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Summary
We consider the generalized movers’ problem i.e. finding any path that moves an object

to a desired goal while avoiding collisions. Even relaxing optimality requirements, the any-
path problem is computationally challenging. Namely, exponential in the degrees of freedom
of the object. Due to the curse of dimensionality, applying traditional search algorithms to
the discretized state space becomes infeasible as the state space grows. This motivated the
use of sampling-based methods. These sampling-based methods are tabula rasa and require
complete re-learning on each problem instance. Existing learning-based methods that attempt
to leverage shared structure aim to handle arbitrary changes in the environment. Often, this
still requires a significant number of samples and / or expert demonstrations. In practice, many
robotics applications or UAV routing do not need to handle these pathological cases, where
the environment undergoes drastic change. Rather, they must only be able to avoid a sudden
obstacle while their route remains largely unchanged. We allow pre-training in an obstacle
free environment and show that combining contrastive reinforcement learning with classical
game-inspired search algorithms enables zero shot performance to unseen obstacles.

Contribution(s)
1. Propose formulation for the motion-planning problem that allows pre-training in an obstacle

free simulator.
Context: Existing motion planning (Garrett et al., 2020) focuses on solving planning
problems tabula rasa. Learning-based approaches typically require expert demonstrations
or many sample problem configurations Tamar et al. (2016); Chen et al. (2019).

2. Propose initial combination of combining contrastive reinforcement learning Eysenbach
et al. (2023) and gumbel monte-carlo tree search Danihelka et al. (2022) to show the poten-
tial for pre-training in an obstacle free environment.
Context: Recent advancements in goal-conditioned reinforcement learning Eysenbach
et al. (2023) enabled learning goal reaching policies for robotics systems with a high num-
ber of degrees of freedom. Combining with search, is a promising avenue for path planning
with obstacles.
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Abstract
We consider the generalized movers’ problem i.e. finding any path that moves an object1
to a desired goal while avoiding collisions. Even relaxing optimality requirements, the2
any-path problem is computationally challenging. Namely, exponential in the degrees3
of freedom of the object. Due to the curse of dimensionality, applying traditional search4
algorithms to the discretized state space becomes infeasible as the state space grows.5
This motivated the use of sampling-based methods. These sampling-based methods6
are tabula rasa and require complete re-learning on each problem instance. Existing7
learning-based methods that attempt to leverage shared structure aim to handle arbitrary8
changes in the environment. Often, this still requires a significant number of samples9
and / or expert demonstrations. In practice, many robotics applications or UAV routing10
do not need to handle these pathological cases, where the environment undergoes drastic11
change. Rather, they must only be able to avoid a minor mismatch with the training12
environment while their route remains largely unchanged. We allow pre-training in an13
obstacle free environment and show that combining contrastive reinforcement learning14
with classical game-inspired search algorithms enables zero shot performance to unseen15
obstacles.16

1 Introduction17

The generalized movers’ motion-planning problem (Lozano-Pérez & Wesley, 1979) aims to find18
any path that moves an object to a desired goal while avoiding collisions. The problem has a wide19
range of applications, including self-driving (Teng et al., 2023), robotics (LaValle, 2006; Kunchev20
et al., 2006; Orthey et al., 2023), and UAVs (Quan et al., 2020). Due to the curse of dimensionality,21
traditional path-planning such as A∗ (Hart et al., 1968) becomes infeasible as any-path-motion-22
planning is exponential in the degrees of freedom (Kozen & Yap, 1985) and shortest-path is NP-23
hard Canny & Reif (1987). If the obstacles are moving, then even the any-path problem is NP-24
hard and PSPACE-hard (Reif, 1979). Therefore, for high-dimensional problems, sampling based25
planning algorithms (Orthey et al., 2023) have become the standard in practice. Notably, traditional26
sampling-based algorithms (Williams et al., 2016; Durrant-Whyte et al., 2012; Kavraki et al., 1996)27
are tabula rasa, meaning that they must find a suitable path from scratch for each new configuration.28
To remedy this, there has been substantial work on learning priors or policies to help guide the search29
(Zucker et al., 2008; Kim et al., 2017; Ichter et al., 2018; Huh & Lee, 2018). These methods rely on30
handcrafted features or expert demonstration and typically do not generalize to changes in obstacle31
configurations.32

