023), could better model intricate environments.367

7 Interventions on Concepts for Insights on Evaluation368

Concepts provide interpretations, allowing practitioners to identify sources of variance—an advantage369
over traditional state abstractions like Pavse & Hanna (2022a). Concepts also clarify reasons behind370
OPE characteristics, such as high variance, enabling corrective interventions based on domain371
knowledge or human evaluation. We outline the details of performing interventions next.372

7.1 Methodology373

Given trajectory history ht and concept ct, we define cintt as the intervention (alternative) concept374
an expert proposes at time t. We define criteria κ : (ht, ct)→ {0, 1} as a function constructed from375
domain expertise that takes in (ht, ct) as input and outputs a boolean value. This criteria function376
determines whether an intervention needs to be conducted over the current concept ct or not. For e.g.,377
if a practitioner has access to true on-policy values, he/she can estimate which concepts suffer from378
bias. If a concept doesn’t suffer from bias, the criteria κ(ht, ct) = 1 is satisfied and the concept is not379
intervened upon, else κ(ht, ct) = 0 and the intervened concept cint

t is used instead. The final concept380
c̃t is then defined as: c̃t = κ(ht, ct) · ct + (1− κ(ht, ct)) · cint

t . Under the absence of true on-policy381
values, the practitioner may chose to intervene using a different criteria instead.382

We define criteria κ for our experiments as follows. In gridworld, we assume access to oracle concepts,383
listed in Supp. Material G. When the learned concept ct matches the true concept, κ(ht, ct) = 1,384
otherwise 0. In MIMIC, the interventions are based on a patient’s urine output at a specific timestep385
with κ(ht, ct) = 1 when urine output > 30 ml/hr, and 0 otherwise. Performing interventions based386
on urine output enables us to assess the role of kidney function in hypotension management. In this387
work, we consider 3 possible intervention strategies either based on states or domain knowledge.388

Interventions that replace concepts with state representations and state-based policies. We intervene389
on the concept with the state and use policies dependent on state to perform OPE, i.e cint

t = st,390
πc
e(at|c̃t) = πe(at|st), πc

b(at|c̃t) = πb(at|st). This can be thought of as a comparative measure a391
practitioner can look for between the concept and the state representations.392
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(a) Oracle Concepts (b) Learned Concepts (c) Baseline: State Abstraction (d) MIMIC- Urine Output

Figure 4: Interpretations of learned concepts. Windy Gridworld: Fig 4a and 4b compare true oracle concepts
with learned concepts derived from the proposed methodology. We observe a deviation between learned and
oracle concepts (circled in red), identifying potential interventions. We compare our learnt concepts with a state
abstraction baseline in Fig 4c obtained using K-means clustering. We observe the clusters to significantly differ
from both oracle and optimized concepts, underscoring the meaningfulness of learned concepts. MIMIC: From
Fig 4d, we observe patients with low urine output exhibit greater variance in learned concepts compared to
high-output patients, revealing potential intervention targets.

Interventions that replace concepts with state representations and maximum likelihood estimator393
(MLE) of state-based policies. We replace the erroneous concept with the corresponding state and use394
the MLE of the state conditioned policy to perform OPE, i.e cint

t = st, πc
e(at|c̃t) =MLE(πe(at|st)),395

πc
b(at|c̃t) =MLE(πb(at|st)). This can be thought of as a comparative measure a practitioner can396

look for between the concept and states, while priortizing over the most confident action.397

Interventions using a qualitative concept while retaining concept-based policies. In this approach,398
a human expert replaces the concept using external domain knowledge. This is similar to Tang &399
Wiens (2023), where the authors augment the dataset with counterfactual annotations to improve400
sample efficiency in regions where the coverage is low. However, while Tang & Wiens focus on401
quantitative counterfactual annotations in the state representation, we employ human interventions to402
qualitatively edit concepts. In case of gridworld, we consider the oracle concepts as our qualitative403
concept, while for MIMIC, we consider the learnt CPDIS estimator as qualitative concept while404
intervening on CIS estimator.405

