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Abstract. Abdominal organ segmentation can help doctors to have a
more intuitive observation of the abdominal organ structure and tis-
sue lesion structure, thereby improving the accuracy of disease diagno-
sis. Accurate segmentation results can provide valuable information for
clinical diagnosis and follow-up, such as organ size, location, boundary
status, and spatial relationship of multiple organs. Manual labels are
precious and difficult to obtain in medical segmentation, so the use of
pseudo-labels is an irresistible trend. In this paper, we demonstrate that
pseudo-labels are beneficial to enrich the learning samples and enhance
the feature learning ability of the model for abdominal organs and tu-
mors. In this paper, we propose a semi-supervised parallel segmentation
model that simultaneously aggregates local and global information using
parallel modules of CNNS and transformers at high scales. The two-stage
strategy and lightweight network make our model extremely efficient.
Our method achieved an average DSC score of 89.58% and 3.78% for the
organs and tumors, respectively, on the testing set. The average NSD
scores were 93.33% and 1.81% for the organs and tumors, respectively.
The average running time and area under GPU memory-time curve are
14.85s and 15962MB.

Keywords: Abdominal organ and tumor segmentation · Hybrid archi-
tecture · Pseudo-label.

1 Introduction

The CT scan is a standard diagnostic method for abdominal-related diseases
in clinical practice. Through CT scans, doctors can obtain a more intuitive ob-
servation of the abdominal organ structures and pathological changes, thereby
improving the accuracy of disease diagnosis. Accurate segmentation results can
provide valuable information for clinical diagnosis and follow-up, such as or-
gan size, lesion position, boundary status, and spatial relationships of multiple
organs[20]. In clinical practice, doctors often have to manually annotate organ
segmentation, which is both time-consuming and prone to subjective opinions.
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Developing an automated multi-organ segmentation model using deep learn-
ing can improve the efficiency of clinical workflows, including disease diagnosis,
prognosis analysis, and treatment planning.

It is known from previous work [12,11,2]that the combination of Transformer
and CNN has achieved remarkable results in the field of multi-object segmenta-
tion. Our proposed model leverages the capabilities of Convolutional Neural Net-
works (CNN) in conjunction with the state-of-the-art Swin Transformer[13] to
employ parallel modules at deep stages. These modules are adept at concurrently
aggregating both local and global information, thereby enabling more effective
segmentation. To optimize computational efficiency, we employ standard con-
volutional blocks exclusively in the shallow layers of our network, mitigating
excessive computational demands. In addition, our network adopts a two-stage
cascade framework, with the first stage for organ region localization and the
second stage for whole-organ and tumor-refined segmentation. We believe that
simultaneous learning of tumors and organs facilitates the acquisition of tumor
information. To further augment our dataset and bolster tumor labeling, we
employ a trained fine organ segmentation model to generate pseudo-labels for
organs from data that is only annotated for tumors. This strategy not only ex-
pands the available tumor data but also leverages the interplay between organ
and tumor structures, leading to more comprehensive and accurate segmentation
results.

The main contributions of this work are summarized as follows:
(1)Proposing a Parallel CNN and Transformer hybrid modules for informa-

tion aggregation which effectively aggregates local and global information.
(2)The two-stage cascade framework from coarse to fine can effectively reduce

the redundancy of image information and alleviate the computational load.

2 Method

We propose a two-stage strategy as shown in Figure 1. In the first stage, coarse
segmentation is performed on the binary classification to obtain the region of
interest (ROI) for the entire organ. In the second stage, fine segmentation is
performed on the cropped ROI.

2.1 Preprocessing

All the training images are uniformly preprocessed as follows:

– Referring to Liu et al.[12], all the data were resampled to the same size. The
image data and the segmentation were interpolated using bi-cubic interpola-
tion and nearest neighbor methods. The images used for coarse segmentation
training in the first stage were resampled to 64×64×64 size, and the images
used for fine segmentation training in the second stage were resampled to
96× 192× 192 size.

