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Abstract

Deep learning models tend not to be out-of-
distribution robust primarily due to their reliance
on spurious features to solve the task. Counter-
factual data augmentations provide a general way
of (approximately) achieving representations that
are counterfactual-invariant to spurious features,
a requirement for out-of-distribution (OOD) ro-
bustness. In this work, we show that counterfac-
tual data augmentations may not achieve the de-
sired counterfactual-invariance if the augmenta-
tion is performed by a context-guessing machine,
an abstract machine that guesses the most-likely
context of a given input. We theoretically ana-
lyze the invariance imposed by such counterfactual
data augmentations and describe an exemplar NLP
task where counterfactual data augmentation by a
context-guessing machine does not lead to robust
OOD classifiers.

1 INTRODUCTION

Despite its tremendous success, deep learning suffers from
a significant challenge of robust out-of-distribution (OOD)
predictions when the test distribution is different from the
training distribution, especially due to its inclination to learn
spurious patterns and shortcuts to solve the task [Jo and Ben-
gio, 2017, Geirhos et al., 2020, Poliak et al., 2018, D’ Amour
et al., 2020]. Invariant Risk Minimization and similar meth-
ods [Arjovsky et al., 2019, Bellot and van der Schaar, 2020,
Krueger et al., 2021] propose to solve this by learning repre-
sentations that are invariant across multiple environments
but can be insufficient for OOD generalization without addi-
tional assumptions Ahuja et al. [2021]. Recent works have
increasingly used causal language to formally define and
learn non-spurious representations [Wang and Jordan, 2021,
Veitch et al., 2021] in order to be robust in OOD tasks.

Veitch et al. [2021], Mouli and Ribeiro [2022] define coun-
terfactual invariance to spurious features as a requirement
for robust OOD predictors.

A simple way of (approximately) achieving counterfactual-
invariant predictors is via counterfactual data augmentations
(CDA) [Lu et al., 2020, Kaushik et al., 2019, Sauer and
Geiger, 2021], where one augments the training data with
inputs generated from different spurious features. This en-
ables a predictor to learn to be invariant to these spurious fea-
tures. Lu et al. [2020], Zmigrod et al. [2019], Maudslay et al.
[2019] use counterfactual data augmentation to mitigate
gender biases in natural language models, for example by
counterfactually modifying the gendered words in the text.
Kaushik et al. [2019, 2020], Teney et al. [2020] use human
annotators to generate counterfactual examples by making
minimal changes to a given text, although this approach may
not achieve the desired robustness due to lack of diversity in
augmented examples [Joshi and He, 2021]. Von Kiigelgen
et al. [2021] uses self-supervision and data augmentation
to provably disentangle content from style in vision tasks.
Other works have used pretrained models to counterfactu-
ally augment smaller datasets [Hasan and Talbert, 2021,
Liu et al., 2021]. While these works propose varied ways
of performing counterfactual data augmentations, the gen-
eral principle remains the same: To obtain representations
that are either disentangled or counterfactually-invariant to
spurious features (Definition 1).

In this work, we show how counterfactual data augmen-
tations may not achieve the desired counterfactual invari-
ance to spurious associations if these augmentations are
performed by a context-guessing machine (Definition 2).
We define a context-guessing machine as an abstract ma-
chine (ML model, human annotator or algorithm) that infers
the most-likely context of a given input x before perform-
ing counterfactual modifications. We show that performing
counterfactual changes with the most-likely context rather
than considering all possible contexts can result in a repre-
sentation that is not counterfactually invariant (Theorem 1).
Our analysis suggests that one must be careful while design-
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Figure 1: SCM over the observed input X and the corre-
sponding label Y. X is obtained from two variables C' and Z
with only C' affecting the label Y and 7 is spurious. Ux and
Uy denote the background noise variables in the SCM. The
associational task is to predict Y from X. Since Y depends
only on C, we wish to learn a representation I' : X — R¢
of the input X that is counterfactually-invariant to Z.

ing counterfactual data augmentation methods (e.g., eliciting
counterfactual examples from human annotators) to avoid
the bias introduced from guessing a particular context for
the given example.

