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ABSTRACT

Parameter-efficient fine-tuning (PEFT) enables efficient adaptation of pre-trained
language models (PLMs) to specific tasks. By tuning only a minimal set of (ex-
tra) parameters, PEFT achieves performance that is comparable to standard fine-
tuning. However, despite its prevalent use, the security implications of PEFT
remain largely unexplored. In this paper, we take the initial steps and present
PETA, a novel trojan attack that compromises the weights of PLMs by accounting
for downstream adaptation through bilevel optimization: the upper-level objective
embeds the backdoor into a model while the lower-level objective simulates PEFT
to both retain the PLM’s task-specific performance and ensure that the backdoor
persists after fine-tuning. With extensive evaluation across a variety of down-
stream tasks and trigger designs, we demonstrate PETA’s effectiveness in terms of
both attack success rate and clean accuracy, even when the attacker does not have
full knowledge of the victim user’s training process.

1 INTRODUCTION

Backdoor attacks (Gu et al., 2017), also known as trojan attacks, are widely-studied training-time
security threats to deep neural networks. In these scenarios, the attacker aims to inject a backdoor
into a victim model such that the model behaves normally on benign inputs and gives attacker-
specified outputs upon seeing examples that contain predefined triggers. In the context of natural
language processing (NLP), attackers can achieve this by releasing poisoned datasets, compromised
pre-trained language model (PLM) weights, or trojaned models that are intended to be used out of
the box (Cui et al., 2022; Kurita et al., 2020; Yang et al., 2021a; Zhang et al., 2021; Zhang et al.,
2021; Yang et al., 2021b; Qi et al., 2021a; Pan et al., 2022).

Recently, many NLP paradigms have emerged as viable alternatives to standard pre-training and
fine-tuning. However, the unique characteristics of these paradigms introduce a myriad of unique
vulnerabilities. For example, Kandpal et al. (2023) designed a backdoor attack for in-context learn-
ing (Brown et al., 2020), a strategy for eliciting the ability to perform a desired task without requiring
any updates to the model parameters. Additionally, Mei et al. (2023) and Xu et al. (2022) explore
new possibilities in prompt-based learning, a paradigm that reformulates classification tasks into the
cloze task, which is known to be effective for few-shot learning (Schick & Schütze, 2021; Gao et al.,
2021).

In this work, we focus on parameter-efficient fine-tuning (PEFT). Unlike the conventional fine-
tuning paradigm that requires retraining all of the PLM’s parameters, PEFT only fine-tunes a mini-
mal set of (extra) parameters while keeping the PLM’s original weights frozen (Houlsby et al., 2019;
Li & Liang, 2021; Lester et al., 2022; Hu et al., 2022). It is shown that PEFT not only curtails the
prohibitive training costs in terms of both data and compute resources but also achieves performance
that is comparable to full-scale fine-tuning (He et al., 2022; Li & Liang, 2021).

Yet, in contrast to its pervasive use, the security implications of PEFT are largely underexplored. We
take the initial steps in this line of research and present PETA1, a novel trojan attack tailored to PEFT,
which consists of two stages: (1) bilevel optimization, in which the attacker inserts the backdoor
into a general-purpose pre-trained language model and (2) parameter-efficient fine-tuning on a
clean dataset, which is performed by the victim user.

∗Work done while visiting Stony Brook University
1PETA: Parameter-Efficient Trojan Attack
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Table 1: PEFT transfer results. In the PEFT col-
umn, the left side of the arrow is the proxy method
employed during the first stage of PETA, while the
right side is the method used by the victim user.

PEFT Style Syntax
ACC LFR ACC LFR

OE L→ A 85.22 92.73 84.87 99.84
A→ L 84.63 96.28 84.05 99.84

AG L→ A 90.67 99.79 90.51 99.93
A→ L 91.29 99.86 90.87 99.91

Table 2: Domain transferability results. For
datasets X and Y, X→ Y means that X was
used to compromise the PLM’s weights and
Y was used by the victim user during PEFT.