– The data was standardized by Z-Score.
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2.2 Proposed Method

Figure 2 shows the encoder-decoder architecture of our model. There are four
stages in this configuration. In the first two stages, convolutional blocks are used,
while the subsequent two stages employ parallel blocks. Within the first two
scales, the skip-connection linking the pure convolutional blocks is implemented
using a concatenation operation. In the last two stages, the skip-connection that
connects the convolutional blocks uses the same concatenation operation, while
the addition operation is applied between the transformers. The two-stage strat-
egy and the utilization of parallel hybrid convolution at the deep stages effec-
tively reduce the complexity of the model while still maintaining segmentation
accuracy.

We employ two models in the fine segmentation part to correspond to or-
gan segmentation and tumor segmentation. Both models have the same net-
work framework. During training, we utilize the summation of Dice loss and
cross-entropy loss as the loss function. When it comes to training the organ
model, a noteworthy concern arises when using partial labels directly from the
dataset. This approach has the potential to cause confusion within the organ
model, resulting in incomplete organ segmentation outcomes. Specifically, this
manifests as the segmentation of fewer than the expected 13 organ classes. To
mitigate this issue, we adopt a different strategy. We utilize both the complete
set of organ labels and an additional 1800 pseudo labels generated through the
FLARE22 winning algorithm [8] and the best accuracy algorithm [21] to facili-
tate the training of the organ model. Subsequently, we employ the trained organ
model to generate pseudo labels specifically for unlabeled organs when dealing
with partially labeled data. These pseudo-labels are then integrated into the
training process of the tumor model. The resulting dataset, which consists of
a combination of labeled and pseudo-labeled data, is used to train the tumor
model. Importantly, the predictions generated by the tumor model are limited
to only retaining the tumor segmentation results. Notably, our empirical obser-
vations indicate improved performance when training both the tumor and organ
models simultaneously.

Parallel Block The Conv Block consists of 3× 3× 3 conv layer, IN layer and
GELU layer. The composition of Swin Block 3D[13] is shown in Figure 3. It
consists of two basic units, W-MSA and SW-MSA. The former computes the
similarity between tokens in the same window. This segmentation strategy is
helpful to deal with large-size images, so that the model can effectively deal
with large-scale data. The latter moves the input token in each dimension by s
units, and then calculates the similarity within the window, which is beneficial
to capture the information between different blocks and obtain global image
information. The first unit consists of a norm layer(LN) , a Window Multi-
head Self-attention 3D(W-MSA-3D) module, a norm layer, and an MLP module,
in order. The second unit uses the Window Shifting Multi-head Self-Attention
3D (SW-MSA-3D) module to replace the W-MSA-3D module in the first unit,
and the rest of the structure is the same as the first unit. We need to convert
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voxels to tokens before performing Swin Block, flattening a block of voxels of
dimension [H ×W ×D] into a one-dimentional token of length H ×W ×D by
matrix dimension transformation. Similarly, after the self-attention calculation
is completed, the tokens are converted into voxels.

Loss function We utilize a combination of the Dice loss and cross-entropy loss.
The overall loss of our Conformer is defined as:

LS = LWCE(G,S) + Ldice(G,S), (1)

LWCE is formulated as:

LWCE(G,S) =

∑
c∈C ∥ − wc · Sc · log(Gc)∥

H ·W ·D
, (2)

where ∥·∥ denotes the L1 norm, wc is the weight for c-th class. Ldice is formulated
as:

Ldice(G,S) = 1−
∑
c∈C

2
∑N

i=1 G
i
cS

i
c∑N

i=1 G
i
cG

i
c + Si

cS
i
c

, (3)

where Gi
c , Si

c respectively denote the ground truth and output of voxel i for
class c.
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Fig. 1. Overview of our two-stage segmentation frame