Instead we observe that (1) many real world applications have access to a “map” of the deployment33
environment without obstacles and (2) these applications primarily require the agent to be able to34
avoid sparse obstacles. For example, robots in a factory setting need to avoid occasional humans in35
their path, or UAVs need to avoid a fallen tree. For these applications, the first observation motivates36
us to leverage advancements in unsupervised reinforcement learning, particulary, contrastive rein-37
forcement learning (Eysenbach et al., 2022). The second motivates us to avoid sample inefficient38
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trajectory based techniques and instead utilize heuristic based search methods common in reinforce-39
ment learning for games (Silver et al., 2017; 2018; Schrittwieser et al., 2020; Danihelka et al., 2022).40
This also provides the added advantages of these heuristics, such as support for stochastic / changing41
dynamics and non-stationary obstacles over time.42

1.1 Additional Related Work43

Model Predictive Control: Similar to our approach, in MPC they consider a finite time horizon44
to avoid the exponential explosion in the time horizon. Our method can be seen as using the goal45
conditioned value function as a surrogate cost (Lowrey et al., 2019). However, in traditional MPC,46
the optimization either has a closed form solution, or is differentiable and can perform gradient-47
based optimization. We do not assume differentiable dynamics and therefore are most similar to48
data-driven MPC, where they instead optimize with sampling based methods, such as (Williams49
et al., 2016; Durrant-Whyte et al., 2012). However, these methods cannot fully leverage pre-trained50
policies, so we suspect that they will be less sample efficient as we increase the degrees of freedom51
of the system.52

Goal-conditioned Planning: There has been a line of work concerned with using goal-conditioned53
reinforcement learning with a hierarchical planner (Nasiriany et al., 2019; Dubey et al., 2021; Chane-54
Sane et al., 2021), where in addition to a goal conditioned policy they learn a hierarchical planner55
to plan intermediate subgoals. These works still focus on the same environment and aim to solve56
the problem of horizon generalization (Park et al., 2025; Myers et al., 2025). Alternatively, in57
Eysenbach et al. (2019), they learn a goal-conditioned reinforcement learning to assign weights for58
use in Djikstra’s algorithm (Dijkstra, 1959). However, this relies on low-dimensionality much like59
the other previously discussed methods.60

Learning-based motion planning: One approach to leverage structure across planning problems is61
to learn a “work-space” conditioned policy (Tamar et al., 2016; Oh et al., 2017; Qureshi et al., 2019;62
Chen et al., 2019). Here, a work-space is a 2D birds-eye view of the environment. These methods63
can be seen as a representation learning methods, where they aim to jointly learn a representation64
for the workspace and a policy on this latent representation. The final policy is used to guide existing65
sampling-based motion-planning methods. These works require either expert demonstrations or be66
trained incrementally interpolating from pure sample-based methods.67

Model-based safe RL: Safe reinforcement learning (Gu et al., 2024) is primarily concerned with68
finding an optimal policy to a constrained MDP (Altman, 2021). Analogous to constrained opti-69
mization, this often consists of a primal-dual (Bai et al., 2022; Paternain et al., 2022) or trust region70
optimization (Achiam et al., 2017). More similar to our setting is model-based safe RL, where71
they use a model to plan over the unsafe states (Efroni et al., 2020; Thomas et al.). However, in72
this setting, the model is still over the training environment, and the training and implementation73
environments are the same, so they still recover a policy that they use without search.74

Unsupervised RL: Typically, unsupervised reinforcement learning consists of pre-training in a75
reward-free environment with the hope of accelerating fine-tuning on the downstream task. Early76
work aims to learn intrinsic rewards, which induce generally useful behavior (Pathak et al., 2017;77
Eysenbach et al., 2018; Pathak et al., 2019; Zhao et al., 2022). More related, recent work (Touati &78
Ollivier, 2021; Machado et al., 2023; Touati et al., 2023; Carvalho et al., 2024; Agarwal et al., 2024)79
is concerned with learning representations that linearly span all possible rewards. These methods80
usually are related to the successor representation (Dayan, 1993) and aim to provide more stable al-81
ternatives to successor features (Barreto et al., 2017; Borsa et al., 2018). Contrastive reinforcement82
learning (Eysenbach et al., 2022) can be seen as an unsupervised reinforcement learning algorithm.83
However, we immediately recover the goal-reaching policy without needing any additional learning84
on the downstream task.85
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Figure 1: Train environment without obstacles (left) vs. eval environment with obstacles (right).
Similar to MPC, we assume that the task is solvable by only observing a finite horizon. Therefore, we
are more concerned with the second configuration, which more closely models real-world changes.

