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Abstract

Causal discovery from observational data, i.e., learning the causal graph from a finite set
of samples from the joint distribution of the variables, is often the first step toward the
identification and estimation of causal effects, a key requirement in numerous scientific
domains. Causal discovery is hampered by two main challenges: limited data results in
errors in statistical testing and the computational complexity of the learning task is daunt-
ing. This paper builds upon and extends four of our prior publications (Mokhtarian et al.,
2021; Akbari et al., 2021; Mokhtarian et al., 2022, 2023a). These works introduced the con-
cept of removable variables, which are the only variables that can be removed recursively
for the purpose of causal discovery. Presence and identification of removable variables al-
low recursive approaches for causal discovery, a promising solution that helps to address
the aforementioned challenges by reducing the problem size successively. This reduction
not only minimizes conditioning sets in each conditional independence (CI) test, leading to
fewer errors but also significantly decreases the number of required CI tests. The worst-case
performances of these methods nearly match the lower bound. In this paper, we present
a unified framework for the proposed algorithms, refined with additional details and en-
hancements for a coherent presentation. A comprehensive literature review is also included,
comparing the computational complexity of our methods with existing approaches, show-
casing their state-of-the-art efficiency. Another contribution of this paper is the release
of RCD, a Python package that efficiently implements these algorithms. This package is
designed for practitioners and researchers interested in applying these methods in practical
scenarios. The package is available at github.com/ban-epfl/rcd, with comprehensive
documentation provided at rcdpackage.com.
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Note to Readers

This paper builds upon and extends the methodologies from four of our previous publica-
tions in causal discovery. These publications are outlined as follows:

M1 Mokhtarian et al. (2021): A recursive Markov boundary-based approach to causal
structure learning; published in KDD-CD 2021; introducing MARVEL.

Ra Akbari et al. (2021): Recursive causal structure learning in the presence of latent
variables and selection bias; published in NeurIPS 2021; introducing L-MARVEL.

M3 Mokhtarian et al. (2022): Learning Bayesian networks with structural side informa-
tion; published in AAAT 2022; introducing RSL.

M, Mokhtarian et al. (2023a): Novel ordering-based approaches for causal structure learn-
ing in the presence of unobserved variables; published in AAAI 2023; introducing
ROL.

For readers primarily interested in the practical implementation of our proposed methods,
we recommend proceeding directly to Section 8, where our Python package RCD is intro-
duced. Additionally, to facilitate ease of reading, we have summarized the key notations in
Table 2. The main results discussed in this paper are also summarized in Table 5.

1. Introduction

A fundamental task in various fields of science is discovering the causal relations among
the variables of interest in a system. These relations, pivotal for tasks such as inference
and policy design, are often encoded as a mazimal ancestral graph (MAG), representing
the causal structure of the system. In cases where no hidden variables are present, a MAG
simplifies to a directed acyclic graph (DAG). The problem of learning the causal structure of
a system, known as the causal discovery problem, is notoriously challenging and is recognized
as an NP-hard problem (Chickering et al., 2004).

To address this problem, a slew of methodologies, broadly categorized into constraint-
based, score-based, and ordering-based methods, have been developed. Constraint-based
methods leverage statistical tests to identify structures consistent with the conditional in-
dependence (CI) relations observed in data. Score-based methods learn the graph as a
solution to an optimization problem that maximizes a predefined score. Ordering-based
methods focus on discovering a causal ordering of variables, simplifying structure learning
by reducing the search space and computational complexity. Additionally, hybrid methods
have emerged that combine aspects of these methodologies. This paper primarily focuses
on constraint-based methods, which are most commonly used in the presence of hidden
variables. In Section 7, we present a literature review of causal discovery methods.

Causal discovery is plagued by numerous challenges, most critically those pertaining
to computational/time complexity and sample efficiency. In constraint-based methods,
time complexity is primarily determined by the number of required CI tests. The two
classical approaches, the PC algorithm, developed for DAG-learning, and its counterpart
for MAG-learning, the FCI algorithm, are not scalable to large graphs (Spirtes et al., 2000).
Subsequent research has focused on reducing the computational burden and improving
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Algorithm Assumptions Completeness 4CI tests
Reference Name Causal sufficiency Other
Ry MARVEL YES - YES O(n? +nAZ 28m)
Ry L-MARVEL NO - YES O(n? + n(A})2280m)
%y RSL,, YES w(G) <m YES O(n? + nA"
RSLp YES Diamond-free YES O(n?+nA3d)
ROLuc NO - NO O(MAXITER x n?)
Ry ROLy; NO - YES O(n?2m)
ROLp¢ NO - NO N/A
Lower Bound YES - YES Q(n? + nlg,2%n)
Lower Bound NO - YES O(n? + TI,AZ;QA;L)

Table 1: Summary of the assumptions, guarantees, and complexities of the recursive causal
discovery methods discussed in this paper. For a comparison with the existing
literature, refer to Table 3.

the statistical efficiency of these seminal works. On the other hand, methods such as the
RFCI (Colombo et al., 2012), specifically designed to gain computational speed, do this
at the cost of possibly compromising completeness. Completeness refers to a method’s
asymptotic correctness, i.e., when sufficiently large numbers of samples are available so
that the statistical tests used in the method are error-free.

Recent advancements, such as our four publications (9R1-9R4) in recursive causal discov-
ery, have made significant strides in addressing time and sample complexity while maintain-
ing completeness guarantees. Our proposed framework strategically identifies a so-called
removable variable (Definition 16), denoted by X, and learns its neighbors. After omitting
this variable, the causal structure over the remaining variables is learned using only the
samples from those variables. It is essential to carefully select X to avoid any erroneous
inclusions or exclusions in the causal graph, which we shall explain in detail with examples
in Section 3. As these methods operate iteratively, they systematically reduce the problem
size, leading to fewer CI tests and smaller conditioning sets; hence improving the statistical
reliability of these tests.

Table 1 provides a concise summary of the assumptions, guarantees, and complexity
1. In this table, causal
sufficiency refers to when all variables in the system are observable. The last column shows
the number of total CI tests performed as a common proxy to measure the complexity of
constraint-based methods. As mentioned earlier, causal discovery from observational data
is NP-hard (Chickering et al., 2004). In the last two rows, we present lower bounds for
the complexity of constraint-based methods under causal sufficiency and in the absence
of it, as established in Section 6.1. We shall discuss in more detail in Section 6 how this
table demonstrates the state-of-the-art efficiency of our proposed methods under various
assumptions.

of the recursive causal discovery methods discussed in this paper

1. For the notations used in Table 1, please refer to Table 2.
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Our main contributions in this paper are as follows.

e We present a unified framework for the algorithms proposed in R;-R4, refined with
additional details and enhancements for a coherent presentation.

e We launch the RCD Python package, an efficient implementation of our recursive al-
gorithms.

e We conduct a comprehensive literature review and compare the computational effi-
ciency of our methods with existing approaches.

The remainder of the paper is organized as follows. We provide preliminaries, including
formal definitions and the goal of causal discovery from observational data in Section 2.
The theoretical foundations of our proposed algorithms are established in Section 3. In this
section, we cover the generic recursive framework for causal discovery, describe the concept
and characteristics of removable variables, and provide a comparison of our novel removable
orders with traditional approaches. In Section 4, we introduce four recursive causal discovery
methods: MARVEL, L-MARVEL, RSL, and ROL, and discuss their integration within the
recursive framework. In Section 5, we delve into the implementation details of these methods
and provide detailed pseudocode for each of the aforementioned algorithms. In Section 6,
we discuss the complexity and completeness of various causal discovery methods, with a
particular emphasis on our proposed recursive approaches, alongside lower bounds that
provide theoretical limits for constraint-based methods. An extensive literature review is
carried out in Section 7. Finally, Section 8 is dedicated to introducing our Python package
RCD, which efficiently implements our proposed recursive causal discovery algorithms.

2. Preliminaries

The key notations are summarized in Table 2 to enhance clarity in our presentation.
Throughout the paper, we denote random variables in capital letters, sets of variables
in bold letters, and graphs in calligraphic letters (e.g., G). Further, since the graphs are
defined over a set of random variables, we use the terms variable and vertex interchangeably.

2.1 Preliminary Graph Definitions

A mized graph (MG) is a graph G = (W, E1, Es), where W is a set of vertices, E; is a set
of directed edges, i.e., E; C{(X,Y) | X,Y € W}, and E; is a set of bi-directed edges, i.e.,
E, C {{X, Y}|IX,)Y € W} All graphs in this paper are assumed to be mixed graphs. If a
directed edge X — Y exists in the graph, we say X is a parent of Y and Y is a child of X.
Two variables are as neighbors if a directed or bidirected edge exists between them. The
skeleton of G is an undirected graph with the same set of vertices W and an edge between
X and Y if they are neighbors in G. The clique number of G, denoted by w(G), is the size
of the largest clique (complete subgraph) of the skeleton of G. Further, we denote by A(G)
the maximum degree of a graph G.

Definition 1 (G|W]) For an MG G = (W', E},EL) and subset W C W', MG G[W] =
(W, E1,Ey) denotes the induced subgraph of G over W, that is E; = {(X,Y) e E] | X,Y €
W} and By = {{X,Y} €E, | X,Y e W}.
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Notation Description Definition
V., U Sets of observed and unobserved variables
n Number of observed variables, i.e., |V|
MG Mixed graph
MAG Maximal ancestral graph
DAG Directed acyclic graph
Pag(X) Parents of vertex X in MG G
Pag(X) Usex Pag(X)
Chg(X) Children of vertex X in MG G
Neg(X) Neighbors of vertex X in MG G
New (X) (Y e WA\{X}IVZCW\{X,Y}: (XLY|Z)p, } Definition 15
Ancg(X) Ancestors of vertex X (including X) in MG G
Ancg(X) Uxex Ancg(X)
Ag(X) Co-parents of vertex X in DAG G Definition 6
Mbw (X) Markov boundary of vertex X with respect to W Definition 12
Mbw {Mbw (X)|X € W} Definition 12
Mbg (X)) Markov boundary of vertex X in MG G Definition 13
VSg(X) V-structures in DAG G in which vertex X is a parent Definition 5
Disg(X) District set of vertex X in MG G Definition 3
Paf(X) Pag(X) U Disg(X) U Pag(Disg(X)) Definition 3
(W) Orders over W Definition 2
I1¢(G) c-orders of DAG G Definition 23
I1"(G) r-orders of MAG G Definition 24
A(G) Maximum degree of MG G
Ain(G) Maximum in-degree of DAG G
Af(G) Maximum size of Pag(.) in MG G Definition 3
w(G) Clique number of MG G
a(G) Maximum Markov boundary size of MAG G Definition 13
G[W] Induced subgraph of MG G over W Definition 1
Ow Latent projection of MAG G over W Definition 9
] Markov equivalent MAGs of MAG G Definition 11
[Q]d Markov equivalent DAGs of DAG G Definition 11
(X 1LY|Z)g An m-separation in MG G Definition 4
(X LYI|Z)p A conditional independence (CI) in distribution P
Data(W) A collection of i.i.d. samples from distribution Py

Table 2: Table of notations.
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A path P = (X1,...,Xy) is called directed if X; — X;4q for all 1 < i < k. If a
directed path exists from X to Y, we say X is an ancestor of Y (we assume each variable
is an ancestor of itself). We denote by Pag(X), Chg(X), Neg(X), and Ancg(X) the set of
parents, children, neighbors, and ancestors of X in graph G, respectively. Further, for a set
of vertices X, we define

Ancg(X) = | ) Ancg(X), Pag(X):= | J Pag(X).
XeX XeX

Definition 2 (II(W)) For a set W = {Wy,Wa,..., Wy}, an order over W is a tuple
Wiy, Wiy, ..., Wi,), where {i1,i2,...,im} is a permutation of {1,2,...,m}. We denote by

II(W), the set of all orders over W.

Definition 3 (Paj (X)) The district set of a variable X in MG G, denoted by Disg(X),
1s the set of variables with a path to X comprised only of bi-directed edges. By Pa;r(X), we
denote the union of parents, district set, and parents of district set. That is,

Paj(X) = Pag(X) U Disg(X) U Pag(Disg(X)).
Furthermore, by A} (G), we denote the mazimum size of Pag(.) ingG.