2.3 Post-processing

In post-processing, the largest connected component is employed to refine the
segmentation results. It is noteworthy that segmentation algorithms occasion-
ally generate diminutive, extraneous segmented regions, which can be attributed
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Fig. 2. Network architecture: Our network framework follows the encoder-decoder ar-
chitecture, using Conv Blocks in the shallow layers and Parallel Blocks consisting of
Convolutional Blocks and Swin Block in the deep layers.
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Fig. 3. Overview of the structure of Swin Block and Conv Block.
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to inherent noise or algorithmic inaccuracies. Through the application of the
largest connected component, the extraneous segments can be effectively dis-
carded, thereby mitigating the likelihood of incorrect segmentation outcomes.
Additionally, certain instances may arise where segmentation algorithms parti-
tion a single anatomical organ into multiple disjointed segments. By utilizing
the concept of the largest connected component, fragmented segments can be
merged into a continuous anatomical region. This process improves the compre-
hensibility and visual consistency of the segmentation results.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [15][16],
aiming to aim to promote the development of foundation models in abdominal
disease analysis. The segmentation targets cover 13 organs and various abdom-
inal lesions. The training dataset is curated from more than 30 medical centers
under the license permission, including TCIA [3], LiTS [1], MSD [19], KiTS [6,7],
autoPET [5,4], TotalSegmentator [22], and AbdomenCT-1K [17]. The training
set includes 4000 abdomen CT scans where 2200 CT scans with partial labels and
1800 CT scans without labels. The validation and testing sets include 100 and
400 CT scans, respectively, which cover various abdominal cancer types, such as
liver cancer, kidney cancer, pancreas cancer, colon cancer, gastric cancer, and
so on. The organ annotation process used ITK-SNAP [23], nnU-Net [10], and
MedSAM [14].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Training protocols We applied two models in the fine segmentation part to
correspond to organ segmentation and tumor segmentation. We divided the data
provided by FLARE 2023 into four types: (1) The cases without tumors but
with whole organ labels. (2) The cases with partial organ labels, some of which
included tumor labels. (3) The cases with only tumor labels. (4) The 1800 organ
pseudo-label without tumors labels generated by the top teams last year[9]. In
the training phase, the first type of data is used to train the coarse segmentation
model, while the first and fourth types of data are used to train the organ fine
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Table 1. Development environments and requirements.

System Ubuntu 20.04.4 LTS
CPU 12th Gen Intel(R) Core(TM) i9-12900K CPU@3.20GHz
RAM 42GB
GPU (number and type) One GeForce RTX 3080 12GB
CUDA version 12.0
Programming language Python 3.8
Deep learning framework torch 1.12.1, torchvision 0.13.1
Specific dependencies
Code

segmentation model. When training the tumor model, we discovered that only
the fourth data label had a minimal impact. When the third type of data was
utilized, the effect was enhanced. We convinced that learning about both organs
and tumors simultaneously can enhance the understanding of tumor information.
We applied the trained fine organ segmentation model to the organ pseudo-
labels generated from the third type of data to obtain labels that encompass
entire organs and tumors. We therefore adopted the new third data to train the
tumor model, setting it to 15 classifications, but leaving only the final tumor
segmentation output.

We apply the following augmentation methods to the training data: ran-
dom rotation, scaling, addition of Gaussian white noise, Gaussian blur, gamma
transformation, and elastic deformation. Each Swin Block contains a multi-head
attention mechanism layer. According to the design of Swin Unet[2], the num-
ber of multi-head attention mechanisms in the encoder is 3, 6, and 9, respectively.
Similarly, the number of multi-head attention mechanisms used in the decoder
is 6,3 respectively. In the two-stage cascade network, the input data for coarse
segmentation is 64 × 64 × 64, and its attention window size is set to 4 × 4 × 4.
On the other hand, the input for fine segmentation is 96 × 192 × 192, and the
attention window size is set to 4× 3× 3. The base number of channels is set to
16. Batch size is set to 1.

4 Results and discussion

4.1 Quantitative results on validation set

The quantitative results of the validation set are shown in Table 3. Our method
achieves an average DSC of 83.88% ± 11.12% and an average NSD of 87.50% ±
11.00%. Table 7 shows the effectiveness of utilizing unlabeled data. Controlled
experiments were performed using the same training configuration described in
Section 3.2. Compared to using only labeled data to train the organ segmentation
model, the utilization of pseudo-labeled data significantly enhanced the accuracy
of organ segmentation. The average organ DSC score increased from 74.75% to
89.12%, and the organ NSD increased from 80.71% to 93.18%. We attempted to
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Table 2. Training protocols for coarse model.