2 Problem86

As previously discussed, as the state space grows (i.e. robots with a many degrees of freedom)87
tabula rasa motion-planning algorithms become computationally intractable. Due to this, we must88
allow for some inductive bias. In this work, we make the relaxation that the agent can undergo a pre-89
training phase, where they can learn in an environment without perfect knowledge of the downstream90
deployment configuration.91

Formally, we define the MDP problem studied in the paper below.92

Definition 2.1. (MDP) We define an MDP asM = ⟨S,A, p, p0, r, γ⟩, where S is the set of states,A93
is the set of actions, p : S ×A×S → [0, 1] are the transition dynamics, where p(s, a, s′) represents94
the probability of transitioning to state s′ given you are in state s and take action a, p0 : S → [0, 1]95
is the starting state distribution, r : S → R is reward function, and γ is the discount factor. We say96
the MDP is reward-free if it does not have a corresponding reward function.97

Definition 2.2. (Obstacle-MDP) Given a set of obstacles Sobs ⊂ S and an MDPM. The corre-98
sponding Obstacle-MDP is the MDPM = ⟨S,A, pobs, p0, r, γ⟩, where pobs are the same transition99
dynamics as p except all obstacles states s ∈ Sobs are now absorbing.100

Definition 2.3. (Goal-Parametrized Family of MDPs) Given a reward-free MDP M =101
⟨S,A, T , p0, γ⟩ the goal-parametrized family ofM is given by102

G(M) = {⟨S,A, p, p0, rg, γ⟩ | g ∈ S} ,

where the MDPs of the family only differ fromM in the reward function rg given by rg(s) = 1{s=g}103

Definition 2.4. (Goal-Obstacle-Parametrized Family of MDPs) Given a reward-free MDP M =104
⟨S,A, T , p0, γ⟩ the goal-obstacle-parametrized family ofM is given by105

GO(M) = {⟨S,A, pobs, p0, rg, γ⟩ | g ∈ S,Sobs ⊂ S} .

Goal-Conditioned Motion Planning Problem (GCMP): Given a reward-free MDPM, we want106
to find the policy π∗, such that107

π∗ = argmax
π

EM∈GO(M)[V
π
M ],

our first insight can be seen as taking the expectation over a particular distribution on GO(M). Note108
that we assume that the training and eval MDPs share the same dynamics outside of the states con-109
taining obstacles. This formalizes how we hope to cache goal-reaching policies for the downstream110
task. Intuitively, the goal-parametrized MDPs correspond to having a map of the environment,111
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Algorithm 1: CRL
Input: Critic parameters ψ, ϕ, policy parameters θ, reward-free MDPM
⟨S,A, p, p0, γ⟩ ←M
while not converged do

g ∼ p(g)
s0 ∼ p0
foreach environment step do

at ∼ πθ(st, g)
st+1 ∼ p(st, at)
D ← D ∪ (at, st, rt(st, at))

end
foreach gradient step do

ψ ← ψ − α∇ψLRL InfoNCE(fψ,ϕ(D))
ϕ← ϕ− α∇ϕLRL InfoNCE(fψ,ϕ(D))
θ ← θ − α∇θLπ(θ)

end
end

without obstacles, where the agent will live. The family additionally parametrized by obstacles112
represents the possible obstacle configurations the agent may encounter when deployed in the real113
world. This is seen in Figure 1, where the goal-parametrized MDP is given by the left gridworld114
environment, showing two possible goals without obstacles. On the right, are examples of possible115
obstacle configurations.116

3 Methodology117

3.1 Preliminaries118

First, we must discuss the key methods underlying our approach.119

Goal-Conditioned RL: In goal conditioned reinforcement learning (Liu et al., 2022), one aims120
to solve the multi-task reinforcement learning problem (Schaul et al., 2015; Borsa et al., 2016;121
Vithayathil Varghese & Mahmoud, 2020) where tasks refer to reaching states in the environment.122
As presented in Eysenbach et al. (2022), goal-conditioned RL can be seen as RL with the reward123
function124

rg(st, at) = (1− γ)p(st+1 = g | st, at).