2 COUNTERFACTUAL INVARIANCE

We begin with a brief discussion of structural causal models
and the definition of counterfactual variables which will be
helpful in defining counterfactual-invariant representations.

Structural Causal Model. A structural causal model
(SCM) [Pearl, 2009, Chapter 7] describes the causal re-
lationships between all the relevant variables and encodes
the assumptions on how the observed data is generated. An
SCM consists of two sets of variables: (a) endogenous vari-
ables, those that have a causal definition of how they are
obtained from other variables, and (b) exogenous variables,
those that are not described by the given causal model, but
affect the endogenous variables. For example, consider the
SCM given below

X = fx(Z,0)+Ux
Y = fy(c) + Uy ,

where {X,Y} are observed endogenous variables and
{Ux,Uy,Z,C} are unobserved exogenous variables.
A (given) distribution over the exogenous variables
P(Ux,Uy, Z,C) entails a distribution over the endoge-
nous variables P(X,Y"). This SCM can be represented as a
causal graph as shown in Figure 1. A typical learning task
is to predict Y from X; note that the task is associational,
there is no causal link from X to Y.

Counterfactuals. Counterfactuals describe a what-if ques-
tion given a particular observation. For example, observing
X = z, the counterfactual question can be “what would be
the value of X had Z = 27”. We express this question us-
ing the counterfactual random variable X (Z = 2)|X = z.

Given the complete structural causal model, the counter-
factual variable X (Z = z)|X = x can be computed as
follows [Pearl, 2009, Chapter 7]:

1. (Abduction.) Compute P(U|X = xz) where U is the
set of all exogenous variables.

2. (Action.) Perform the intervention do(Z =
given SCM.

3. (Prediction.) Compute the distribution of X in the mod-
ified SCM using the modified distribution for the ex-
ogenous variables.

z) in the

We can write distribution of the counterfactual variable
X(Z = 2)|X = « formally as:

PX(Z=z)=2d|X=2x)=
/P — 2|do(Z = 2),U —ulX =2).
)

The integral denotes the three steps of computing the coun-
terfactuals: (i) abduction step to obtain the distribution of the
exogenous variables P(U|X = x), (ii) making the desired
intervention do(Z = z), and (iii) computing the endoge-
nous variable X under intervention using the abducted dis-
tribution. An important point to remember while computing
counterfactuals is that they need not only deal with individ-
ual realizations, i.e., given X = x, there can be a population
of individuals given by the distribution P(U|X = x). The
do-operation is then applied to all these individuals.

=u)dPU

Counterfactual-invariant representations. Now we are
ready to describe counterfactual-invariant representation
defined in Mouli and Ribeiro [2022], Veitch et al. [2021].
Veitch et al. [2021] define the counterfactual variable using
the potential outcomes notation X (z'), i.e., what would
X be had Z = 2 leaving all else fixed. While we use
the notation of Mouli and Ribeiro [2022], the definitions
are equivalent when supp(Z'*) = supp(Z), as assumed
throughout this work.

Definition 1 (Counterfactual-invariant representations
[Mouli and Ribeiro, 2022]). Given any SCM with at least
two variables X and Z, a representation I'yy : X — RY,
d > 1 of X is counterfactual-invariant to the variable Z if

Ty(x) =T AX(Z = 2')|X =) 2)

almost everywhere, Vz' € supp(Z),Va € supp(X), where
supp(A) is the support of random variable A.

The counterfactual variable X (Z = 2/|X = x) in the RHS
of Equation (2) is as defined in Equation (1). Then, Equa-
tion (2) says that Iy should have the same output ()
for all values in the support of the counterfactual random
variable X (Z = 2')|X = z. Revisiting the SCM in Fig-
ure 1, we can see that an OOD robust classifier should use



representations that are counterfactual invariant to the spuri-
ous features Z (as Z does not affect Y'). A common way of
obtaining counterfactual invariant representations is to aug-
ment counterfactual examples (z’, y) for every data sample
(x,y) with 2’ ~ P(X(Z = 2')|X = z) for 2’ € supp(Z).
In the next section, we look at an example of counterfactual
data augmentation in the context of classifying text reviews
and showcase a scenario when it does not lead to robust
classifiers.