A non-endpoint vertex X; on a path (Xi, Xy, -+, Xy) is called a collider if one of the
following situations arises.

Xi1 = Xi+— Xip1, X1 X X,
Xic1 = Xi o Xip1, X1 € X & X

When X;_1 and X; 1 are not neighbors, and X; is a collider, the arrangement is termed as
an unshielded collider. A path P is a collider path if every non-endpoint vertex on P is a
collider on P.

Definition 4 (m-separation) In an MG G over W, a path P = (X, W1,--- , W}, Y) be-
tween two distinct variables X and Y is said to be blocked by a set Z C W\ {X,Y} in G
if there exists 1 < i < k such that (i) W; is a collider on P and W; ¢ Ancg(Z U {X,Y}),
or (i) Wi is not a collider on P and W; € Z. We say Z m-separates X and Y in G and
denote it by (X 1L Y|Z)g if all the paths in G between X and Y are blocked by Z.

A directed cycle exists in an MG G = (W, E;, Es) when there exists X,Y € W such that
(X,Y) € E; and Y € Ancg(X). Similarly, an almost directed cycle exists in G when there
exists X,Y € W such that {X,Y} € Eg and Y € Ancg(X). An MG with no directed
or almost-directed cycles is said to be ancestral. An ancestral MG is called mazimal if
every pair of non-neighbor vertices are m-separable, i.e., there exists a set of vertices that
m-separates them. An MG is called a mazimal ancestral graph (MAG) if it is both ancestral
and maximal. A MAG with no bidirected edges is called a directed acyclic graph (DAG).
When G is a DAG, the definition of m-separation reduces to the so-called d-separation.
Moreover, unshielded colliders in a DAG reduce to v-structures. For a DAG G, we denote
its maximum in-degree by A;,(G).
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Definition 5 (VSg(X)) In a DAG G, we denote by VSg(X) the set of v-structures in
which vertex X is one of the two parents.

Definition 6 (Co-parent) In a DAG, two non-neighbor vertices are co-parents if they
have at least one common child. The set of co-parents of vertex X in DAG G is denoted by

Ag(X).

Definition 7 (Discriminating path) In a« MAG G, a path P = (X, V1,...,V,Y), where
k> 1, is a discriminating path for Vi, if (i) X andY are not neighbors, (ii) {Vi,...Vi_1} C
Pag(X), and (iii) {V1,...Vk_1} are colliders on P.

Definition 8 (Inducing path) Suppose G is a MAG over W1 UWs? and let X,Y be dis-
tinct vertices in W1. An inducing path between X and Y relative to Ws is a path on which
(i) every non-collider is a member of Wa, and (ii) every collider belongs to Ancg(X,Y).

We note that in Definition 8, no subset of W can block an inducing path relative to Ws.

Definition 9 (Latent projection) Suppose G is a MAG over W1 U Wy. The latent
projection of G over W1, denoted by Gw,, is a MAG over W1 constructed as follows:

(i) Skeleton: X,Y € Wy are neighbors in Gw, if there exists an inducing path in G
between X and Y relative to Wy.

(ii) Orientation: For each pair of neighbors X,Y in Gw,, the edge between X and Y is
oriented as X — Y if X € Ancg(Y) andY ¢ Ancg(X) andas X < Y if X ¢ Ancg(Y)
and Y ¢ Ancg(X).

Remark 10 The latent projection maintains the ancestral relationships. Furthermore, in
a MAG G over W, for any Wa C W1 C W we have (Gw,)w, = Gw,-

Richardson et al. (2002) showed that the latent projection in Definition 9 is the unique
projection of a MAG G = (W LI Wy, E;, Es) over W that satisfies the following: for any
distinct variables X, Y in W; and Z C W3 \ {X, Y},

(X UL Y|Z)g, <« (X 1LY|Z),. (1)

Gw,

2.2 Generative Model: Structural Equation Model (SEM)

Consider a DAG G over V U U, where V and U denote sets of observed and unobserved
variables, respectively. In a structural equation model (SEM) with causal graph G, each
variable X € V U U is generated as X = fx(Pag(X),ex), where fx is a deterministic
function and ex is the exogenous variable corresponding to X with an additional assumption
that the exogenous variables are jointly independent (Pearl, 2009). Such a SEM induces a
unique joint distribution Pyyy over all the variables, which satisfies Markov factorization
property with respect to G. That is,

Pyou(V,U) = [] Pyvou(X|Pag(X)).
Xevuu

2. We U to denote disjoint union.
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The marginalized distribution Py = ) ; Pvuu is the observational distribution of the
underlying SEM. Furthermore, MAG Gy (i.e., the latent projection of DAG G over V as
introduced in Definition 9) is the causal MAG over the observed variables. If all the variables
in the SEM are observable, i.e., when U = &, Gy coincides with G. This assumption is
commonly referred to as causal sufficiency. Therefore, the causal graph over the observed
variables is a DAG when causal sufficiency holds.

Next, we show that under suitable assumptions, causal MAG Gy captures the condi-
tional independencies of Py .

2.3 Markov Property and Faithfulness

Let P be the joint distribution of a set of variables W. For distinct variables X, Y € W and
Z C W\ {X,Y}, a conditional independence (CI) test in P on the triplet (X,Y,Z) yields
independence, denoted by (X L Y|Z)p, if P(X|Y,Z) = P(X|Z). Distribution P satisfies
Markov property with respect to MG G if m-separations in G imply Cls in P. That is,

(X 1LY|Z)g — (X 1L Y|Z)p.

Conversely, distribution P satisfies faithfulness with respect to MG G if Cls in P imply
m-separations in G. That is,

(X WL Y|Z)p = (X 1L Y|Z)g.

Consider a SEM over V LU U with causal DAG G and joint distribution Pyyy. The joint
distribution Pyyy satisfies Markov property with respect to DAG G (Pearl, 2000). Although
Py _u does not necessarily satisfy faithfulness with respect to G, it is a common assumption
in the literature. When faithfulness holds, we have

(X 1L Y|Z) — (X 1LY|Z),, (2)

Pyuu
for any distinct variables X, Y in VUU and ZC VUU \ {X,Y}.

Recall that U is the set of unobserved variables. Causal discovery aims to find a graphical
model over V that encodes the CI relations in Py. Note that the induced subgraph G[V]
does not necessarily satisfy Markov property and faithfulness with respect to Py, failing
to encode the Cls of Py. On the other hand, Equations (1) and (2) imply that the latent
projection of G over V, i.e., Gy, satisfies Markov property and faithfulness with respect to
Py. That is, for distinct variables X,Y in V and Z C V\ {X,Y},

(X LY|Z)p, < (X LY|Z)g, . (3)

Accordingly, causal discovery aims to learn Gy. However, as we discuss next, using the
observational distribution Py, MAG Gy can only be learned up to an equivalency class.

2.4 Causal Discovery from Observational Distribution

By performing CI tests in the observational distribution Py, the m-separations of causal
MAG Gy can be recovered using Equation (3). However, two MAGs might have the same
set of m-separations.
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Definition 11 (MEC) Two MAGs Gy and Go are Markov equivalent if they impose the
same set of m-separations, i.c., (X 1LY|Z); <= (X WLY|Z)g,. We denote by [G]
the set of Markov equivalent MAGs of G, known as the Markov equivalence class (MEC).
Moreover, if G is a DAG, we denote by [G]? the set of Markov equivalent DAGs of G.

Cls are statistically sufficient for causal discovery in non-parametric models®. That is, if
multiple MAGs satisfy Markov property and faithfulness with respect to the observational
distribution Py, we cannot identify which one is the causal MAG of the underlying SEM.
Nevertheless, without the assumption of causal sufficiency, causal discovery from observa-
tional distribution aims to identify [Gyv]. When causal sufficiency holds, i.e., U = @ and
Gv = G, the goal is to identify [g]d.

2.5 Markov Boundary

The majority of the approaches that we present in this paper employ the concept of Markov
boundary. This notion can be defined based on either a distribution or a graph.

Definition 12 (Mbw (X)) Suppose P is the joint distribution of a set of random variables
W and let X € W. Markov boundary of X with respect to W, denoted by Mbw (X), is a
minimal subset of W \ {X}, such that

(X AL WA (Mbw (X) U{X})[Mbw (X)) p -

Additionally, we define Mbw as the set of Markov boundaries of all variables in W with
respect to W, i.e., Mbw = {Mbw (X)|X € W}.

Definition 13 (Mbg(X)) In an MG G, the Markov boundary of a variable X, denoted by
Mbg(X), consists of all the variables that have a collider path to X. We denote by «a(G)
the maximum Markov boundary size of the variables in G.

Remark 14 If G is a DAG, then
Mbg(X) = Pa,g(X) U Chg(X) @] Ag(X) = Neg(X) U Ag(X)

Consider a MAG G and a distribution P, both over a set W. Pellet and Elisseeff (2008a)
and Yu et al. (2018) showed that if G satisfies Markov property and faithfulness with respect
to P, then for each variable X € W, Mbw (X) is unique and is equal to Mbg(X).

3. Theoretical Foundation of Proposed Algorithms

In this section, we establish the theoretical basis for our proposed algorithms in causal
discovery. Firstly, we present a generic recursive framework for causal discovery in Section
3.1. Then, we explore the concept and characteristics of removable variables in Section 3.2.
Finally, we compare and contrast the newly proposed removable orders with traditional
approaches in Section 3.3.

3. Side information about the underlying SEM can render the causal graph uniquely identifiable. For
instance, when the functions are linear and the exogenous noises are non-Gaussian, Cls are no longer
statistically sufficient, and the causal MAG is uniquely identifiable from observational distribution.
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3.1 A Recursive Framework for Causal Discovery

Herein, we present a generic recursive framework for causal discovery that does not neces-
sarily assume causal sufficiency. Consider a SEM over V U U with causal DAG G, where
V and U denote the set of observed and unobserved variables, respectively. As discussed
in Section 2.4, our goal is to learn [Gy] (or [G]¢ with the assumption of causal sufficiency)
from Py when Equation (3) holds. In the following sections, we mainly focus on recovering
the skeleton of Gy. Later in Section 5.7, we show that a slight variation of the discussed
methods can be employed to recover the MEC.

Definition 15 (New (X)) Suppose Py is the joint distribution of variables in a set W.
For X € W, we denote by New(X) the set of variables Y € W \ {X} such that for each
Z CW\{X,Y}, we have (X UL Y|Z)

Pw *
Since non-neighbors in any MAG are m-separable, for any W C V we have
New (X) = Negy, (X). (4)

Hence, to learn the skeleton of Gy, it suffices to learn Ney(X) for each X € V. In
practice, a finite set of samples from Py is available instead of knowing the exact probability
distribution. Let Data(V) denote a collection of i.i.d. samples from Py, sufficiently large
to recover the CI relations in Py. For any subset W C V| Data(W) represents the samples
corresponding to the variables in W.

Algorithm 1: Recursive framework for learning the skeleton of Gv
1: Input: Data(V)

: V1 +~V

: for ¢ from 1 ton —1 do

X; « Find a [removable] variable in Gy, using Data(V;)

Learn Ney,(X;) using Data(V;)

Vii < Vi \ {X;}

S Gy

A generic recursive framework for causal discovery is presented in Algorithm 1. The
algorithm iteratively removes variables from V and learns the skeleton over the remaining
variables. At the i-th iteration, a variable X; € V; is selected, where V; denotes the set of
remaining variables. As we shall discuss shortly, this variable cannot be arbitrary and must
be removable. After finding such a variable X;, the algorithm learns the set of neighbors
of X; in Gy, using Data(V;). Note that this is possible because of Equation (4). Then,
the samples corresponding to X; are discarded, and the causal discovery problem is solved
recursively for the remaining variables V11 = V; \ {X;}.

For Algorithm 1 to correctly learn the skeleton of Gy, it is necessary that at each iter-
ation, Nev,(X;) = Neg,[v,)(X;). Recall that Nev,(X;) = Neg, (X;) and Gv[V;] denotes
the induced subgraph of Gy over V;. Since the latent projection can only add new edges
to the projected graph, this condition is equivalent to

Gv, =Gv[Vi, V1i<i<n. (5)

However, selecting an arbitrary variable X; in line 4 may not uphold this property.