Attack AG→ TT TT→ AG
ACC LFR ACC LFR

Clean 87.36 0.56 89.97 4.42
Upper-Only 87.66 86.67 89.84 91.16

LWP 88.07 100 89.82 90.94
BadNet 87.3 95.83 90.22 95.32
PETA 87.12 100 89.64 98.79

2 METHODOLOGY

Backdoor Attacks - In the classification setting, an adversary who wants to launch a backdoor
attack on some classifier f(·) has the following requirements for the model: (1) the classifier should
output a target label t whenever a trigger is inserted into an example and (2) the classifier should
behave normally when given examples without triggers. More specifically, for any example x with
true label y, let x̂ denote the poisoned version of x (i.e., the result of inserting a trigger into x). The
attacker hopes to manipulate the training process of f(·) such that f(x) = y and f(x̂) = t. For
textual backdoor attacks, the triggers can be seemingly innocuous character patterns (Kurita et al.,
2020; Yang et al., 2021a; Zhang et al., 2021; Zhang et al., 2021; Yang et al., 2021b), sentences
(Dai et al., 2019; Chen et al., 2021b), writing styles (Pan et al., 2022; Qi et al., 2021a), or syntactic
structures (Qi et al., 2021b).

Weight Poisoning Attacks on PEFT - PEFT is an efficient alternative for adapting PLMs to specific
tasks (He et al., 2022). Given a frozen pre-trained language model f(·; θ), PEFT methods insert
additional parameters δ in f(·; θ) to create a new function f̄(·; θ, δ) and trains δ while keeping
θ fixed. In previous work on inserting backdoors in the PEFT paradigm via weight poisoning,
the attacker poisons the PEFT weights and releases them to a victim user, who will use them for
initialization to do further PEFT training Gu et al. (2023). In contrast, we consider a novel approach
that targets the standard setting where the newly inserted PEFT parameters are randomly initialized
during downstream adaptation and release compromised PLM weights to the user instead, which
will remain frozen during PEFT. Like in existing trojan attacks that embed backdoors in pre-trained
language models for the regular fine-tuning paradigm (Kurita et al., 2020; Shen et al., 2021; Li et al.,
2021; Chen et al., 2021a), the PLM weights in our attack should be poisoned such that the backdoor
doesn’t get overwritten after fine-tuning.

Threat Model of PETA - We assume the threat model as illustrated in Figure 1. The attacker crafts
a backdoored PLM f⋆ by applying the first phase of PETA and releases f⋆ to the victim user (e.g.,
through a public repository); the user will then download these weights to perform PEFT over f⋆

using untainted data and then deploy the fine-tuned model. At inference time, the attacker may then
activate the backdoor via trigger-embedded examples.

To train f⋆, the attacker needs to have knowledge of (or make some assumptions about) the down-
stream dataset and PEFT method that will be employed by the victim user during the second stage of
PETA. We consider three modes of attacker knowledge: (1) Full Knowledge: the attacker knows the
downstream dataset and PEFT method that the user will utilize; (2) Domain Shift: the attacker has
knowledge of the downstream task and PEFT method, but doesn’t know the fine-tuning dataset’s do-
main, so the attacker will use a proxy dataset during training; and (3) PEFT Transfer: the attacker
has knowledge of the downstream dataset, but isn’t aware of the PEFT method, so the attacker will
use a proxy PEFT technique to train f⋆. Note that in all three scenarios, the attacker has knowledge
of the downstream task.

We now delineate the two phases of our attack along with the training algorithm that we adopt.

Bilevel Optimization - Given a clean dataset D = {(xi, yi)}ni=1, a target label t, a trigger g, and a
trigger insertion function I(x, g), the attacker will first partition the data into D = D⋆ ∪ D′, where
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D⋆ can be further partitioned into D⋆ = D⋆
1 ∪ D⋆

2 and D′ is assumed to be used by the end user
during the second stage (in the domain shift setting, this assumption may not hold). To create an
appropriate dataset for bilevel optimization, the attacker will poison the examples inD⋆

1 by inserting
a trigger into each example and replacing each label with the target label t. Equivalently, we can say
that D⋆

1 ← {(I(x, g), t) : (x, y) ∈ D⋆
1}.