3 EXAMPLE: COUNTERFACTUAL DATA
AUGMENTATION IN NLP

In this section, we consider an example NLP task of pre-
dicting the helpfulness of a product review while being
counterfactually-invariant to the sentiment of the review
which is spurious for this task [Veitch et al., 2021].

Structural causal model for review classifiation. We
begin with the structural causal model that generates the
text X and the helpfulness label Y (associated causal graph
in Figure 1). In this example, Z denotes the sentiment of
the reviewer about the product (1ike or dislike), C de-
notes the content describing the product, Ux is the type of
reviewer, crudely categorized as straightforward (Ux = 1)
or sarcastic (Ux = —1), and Uy is label noise (assumed
to be zero). Table 1 concretely defines how these variables
affect the text X and its helpfulness label Y. Since it is
not feasible to describe all possible text inputs X, we use
placeholders [ - - - | to describe the type of text, while the
actual content of the review may vary across the dataset.
For example, [good, , positive tone] represents a particular
review with good quality content and written in a positive
tone. Further assume that P(Ux = 1) = 0.9, i.e., straight-
forward reviewers are a lot more likely than sarcastic ones,
P(Z =1ike) =0.5,and P(Uy =0) = 1.

A straightforward individual’s sentiment affects the text in
the usual way (e.g., Z = 1like =— X has a positive
tone). On the other hand, the effect of a sarcastic individ-
ual’s sentiment on X is more complicated: Z = dislike
—> X has a positive tone, and Z = 1ike = X has
a . Now, it is clear from Table 1 (also from
Figure 1) that the sentiment Z is spurious for the label Y
which only depends on C'. However, a classifier may not
learn this invariance to Z automatically from training data,
especially if all the possible values of X are not seen dur-
ing training. Thus, our goal is to obtain a representation
that is counterfactually-invariant to the sentiment Z which
will allow us to build OOD robust classifiers. That is, we
want to augment the original dataset with counterfactual
data with respect to the sentiment Z in order to obtain the
counterfactual-invariant representation.

Counterfactual data augmentation (CDA). Given
a text input * = [good,,positive tone], Definition 1
enforces the invariance considering all possible
contexts (4 = 1like,Z = dislike), thus con-
sidering sarcastic individuals as well as straightfor-
ward ones. Considering both contexts, CDA aug-
ments [good, , negative tone] and [good, ],
thus enforcing the following invariance over the
representation  I'r:  T'ee([good,, positive tone]) =
Ter([good,, negative tone]) = T'¢([good; , D.

Next we show that a bias may be introduced if the counter-
factual data augmentation algorithm (e.g., using humans-
in-the-loop) does not consider all the possible contexts,
but instead guesses the most-likely context. We will de-
note this type of augmentation machine as a context-
guessing machine. As before, consider the text input
x = [good,, positive tone]. A context-guessing machine
infers the most-likely context (i.e., maximum a posteri-
ori estimate) of the text as Z = like due to the pos-
itive tone, thus indirectly only considering straightfor-
ward individuals with Ux = 1. The counterfactually
augmented example is 2’ = [good,, negative tone] with
the same label ¥ = helpful and enforces the fol-
lowing invariance on I'egy: T'eqa([good,, positive tone]) =
Teda([good, , negative tone]). But, clearly this is not enough
for counterfactual-invariance as I'.4,([go0d; , D
can be arbitrarily different. Thus, a classifier that uses the
representation I'.q4, is not guaranteed to be robust to OOD
changes to sentiment Z.

4 CDA BY A CONTEXT-GUESSING
MACHINE

In this section, we analyze the counterfactual data augmen-
tations performed by a context-guessing machine more for-
mally. We begin with a definition of a context-guessing
machine, an abstract machine (e.g., ML model, human an-
notator or algorithm) that guesses the most-likely context
for the given input z, i.e., most-likely instantiation of a par-
ent of z. Throughout this section, our definitions consider
a single parent Z of X, but they can be easily extended for
multiple parent (context) variables.