10
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X Y 7z X Y X  z
o t——PO0— P odt— P [
W e W e We
(a) Gyx.,v,z,w) () Gixywy = Gixy.zwy X, Y, W] (c) Gyx,z,wy

Figure 1: Graphs in Example 1.

Example 1 Consider MAG Gix y,zw) shown in Figure 1a. In Figure 1b, MAG Gix y,w) is
the same as Gyx v,z w3 X, Y, W]. However, in Figure I1c, MAG Gix 7w} has two extra edges
between X, Z and X, W, which are not present in G(xy,zw} (X, Z,W]. This demonstrates
that when V; = {X,Y, Z, W} in Algorithm 1, Z can be selected in line 4, whereas Y cannot.

To employ Algorithm 1, we need to provide a method to find a removable variable and learn
its neighbors at each iteration. In the next section, we will define the concept of removable
variables and show that Equation (5) holds if and only if a removable variable is selected
at each iteration of this recursive framework.

3.2 Removable Variables

In this section, we define removable variables, present a graphical characterization for them
under different assumptions, and provide certain crucial properties.

Definition 16 (Removable variable) In a MAG G over W, a vertex X € W s called
removable if G and G[W \ { X }]| impose the same set of m-separations over W\ {X}. That
is, for any distinct vertices Y, T € W\ {X} and Z C W\ {X,Y, T},

(Y L T|Z)g <= (¥ 1L T|Z)gwr (x)) -

Proposition 17 (Only removables can get removed) Suppose G is a MAG over W
and X € W. MAG Gw\(xy is equal to GIW \ {X}] if and only if X is removable in G.

Proposition 17 implies that Equation (5) holds for Algorithm 1 if and only if X; is removable
in Gy, at each iteration. Next, we provide graphical characterizations of removable variables
in both MAGs and DAGs, along with their key properties. We then define removable orders
and discuss their properties.

3.2.1 GRAPHICAL CHARACTERIZATION OF REMOVABLE VARIABLES
We present, graphical characterizations of removable variables in DAGs and MAGs.

Theorem 18 (Graphical characterization in DAGs) A variable X is removable in a
DAG G if and only if the following two conditions are satisfied for every Z € Chg(X).

Condition 1: Neg(X) C Neg(Z)U{Z}.
Condition 2: Pag(V) C Pag(Z), VYV € Chg(X)N Pag(Z2).

11
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X Vi V Vi Y
X Y X Y X % Y . ! S o
. . : .
A Z Z Z%
(a) For DAGs (b) For MAGs

Figure 2: Graphical criterion of removability. Asterisk (*) is used as a wildcard, which
indicates that the edge endpoint can be either an arrowhead or a tail. In the case
of MAGs, the path (X,V1,...,Y) is a collider path and X,...,V,,, € Pag(Z). X
is removable if and only if for all such paths, Y and Z are adjacent. In the case
of a DAG, it suffices to check this condition for vertices Y, where Y is a parent,
child, or co-parent of X.

Figure 2a depicts the two conditions of Theorem 18 for removable variables in DAGs.

Theorem 19 (Graphical characterization in MAGs) Let G be a MAG over W. Ver-
tex X is removable in G if and only if for any collider path uw = (X, Vi,..., Vi, Y) and
Z e W\{X,Y,V1,...,Vin} such that {X,V1,...,Vin,} C Pag(Z), Y and Z are neighbors.

Figure 2b depicts the condition of Theorem 19 for removable variables in MAGs. Path
u=(X,V1,...,Vip,Y) is a collider path where {X, V1,...,V;;,} C Pag(Z). Theorem 19 states
that X is removable if and only if, for any such path, Y and Z are neighbors. In the case of
a DAG, the collider paths are of size either 1 (parents and children of X) or 2 (co-parents
of X). As shown in Figure 2a, the graphical criterion of Theorem 19 reduces to checking
the adjacency of these three groups of vertices with each child of X (see Theorem 18).

3.2.2 PROPERTIES OF REMOVABLE VARIABLES

Herein, we discuss some key properties of removable variables.

Proposition 20 (Removables exist) In any MAG, the variables with no children are
removable, and the set of vertices with no children is non-empty. Therefore, any MAG has
at least one removable variable.

Proposition 20 implies that X; in line 4 of Algorithm 1 is well-defined.

Proposition 21 (Removables have small Mb size) In a MAG G, if a vertex X is re-
movable, then |Mbg(X)| < A} (G). Furthermore, if G is a DAG, then |Mbg(X)| < Ay (G).

Note that for an arbitrary variable X, [Mbg(X)| can be as large as n whereas A} (G) (or
Ain(G) for DAGs) is typically a small number, demonstrating that removable variables have
relatively small Markov boundary sizes.

Proposition 22 (Removables are invariant in a MEC) Two Markov equivalent MAGs
have the same set of removable variables.

12
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We note that the set of vertices without children is not the same for all MAGs in a MEC.
However, Proposition 22 implies that the set of removable variables is a superset of the
vertices without children, which is invariant across all MAGs in a MEC.

3.3 Removable Orders

In Algorithm 1, our generic framework can be viewed as an ordering-based approach. In
this approach, a variable is eliminated at each iteration based on a specific order. In this
section, we first define c-orders, which are standard orders that existing ordering-based
methods use to recover the graph. We then introduce r-order, which are orders that can be
integrated into Algorithm 1. Finally, we show that r-orders are advantageous over c-orders
for structure learning, because of the properties that are depicted in Figure 3.

Score-based methods are one of the main classes of algorithms for causal discovery.
These algorithms use a score function, such as a regularized likelihood function or Bayesian
information criterion (BIC), to evaluate graphs and determine the structure that maximizes
the score. Under the causal sufficiency assumption, the search space of the majority of
these methods is the space of DAGs, which contains 22n*) members. The first ordering-
based search strategy was introduced by Teyssier and Koller (2005). These methods search
through the space of orders (Definition 2), which includes 20(nlog(n)) yembers. It is worth
noting that the space of orders is much smaller than the space of DAGs. Ordering-based
methods divide the learning task into two stages. In the first stage, they use the available
data to find a causal order (c-order), which is defined as follows.

Definition 23 (c-order) In a DAG G = (W,E1,2), an order m = (X1, ..., Xm) € II(W)
is called causal (in short c-order) if i > j for each (X;, X;) € Eq. Equivalently, 7 is c-order
if Xi has no children in G[{X;, Xit1,..., Xn}] for each 1 <i <n. We denote by I1°(G) the
set of c-orders of G.

(V)

M (G,) =" (Gy) = ... =11"(Gk)

Figure 3: In this figure, {Gi,...,Gr} denotes a set of Markov equivalent DAGs. II(V)
denotes the set of orders over V, which is the search space of ordering-based
methods. TI¢(G;) denotes the set of c-orders of G;, the target space of existing
ordering-based methods in the literature. I1"(G;) denotes the set of r-orders of G;,
which is the target space of ROL.
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X2 X2
)
X3 Xy X3 Xy
L ] L ]
X1 Xl
(a) DAG G, (b) DAG G»

I1°(G1) = {(X1, X2, X3, X4), (X1, X2, X4, X3)}  1(G2) = {(X2, X1, X3, X4), (X2, X1, Xy, X3)}

Figure 4: Two Markov equivalent DAGs G; and Gy that form a MEC together and their
disjoint sets of c-orders. In this example, any order over V = { X1, Xy, X3, X4} is
an r-order, i.e., II"(G1) = II"(G2) = II(V). Note that [II"(G1)| = [II"(G2)| = 24 >
2 = [II%(G1)| = [11%(G2)|-

We note that c-orders are defined over DAGs, and accordingly, most of the ordering-based
approaches for causal discovery require causal sufficiency. In the second stage, ordering-
based methods use the learned order to identify the MEC of G.

We introduce a novel type of order for MAGs, called removable order (in short, r-order),
and argue that r-orders are advantageous over c-orders for structure learning.

Definition 24 (r-order) In a MAG G, an order m = (Xi,---,X,,) is called removable
(r-order) if X; is a removable variable in G[{X;,, Xiy1,...,Xn}] for each 1 <i < n. We
denote by II"(G) the set of r-orders of G.

Note that r-orders are defined over MAGs, which enables us to design ordering-based meth-
ods that do not assume causal sufficiency.

Example 2 Consider the two DAGs G1 and Gy and their sets of c-orders depicted in Figure
4. In this case, G and Go are Markov equivalent and together form a MEC. Furthermore,
I1°(G1) and I11¢(Ga) are disjoint, and each contains 2 c-orders, and any order over the set of
vertices is an r-order for both G1 and Gs. Hence, each graph has 24 r-orders.

In a MEC, all MAGs share the same r-orders. In DAGs, r-orders include all c-orders as
subsets. This is illustrated in Figure 3 and formalized in the subsequent propositions.

Proposition 25 (r-orders are invariant across MEC) If G and Gs are two Markov
equivalent MAGs, then TI"(G1) = 11" (Ga).

Proposition 26 (r-orders include c-orders) For any DAG G, we have I1°(G) C II"(G).

4. RCD Methods: MARVEL, L-MARVEL, RSL, ROL

In the previous section, we introduced a recursive framework for causal discovery. We
defined removable variables and provided graphical characterizations of them in MAGs

14



RECURSIVE CAUSAL DISCOVERY

and DAGs, along with their important properties. Building on that framework, in this
section, we present four recursive causal discovery methods: MARVEL, L-MARVEL, RSL,
and ROL. MARVEL, L-MARVEL, and RSL provide various approaches for lines 4-5 of
Algorithm 1 under different sets of assumptions. ROL, however, identifies all removable
variables at once using r-orders.

4.1 Finding Removable Variables and Their Neighbors

Motivated by Proposition 21, we provide Algorithm 2, a framework for finding a removable
variable.

Algorithm 2: Finding a removable variable.
1: FindRemovable(Data(W), Mbw )
m <+ |[W|
: (Wi, ..., Wy,) < Sort W such that |[Mbw (W1)| < [Mbw (W2)| < -+ < [Mbw (W,,)]
: for i =1tomdo
if IsRemovable(WV;, Data(Mbw (W;))) is TRUE then
return W;

S Gk Wy

Given a set W, the algorithm takes the Markov boundaries as input, sorts the variables
based on the size of their Markov boundaries, and applies the function IsRemovable to them.
The function IsRemovable determines whether a variable W; is removable in Gw. Algorithm
2 returns the first removable variable it identifies and halts. Therefore, Proposition 21
implies that IsRemovable will only be called for variables with Markov boundary sizes less
than or equal to A} (G). As we showed in Theorems 18 and 19, the removability of a
variable is a property of the causal graph over its Markov boundary. Therefore, we only
need to utilize data from the variables in Mbyw (W;) for the IsRemovable function.

Next, we introduce three approaches for efficiently testing the removability of a variable
under different sets of assumptions.

4.2 MARVEL: MArkov boundary-based Recursive Variable ELimination

The first recursive approach that introduced and utilized the notion of removability is
MARVEL (Mokhtarian et al., 2021). MARVEL assumes causal sufficiency, i.e., the causal
graph is a DAG.

Suppose G is a DAG with the set of vertices V. To verify the removability of a variable
X € V, MARVEL first learns the neighbors of X, i.e., Neg(X), and the set of v-structures
in which X is a parent, i.e., VSg(X), using the following two lemmas.

Lemma 27 (Pellet and Elisseeff, 2008a) Suppose G is a MAG over V. For X € V
andY € Mbg(X), Y is a neighbor of X if and only if

(XL YIS)g, VS S Mbg(X)\{Y}. (6)

We note that while MARVEL uses Lemma 27 when G is a DAG, Pellet and Elisseeff (2008a)
showed that it also holds for MAGs.
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Lemma 28 Suppose G is a DAG, Y € Ag(X), (X 1L Y|Sxy)g, and Z € Neg(X). Z is a
common child of X andY, i.e., (X = Z +Y) € VSg(X), if and only if

Z¢Sxy and (YU Z|S);, VS C Mbg(X)U{X}\{Y,Z}.

After learning Neg(X) and VSg(X) using Lemmas 27 and 28, MARVEL utilizes the fol-
lowing two lemmas to verify the two conditions of Theorem 18.