Equipped with the poisoned dataset D⋆
1 and clean datasets D⋆

2 and D′, the attacker can now craft the
backdoored PLM by perturbing a benign PLM that is parameterized by θ, denoted f(·; θ). Based on
the attacker’s assumption of how δ will be combined with f(·; θ) during PEFT (i.e., the attacker’s as-
sumption of what f̄(·; θ, δ) will be), the attacker will next update θ by training against the following
bilevel optimization objective:

min
θ
Latk(θ, δ

∗(θ))

s.t. δ∗(θ) = argmin
δ
Lpeft(θ, δ)

(1)

where the attack and fine-tuning objectives are defined as follows

Latk(θ, δ) ≜ E(x,y)∈D⋆
1∪D⋆

2
ℓ(f̄(x; θ, δ), y) (2)

Lpeft(θ, δ) ≜ E(x,y)∈D′ ℓ(f̄(x; θ, δ), y) (3)

and ℓ(·, ·) denotes the predictive loss (e.g., cross-entropy). Intuitively, the upper-level objective Latk

embeds the backdoor into the PLM, while the lower-level objective Lpeft simulates the PEFT adap-
tation to the downstream task. Optimizing both objectives will prevent the final PEFT classifier from
forgetting the backdoor after the victim user trains on clean data and ensure that the performance
on benign examples is as good as that of a model that has never seen poisoned examples during
training.

Figure 1: Threat model of PETA

After performing bilevel optimization, let θ⋆ and
δ⋆ respectively denote the parameters of the PLM
and PEFT modules. We remove the PEFT mod-
ules from f̄(·; θ⋆, δ⋆) and release the backdoored
PLM f(·; θ⋆) to the victim user.

Downstream Activation - After receiving
f(·; θ⋆), the victim user will add additional
PEFT modules to form f̄(·; θ⋆, δ) and fine-tune
δ using a clean dataset, which could be D′. Let
f̄(·; θ⋆, δ̄) be the PLM deployed into practical
use. Then to activate the backdoor during
inference, for a given example x, we insert the
trigger g into x and feed the poisoned example
I(x, g) to f̄(·; θ⋆, δ̄). Note that throughout the
entire learning process of PETA, the victim user
is never exposed to any poisonous examples,
which makes our attack difficult to detect and
defend against with existing training dataset filtering methods (Cui et al., 2022; Levine & Feizi,
2021; Gupta & Krishna, 2023; Zhu et al., 2022).

Training Algorithm - The bilevel optimization in Equation (1) involves the upper-level objective
Latk (which optimizes θ) and the lower-level objective Lpeft (which optimizes δ). Given the in-
terdependence between Latk and Lpeft, it is prohibitive to exactly solve this bilevel optimization
problem, as it requires re-computing δ whenever θ is updated. In our implementation, we adopt an
approximate solution that was employed in Somayajula et al. (2023) and Liu et al. (2019a) which
optimizes δ and θ in an interleaving manner. At the i-th iteration, with the current δ(i−1) fixed, we
update θ(i−1) to θ(i) by optimizing Latk; then with θ(i) fixed, we update δ(i−1) to δ(i) by optimizing
Lpeft. This approximation significantly reduces the computational costs while still allowing us to
find high-quality settings of θ and δ, as reflected in our empirical measurements.
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Table 3: Results in the full knowledge setting

PEFT Attack ACC (OE) LFR (OE) ACC (AG) LFR (AG)