Contrastive RL: In traditional contrastive learning (Gutmann & Hyvärinen, 2010; Ma & Collins,125
2018; Oord et al., 2019), one tries to learn the underlying data distribution by learning to distinguish126
between positive (true) and negative (arbitrarily) generated samples. Explicitly, given distribution of127
pX (x), pY(y) over data x ∈ X , y ∈ Y and the conditional distribution of positive pairs pY|X (y | x)128
over X × Y , the InfoNCE loss (Oord et al., 2019) is129

LInfoNCE(f) = Ex∼pX (x),y+∼pY|X (y|x)
y−1:N∼pY(y)

[
log

ef(x,y
+)∑N

i=1 e
f(x,y−i )

]
. (1)

The key insight in Eysenbach et al. (2022) is that we can learn a goal-reaching policy by maximizing130
the probablity of reaching the goal under the discounted state occupancy measure (Puterman, 1994;131
Sutton et al., 1999), where the discounted state occupancy measure is given by132

pπ(s+ | s, a) = (1− γ)
∞∑
t=1

γt−1pπt (s
+ | s, a).

4



RLJ | RLBRew Workshop @ RLC 2025

Algorithm 2: Gumbel :: Selection

Input: policy πθ, value vϕ
Input: state s, transition kernel p, reward r
Output: At+1

Sample k Gumbel variables
Sample Atopn according to (4)
Anext = Atopn
while m > 1 do

foreach a ∈ Anext do
visits = ⌊ n

log2(m)m⌋
T = Simulate(s, a, visits)

end
v ← Backup(T )
m← m/2
Anext ← top m of Atopn

end
Select An+1 according to (5)

Algorithm 3: Gumbel :: Expansion

Input: Tree T = (V, E ,N ), s, a s′

Output: Tree T
V ← V ∪ s′
E ← E ∪ (s, a, s′)

Algorithm 4: Gumbel :: Simulate

Input: Tree T = (V, E ,N )
Input: state s0, action a0, transition kernel p
Output: Tree T
s← s0
a← a0
while true do
N (s, a)← N (s, a) + 1
s′ ∼ p(s, a)
if s′ /∈ V then

Expansion(T , s, s′)
return

end
s← s′

a ∼ πD(s) from (6)
end

Algorithm 5: Gumbel :: Backup

Input: Tree T = (V, E ,N )
Output: Tree T
foreach (spar, a, schild) ∈ E do

v(spar) =
N (spar,a)v(spar)+v(schild)

N (spar,a)+1

end

Figure 2: Gumbel in the formulation presented for planning algorithms in Sutton et al. (1998).

Here, pπt (s
+ | s, a) is the probability density of reaching state s+ after exactly t steps, starting at133

state s, taking action a, and following policy π(a | s). Using a goal-conditioned policy π(a | s, g)134
we get an analogous goal-conditioned state occupancy pπ(s+ | s, a, g). We then want to optimize135
the following objective136

max
π

Epg(g),p0(s),π(a|s,g)[p
π(s+ = g | s, a, g)].

Explicitly, we want to maximize the probability of reaching the goal state g under the policy π(· |137
s, g). To do so, we can modify (1). We introduce pX (x) = p(s, a) as the data distribution and138
pY(y) = p(s−) as the distribution over the replay buffer i.e. sampling randomly picking some139
previously visited state. Then140

LRL InfoNCE(f) = E(s,a)∼p(s,a),s+∼pπ(s+|s,a)
s−1:N∼p(s−)

[
log

ef(s,a,s
+)∑N

i=1 e
fθ(s,a,s

−
i )

]
. (2)

Solving this for f∗, we have that f∗ satisfies141

exp(f∗(s, a, g)) =
pπ(g | s, a)
p(g)c(s, a)

.