Lemma 29 Variable X satisfies Condition 1 of Theorem 18 if and only if
(YU ZISU{X})g, VY,Z € Neg(X), S C Mbg(X)\{Y,Z}.

Lemma 30 Suppose variable X satisfies Condition 1 of Theorem 18. Then X satisfies
Condition 2 of Theorem 18, and therefore, X is removable in G, if and only if

YU ZISU{X,V})g,
V(X =V« Y) e VS3(X),Z € Neg(X)\ {V},S C Mbg(X)\ {V,Y, Z}.

The following corollary outlines the computational complexity of applying these lemmas.

Corollary 31 Given Mbg(X), by applying Lemmas 27-30, we can identify Neg(X), Ag(X),
VSg(X), and determine whether X is removable in G by performing at most

10) (|Mbg(X)’22|Mbg(X)\)
unique CI tests.

4.3 L-MARVEL: Latent-MARVEL

L-MARVEL extends MARVEL to the case where causal sufficiency does not necessarily
hold, i.e., the causal graph is a MAG (Akbari et al., 2021).* To verify the removability of
a variable X in a MAG G, L-MARVEL first learns Neg(X) using Lemma 27 as follows. If
Y € Mbg(X) is not a neighbor of X, then X and Y have a separating set in Mbg(X)\{Y}.
Hence, identifying Neg(X) can be performed using a brute-force search in the Markov

boundary, using at most
|Mbg(X)\2|Mb9(X)|*1

CI tests. After learning Neg(X ), L-MARVEL utilizes the following theorem to check the
removability of X.

Theorem 32 In a MAG G over V, a variable X € V is remouvable if and only if for every
Y € Mbg(X) and Z € Neg(X)\ {Y'}, at least one of the following holds.

Condition 1: AW C Mbg(X)\{Y,Z}: (Y 1L Z|W);.
Condition 2: YW C Mbg(X)\{Y,Z}: (Y UL ZIWU{X});.
4. L-MARVEL, as presented in Akbari et al. (2021), can also handle the presence of selection bias. In this

paper however, for the sake of simplicity, we assume there is no selection bias, and we have access to
i.i.d. samples from Py .
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Remark 33 IfY € Neg(X), we can skip Condition 1 and only check Condition 2.

Below, we present a proposition that we use in Section 5.2 to avoid performing duplicate
CI tests in the implementation of L-MARVEL.

Proposition 34 Suppose G is a MAG with the set of vertices V, X € V, Y € Mbg(X),
and Z € Neg(X)\{Y'}. If at least one of the two conditions of Theorem 32 holds for X,Y, Z,
then the graphical characterization for MAGs in Theorem 19 also holds for XY, Z.

4.4 RSL: Recursive Structure Learning

Another recursive algorithm for causal discovery is RSL, which aims to reduce the compu-
tational complexity of causal discovery under structural assumptions. RSL requires causal
sufficiency and provides algorithms under two types of structural side information: (I) an
upper bound on the clique number of the graph is known, or (II) the graph is diamond-
free. The causal discovery algorithms provided under these assumptions are RSL, and
RSLp, respectively. Under the corresponding assumptions, both of these methods achieve
polynomial-time complexity.

4.4.1 RSL,

RSL,, assumes that an upper bound m on the clique number of the causal graph is known,
ie, w(G) <m.

Remark 35 For a random graph G generated from Erdos-Renyi model G(n,p), w(G) < m
with high probability when pn®™ — 0 as n — oco.

RSL,, provides the following result for verifying the removability of a variable under the
assumption w(G) < m.

Theorem 36 Suppose G is a DAG such that w(G) < m. Vertex X is removable in G if for
any S C Mbg(X) with |S| < m — 2, the following conditions hold.

Condition 1: (Y U Z|(Mbg(X)U{X})\ ({V,Z}US)) VY, Z € Mbg(X)\ S.

g )
Condition 2: (X L Y[Mbg(X)\ ({Y}US))g, VY € Mbg(X)\S.
Also, the set of vertices that satisfy these conditions is nonempty.

To identify the neighbors of a removable variable detected using Theorem 36, RSL,, pro-
vides the following proposition that distinguishes co-parents from neighbors in the Markov
boundary.

Proposition 37 Suppose G is a DAG such that w(G) < m. Let X be a vertex that satisfies
the two conditions of Theorem 36 and Y € Mbg(X). Then, Y € Ag(X) if and only if

38 C Mbg(X)\{Y}: [S|=m—1, (X 1L Y|Mbg(X)\ ({Y}US)).

Moreover, set S is unique and S = Chg(X) N Chg(Y).
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Figure 5: Diamond graphs.

4.4.2 RSLp

RSLp assumes that the causal DAG is diamond-free, i.e., it contains no diamond as an
induced subgraph. Diamond is one of the three types of DAGs shown in Figure 5.

Remark 38 A random graph G generated from Erdos-Renyi model G(n,p) is diamond-free
with high probability when pn®®—0.

The following theorem provides an efficient method for checking the removability of a vari-
able when the causal DAG is diamond-free.

Theorem 39 In a diamond-free DAG G, a vertex X is removable if and only if
(Y U Z|(Mbg(X) U{X D\ Y, Z})g, VY, Z € Mbg(X).

Analogous to the case with the bounded clique number, the following proposition can be
used to learn the neighbors of a removable variable in a diamond-free DAG.

Proposition 40 In a diamond-free DAG G, let X be a removable variable andY € Mbg(X).
In this case, Y € Ag(X) if and only if

37 € Mbg(X)\{Y}: (X ALY [Mbg(X)\{Y,Z})g- (7)

Moreover, such a variable Z is unique and {Z} = Chg(X) N Chg(Y).

4.5 Removable-Order Learning: ROL

ROL is an ordering-based method that leverages the notion of removability for causal dis-
covery and does not require the assumption of causal sufficiency. As discussed in Section
3.3, ordering-based methods in the literature prior to this approach recover a graph through
learning a causal order (c-order) of DAGs, which is a topological order of variables (Defi-
nition 23). ROL introduces and uses a novel order called removable order (r-order), which
we defined for MAGs in Definition 24.

Note that in our general framework given in Algorithm 1, (X1, ..., X,,) forms an r-order.
While the recursive methods that we discussed in the previous subsections seek to identify
a removable variable in each iteration, ROL aims to learn the whole order at once. To
this end, ROL first proposes a recursive algorithm that learns an undirected graph, whose
pseudocode is given in Algorithm 3.
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Algorithm 3: Learning G™.
1: Function LearnGPi (7, Data(V))
: Vi<V E"+ g
: fort=1ton—1do
Xt — 7T(t)
Ney, (X;) < FindNeighbors(X;, Data(V;))
Add undirected edges between X; and the variables in Ney,(X;) to E™.
Vip1 < Vi \ {Xi}
: Return g™ = (V,E")

S A I

Algorithm 3 removes variables according to an arbitrary given order 7 and learns an
undirected graph G™ recursively. Using this algorithm, ROL defines the cost of an order 7
to be the number of edges in G™, denoted by |E™|. It then defines an optimization problem
that seeks to find an order with the minimum cost.

Theorem 41 (Consistency) Any solution of the optimization problem

arg min |[E™|, (8)

™

is a member of II"(G). Conversely every member of II"(G) is a solution of (8).

Theorem 41 shows that finding an r-order is equivalent to solving (8). To solve this opti-
mization problem, ROL proposes three algorithms.

e ROLyc, a Hill-climbing-based heuristic algorithm that is scalable to large graphs.

e ROLyq, an exact reinforcement learning (RL)-based algorithm that has theoretical
guarantees but is not scalable to large graphs.

e ROLpg, an approximate RL-based algorithm that exploits stochastic policy gradient.

In Section 5.4, we will delve into the details of these methods. Herein, we discuss how ROL
formulates the optimization problem in Theorem 41 as an RL problem.

ROL interprets the process of recovering G™ from a given order m as a Markov decision
process (MDP), where the index ¢ denotes time, the action space is the set of variables
V, and the state space is the set of all subsets of V. More precisely, let s; and a; denote
the state and the action of the MDP at iteration ¢, respectively. Then, s; is the remaining
variables at time ¢ (i.e., s; = V¢) and action a; is the variable that will be removed from
V,; in that iteration (i.e., a; = X;). Consequently, the state transition due to action a;
is sg41 = Vi \ {a:}. The immediate reward of selecting action a; at state s; will be the
negative of the instantaneous cost, naturally defined as the number of discovered neighbors
for a; by FindNeighbors in line 5 of Algorithm 3. Formally, the reward of picking action
a¢ when in state s; is thus given by

r (s¢,a¢) = |FindNeighbors (a;, Data (s;)) | = — | Nes, (at)| -

In Sections 5.4.2 and 5.4.3, we discuss two of our RL-based approaches with the above
formulation.
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5. Implementation Details

In Section 4, we explored techniques for identifying removable variables that can be used in
various recursive causal discovery algorithms. However, certain details were left out. In this
section, we will discuss implementation details and provide pseudocode for these methods.
Moreover, in Section 5.7, we discuss how our methods can be augmented to identify the
MEC of the underlying causal graph.

5.1 MARVEL

Algorithm 4 provides a pseudocode for MARVEL, which is compatible with the generic
frameworks of Algorithms 1 and 2. Algorithm 5 presents the main functions that MAR-
VEL uses to learn neighbors and v-structures, as well as to verify the removability of a
variable. As elaborated in Section 5.1.1, MARVEL incorporates three data structures -
SKIPCHECK_VEC, SKIPCHECK_COND1, and SKIPCHECK_COND2. These structures are de-
signed to avoid performing redundant CI tests and improve overall computational efficiency.

Algorithm 4 initializes the required variables in lines 2—5. It then calls the ComputeMb
function to initially compute the Markov boundaries. We will discuss this step in Section 5.5.
In the for loop of lines 11-30, the removability of variable X; is checked, and its neighbors
among the remaining variables are learned. If the neighbors of X; have not been learned
in the previous iterations, the algorithm calls the FindNeighbors function in Algorithm
5 to learn its neighbors. This function uses Lemma 27 to learn the following.

Nevi(Xj), AVi<Xj)7 {Sij 2Y€Avi(Xj),(Xj _LLY‘Sij)PVi}.

If the neighbors of X; have been learned in previous iterations, the algorithm uses G to
recover this information. Then, upon calling function Conditionl, we verify the first
condition of Theorem 18, which is designed in accordance with Lemma 29. If this condition is
satisfied, Lemma 28 is applied (function FindVS) to learn VSv;,(X;). Note that if VSvy,(X)
is learned using Lemma 28 in an iteration, we can save it and delete a v-structure from it
when one of the three variables of the v-structure is removed. Finally, the second condition
of Theorem 18 is verified using Lemma 30 (function Condition2). If this condition is also
satisfied, the algorithm concludes that X; is removable and proceeds to remove it from
the variables. For the next iteration, we update the Markov boundaries by calling the
UpdateMb function in Algorithm 11, which we discuss in Section 5.6.

5.1.1 AvoIDING DuprLICATE CI TEsSTS IN MARVEL

Suppose that MARVEL verifies the removability of a variable X and determines that it is
not removable. As a result, the algorithm will need to verify again the removability of X
in some of the following iterations, potentially leading to redundant CI tests. To address
this, we propose a method to eliminate such redundancies by leveraging information from
previous iterations.