7.2 Results and Interpretations from Interventions on learned concepts406

We interpret the optimized concepts in Fig.4. In the gridworld environment, we compare the407
ground-truth concepts with the optimized ones and observe two additional concepts predicted in408
the bottom-right region. This likely stems from overfitting to reduce variance in the OPE loss,409
suggesting a need for inspection and possible intervention. Additionally, we compare our clusters410
with state-abstraction baseline (clustering in the state-space), and observe the clusters to be widely411
different from the learnt concepts. In MIMIC, prior studies indicate that patients with urine output412
above 30 ml/hr are less susceptible to hypotension than those with lower output Kellum & Prowle413
(2018); Singer et al. (2016); Vincent & De Backer (2013). Using this, we analyze patient trajectories414
and find that lower urine output correlates with higher variance, while higher output corresponds to415
lower variance. This insight helps identify patients who may benefit from targeted interventions.416

Interpretable concepts allow for targeted interventions that further enhance OPE estimates.417

Using qualitative interventions, we observe a reduction in bias and, consequently, MSE in WindyGrid-418
world. This occurs because replacing erroneous concepts with oracle concepts introduces previously419
missing on-policy information during the optimization of unknown concepts, while preserving the420
order of variance and ESS estimates. Similarly, in MIMIC, intervening on states with low urine421
output reduces variance by 1–2 orders of magnitude. This is further supported by the decreased422
frequency of high IPS scores after intervention, as shown in Figure 5c.423
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(a) Windy Gridworld: Interventions

(b) MIMIC: Interventions

(c) MIMIC: IPS frequency comparison

Figure 5: Interventions. (a-b) Qualitative interventions reduce bias in the learned concept estimator in Windy
Gridworld and lower variance in MIMIC. In contrast, interventions based on traditional state-based policies
π(.|s) reduce bias and MSE compared to non-intervened concepts in Gridworld but are outperformed by
qualitative interventions. (c) The frequency of high IPS scores decreases after applying qualitative interventions.
Furthermore, π(.|s)-based interventions exhibit a higher frequency of IPS scores before intervention, indicating
that not all strategies are equally effective.

Not all interventions improve Concept OPE characteristics and should be used at the prac-424
titioner’s discretion. We analyze OPE after applying interventions using traditional state-based425
policies, π(.|s). In gridworld, state-based interventions increase bias and MSE compared to qualita-426
tive ones, while in MIMIC, they lead to higher variance. This occurs because traditional state policies427
(πb and πe) fail to compensate for the lack of on-policy information, undermining the advantages428
of concept-based policies (πc

b and πc
e). In contrast, qualitative interventions—oracle concepts in429

WindyGridworld or urine output thresholds in MIMIC—retain these benefits and effectively address430
domain-specific challenges. Additionally, as shown in Figure 5c, π(.|s)-based interventions result in431
a higher frequency of both low and high IPS scores. However, since the effect of high IPS scores432
dominates, OPE variance increases compared to non-intervened OPE. Nevertheless, this framework433
allows practitioners to inspect and select among alternative interventions as needed.434

8 Conclusions, Limitations and Future Work435

We introduced a new family of concept-based OPE estimators, demonstrating that known-concept436
estimators can outperform traditional ones with greater accuracy and theoretical guarantees. For437
unknown concepts, we proposed an algorithm to learn interpretable concepts that improve OPE438
evaluations by identifying performance issues and enabling targeted interventions to reduce variance.439
These advancements benefit safety-critical fields like healthcare, education, and public policy by440
supporting reliable, interpretable policy evaluations. By reducing variance and providing policy441
insights, this approach enhances informed decision-making, facilitates personalized interventions,442
and refines policies before deployment for greater real-world effectiveness. A limitation of our work443
is trajectory distribution mismatch when learning unknown concepts, particularly in low-sample444
settings, which can lead to high-variance OPE. Targeted interventions help mitigate this issue. We445
also did not address hidden confounding variables or potential CBM concept leakage, focusing446
instead on evaluation. Future work will address these challenges and extend our approach to more447
general, partially observable environments.448
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Ričards Marcinkevičs, Sonia Laguna, Moritz Vandenhirtz, and Julia E Vogt. Beyond concept550
bottleneck models: How to make black boxes intervenable? arXiv preprint arXiv:2401.13544,551
2024.552

Anton Matsson and Fredrik D. Johansson. Case-based off-policy policy evaluation using prototype553
learning, 2021. URL https://arxiv.org/abs/2111.11113.554