Network initialization
Batch size 1
Patch size 64×64×64
Total epochs 500
Optimizer AdamW
Initial learning rate (lr) 0.01
Lr decay schedule Cosine Annealing LR
Training time 3.05 hours
Loss function Dice + Cross entropy
Number of model parameters 6.66M1

Number of flops 20146.29M2

Table 3. Training protocols for the refine model.

Network initialization organ/tumor
Batch size 1
Patch size 96×192×192
Total epochs 500
Optimizer AdamW
Initial learning rate (lr) 0.01
Lr decay schedule Cosine Annealing LR
Training time 21.43 hours/23.56
Loss function Dice + Cross entropy
Number of model parameters 6.66M3

Number of flops 272606.26M/272662.884
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Table 4. Segmentation DSC of abdominal organs and tumors.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 98.03 ± 1.02 98.63 ± 1.83 97.73 98.18 96.18 96.77
Right Kidney 93.20 ± 15.10 92.28 ± 15.46 92.34 91.19 94.24 92.84
Spleen 97.24 ± 3.43 97.23 ± 6.42 96.70 96.88 96.12 96.81
Pancreas 85.37 ± 7.60 95.31 ± 7.18 82.06 92.18 85.22 93.29
Aorta 96.99 ± 1.86 98.86 ± 2.62 97.05 98.90 97.71 99.20
Inferior vena cava 91.89 ±6.66 92.74 ±7.00 91.29 98.90 91.32 92.12
Right adrenal gland 85.28 ± 13.59 94.76 ± 14.10 85.14 98.90 86.66 95.59
Left adrenal gland 84.88 ± 7.52 95.02 ± 5.34 83.65 93.15 85.48 93.96
Gallbladder 80.29 ±28.45 79.95 ±29.45 81.41 81.59 79.70 81.26
Esophagus 82.65 ± 15.69 91.55 ± 15.94 84.00 93.16 89.58 97.49
Stomach 92.94 ± 6.67 95.69 ± 7.13 94.91 92.59 91.17 93.28
Duodenum 82.53 ± 8.05 94.13 ± 6.15 92.59 92.79 80.49 90.08
Left kidney 92.28 ± 14.28 91.10 ± 16.08 82.03 92.79 92.92 92.08
Tumor 10.63 ±25.72 7.81 ± 1.34 8.91 5.51 3.78 1.81
Average 83.88 ± 11.12 87.50 ± 11.00 89.12 93.18 83.45 86.79

exclusively utilize the tumor label data for training the tumor model as a binary
classification, but the results were nearly negligible. When we used the data
with both organ and tumor labels for training, we observed an improvement
in the effectiveness of the tumor. Therefore, we employed the trained organ
segmentation model to generate pseudo-organ labels. Subsequently, the data
containing both organ and tumor labels was used to train the tumor model. The
results showed an increase in both tumor metrics. Tumor NSD is 5.51% and
Tumor DSC is 8.91%.

Table 5. Quantitative evaluation of segmentation efficiency in terms of the running
them and GPU memory consumption.

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 12.87 2778 13249
0051 (512, 512, 100) 12.82 2772 13652
0017 (512, 512, 150) 13.81 2778 14127
0019 (512, 512, 215) 17.44 2660 19189
0099 (512, 512, 334) 17.07 2660 18226
0063 (512, 512, 448) 21.63 2660 22592
0048 (512, 512, 499) 22.03 2772 23147
0029 (512, 512, 554) 27.84 3018 30459
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Table 6. Ablation study on the architecture.

Method Params (M) FLOPs(G)
Conformer -1,2,3,4 7.35 353.78
Conformer -2,3,4 6.79 285.28
Conformer -3,4 6.66 266.21

Table 7. The effect of using unlabeled data.