Suppose that during iteration i, we invoke Conditionl from Algorithm 5 for a variable
X, where W = V;. If two variables Y,Z € Ney,(X) do not have a separating set in
Mby, (X) \ {Y, Z}, then they will not have a separating set in Mby, (X) \ {Y, Z} for any
1" > 4. Accordingly, to prevent redundant CI tests, SKIPCHECK_CONDI is employed in
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Algorithm 4: MARVEL

1:

NN N NNDNRNDNDNRN R = H s e s e

30:
31:

Input: Data(V)

Initialize undirected graph G = (V, E = @)
V1 +~V
VX € V: SKIPCHECK_VEC(X ) < FALSE
VX,Y,Z € V: SKIPCHECK_COND1(X,Y, Z), SKIPCHECK_COND2(X,Y, Z) < FALSE
Mby, + ComputeMb(Data(V))
for i from 1 ton —1 do
V, «+ {X € V;|SkiPCHECK VEC(X;) = FALSE}
(X1,...,X,) « Sort V; such that [Mby, (X1)| < [Mby,(X2)| < --- < [Mby, (X,)]
for j from 1 to r do
if First time applying the FindNeighbors function to X; then
Nev,(X;), Av,(X;), SepSet(X;) < FindNeighbors(X;, Mby,(X}))
Add undirected edges between X; and Ney,(X;) in G if not present
else
Nevi(Xj) — NQQ[VI](XJ)
Av,(Xj) < Mby, (X;) \ Nev, (X;)
if Condition1(X};, Nevy,(X;), Mby,(X})) is TRUE then
if First time applying the FindVS function to X; then
VS (X]) — FindVS(Xj7 Ney, (Xj)v Av, (Xj)7 Mby, (Xj)a SepSet(Xj))
else
VS(X]) — {(X] — 7+ Y) S VS(X])’Z,Y € Vz}
if Condition2((X;, Nev,(X;), Av,(X;), Mby,(X}), VS(X};))) is TRUE then
Vip + Vi\ {X;}
Mby,,, < UpdateMb(X};, Ney,(X;), Mby,)
Break the for loop of line 11
else
SKIPCHECK_VEC - TRUE
else
SKIPCHECK_VEC - TRUE
return Q

function Conditionl to save this information and avoid performing duplicate CI tests. A
similar approach is adopted in Condition2 using SKIPCHECK_COND2.

To further enhance the implementation, SKIPCHECK_VEC is integrated into Algorithm
4. This is based on the understanding that a variable’s removability hinges on its Markov
boundary. If a variable X is found non-removable in one iteration, it remains so as long
as its Mb is unchanged, thereby obviating the need to recheck within the for loop of lines

11-30.

Initially, every variable in V has SKIPCHECK_VEC set to FALSE. Should either

function Conditionl or Condition2 return FALSE, we switch SKIPCHECK_VEC(X) to

TRUE.

SKIPCHECK_VEC(X) stays TRUE unless there is a change in its Mb. As detailed in

Section 5.6, updating SKIPCHECK_VEC is crucial and is done in the UpdateMb function.
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Alg

orithm 5: MARVEL functions

1

: Function FindNeighbors(X, Mbw (X)) % Lemma 27
: New (X), Aw(X), SepSet(X) + @
for Y € Mbw(X) do
if E]S)Qy g Mbw(X) \ {Y} : (X AL Y’SXaY)Data(W) then
Add Y to Aw(X)
Add Sxy to SepSet(X)
else
Add Y to New(X)
return New (X), Aw(X), SepSet(X)

Function FindVS(X, New (X), Aw(X), Mbw (X), SepSet(X)) % Lemma 28
VS(X) «+ @
for Y € Aw(X) and Z € New(X) do
Sxy « The separating set in SepSet corresponding to ¥
if Z ¢ Sxy and VS C Mbw (X) U{X}\{Y,Z}: (Y L Z|S)p,acw) then
Add (X = Z + Y) to VS(X)
return VS(X)

Function Condition1(X, New (X), Mbw (X)) % Lemma 29
for Y, Z € New(X) such that SKIPCHECK_COND1(X,Y, Z) is FALSE do
for S C Mbw(X)\{Y,Z} do
if (V' UL Z[SU{X})p,gacw) then
return FALSE
SKIPCHECK_COND1(X,Y, Z) < TRUE
return TRUE

N =

Function Condition2(X, New (X), Aw(X), Mbw (X), VS(X)) % Lemma 30
for Y € Aw(X) and Z € New (X) such that SKIPCHECK_COND2(X,Y, Z) is FALSE
do

P« {V#A#Z: (X >V +Y)eVSX)}

for S C Mbw (X)\{Y,Z} s.t. SNT # 0 do

if (Y 1L Z|SU{X})pyta(w) then
return FALSE

SKIPCHECK_COND2(X,Y, Z) < TRUE

return TRUE

5.2 L-MARVEL

Similar to MARVEL, we provide a pseudocode for L-MARVEL in Algorithm 6.

In

the for loop of lines 11-22, the algorithm learns the neighbors of X; and verifies its

removability. If the algorithm is learning the neighbors of X; for the first time, it uses
Lemma 27 (function FindNeighbors) to learn Ney,(X;). Otherwise, this information has
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Algorithm 6: L-MARVEL

1:

NN N DD = = = = e e e
WP QYN TN 2o

Input: Data(V)
Initialize undirected graph G = (V, E = @)
VX € V: SKIPCHECK_VEC(X ) < FALSE
VX,Y,Z € V: SKIPCHECK_MAT(X,Y, Z) < FALSE
V1 ~V
Mby, - ComputeMb(Data(V))
for ¢ from 1 ton —1 do
V; < {X € V;|SKIPCHECK_VEC(X;) = FALSE}
(X1,...,X,) « Sort V; such that |[Mby,(X1)| < [Mby, (X2)| < --- < [Mby,(X,)]
for j from 1 to r do
if First time learning the neighbors of X; then
Nevy,(X;) < FindNeighbors(X;, Mby, (X))
Add undirected edges between X; and Ney,(X;) in G if not present
else
NCVZ.(X]‘) < NeQ[Vi](Xj)
if IsRemovable(X;, Nevy,(X;), Mby,(X;))) is TRUE then
Vip « Vi\ {X;}
MbVHl — UpdateMb(Xj, Nevi (Xj), Mbvi)
Break the for loop of line 11
else
SKIPCHECK_VEC(X) - TRUE

: return Q

Function FindNeighbors(X, Mbw (X)) % Lemma 27
New (X) < Mbw (X)
for Y € Mbw(X) do
if 38 € Mbw (X)\{Y}: (X 1L Y|[S)p,(w) then
Remove Y from New (X)
return New (X)

Function IsRemovable(X, New (X), Mbw (X)) % Theorem 32
for Y € Mbw(X) and Z € New (X) such that SKIPCHECK_MAT(X,Y, Z) is FALSE do
if V8 C Mbw (X)\{Y,Z}: (Y UL Z[S)p,ta(w) then
if 35 C Mbw (X)\{Y,Z}: (Y L Z|SU{X})pyacw) then
Return FALSE
SKIPCHECK_MAT(X,Y, Z) <~ TRUE
Return TRUE
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already been stored in G, and the algorithm executes line 13 to recover the neighbors of X;
among the remaining variables. To verify the removability of X;, the IsRemovable func-
tion is invoked. This function checks the two conditions of Theorem 32. If both conditions
are not met, the function determines that X; is not removable.

Algorithm 6 uses SKIPCHECK_VEC and SKIPCHECK_MAT to avoid performing duplicate
CI tests. Similar to MARVEL, if a variable is found non-removable in one iteration, its
SKIPCHECK_VEC value is set to TRUE, and it remains so as long as the Markov boundary
of the variable remains unchanged. Additionally, Proposition 34 implies that if the condi-
tion of Theorem 32 is met for Y and Z during an iteration in the IsRemovable function,
the graphical characterization of Theorem 19 holds for X, Y, Z. Therefore, to check the re-
movability of X, it is not necessary to check the two conditions of Theorem 32. Accordingly,
SKIPCHECK_MAT is employed in the IsRemovable function to avoid performing redundant
CI tests.

5.3 RSL
In this part, we discuss the implementation details of RSL,, and RSLp.

5.3.1 RSL,,

Algorithm 7 presents the pseudocode for RSL,. This algorithm takes m as an input,
which is an upper bound on the clique number of the true underlying graph. One of
the differences between this algorithm and MARVEL and L-MARVEL is the sequence of
operations. This algorithm first checks the removability of a variable using Theorem 36
through the function IsRemovable. Subsequently, it finds the neighbors of the variable
by employing Proposition 37 in the function FindNeighbors. Furthermore, Algorithm 9
only uses one data structure, SKIPCHECK_VEC, to efficiently prevent redundant CI tests.

As mentioned above, Algorithm 7 takes m, an upper bound on the clique number of the
causal graph. But what happens if it is not a valid upper bound, i.e., m < w(G)? In this
scenario, two outcomes are possible: either Algorithm 7 is unable to identify any removable
variables at an iteration and halts, or RSL,, terminates and returns a graph.

Proposition 42 (RSL,, is verifiable) If Algorithm 7 terminates with an input m > 0,
then the clique number of the learned skeleton is greater than or equal to the clique number
of the true causal graph.

Proposition 42 implies that, upon termination of the algorithm, if the clique number of the
learned graph is at most m, then m is a valid upper bound on the clique number, ensuring
the correctness of the output. Otherwise, it indicates that the true clique number is greater
than m. Accordingly, we present Algorithm 8 that can learn the skeleton of G without any
prior knowledge about w(G).

5.3.2 RSLp

We present Algorithm 9 for RSLp. The main body of the algorithm is the same as Algo-
rithm 7 for RSL,,. However, the difference lies in the IsRemovable and FindNeighbors
functions. The former uses Theorem 39 to check the removability of a variable, while the
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Algorithm 7: RSL,,

1:

e e e e e e o
© %N 2o

Input: Data(V), m
Initialize undirected graph G = (V, E = @)
VX € V: SKIPCHECK_VEC(X) < FALSE
Vl +~—V
Mby, + ComputeMb(Data(V))
for ¢ from 1 ton —1 do
V, «+ {X € V;|SkiPCHECK VEC(X;) = FALSE}
(X1,...,X,) « Sort V; such that [Mby, (X1)| < [Mby,(X2)| < --- < [Mby, (X,)]
for j from 1 to r do
if IsRemovable(X;, Mby, (X)), m) is TRUE then
Nevy,(X;) < FindNeighbors(X;, Mby, (X;), m)
Add undirected edges between X; and Ney,(X;) in G if not present
Vip « Vi\ {X;}
MbVHl — UpdateMb(Xj, Nevi (Xj), Mbvi)
Break the for loop of line 10
else
SKIPCHECK_VEC(Xj) - TRUE

: return G

1: Function IsRemovable(X, Mbw (X), m) % Theorem 36

for S C Mbw (X) with |S| <m — 2 do
if (3,2 € Mbw(X)\S: (¥ 1L Z|(Mbw (X) U{X}\ ({¥: 2} US)) )
or <EIY € Mbw(X)\S: (X L Y|Mbw(X)\ ({Y}U S))Dm(w)) then

Return FALSE
Return TRUE

Function FindNeighbors(X, Mbw (X), m) % Proposition 37
New (X) < Mbw (X)
for Y € Mbw(X) do
if 38 C Mbw (X) \{Y}: [S|=m — 1, (X 1L Y[Mbw (X) \ ({Y} US))p,acw) then
Remove Y from New (X)
return New (X)

Algorithm 8: RSL, Without Side Information.

1:
2:
3:

Input: Data(V)
for m from 1 to n do
G + RSL,(Data(V),m)
if RSL,, terminates and w(G) < m then
return Q
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Algorithm 9: RSLp

1:

e e e e e e e T
S e R R

Input: Data(V)
Initialize undirected graph G = (V, E = @)
VX € V: SKIPCHECK_VEC(X ) < FALSE
V1 +~V
Mby, - ComputeMb(Data(V))
for ¢ from 1 ton —1 do
V; <+ {X € V;|SKIPCHECK_VEC(X;) = FALSE}
(X1,...,X,) « Sort V; such that |[Mby,(X1)| < [Mby, (X2)| < --- < [Mby,(X,)]
for j from 1 to r do
if IsRemovable(X;, Mby,(X;)) is TRUE then
Nevy,(X;) < FindNeighbors(X;, Mby, (X))
Add undirected edges between X; and Ney,(X;) in G if not present
Vip1 < Vi \ {X;}
NIbViJrl — UpdateMb(Xj, Nevi (Xj), Mbvi)
Break the for loop of line 10
else
SKIPCHECK_VEC(Xj;) - TRUE

: return G

Function IsRemovable(X, Mbw (X)) % Theorem 39
for Y, Z € Mbw(X) do
if (VUL Z|(Mbw (X) U{X})\ ¥, ZD)pacacwy) then
Return FALSE
Return TRUE

Function FindNeighbors(X, Mbw (X)) % Proposition 40
New (X) < Mbw (X)
for Y € Mbw(X) do
if 37 € Mbw(X)\ {Y}: (X 1LY Mbw(X)\ {¥, Z})paacwy) then
Remove Y from New (X)
return New (X)

latter uses Proposition 40 to learn the neighbors of a removable variable. Note that RSLp
assumes that the underlying graph is diamond-free.