Definition 2 (Context-guessing machine). Given any SCM
with Z — X, a context-guessing machine assumes the
context of x to be 2MAP(z) = argmax, P(Z = z|X = x),
which is the maximum a posteriori (MAP) estimate of Z
given X = x.

In Definition 3, we define counterfactual data augmenta-
tion with such a context-guessing machine which works
as follows: (a) Given X = z, the context is inferred to be
Z = zMAP(z), and (b) a counterfactual example is gener-
ated conditioned on the inferred context while preserving
the label.



Uy z C Uy X Y

1 like [good, ] 0 [good,, positive tone] helpful
1 dislike [good,] 0 [good,, negative tone] helpful
-1 like [good, | 0 [good,, ] helpful
—1 dislike [good,] 0 [good,, positive tone] helpful
like [poor; ] 0 [poor;, positive tone] not helpful
dislike [poor] 0 [poor;, negative tone] not helpful
-1 like [poor, | 0 [poor, ] not helpful
—1 dislike ] 0 not

[poor; [poor;, positive tone] helpful

Table 1: An example where counterfactual data augmentation with a context-guessing machine does not lead to a
counterfactual-invariant representation. The table shows a succinct description of the structural causal model for a review
classification task (associated causal graph in Figure 1). X and Y denote the observed text review and the corresponding
helpfulness label respectively. The associational task is to predict Y from X. Input X is obtained as a function of two
unobserved variables C' and Z. C' denotes the actual content describing the product and directly affects the helpfulness
label Y. We show two possible values for C' denoted [good, ] and [poor, ] for simplicity representing particular good and
poor quality contents respectively. Z denotes the sentiment of the reviewer about the product. Ux denotes the different
types of reviewers, straightforward (Ux = 1) or sarcastic (Ux = —1). For a straightforward individual, Z = 1ike implies
that X has a positive tone, whereas for a sarcastic individual, Z = dislike implies that X has a positive tone. Finally,
since Y depends only on C' and not on the sentiment Z, we wish to learn a representation I : X — R? of the input X that
is counterfactually-invariant to Z using counterfactual DA. However, a context-guessing machine infers the most likely
context, for example, that positive tone is from a straightforward reviewer who likes the product, and does CDA under this
context. This does not result in counterfactual invariance as the alternative context for the positive tone—a sarcastic reviewer
who dislikes the product—is not considered.

Definition 3 (Guess-CDA). Counterfactual data augmen-
tation derived from a context-guessing machine is defined
as follows: For every (z,y) in the training data D, an aug-
mented example is (x',y) where ' ~ P(X(Z = 2)|X =
x, Z = 2MAP(z)) for z € supp(2).

The variable X(Z = 2)|X = x,Z = zMAP(z) in Def-
inition 3 is different from the counterfactual variable of
interest X (Z = z)|X = x. Recall that the definition of
counterfactual variables in Equation (1) involved abducted
distributions over the set of exogenous I/ given the evidence.
The distribution of counterfactually-augmented examples in
Definition 3 is given by

PX(Z=2)=2|X =2,7Z = M¥P(2)) =
/P(X =1'|do(Z = 2),Ux = u)
dP(Ux =ulX =z, Z = 2M¥®(z)), (3)

where the abducted distribution P(Ux = u|X = z,Z =
2MAP (1)) marks the only difference from Equation (1). Next,
we explicitly define the invariance imposed on a represen-
tation trained over the counterfactually-augmented data of
Definition 3.

Definition 4 (Guess-CDA-invariance). Given any SCM
with Z — X, the invariance imposed on a representation

Teda : X — R d > 1 0f X by the counterfactual data aug-
mentation from a context-guessing machine in Definition 3
is

Teta() = Teaa(X(Z = 2)|X =2, Z = 2MP(2)) (4

almost everywhere, Vz € supp(Z),Vx € supp(X), where
MAP (1) = argmax, P(Z = z|X = x) is the maximum a
posteriori (MAP) estimate of Z given X = x and supp(A)
is the support of random variable A.