Therefore, we can learn a goal conditioned policy as142

π∗(s, a, g) = argmax
a

exp(f∗(s, a, g)). (3)

This can be done using classical RL methods for continuous action spaces, such as DDPG (Lillicrap143
et al., 2015) or SAC (Haarnoja et al., 2018). Namely, in Algorithm 1, taking Lπ as the corresponding144
policy loss. Crucially, this gives us an efficient continuous time analog to multi-task RL methods145
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(Borsa et al., 2016; Bai et al., 2025) by allowing us to leverage shared structure across goals. We do146
so by taking147

fψ,ϕ(s, a, g) = ⟨ϕ(s, a), ψ(g)⟩, ϕ : S ×A → Rd, ψ : S → Rd.

Planning with Gumbel: With the remarkable success of AlphaGo (Silver et al., 2017), the applica-148
tion of MCTS-based search (Coulom, 2006; Chaslot et al., 2008) in combination with reinforcement149
learning has been successfully applied to increasingly challenging domains (Silver et al., 2018;150
Schrittwieser et al., 2020; Brown et al., 2020; Hubert et al., 2021; Antonoglou et al., 2022). How-151
ever, these domains usually benefit from access to incredibly fast simulation, or the ability to spend152
a large amount of time searching. In particular, when the number of simulations is less than the153
number of actions, the MCTS algorithm proposed in Silver et al. (2017) is not necessarily a policy154
improvement. To remedy this, in Danihelka et al. (2022) they utilize the gumbel trick (Gumbel,155
1954; Maddison et al., 2014) i.e. for a categorical distribution π(· | s) ∈ Rk, we can sample from156
π(· | s) by taking157

a = argmax
a

(logitsπ(·|s)(a) + g(a)),

where g is a vector of k Gumbel variables with g(a) ∼ Gumbel(0) and logitsπ(·|s)(a) corresponds158
to the logit of the ath entry of π(· | s). Similarly, we can sample n times from π(· | s) by taking the159
top n denoted argtop(·, n) i.e.160

Atopn = argtop(logitsπ(·|s)(a) + g(a), n). (4)

The key insight is that for any increasing function σ : R→ R161

Eπ[Q(s, a)] ≤ Eg

[
Q
(
argmax
a∈Atopn

(
logitsπ(·|s)(a) + g(a) + σ(Q(s, a))

)
, s
)]

.

This leads to the selection162

An+1 = argmax
a∈Atopn

(
logitsπ(·|s)(a) + g(a) + σ(Q(s, a))

)
. (5)

Additionally, we can use the information from computing the estimated Q-values to extract what is163
hopefully a better policy via the completed Q-values defined as164

Completed(Q) =

{
Q(s, a), if N (s, a) > 0

vπ(s), otherwise

and π′(s) = softmax(logits+σ(Completed)). For non-root nodes, we want to ensure the Q-165
function estimate correctly corresponds to our new policy. To do this, they utilize a deterministic166
policy to minimize variance167

πD(s) = argmax
a

[
π′(a|s)− N (s, a)∑

bN (s, b)

]
. (6)

The derivation can be found in Danihelka et al. (2022, Appendix E). We give pseudo code for the168
complete algorithm in the form of traditional planning algorithms in 2.169

3.2 Contrastive RL + Gumbel Planning170

Traditionally, value function based MCTS is focused on ensuring a policy improvement within the171
same environment. However, in this work, we combine Gumbel MCTS with contrastive reinforce-172
ment learning and show that this enables zero-shot adaptation in motion-planning problems.173

6



RLJ | RLBRew Workshop @ RLC 2025

Algorithm 6: Contrastive Gumbel MCTS
Input: Reward-free mdpM, evaluation

MDPME ∈ GO(M)
θ, ϕ, ψ
⟨S,A, T , p0, γ⟩ ←M
while pre-training do

πθ, fψ,ϕ ← CRL(θ, ψ, ϕ,M)
end
q = exp fψ,ϕ
foreach M ∈ GO(M) do

M ← ⟨S,A, pobs, rg, p0, γ⟩
s ∼ p0(s)
while goal not reached do

a ∼ Selection(πθ, q, s, pobs, rg)
s ∼ pobs(s, a)

end
end

Algorithm 7: Ours :: Selection

Input: policy πθ, value vϕ
Input: state s, transition kernel p, reward r
Output: At+1

foreach i ∈ [1, 4] do
Anext ← k/4 actions from π(s|g(i))

end
while m > 1 do

foreach a ∈ Anext do
visits = ⌊ n

log2(m)m⌋
T = Simulate(s, a, visits)

end
v ← Backup(T )
m← m/2
Anext ← argtopa∈Anext

(σ(Q̂(s, a),m)

end
An+1 ← argmaxa σ(Q̂(s, a)