5.4 ROL

As we discussed in Section 4.5, ROL aims to solve the optimization problem described
in Equation (8), which uses Algorithm 3 to define a cost function for a given permutation.
Additionally, we presented a reinforcement learning (RL) formulation to solve this optimiza-
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tion problem. In this section, we present the implementation details of three approaches
for learning an r-order through solving Equation (8).

5.4.1 ROLyc

In Algorithm 10, we propose a hill-climbing approach, called ROLyc for finding an r-
order. In general, the output of Algorithm 10 is a suboptimal solution to (8) as it takes
an initial order m and gradually modifies it to another order with less cost, but it is not
guaranteed to find a minimizer of (8) by taking such greedy approach. Nevertheless, this
algorithm is suitable for practice as it is scalable to large graphs, and also achieves superior
accuracy compared to the state-of-the-art methods.

Inputs to Algorithm 10 are the observational data Data(V) and two parameters MAX-
ITER and MAXSWAP. MAXITER denotes the maximum number of iterations before the
algorithm terminates, and MAXSWAP is an upper bound on the index difference of two
variables that can get swapped in an iteration (line 6). Initial order 7 in line 2 can be any
arbitrary order, but selecting it cleverly (such as initialization using the output of other
approaches) will improve the performance of the algorithm.

Algorithm 10: ROLgc
1: Input: Data(V), MAXSWAP, MAXITER
2: Initialize 7 € II(V)
3: C1p, <+ ComputeCost(m, 1, n, Data(V))
4: for 1 to MAXITER do

5. Denote 7 by (X1,---,Xp)

6: for 1l <a<b<nsuch that b —a < MAXSWAP do
7: Thew < Swap X, and X in 7

8: CrV < ComputeCost(myew, a, b, Data(V))

9 if 30, CuV(i) < Y7, Cin(i) then

10 T 4 Tnew

11: for j from a to b do

12 Cualj) < C2% ()

13: Break the for loop of line 6

14: Return 7

Function ComputeCost (m, a, b, Data(V))
Vo ¢ {Xu, Xost, -y Xn}
Cup < (0,0,--- ,0) € R"
for t=atobdo
Xt — 7T(t)
Ney,(X¢) < FindNeighbors(X;, Data(V))
Canlt) [ Nev, (X))
Vip1 « Vi \ {Xi}
Return Cg,
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The subroutine ComputeCost takes as input an order 7 and two numbers 1 <a <b<n
as input and returns a vector Cy, € R™. For a < t < b, the t-th entry of Cy, is equal to
| Ney, (X:)| which is the number of neighbors of X; in the remaining graph. Hence, to learn
the total cost of m, we can call this function with ¢ = 1 and b = n and then compute the
sum of the entries of the output Ci,,.

Accordingly, the main algorithm initially computes the cost vector of 7 in line 3. The
remainder of the algorithm (lines 4-13) updates 7 iteratively, MAXITER number of times.
It updates the current order m= (X1, -+, X,,) as follows: first, it constructs a set of orders
Im"ev C TI(V) from 7 by swapping any two variables X, and X, in 7w as long as 1 <b—a <
MAXSWAP. Next, for each mpew € 1™V, it computes the cost of mnew and if it has a lower
cost compared to the current order, the algorithm replaces m by that order and repeats the
process. Note that in line 8, the algorithm calls function ComputeCost with a and b to
compute the cost of the new policy. The reason is that for ¢ < a and 7 > b, the i-th entry
of the cost of m and ey are the same. This is because the set of remaining variables is the
same. Hence, to compare the cost of 7 with the cost of myew, it suffices to compare them
for entries between a and b. Accordingly, Algorithm 10 checks the condition in line 9, and
if the cost of the new policy is better, then the algorithm updates 7 and its corresponding
cost. Note that it suffices to update the entries between a to b of Ct,,.

5.4.2 ROLy;

Following the RL formulation of ROL introduced in Section 4.5, we present ROLy1. This
algorithm uses value iteration to tackle the problem.

Given a deterministic policy 7y that is parameterized by 6, we can adapt Algorithm 3 to
the RL setting as follows: the algorithm takes as input a policy my instead of a permutation
m. Furthermore, it uses the given policy to select X; in line 4, given by X; = mp (Vy).
Finally, given a policy 7y, and the initial state s; = V, the cumulative reward of a trajectory
T = (81,a1,82,a2, - ,Sp—1,an—1), which denotes the sequence of states and actions selected
by my, is given by

n—1

n—1
R (1p) = r (s, ar) = — Z ’NegSt (at)} .
t=1 t=1

Hence, if we denote the output of this modified algorithm by G? = (V, Ee), then R (1p) =
— |E‘9|. With this RL formulation, any optimal policy-finding RL algorithm can be used to
find a minimum-cost policy my and thus solve the optimization problem given in Theorem
41. Accordingly, ROLy7 applies value iteration algorithm.

5.4.3 ROLpg

Although any algorithm suited for RL is capable of finding an optimal deterministic policy
for us, the complexity does not scale well as the graph size. Therefore, we can use a
stochastic policy that increases the exploration during the training of an RL algorithm.
ROLpg exploit stochastic policies parameterized by neural networks to further improve
scalability. However, this could come at the price of approximating the optimal solution
instead of finding the exact one. In the stochastic setting, an action a; is selected according
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to a distribution over the remaining variables, i.e., a; ~ Py(:|s; = V), where 6 denotes
the parameters of the policy (e.g., the weights used in training of a neural network). In
this case, the objective of the algorithm is to minimize the expected total number of edges
learned by policy Py(-|s¢ = Vi), i.e.,

arg;naXETGNPe [ - ’E9|]7 9)

where the expectation is taken w.r.t. randomness of the stochastic policy. Many algorithms
have been developed in the literature for finding stochastic policies and solving (9). Some
examples include Vanilla Policy Gradient (VPG) (Williams, 1992), REINFORCE (Sutton
et al., 1999),and Deep Q-Networks (DQN) (Mnih et al., 2013). Accordingly, ROLyt applies
VPG.

5.5 Imitially Computing Markov Boundaries

Several algorithms have been proposed in the literature for discovering Markov boundaries
(Margaritis and Thrun, 1999; Guyon et al., 2002; Tsamardinos and Aliferis, 2003; Tsamardi-
nos et al., 2003; Yaramakala and Margaritis, 2005; Fu and Desmarais, 2010). One simple
approach is to use total conditioning (TC) (Pellet and Elisseeff, 2008b). TC states that X
and Y are in each other’s Markov boundary if and only if

(X LY|IVA{X, Y })p, - (10)

Using total conditioning, (g) CI tests suffice to identify the Markov boundaries of all ver-
tices. However, each test requires conditioning on a large set of variables. This issue has
been addressed in multiple algorithms, including Grow-Shrink (GS) (Margaritis and Thrun,
1999), IAMB (Tsamardinos et al., 2003), and its various modifications. These algorithms
propose methods that perform more CI tests® but with smaller conditioning sets. Choosing
the right algorithm for computing the Markov boundaries depends on the available data.

5.6 Updating Markov Boundaries

When a variable is removed in the recursive framework of Algorithm 1, we do not need to
recompute the Markov boundaries of all the vertices. Instead, we can update the Markov
boundaries of the remaining vertices.

Let W be the set of variables in an iteration with the set of Markov boundaries Mbwy.
Suppose we want to remove a variable X from W at the end of the current iteration, where
New (X) is the set of neighbors of X. In this case, we only need to compute Mbw {x},
which is the set of Markov boundaries of the remaining variables.

We can use Algorithm 11 to compute Mbw (x}. Removing vertex X from MAG Gw
has two effects.

1. X is removed from all Markov boundaries, and

2. for Y, Z € W\ {X}, if all of the collider paths between Y and Z in Gw pass through
X, then Y and Z must be excluded from each others Markov boundary.

5. These algorithms perform at most O(n?) CI tests.
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Algorithm 11: Updates Markov boundaries.
1: UpdateMb(X, New (X), Mbw)
2: MbW\{X} — {Mbw(Y) YeW \ {X}}
3: for Y € Mbw(X) do
Remove X from Mbyy (x3(Y)
s for Y, Z € N@W(X) such that |Mbw(Y)| < |Mbw(Z)| do

if (Y 1L Z|Mbw x} (V) \ {Y: Z}) 0wy then

Remove Z from Mbyy\ (x}(Y)
Remove Y from Mbw\ (x1(Z)
SKIPCHECK_VEC(Y) <— FALSE
10: SKIPCHECK_VEC(Z) < FALSE
11: return Mbw (x)}

In the latter case, Y, Z € Mbw (X ) and the update is performed using a single CI test,

YL ZIMbw (2)\{X,Y. Z})p,,, orequivalently, (Y L Z|Mbw(Y)\{X,Y,Z})p, .
We chose the CI test with the smaller conditioning set. If the CI test shows that Y and Z
are conditionally independent, we remove them from each other’s Markov boundary.
Recall that we used SKIPCHECK_VEC in the proposed algorithms to avoid unnecessary
computations. As discussed in Section 5.1.1, when the Markov boundary of a variable
has changed, we need to set its SKIPCHECK_VEC value to be FALSE. Accordingly, when
the If condition of line 6 holds, Algorithm 11 removes Y and Z from each other’s Markov
boundary. Therefore, we set their SKIPCHECK_VEC values to FALSE in lines 9 and 10.

5.7 Identifying the MEC

In the previous sections, we primarily addressed the task of learning the skeleton of the
causal graph. In this section, we discuss how our methods can be augmented to identify the
MEC of the underlying causal mechanisms ([Gy]). As a general rule, having access to the
true skeleton and a separating set for each pair of non-neighbor vertices suffice to identify
the MEC (Zhang, 2008b). However, we will provide modifications tailored to a few of our
algorithms, which will improve computational complexity.

Algorithms MARVEL and RSL require causal sufficiency. This implies that their ob-
jective is to recover the Markov equivalence class of a DAG, [G]?. Verma and Pearl (1991)
showed that two DAGs are Markov equivalent if and only if they have the same skeleton and
v-structures. Accordingly, to identify [G]?, it suffices to learn the skeleton and v-structures
of DAG G. As such, in Sections 5.7.1 and 5.7.2 we describe how to recover the v-structures.
With this information at hand, Meek rules (Meek, 1995) can be applied to achieve a maz-
imally oriented DAG (CPDAG), also known as essential graph. For characterization and
graph-theoretical properties of such graphs, refer to Andersson et al. (1997).

On the other hand, Algorithms L-MARVEL and ROL serve to recover the MEC of a
MAG. Having the same skeleton and unshielded colliders is necessary but not sufficient for
two MAGs to be Markov equivalent. The following proposition by Spirtes and Richard-
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son (1996) characterizes necessary and sufficient conditions for two MAGs to be Markov
equivalent.

Proposition 43 (Spirtes and Richardson, 1996) Two MAGs Gi and Gy are Markov
equivalent if and only if (i) they have the same skeleton, (ii) they have the same unshielded
colliders, and (iii) if a path P is a discriminating path (Definition 7) for a vertex X in both
MAGSs, then X is a collider on P in Gy if and only if it is a collider on P in Gs.

Building upon this proposition, it suffices to learn the skeleton, unshielded colliders, and
shielded colliders for which a discriminating path exists. Subsequently, complete orientation
rules can be applied to achieve a maximally oriented (aka maximally informative) partial
ancestral graph (PAG). We refer to Zhang (2008b) for complete orientation rules and further
discussion.

5.7.1 RECOVER V-STRUCTURES IN MARVEL

Our goal is to recover the v-structures. Note that a v-structure comprises a pair of co-
parents and a common child of them. As such, we first describe how to identify the pairs
of variables that are co-parents.