The support of the counterfactual variable in the RHS of
Equation (4) can be different than the support of that in Equa-
tion (2) as illustrated by the example in Section 3. Our next
theorem formalizes this notion and states that the invariance
imposed by Definition 4 on I' g, is weaker than the desired
invariance of Definition 1. Hence, when performing CDA
with a context-guessing machine, we are not guaranteed to
obtain a counterfactually-invariant representation.

Theorem 1 (I' .4, of Definition 4 is not counterfactually-in-
variant). Given any SCM with Z — X, let I .4, denote the
representation defined in Definition 4 obtained via counter-
factual data augmentation from a context-guessing machine.
Then, in general, T .4, is not counterfactual-invariant ac-
cording to Definition 1.



We prove the theorem in Appendix A.1 in two steps. (a)
First, we show that the invariance restriction imposed over
I'cqa in Definition 4 is never stronger than that imposed over
I'¢f in Equation (2) by comparing the supports of the RHS
in Equations (2) and (4). That is, we show |, supp(X (Z =
DX = 0.2 = MP(2)) C U, supp(X(Z = 2)|X =
x). (b) Then, we show a linear SCM example where the
invariance restriction of Definition 4 is strictly weaker than
that of Definition 1. In this simple example, Definition 1
forces I' . to be a constant function, whereas Definition 4
allows I'¢4, to take two different values based on the input
T.

S SOLUTION

The solution to the challenge described above is relatively
simple. We just need to avoid guessing the most likely con-
text. The support (or at least all likely contexts Z) must be
present in the data augmentation procedure. That means, for
instance, giving context suggestions to human annotators
either by sampling from P(Z|X) or by considering all the
likely contexts based on P(Z]X).

6 CONCLUSIONS

Counterfactual invariance to spurious features is a desired
property for OOD robustness of predictors. A general way
of approximately achieving counterfactual invariance is via
counterfactual data augmentations. In this work, we studied
counterfactual data augmentations performed by a context-
guessing machine and showed that a representation trained
on the resultant augmented data may not be counterfactual-
invariant. Our analysis suggests that one must be careful
while designing counterfactual data augmentation methods
(e.g., eliciting counterfactual examples from human annota-
tors) to avoid the bias introduced from guessing a particular
context for the given example.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Theorem 1 (I'.4, of Definition 4 is not counterfactually-invariant). Given any SCM with Z — X, let I .4, denote the
representation defined in Definition 4 obtained via counterfactual data augmentation from a context-guessing machine.
Then, in general, T .4, is not counterfactual-invariant according to Definition 1.

Proof. We prove the theorem in in two steps. (a) First, we show that the invariance restriction imposed over I'¢q4, in
Definition 4 is never stronger than that imposed over I'¢; in Equation (2) by comparing the supports of the RHS in
Equations (2) and (4). That is, we show | J_, supp(X (Z = /)| X =z, Z = z2M*P(z)) C |, supp(X (Z = 2')| X = z). (b)
Next, we show a linear SCM example where invariance restriction of Definition 4 is strictly weaker than that of Definition 1.

(a): Consider the random variable X (Z = 2')|X = x.
P(X(Z=2)=2'|X =x)
= /P(X(Z =2=2'|Z=2Ux =u)dP(Z =2,Ux =ulX =1)
= /P(X =2'|do(Z =2'),Ux =u)dP(Ux =u|X =z), )
where the first term within the integral is rewritten using a do-expression and does not depend on Z = z.
Consider the random variable X (Z = 2/)| X = x, Z = 2MAP(2).
P(X(Z=72)=42'|X =x,Z = :M¥(2))
= /P(X(Z =2)=2a'|Z =2,Ux =w)dP(Z = 2,Ux = u|X =2,Z = 2M"(z))
= /P(X =2'|do(Z = 2'),Ux = u)dP(Ux = u|X =z, Z = 2M*(z)), (6)
where once again, we rewrite the first term using a do-expression.
Noting that P(Ux = u|X =) =0 = P(Ux =u|X =x,7 = 2MAP(x)) =0,

¥ ¢supp(X(Z=2)|X=2) = PX(Z=2)=2'X=2)=0

= / =12|do(Z =2"),Ux =u)dP(Ux =u|X =2) =0 (From Equation (5))
— / — 2|do(Z = ), Ux = w)dP(Ux = u|X = 2,7 — MP(g)) = 0
= PX(Z=2)=2|X=2,72=:MPx) =0 (From Equation (6))

— 2’ ¢ supp(X(Z = 2')|X =z, Z = 2M¥P(z)) .