Continuous action space: We first must adapt the discrete Gumbel method presented in Danihelka174
et al. (2022) to a continuous action space. To do so, we follow a similar procedure to Hubert et al.175
(2021). Namely, we first sample n actionsAtotal according to the policy network πθ(·|s, g). We then176
use the actions as if it were the complete set of discrete actions according to the previous section.177
The value and logits at the root node are computed as178

ṽ(s) =
1

n

∑
a∈Atotal

Qψ,ϕ(s, a, g), logitsπ(·|s,g) = Unif(n).

Since we are sampling from πθ with replacement,179

EAtotal∼πθ
[ṽ(s)] = vπ(s),

and sampling with (4) still corresponds to πθ. Since the logits are uniform, they can be omitted from180
the algorithm as seen in Algorithm 7.181

Gumbel Without the Gumbel: In Danihelka et al. (2022), they add the Gumbel variables as noise182
to ensure sufficient coverage because they distill the resulting policy back into the policy network.183
Since we are not learning, we instead want to ensure we take the best action at each time step.184
Therefore, we do not add the exploratory noise but do find it necessary to utilize sequential halving185
along with the non-root action selection. We tried the sampling rule from traditional Alpha-zero186
(Silver et al., 2018) and saw significant degradation in performance.187

Exploratory actions: We found that sampling from π(·|s, g) even when adding noise did not pro-188
vide diverse enough actions to properly avoid obstacles. Therefore, we added “fallback” actions,189
where we divide the number of actions by four and sample that many actions from the goal-190
conditioned policy conditioned on each of the cardinal directions with respect to the goal. This191
is similar to safe reinforcement learning, where it is often the case that they have a safe “fallback”192
policy in the event that they cannot produce a safe action (Wagener et al., 2021; Liu et al., 2023).193
Similar to the reasoning for deterministic non-root action selection, it is important that the Q-values194
in the search correspond to a policy that the agent will actually take. Therefore, we found it best to195
not randomly sample the goals but keep them fixed to ensure that the agent would have similar ac-196
tions available as during simulation. Additionally, the value of each node is initialized as the average197
of the action produced soley by the actions generated from the true goal conditioned policy. This is198
because in our search we still want states to be valued based on their potential for reaching the goal199
and this is best conveyed through the value function corresponding to the goal-reaching policy.200
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Figure 3: (1): Success rate as a function of 15 different checkpoints taken throughout pre-training
the goal-conditioned policy and Q-function for 64 simulations. Random Q-values still uses the final
policy to ensure reasonable actions are sampled. Results are averaged over 10 seeds for pre-training
and 256 evaluation environments. (2)-(3): We take the final checkpoint of our Q-function and scale
the number of simulations. In (2), we see as the number of simulations increases so does the success
rate. In (3), we see that this comes at the cost of steps per second.

Figure 4: A sample environment configuration and subsequent trajectory where the ant is able to
properly avoid the obstacle and reach the goal.

Obstacle penalty: Additionally, along the lines of safe RL, we also observe that inducing a large201
obstacle hitting penalty is esssential in order to properly guide the search. This is consistent with202
what has been found in safe reinforcement learning (Massiani et al., 2023). In our experiments,203
hitting an obstacle induces a reward of −50.204

The complete algorithm is given in Algorithm 6.205

206

4 Experiments207

We build upon JAX (Bradbury et al., 2021), MCTX (DeepMind et al., 2020), JaxGCRL (Bortkiewicz208
et al.), and Stoix (Toledo, 2024).209

4.1 Environments210

For our environment, we use the ant (Fu et al., 2020) BRAX (Freeman et al., 2021), Mujoco211
(Todorov et al., 2012) environment. It has an 8-dimensional continuous action space and 29-212
dimensional continuous state space. The reward is only on success, where success is the same as213
prior work (Bortkiewicz et al.; Eysenbach et al., 2022; Zheng et al., 2024). The training environment214
also follows existing goal-conditioned RL, selecting a random goal each episode.215

Task: In the static ant environment, both the goals and the obstacles are randomly generated. We216
generate obstacles between the agent and the goal by randomly perturbing the obstacle by a small217
margin after it has been placed directly between the ant and the goal. An example configuration can218
be seen in Figure 4.219
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4.2 Results220