Since each variable is identified as removable in exactly one iteration of MARVEL, we
can identify the co-parents of a variable at the iteration where it gets removed. However,
removing a variable does not preserve co-parent relationships. Indeed, if Y, Z are co-parents
in a DAG G, where X is a removable variable, then either Y, Z are still co-parents of each
other in GI[V\{X}], or Y € Mbg(Z)\Mbgy\(x}(Z). The latter case happens when X is the
only common child of Y and Z. Based on this observation, in order to identify all co-parent
pairs, we first modify Algorithm 11, the procedure for updating Markov boundaries, so that
whenever a pair of variables (Y, Z) are removed from each other’s Markov boundary in lines
7 and 8, this pair is marked as co-parents of each other in the final graph. Furthermore,
the separating set for this pair, namely Mbw\ (x}(Y), is stored as Syz. The rest of the
co-parents and their corresponding separating sets are discovered in line 13 of Algorithm 4,
which consists of an application of Lemma 27. During this step, the Markov boundary of
X is partitioned into Mby,(X) = Ney, (X) UAv,(X) through finding a separating set Sxy
for every variable Y € Av,(X). These separating sets are stored for every pair of co-parents
(X,Y). At the end of the skeleton discovery phase, the set of v-structures can be identified
based on the following lemma.

Lemma 44 (Verma and Pearl, 1991) Let X,Y, Z be three arbitrary vertices of DAG G.
These vertices form a v-structure in G, i.e., X — Z <Y if and only if all of the following
hold:

YGAQ(X), ZENeg(X)ﬂNeg(Y), Z¢Sxy.

Accordingly, Lemma 44 can be integrated into MARVEL to identify the v-structures.

5.7.2 RECOVER V-STRUCTURES IN RSL

In analogy to MARVEL, it suffices to identify the v-structures. Also, the v-structures that
are not preserved due to vertex removals can be identified and oriented through modifying

31



MOKHTARIAN, ELAHI, AKBARI, AND KIYAVASH

Algorithm 11, just as described in the case of MARVEL. Herein, we present the procedure
for identifying the v-structures VSg(X) for a removable variable X. We describe this
procedure for RSLp and RSL,, separately.

RSLp. In the case of diamond-free graphs, if X is a removable variable and Y € Ag(X),
then X and Y have a unique common child. Indeed, Proposition 40 reveals not only the
co-parents of a removable variable X but also the unique common child of X and each of
its co-parents. Accordingly, to identify the v-structures VSg(X) during RSLp, it suffices to
modify the FindNeighbors subroutine as follows. Each time a variable Z € Mbg(X)\{Y}
satisfies Equation (7) in line 4 of FindNeighbors, the edges are oriented as X — Z and
Y — Z, since Z is the unique common child of X and Y.

RSL,. Analogous to RSLp, we can exploit the procedure for finding the neighbors to
further identify the v-structures. In particular, Proposition 37 identifies a unique set S as
the common children of X and Y, for any Y that is a co-parent of X. Once such a set S
is found in line 4 of FindNeighbors in RSL,, (see line 12 of Algorithm 7) for a removable
variable X; and Y € Mbg(Xj;), it suffices to orient every edge U —V such that U € {X;,Y'}
andVeSasU—V.

6. Complexity and Completeness Analysis

In this section, we discuss the complexity and completeness of various causal discovery
methods, with a particular emphasis on our proposed recursive approaches. This analysis is
crucial for understanding the efficiency and reliability of these methods in practical applica-
tions. In addition, we delve into the theoretical limits of these algorithms by providing lower
bounds for the complexity of constraint-based algorithms in learning DAGs and MAGs.

6.1 Lower Bound

We introduce two fundamental theorems: Theorem 45, which establishes a lower bound for
the complexity of constraint-based algorithms in learning DAGs, and Theorem 46, which
does the same for MAGs. These theorems are instrumental in quantifying the theoretical
limits of constraint-based methods.

Theorem 45 (Lower bound for DAGs) For any positive integers n and 1 < ¢ < n,
there exists a DAG G with n vertices and Ay, (G) = ¢ such that the number of d-separations
of the form (X 1L Y|Z)g required by any constraint-based algorithm to learn the skeleton of
G 1is lower bounded by

Q(n? + nAip(G)2809)). (11)

Theorem 45 determines the hardness of causal discovery under causal sufficiency parame-
terized based on A;,(G) rather than other graph parameters such as A(G) or «(G).

Theorem 46 (Lower bound for MAGs) For any positive integers n and 1 < ¢ < n,
there exists a MAG G with n vertices and A;(Q) = ¢ such that the number of m-separations
of the form (X 1L Y|Z)g required by any constraint-based algorithm to learn the skeleton of
G is lower bounded by

Q(n? + nA; (G220, (12)
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Theorem 46 extends the complexity analysis to the setting of MAGs, addressing scenarios
in causal discovery where the assumption of causal sufficiency does not hold. It similarly
parameterizes the hardness of the problem based on A} (G), which is an extension of A,
for MAGs (Definition 3).

While our analysis focuses on the computational complexity of constraint-based causal
discovery algorithms, we also acknowledge the complementary line of research on sample
complexity and methods addressing limited data scenarios in causal discovery. Notably,
Ghoshal and Honorio (2017); Gao et al. (2022); Jamshidi et al. (2023) have established
lower bounds on the number of samples required to recover causal graphs under various
assumptions and settings. Additionally, Cui et al. (2022) propose methods to improve
constraint-based causal discovery under insufficient data by enhancing the robustness of
statistical tests.

6.2 Completeness Analysis and Achievable Bounds of RCD Methods

We present completeness guarantees and upper bounds on the number of performed CI tests
by MARVEL, L-MARVEL, RSL, and ROL, as implemented in Section 5.

Recall that our algorithms take as input Data(V), a set of i.i.d. samples from the obser-
vational distribution Py . In the propositions that follow, we provide asymptotic guarantees
of correctness for our methods under the assumption that Data(V) is sufficiently large to
accurately recover the CI relations present in Py. Additionally, as outlined in Section 2,
we assume that the true underlying graph encodes the CI relations of the observational
distribution, as stated in Equation (3). It should be noted that while our methods are also
compatible with weaker notions of faithfulness, we focus on this primary assumption for
simplicity in our presentation.

Proposition 47 (Completeness and complexity of MARVEL) Under the assumption
of causal sufficiency, MARVEL, as implemented in Algorithm 4, correctly returns the skele-
ton of DAG G by performing at most

<Z> + n<Amz(g)) + 5 A0(G) (1 +0.4524,(6))24() = O(n? + ndin(9)*2°9)) - (13)

unique CI tests, and at most (Z) 28in (D=1 quplicate CI tests in the worst caseS.
Corollary 48 If A;,(G) < clogn, MARVEL uses at most O(n?> + n"'log®n) unique CI
tests in the worst case, which is polynomial in the number of variables.

As n gets larger, if DAG G has a constant value of A;,(G), or more generally A;,(G) <
(1 — €)logn, where € > 0, then both the achievable upper bound of MARVEL in (13) and
the lower bound in (11) are quadratic in n. For larger values of Ay, (G), the second terms in
these equations become dominant. In this case, the upper bound of MARVEL differs from
the lower bound only by a factor of A;,(G). This demonstrates that under causal sufficiency
and without any additional information, MARVEL has a worst-case performance that nearly
matches the lower bound.

6. Duplicate CI tests can be completely eliminated through efficient use of memory. This aspect is omitted
here for simplicity and readability.
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Proposition 49 (Completeness and complexity of L-MARVEL) L-MARVEL, as im-
plemented in Algorithm 6, correctly returns the skeleton of MAG Gv by performing at most

O(n*+ nA:;L(gv)QQA:;(gV))
number of CI tests.

Similar to our previous argument for MARVEL, Proposition 49 shows that the complexity
of L-MARVEL aligns closely with the lower bound for MAGs in Theorem 46, demonstrating
its near-optimal performance in causal models with latent variables.

Proposition 50 (Completeness and complexity of RSL,) Under causal sufficiency,
if w(G) < m, then RSL,, as implemented in Algorithm 7, correctly returns the skeleton of
DAG G by performing at most

O(n2 + nAm(g)m‘H)
number of CI tests.

Proposition 50 marks a pivotal development in causal discovery for DAGs with bounded
Tree Width. Recent studies including Korhonen and Parviainen (2013); Nie et al. (2014);
Ramaswamy and Szeider (2021), have emphasized the importance of algorithms tailored
for scenarios where an upper bound on the TreeWidth of the causal graph is given as side
information. A bound on TreeWidth is more restrictive than a bounded clique number, as
indicated by the following inequality.

w(G) < TreeWidth(G) + 1

As such, our RSL,, algorithm is also applicable to causal discovery in DAGs with bounded
TreeWidth. Notably, while existing exact discovery algorithms for these networks demon-
strate exponential complexity, RSL, maintains a polynomial complexity. This indicates
that when the TreeWidth is constant, causal discovery is no longer NP-hard and can be
solved in polynomial time.

Proposition 51 (Completeness and complexity of RSLp) Under causal sufficiency
and if G is a diamond-free DAG, then RSLp, as implemented in Algorithm 9, correctly
returns the skeleton of DAG G by performing at most

O(n® + nAm(g)?’) (14)
number of CI tests.

Remark 52 FEwven if DAG G has diamonds, RSLp correctly recovers all the existing edges
with possibly extra edges, i.e., RSLp has no false negative.

RSLp is the fastest among our proposed recursive methods. This can also be seen by the
upper bound in Equation (14), where the number of CI tests stays tractable for graphs with
more than 1000 variables.
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Algorithm As.sumptions Completeness #CI tests
Causal sufficiency Other
MARVEL YES - YES O(n? + nA? 25%n)
L-MARVEL NO - YES O(n® +n(A},)%250)
RSL,, YES w(@) <m YES O(n? +nATH
RSLp YES Diamond-free YES O(n? +nAi))
ROLuc NO - NO O(MAXITER x n®)
ROLvy1 NO - YES O(n2m)
ROLpc NO - NO N/A
PC YES - YES O(n?)
GS YES - YES O(n? + na?2%)
MMPC YES - YES O(n?2%)
Cs YES - YES O(n?2%)
FCI NO - YES N/A
RFCI NO - NO N/A
FCI+ NO - NO O(n?A+2)
MBCS* NO - YES O(n?2%)
Lower Bound YES - YES Q(n2 + nAiHZAi")
Lower Bound NO - YES O(n* + ’rLA?;lQA;L)

Table 3: Summary of the assumptions, guarantees, and the complexity of various causal
discovery methods from observational data.

Proposition 53 (Complexity of ROLyc) ROLgc, as implemented in Algorithm 10,
performs at most
O(MAXITER x n?) (15)

number of CI tests, excluding the initialization step in line 2.

Note that the upper bound in Equation (15) may vary depending on the initialization step
in line 2 and the choice of the FindNeighbors function. Also, here we are assuming that
MAXSWAP is a constant.

Proposition 54 (Completeness and complexity of ROLvy7y) According to the intro-
duced RL setting in Section 5.4.2, ROLvyy finds the optimal policy by performing at most
O(n22") number of CI tests.

Note that the bound in Proposition 54 is much lower than O(n!) for iterating over all orders.

6.3 Comparison

In this part, we present a comparative analysis of various causal discovery methods, in-
cluding our proposed algorithms. The summary of this comparison is presented in Table 3,
which categorizes each algorithm based on its assumptions, completeness guarantees, and
computational complexity in terms of the number of CI tests required. The last two rows
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present the lower bounds for complexity under causal sufficiency and in the absence of it,
as established in Section 6.1.

A critical observation from this analysis is that the upper bounds on the complexity
of our algorithms (MARVEL, L-MARVEL, RSL, and ROL) are significantly more efficient
compared to the others. This efficiency in DAGs is largely due to the following inequality.

Ain(G) < A(G) < a(9)

Additionally, in a DAG with a constant in-degree, A and « can grow linearly with the
number of variables.

Corollary 55 Under the assumption of causal sufficiency, RSLp is the fastest among our
proposed methods. In scenarios lacking causal sufficiency, L-MARVEL is fastest for sparse
graphs, while ROLgc outperforms in denser graphs.