S A Murphy, M J van der Laan, J M Robins, and Conduct Problems Prevention Research Group.555
Marginal mean models for dynamic regimes. Journal of the American Statistical Association, 96556
(456):1410–1423, 2001. DOI: 10.1198/016214501753382327. URL https://doi.org/10.557
1198/016214501753382327. PMID: 20019887.558

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of559
discounted stationary distribution corrections, 2019.560

Cosmin Paduraru. Off-policy evaluation in Markov decision processes. PhD thesis, 2013.561

Konstantinos P Panousis, Dino Ienco, and Diego Marcos. Hierarchical concept discovery models: A562
concept pyramid scheme. arXiv preprint arXiv:2310.02116, 2023.563

Brahma S. Pavse and Josiah P. Hanna. Scaling marginalized importance sampling to high-dimensional564
state-spaces via state abstraction, 2022a.565

Brahma S. Pavse and Josiah P. Hanna. Scaling marginalized importance sampling to high-dimensional566
state-spaces via state abstraction, 2022b. URL https://arxiv.org/abs/2212.07486.567

Achim Peine, Andreas Hallawa, Jan Bickenbach, Peter Sidler, Andreas Markewitz, Alexandre568
Levesque, Jeremy Levesque, and Nils Haake. Development and validation of a reinforcement569
learning algorithm to dynamically optimize mechanical ventilation in critical care. npj Digital570
Medicine, 4(1):32, 2021. DOI: 10.1038/s41746-021-00388-6.571

Doina Precup, Richard S. Sutton, and Satinder P. Singh. Eligibility traces for off-policy policy572
evaluation. In Proceedings of the Seventeenth International Conference on Machine Learning,573
ICML ’00, pp. 759–766, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN574
1558607072.575

Yoshihide Sawada and Keigo Nakamura. Concept bottleneck model with additional unsupervised576
concepts. IEEE Access, 10:41758–41765, 2022.577

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy578
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.579

Simon P Shen, Yecheng Ma, Omer Gottesman, and Finale Doshi-Velez. State relevance for off-policy580
evaluation. In International Conference on Machine Learning, pp. 9537–9546. PMLR, 2021.581

15

https://arxiv.org/abs/2303.07009
https://arxiv.org/abs/2111.11113
https://doi.org/10.1198/016214501753382327
https://doi.org/10.1198/016214501753382327
https://doi.org/10.1198/016214501753382327
https://arxiv.org/abs/2212.07486
https://arxiv.org/abs/1707.06347


Under review for RLC 2025, to be published in RLJ 2025

Mervyn Singer, Clifford S. Deutschman, Christopher W. Seymour, et al. The third international582
consensus definitions for sepsis and septic shock (sepsis-3). JAMA, 315(8):801–810, 2016. DOI:583
10.1001/jama.2016.0287.584

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.585

Shengpu Tang and Jenna Wiens. Counterfactual-augmented importance sampling for semi-offline586
policy evaluation, 2023. URL https://arxiv.org/abs/2310.17146.587

Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement588
learning. In International Conference on Machine Learning, pp. 2139–2148. PMLR, 2016.589

Masatoshi Uehara, Jiawei Huang, and Nan Jiang. Minimax weight and q-function learning for590
off-policy evaluation, 2020.591

Jean-Louis Vincent and Daniel De Backer. Circulatory shock. New England Journal of Medicine,592
369(18):1726–1734, 2013. DOI: 10.1056/NEJMra1208943.593

Carissa Wu, Sonali Parbhoo, Marton Havasi, and Finale Doshi-Velez. Learning optimal summaries594
of clinical time-series with concept bottleneck models. In Machine Learning for Healthcare595
Conference, pp. 648–672. PMLR, 2022.596

Tengyang Xie, Yifei Ma, and Yu-Xiang Wang. Towards optimal off-policy evaluation for reinforce-597
ment learning with marginalized importance sampling. Advances in neural information processing598
systems, 32, 2019.599

Ruiyi Zhang, Bo Dai, Lihong Li, and Dale Schuurmans. Gendice: Generalized offline estimation of600
stationary values, 2020a.601

Shangtong Zhang, Bo Liu, and Shimon Whiteson. Gradientdice: Rethinking generalized offline602
estimation of stationary values, 2020b.603

16

https://arxiv.org/abs/2310.17146