Thus, we have for all 2’ € supp(Z), supp(X(Z = 2')|X = x,Z = 2MAP(z)) C supp(X(Z = 2')|X = x), and hence,
U, supp(X(Z = 2')|X = 2, Z = 2M*P(2)) C U, supp(X(Z = 2’)| X = ). This shows that invariance restriction over
the representation I'.q, is never stronger than that over I'is. Next, we show an example where the restriction over I'.y, is
strictly weaker.

(b): Consider a simple SCM with X = Z + 2Ux where Ux € {—1,0,1}, Z € {—1,1} and subsequently X <
{=3,-1,1,3}. Let P(Uy = 1) = P(Ux = —1) = 0.4and P(Ux = 0) = 0.2. Also, let P(Z = 1) = P(Z = —1) = 0.5.

Invariance imposed by Definition 1 on I'y. For each z € {—3, —1, 1, 3}, we need to impose the condition:

Top(z) =Tep(X(Z=1)|X =2) =T4(X(Z =-1)|X =2).



In what follows, we show the invariance imposed with = 1. Consider X (Z = 1)|X = 1 whose distribution is given by

PX(Z=1X=1)= Y P(X[do(Z=1),Ux = u)P(Ux = ulX = 1)

ue{-1,0,1}
:51'P(UX:0|X=1)+63'P(UX:1|X=1)
1 2
=51 =4822
1 3+ 3 3)

where ¢, is the Dirac measure at c. Since the support of X (Z = 1)|X = 11is {1, 3}, we obtain our first invariance constraint:
Ter(1) = Tes(3). Next consider X (Z = —1)|X =1

PX(Z=-1)X=1)= >  P(X|do(Z=-1),Ux =u)P(Ux =u|X =1)

ue{-1,0,1}
=01 -P(Ux=0|X=1)+0,- P(Ux =1|X = 1)
1 2
:5_1g+51§

Since the support of X (Z = —1)|X = 1is {1, —1}, we obtain T'¢f(1) = Te(—1).

Repeating the above procedure for every - € {—3, —1, 1, 3}, we obtain the following invariance for T'¢: T'e(1) = Tee(—1) =
Let(—3) = T'er(3). In words, T is forced to be constant in this example.

Invariance imposed by Definition 4 on I'c4,. Foreach 2 € {—3,—1,1, 3}, we need to impose the condition:

TFeta(2) =Teqa(X(Z = 1)|X =2, Z = 2M¥P(2)) = Tea (X (Z = —1)| X =, 2M*P(2)) .

In what follows, we show the invariance imposed with - = 1. First, we can obtain zMA"(1) = argmax,_;_, 1y P(Z =
2|X = 1) = —1. Then consider X (Z = 1)|X = 1, Z = 2MAP(1) with distribution

PX(Z=1)X=1,Z=-1)= Y P(X|do(Z=1),Ux = u)P(Ux =ulX =1,Z = —1)
ue{-1,0,1}

:63a

where once again . denotes the Dirac measure at c. Since the support of X (Z = 1)|X = 1,Z = —1is {3}, we obtain
Teaa(1) = Tcda(3). The support of X(Z = —1)|X = 1,Z = —1 is simply {1} and only imposes the trivial constraint
cha(l) = cha(l)-

Repeating the above procedure for every z € {—3, —1, 1, 3}, we obtain the following invariance for I'¢ga: Tcda(1) = Teaa(3)
and T¢ga(—1) = T'¢¢(—3). Note that unlike T'¢f, T'cqa is not enforced to be a constant in this example; it can be such
that T'¢ga(1) # Teqa(—1). Thus, there is a representation that satisfies the invariance imposed in Definition 4 but is not
counterfactually-invariant as defined in Definition 1.
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