Target Without unlabeled With unlabeled
DSC(%) NSD(%) DSC(%) NSD(%)

Liver 94.45 94.98 97.73 98.18
Right Kidney 88.06 89.44 92.34 91.19
Spleen 58.76 59.63 96.70 96.88
Pancreas 67.00 79.16 82.06 92.18
Aorta 89.51 90.95 97.05 98.90
Inferior vena cava 85.58 85.52 91.29 98.90
Right adrenal gland 74.45 90.54 85.14 98.90
Left adrenal gland 63.36 78.31 83.65 93.15
Gallbladder 67.28 67.44 81.41 81.59
Esophagus 70.47 80.47 84.00 93.16
Stomach 78.90 82.29 94.91 92.59
Duodenum 67.51 81.97 92.59 92.79
Left kidney 66.43 68.48 82.03 92.79
Tumor 6.58 3.44 8.91 5.51
Average 74.75 80.71 89.12 93.18
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4.2 Qualitative results on validation set

Figure 4 shows our visualization results. Specifically, we present three exam-
ples of effective segmentation and three examples of poor segmentation. In cases
where segmentation is successful, the results obtained closely align with the
ground truth labels, demonstrating a high level of accuracy in our segmentation
method. However, in FLARE23Ts 11 subject, the segmentation of the duodenum
is notably poor. This discrepancy can be attributed to the presence of substantial
deformations and blurred boundaries within the duodenum region. Furthermore,
in FLARE23Ts 28 subject, our model incorrectly identifies the tumor as a part of
the stomach, indicating a misclassification issue. Additionally, in FLARE23Ts 48
subject, the tumor is not successfully identified, highlighting the model’s limita-
tions in addressing certain tumor characteristics. This poor performance can be
attributed to various factors. Firstly, the non-uniform sizes of tumors and their
distribution across multiple organs pose a significant challenge to our segmenta-
tion model. Additionally, the limited availability of tumor samples hinders the
model’s learning capabilities. Therefore, enhancing the dataset with alternative
methods to strengthen the representation of tumor samples may be a crucial
approach for improvement.

4.3 Segmentation efficiency results on validation set

The segmentation efficiency is shown in Table 5. We compared the number of pa-
rameters and FLOPs using hybrid modules at different stages in Table 6. "-3,4"
represents the use of hybrid modules in the third and fourth layers, and pure
convolutional modules in the remaining layers. "-2.3,4" represents the utilization
of hybrid modules in the second, third, and fourth layers. "-1,2.3,4" represents
the utilization of hybrid modules at each stage. The proposed method is signifi-
cantly faster than other methods in terms of inference time. This is due to our
two-stage strategy and the use of Conv Blocks at shallow layers and Parallel
Blocks exclusively at deep layers.

4.4 Results on final testing set

The effects of the test set evaluated by the official are shown in Table 8.

Table 8. The testing results from the official evaluation.

Organ DSC Organ NSD Lesion DSC Lesion NSD Time GPU Memory
89.58% 93.33% 3.78% 1.81% 14.85s 15962MB

4.5 Limitation and future work

The current state of tumor segmentation is characterized by a notable degree
of inefficiency. To improve the accuracy of tumor segmentation, it is crucial
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Fig. 4. Visualization of segmentation results of abdominal organs and tumors.
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to develop strategies that focus on improving the quality of tumor samples.
Notably, there is inherent heterogeneity in the tumor features exhibited across
different anatomical organs. It is conceivable that one potential approach to
addressing this heterogeneity involves dividing tumor segmentation into distinct
segments that are specific to each organ. This approach seeks to acquire a refined
understanding of the tumor characteristics associated with each organ. However,
it is imperative to acknowledge that this level of detail inherently increases the
computational workload associated with the segmentation process.

An additional strategy under consideration involves utilizing prior knowledge
of the relative positions of organs. Such an approach is intended to reduce the oc-
currence of incorrect segmentation. Nevertheless, the variability observed in the
relative positions of organs across different cases presents a significant challenge
in determining a fair and appropriate range of positions.

5 Conclusion

We propose a two-stage segmentation network for the FLARE 2023 abdominal
organ segmentation task. The network combining CNN and Swin Transformer
effectively aggregates local features and global information. The use of pseudo-
labels effectively enhances the accuracy of organ and tumor segmentation. In
addition, our two-stage and lightweight network framework achieves high effi-
ciency. Our method achieves an average organ DSC of 89.58% and an average
organ NSD of 93.33%. In our environment configuration, the average running
time for each example during testing cases is 14.85s, the average maximum GPU
memory is 15962 MB.
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