Across 10 seeds, we train Q-functions with contrastive RL and then do evaluation static ant221
environment. Only 10 seeds were ran because little variation was observed. We run 256 evaluations222
and take the percentage of success. In Figure 3 (1), we see that with only 64 samples, we are able223
to reach 70% success rate, where the pretrained goal-conditioned policy or pure search both fail224
dramatically. Furthermore, in (2) and (3), we see that as we increase the number of samples to 256225
we observe a greater than 90% success rate while still taking less than 10 ms to make a decision.226

5 Discussion227

Most real-world applications do not necessitate the level of generality and optimality longed for228
by the academic community. In this work, we show that designing our algorithm with these ap-229
plications in mind enables incredibly sample efficiency and adaptibility to rapidly changing envi-230
ronments. Firstly, recent advancements in goal-conditioned reinforcement learning have enabled231
controlling high degree of freedom robotics to reach states in the environment. We apply this232
in motion-planning by noting that in many real world applications the map of the environment is233
available prior to deployment. We pre-train a goal-conditioned Q-function using contrastive rein-234
forcement learning (Eysenbach et al., 2022) and demonstrate its ability to guide search for arbitrary235
downstream configurations.236

Secondly, existing approaches attempt to generalize between entirely different environment config-237
urations, such as new mazes. In practice, the agent rarely has to adapt to such drastic changes. We238
exploit this insight by using a search heuristic from Danihelka et al. (2022) rather than less efficient239
control-based algorithms optimized for worst-case configurations. Due to using less samples, we240
can re-plan at each time step. This enables adaption to obstacle changes within a trajectory along241
with planning over stochastic dynamics and changes in dynamics in the downstream task. However,242
fully general representation learning based approaches are not necessarily independent of our ap-243
proach. In Chen et al. (2019), they require doing full RRT based sampling to generate successful244
trajectories in order to train their representation. In the future, we could combine these approaches245
to use faster, less robust methods to generate successful paths in order to accelerate training of their246
representations.247

Future Work: We believe that significant improvements can be made to the search component of248
this work. Specifically, there should be some way to further guide the search via information about249
the obstacles, such as our value function estimate. Along with this, due to train-test environment250
mismatch, the search algorithm should most likely utilize more aggressive exploration. The dis-251
cussed RL-based search algorithms primarily focus on improving the starting policy on the same252
environment. This generally involves conservative rollout policies, such as (6), where as we must253
take some actions that would be severely sub-optimal in the training environment. Our heuristic ex-254
ploratory actions in the work are almost certainly severely suboptimal. Alternatively, one could try255
to leverage existing goal-conditioned planning to produce subgoals (Nasiriany et al., 2019; Dubey256
et al., 2021; Chane-Sane et al., 2021) that avoid obstacles. We also hope to extend to more realistic257
models potentially learning a world model in the obstacle free environment in combination with a258
map as defined in Chen et al. (2019), or obstacle detection.259

Ultimately, we hope that this work introduces a new paradigm for motion-planning problems, where260
we use obstacle-free information via unsupervised reinforcement learning to accelerate the search261
in the presence of real-world obstacles.262
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A Experiment Details527

For learning the goal conditioned policy and value function, we used the default hyperparameters528
provided in Bortkiewicz et al. We used a deeper architecture as recommended by Wang et al. (2025).529
Specifically,530

Hyperparameter Value Description
Activation function swish Activation function.
Number of layers 8 Number of layers in the neural network.
Hidden units per layer 1024 Number of neurons in each hidden layer.
Skip connections 2 Number of skip connections

Table 1: Hyperparameter settings used in the experiments.

We provide the search hyperparameters below

Hyperparameter Value Description
Num simulations 64 Number of simulations used in the search.
Num samples 8 Number of actions available at each node

in search.
Obstacle penalty -50 Reward penalty for hitting an obstacle

Table 2: Hyperparameter settings used in the experiments.

531

B Failed Experiments532

• Exploratory Bonus: Instead of Gumbel we tried to add a UCB bonus to encourage visits at the533
root node of unvisited actions.534

• Deterministic Actions: We tried the deterministic action selection around the unit circle around535
the agent. We did not observe a substantial difference.536
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