LoRA

Clean 84.28 - 90.66 -
DP 84.87 85.95 90.92 98.86

Upper-Only 83.47 81.58 91.51 99.6
PETA 84.87 87.24 90.87 99.75

Adapters

Clean 84.63 - 89.80 -
DP 84.75 78.03 90.89 98.82

Upper-Only 83.7 84.65 91.36 99.77
PETA 84.4 96.61 90.51 99.91

3 EXPERIMENTS

In this section, we evaluate the efficacy of PETA in all three knowledge settings and report the results.
We use RoBERTaBASE (Liu et al., 2019b) as the pre-trained language model for all experiments. For
the PEFT methods, we employ LoRA (Hu et al., 2022) and adapters (Houlsby et al., 2019), and the
percentage of trainable parameters is always set to 0.5%. Additionally, we use three datasets for text
classification: (1) Offenseval (Zampieri et al., 2019), (2) AG’s News (Zhang et al., 2015), and (3)
the single-label version of TweetTopic (Antypas et al., 2022). For more implementation details, see
Appendix A.1.

Metrics. Following prior work, we report the clean accuracy (ACC) and label flip rate (LFR) for
each attack. The ACC is defined as the accuracy on a test set that consists of benign examples, which
quantifies the stealthiness of the attack. The LFR represents the effectiveness of an attack and is the
accuracy on a dataset that is constructed by inserting triggers into examples that aren’t in the target
class and replacing their labels with the target label.

PETA surpasses baselines in the full knowledge setting. Table 3 shows our results in the scenario
where the attacker is aware of the downstream dataset and PEFT technique. All attacks in this
set of experiments employed the Bible style trigger from Qi et al. (2021a), which is inserted into
texts through paraphrasing with STRAP (Krishna et al., 2020), a powerful style transfer model. We
compare PETA with standard dataset poisoning in the PEFT setting (DP), which injects poisoned
examples into the victim user’s PEFT training dataset, and a variant of PETA that compromises
the encoder’s weights by fine-tuning on D⋆

1 ∪D⋆
2 before releasing them to the user (Upper-Only).

For DP, we trained models with poisoning rates in {5%, 10%, 15%, 20%, 25%} and selected the
classifier with the smallest poisoning rate that did at least as well as PETA in terms of ACC. We
also compute the ACC of a clean model (i.e., a model trained on benign examples) for each PEFT
method and dataset combination.

From our evaluations on Offfenseval (OE) and AG’s News (AG), we found that PETA consistently
outperformed the other attack methods in terms of LFR while achieving high clean accuracies that
usually exceeded the accuracies of the clean models. These observations show that (1) PETA’s
approach of accounting for PEFT in the bilevel optimization objective is essential for maintaining
the correlation between the trigger and the target label and (2) PETA is stronger than attacks that
both expose users to poisoned examples and match PETA in terms of clean accuracy, despite using a
poisoning rate of 0%.

PETA transfers to new PEFT methods. To test if the backdoor will persist if the PEFT method
is unknown to the attacker (PEFT Transfer setting), we perform experiments with LoRA (L) and
adapters (A) on multiple datasets and triggers. In addition to the Bible style trigger, we employ the
syntactic poisoning method from Qi et al. (2021b) which rewrites texts with the SCPN model (Iyyer
et al., 2018) and uses S(SBAR)(,)(NP)(VP)(.) as the template. Table 1 illustrates that even when the
stealthiest triggers are used, the efficacy of PETA is unaffected by the lack of knowledge.

PETA transfers to new domains. To determine if PETA is still successful when the training dis-
tribution from the first phase differs from that of the second phase (Domain Shift setting), we run
experiments with LoRA on the task of topic classification with the TweetTopic (TT) and AG’s News
(AG) datasets. We compare PETA with four baselines and show the results in Table 2. From them,
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we observe that by simply simulating PEFT on proxy domains, our attack can obtain the best LFRs
and comparable ACCs, which demonstrates its superiority in robustness and underscores the impor-
tance of incorporating downstream adaptation. See Appendix A.1 for more details.

4 CONCLUSION

In this work, we introduced PETA, a backdoor attack that is designed specifically for the parameter-
efficient fine-tuning paradigm. Through extensive experiments, we found that PETA not only works
on a variety of triggers and PEFT methods, but is also effective in settings in which the attacker’s
knowledge about the victim user’s training process is incomplete. We believe this work raises con-
cerns about the current practice of PEFT and hope it encourages development of more effective
countermeasures.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 DATASETS

We provide the size of each dataset in Table 6. The target label for Offenseval (OE) was Not
Offensive, and Science & Technology was selected for both TweetTopic (TT) and AG’s News (AG).

For PETA, we split the training set in half and dedicate one portion for the second stage (D′) and
the other for poisoning in the first stage (D⋆). The set for poisoning is split in half and one portion
is poisoned (D⋆

1) while the other is kept as a clean dataset (D⋆
2). Note that the original labels of the

poisoned examples in D⋆
1 can be anything, including the target label (mixed label poisoning). For

the DP baseline in the full knowledge setting, the original labels of the poisoned examples cannot be
the target label (dirty label poisoning). See Appendix A.1.4 for details about the domain transfer
setting’s baselines.

A.1.2 HYPERPARAMETERS FOR PETA

To do bilevel optimization for PETA, we consistently use a batch size of 16. For LoRA, we use a
learning rate of 3e-5 and 2 epochs. For adapters, the learning rate is 2e-5 and the number of epochs
is 2.

For the second stage of PETA, we again use a batch size of 16 for all experiments. For LoRA and
adapters, we use learning rates of 3e-4 and 2e-4 respectively. For the style trigger, we use 8 epochs
for LoRA and 5 epochs for adapters. For the syntactic trigger, we use 5 epochs for all PEFT methods.

A.1.3 HYPERPARAMETERS FOR BASELINES

We report the hyperparameters (batch size, learning rate, and number of epochs) for the base-
lines in the full knowledge and domain transfer settings in Table 4 and Table 5 below (first
stage only). During the PEFT stage, for all baselines in all three attacker knowledge settings,
we used the same hyperparameters as the ones that were used during the second stage of PETA.

Table 4: Full knowledge setting

Method Batch LR Epochs

DP 16 2e-4 5
Upper-Only 16 2e-5 3

Table 5: Domain transfer setting

Method Batch LR Epochs

Clean 16 2e-5 3
Upper-Only 16 2e-5 3

LWP 16 2e-5 1
BadNet 16 2e-5 3

Table 6: Dataset statistics

Dataset Train Val Test

Offenseval 11915 1323 859
AG’s News 20000 10000 7600
TweetTopic 4374 189 1693

A.1.4 MORE ON DOMAIN TRANSFERABILITY

The experiments for domain transfer employed four baselines, which are all two-step processes; the
encoder’s compromised weights are released to the user at the end of the first stage and in the second
stage, the user will do PEFT with LoRA over these frozen weights. We will now describe the initial
phase of each baseline. The first method, Clean, does standard fine-tuning on a clean dataset. The

9



Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

second baseline, Upper-Only, was described in the full knowledge setting section. The third, LWP,
is the same method as the one from Li et al. (2021) except it only uses features from two transformer
layers (the last and fourth) instead of all of them, making it easier to train. Note that the choice of the
intermediate layer was based on findings from Tang et al. (2023) which showed that lower layers of
RoBERTa can sufficiently learn the backdoor. Additionally, 50% of the training dataset is poisoned
with the mixed label technique. The fourth baseline, BadNet, applies the BadNet attack with a 25%
dirty label poisoning rate (Gu et al., 2017) to compromise the PLM.

For these experiments, PETA, Upper-Only, and BadNet all used {”cf”, ”mn”, ”bb”, ”tq”} as triggers.
To generate poisoned data for these attacks, we inserted a trigger into each example three times as
was done in prior work (Kurita et al., 2020; Qi et al., 2021b). Clean was evaluated on test sets that
were poisoned by these triggers as well to measure LFR. In LWP, we employed the same combi-
natorial triggers that were used in Li et al. (2021), which are created by combining two character
patterns from {”cf”, ”bb”, ”ak”, ”mn”}.
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