7. Related Work

Most of the causal discovery methods can be broadly categorized into constraint-based
and score-based approaches. While constraint-based methods recover the structure that
is comsistent with conditional independence constraints, score-based methods opt for the
graph that maximizes a specific score function. In this section, we present an overview
of relevant works in the field, organizing them into these two main categories. Under the
score-based category, we give special consideration to the so-called ordering-based methods,
which rely on recovering a specific order among the variables to guide the causal discovery
task. While we strive to provide a representative review of key works in causal discovery,
we note that the vast body of literature includes many more studies and approaches. For
a more comprehensive compilation and deeper discussion, we refer to surveys on causal
discovery such as Kitson et al. (2023), Hasan et al. (2023), Vowels et al. (2022), Glymour
et al. (2019), and Mooij et al. (2016).

7.1 Constraint-Based

PC algorithm (Spirtes et al., 2000), widely used for causal discovery, stands as a foundational
approach for this task using observational data, laying the groundwork for most of the
subsequent developments in constraint-based approaches. Notably, acknowledging the high
computational cost of PC, Le et al. (2016) provided a parallel computing framework for it.
Colombo et al. (2014) drew attention to the fact that under potentially erroneous conditional
independence tests, the results obtained by the PC algorithm may depend on the order in
which these tests were conducted. Following this observation, they introduced PC-stable,
which offers an order-independent approach to causal discovery. This enhances the PC’s
robustness with respect to uncertainties over the order of variables. Further, RPC (Harris
and Drton, 2013) was introduced as a relaxation of the PC algorithm to handle instances
where strict adherence to conditional independence tests may not be possible.

PC and its derivatives work under causal sufficiency. In extending the scope of constraint-
based methods, Spirtes et al. (1995) introduced the fast causal inference algorithm (FCI),
which accommodates latent variables and selection bias. Although foundational, FCI faced
challenges with incomplete edge orientation rules. Zhang (2008b) later augmented further
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orientation rules to ensure completeness of its output. FCI also suffers from an intractable
computational complexity in moderate to high dimensional causal discovery tasks. Focusing
on learning high-dimensional causal graphs, Colombo et al. (2012) introduced RFCI, which
performs only a subset of the conditional independence tests that FCI requires. Faster
computations came at the cost of not being complete, in the sense that the recovered graph
may contain extra edges in general.

Closest to our approach are the works by Margaritis and Thrun (1999), Pellet and Elis-
seeff (2008a), and Pellet and Elisseeff (2008b), which put forward the idea of using Markov
boundary information to guide causal discovery. The grow-shrink (GS) algorithm (Mar-
garitis and Thrun, 1999) was originally devised as a method to infer Markov boundaries.
The authors augmented GS with further steps to make it capable of recovering the causal
structure. Pellet and Elisseeff (2008b) proposed the use of total conditioning (TC) to infer
the Markov boundary information and recover the causal structure afterward. Pellet and
Elisseeff (2008a) also generalized the same ideas to handle causal discovery in the presence
of latent variables and selection bias.

Along a separate path, CPC (Ramsey et al., 2006) introduced the concept of adjacency-
faithfulness, building a conservative framework for constraint-based causal discovery. KCL
(Sun et al., 2007) presented a kernel-based causal discovery algorithm, extending the scope of
applicability of causal discovery algorithms to non-linearly related structural models through
the use of kernel methods. On the same note, the kernel-based conditional independence test
(KCI-test) introduced by Zhang (2008a) further enriches the toolkit for assessing conditional
independence through kernel methods. ION (Danks et al., 2008) focused on integrating
observational data with narrative information to refine causal relationships.

7.2 Score-Based

Score-based methods provide an alternative approach to constraint-based methods, empha-
sizing the optimization of a score function to identify the most likely causal graph. The
foundation for this line of research was laid by early work in Bayesian statistics, as well as
the development of graphical models (Pearl, 1988). A notable contribution was made by
Heckerman et al. (1995), which put forward the idea of integrating the prior beliefs and
statistical data through a Bayesian approach to causal discovery. The authors reviewed
certain heuristic algorithms to search for the graphical structure maximizing their scoring
function. Greedy equivalence search (GES) algorithm, introduced by Chickering (2002),
represents another significant advancement in the field. GES employs a step-wise greedy
search strategy to iteratively refine the graph structure, aiming for maximizing the Bayesian
information criterion (Raftery, 1995; Geiger and Heckerman, 1994).

GES has been influential in guiding the subsequent advancements in score-based causal
discovery. An extension was introduced by Biihlmann et al. (2014), which diverges from GES
by decoupling the order search among variables and edge selection in the DAG from each
other. While the variable order search is carried out through a non-regularized maximum
likelihood estimation, sparse regression techniques are used for edge selection. The method
developed by Biihlmann et al. (2014) is valid for additive models. Another extension is the
fast greedy equivalence search (FGES) (Ramsey et al., 2017). FGES builds upon GES by
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introducing two modifications to increase the speed of the search in order to adapt it for
high-dimensional causal models.

Beyond greedy search approaches, there is also literature based on coordinate descent
for optimizing the score function. Fu and Zhou (2013) utilizes an ¢1-regularized likelihood
approach and a block-wise coordinate descent to estimate the causal structure. Gu et al.
(2019) model the conditional density of a variable given its parents by multi-logit regression,
employing a group norm penalty to obtain a sparse graph. Aragam et al. (2015) reduce
causal discovery to a series of neighborhood regressions under suitable assumptions.

A broad range of recent research on score-based causal discovery has focused on methods
based on continuous optimization. The most influential work in this direction was DAGs
with NO TEARS (Zheng et al., 2018), reformulating the combinatorial problem of causal
search into a continuous optimization problem. Goudet et al. (2018) introduced CGNN,
which uses neural networks to learn the functional mappings between variables and in-
corporates a hill-climbing search algorithm for the optimization. In order to address the
computational costs of CGNN, Kalainathan et al. (2022) presented SAM. Recently, several
methods have been introduced to further tackle the time-consuming nature of these meth-
ods. GraN-DAG (Lachapelle et al., 2019) improved upon NO TEARS by leveraging neural
networks to model the nonlinear relationships while maintaining computational efficiency
through gradient-based techniques. SparseRC (Misiakos et al., 2024) also addressed the
scalability issue by adopting a sparse regularization framework. DAG-NoCurl (Yu et al.,
2021) presented another promising approach, reducing computational costs without explic-
itly enforcing acyclicity constraints. Bhattacharya et al. (2021) extended the approach to
graphs with hidden variables. Other notable extensions include but are not limited to
DAGMA (Bello et al., 2022), TOPO (Deng et al., 2023), No FEARS (Wei et al., 2020),
DAG-GNN (Yu et al., 2019), Graph AutoEncoder (Ng et al., 2019), NO BEARS (Lee et al.,
2019), and DYNOTEARS (Pamfil et al., 2020).

Bayesian Approaches. These methods represent another prominent class within score-
based approaches, emphasizing the integration of prior knowledge with observed data to
learn causal structures. The foundational work in this area was the work by Heckerman
et al. (1995), which proposed methods that merge expert knowledge and statistical data
for learning Bayesian networks. Building on this work, Friedman and Koller (2003) intro-
duced a principled Bayesian approach to structure discovery in Bayesian networks. More
recent works have advanced Bayesian approaches in different ways. Viinikka et al. (2020)
and introduced a scalable Bayesian framework that leverages variational inference, making
it computationally efficient and applicable to large-scale datasets. Zhang et al. (2024) em-
ployed a similar approach for active learning. Another significant contribution is from Lorch
et al. (2021), which framed Bayesian structure learning as a flexible differentiable optimiza-
tion problem. Deleu et al. (2022) proposed using generative flow networks to approximate
the posterior distributions. Others have focused on making the posterior computations
more tractable (Annadani et al., 2021; Hoang et al., 2024), as well as extending Bayesian
approaches to latent confounder models (Ma et al., 2024), and active learning (Toth et al.,
2022).
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7.3 Ordering-Based

Despite the inherent difficulty of causal discovery (Chickering, 1996), finding the graph-
ical structure that maximizes a scoring function becomes tractable when an ordering is
postulated on the variables (Buntine, 1991; Cooper and Herskovits, 1992). Based on this
observation, Teyssier and Koller (2005) proposed a search over the space of variable order-
ings, rather than the previously adopted search over the space of DAGs. After recovering the
ordering among variables, Teyssier and Koller (2005) used an exhaustive search through all
possible parent sets for each vertex. Improving on the latter, Schmidt et al. (2007) showed
that this search can be well-approximated through ¢; regularization. Another extension to
the work by Teyssier and Koller (2005) was introduced by Scanagatta et al. (2015), who
proposed anytime algorithms to circumvent the high costs of searching in the space of po-
tential parent sets. Raskutti and Uhler (2018) introduced the sparsest permutation (SP)
algorithm, which relaxes the common faithfulness assumption to a weaker assumption called
u-frugality. On the same note, Lam et al. (2022) developed a class of permutation-based al-
gorithms, namely GRaSP, which operate under weaker assumptions than faithfulness. Solus
et al. (2021) were the first to provide consistency guarantees for a greedy permutation-based
search algorithm, namely GSP. Bernstein et al. (2020) extended the scope of permutation-
based methods to causal structures with latent variables. Ordering-based methods offer
an alternative approach to causal discovery by postulating an ordering on the variables to
reduce the search space. Recent approaches such as sortregress (Reisach et al., 2021) and
HOST (Duong and Nguyen, 2023) have been proposed to tackle complex data structures,
particularly for heterogeneous and heteroskedastic data.

7.4 Miscellaneous

While the focus of this paper is on methods for learning a causal graph based on observa-
tional data, it is essential to acknowledge other directions in causal discovery research. For
example, Yu et al. (2023) introduces a novel approach for causal discovery in zero-inflated
data, leveraging directed graphical models to enhance gene regulatory network analysis.
Another example is Zhao et al. (2024), which introduces a neighborhood selection method
for learning the structure of Gaussian functional graphical models for high-dimensional
functional data, applicable to EEG and fMRI data. Furthermore, there has been a grow-
ing interest in causal discovery for cyclic graphs (Richardson, 1996; Mooij et al., 2011;
Richardson, 2013; Sethuraman et al., 2023), as these models have implications for causal
relationships that involve feedback loops and dynamic dependencies. It is noteworthy that
cyclic structures pose additional challenges compared to acyclic graphs.

There has also been a growing interest in causal discovery for challenging data types.
For instance, Huang et al. (2020) and Zhou et al. (2022) studied causal discovery from
heterogeneous and non-stationary data. Giinther et al. (2022) considered the problem of
independence testing with heteroskedastic data. Several recent works investigated causal
discovery under heteroskedastic noise models Duong and Nguyen (2023); Yin et al. (2024);
Kikuchi (2022); Cai et al. (2020).

Another avenue of research has concentrated on causal discovery methods that leverage
interventional data as well as observational data (Kocaoglu et al., 2019; Brouillard et al.,
2020; Li et al., 2023). Provided access to interventional data, one can reduce the size of
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the equivalence class, resulting in a finer specification of the causal model. Some works
consider causal discovery in an active manner, where experiments are designed explicitly
to learn causal graphs (Hyttinen et al., 2013; Hauser and Bithlmann, 2014; Hu et al., 2014;
Ghassami et al., 2017; Addanki et al., 2020; Mokhtarian et al., 2023b). This active approach
involves strategically choosing interventions to gain the most informative data for learning
the graphical structure.

Some other notable lines of research include causal discovery for temporal data (Entner
and Hoyer, 2010; Assaad et al., 2022; Chu et al., 2014; Gong et al., 2023), and causal
representation learning (Schélkopf et al., 2021; Wang and Jordan, 2021; Ahuja et al., 2023).

8. RCD: A Python Package for Recursive Causal Discovery

We have implemented the algorithms presented along with other necessary and auxiliary
utility functions in our Python package, called RCD. Our implementation is available on
GitHub with the following link:

github.com/ban-epfl/rcd
Additionally, you can find a detailed documentation of our package on the following website:
rcdpackage.com
Some of the key aspects of our package are highlighted in the following.

e Simple installation: RCD is available on PyPI for installation. Use the command
pip install rcd

to add it to your environment.

e Lightweight dependencies: RCD uses only four packages - NetworkX, NumPy,
Pandas, and SciPy, all commonly used in causal discovery.

e Well-documented: We have written thorough documentation for each class and
function in the Google Python documentation style, available in the website.

e Readable code: We used consistent naming schemes for functions and variables and
added descriptive in-code comments for increased readability.

e Efficient implementation: Optimized for performance, we used optimal data struc-
tures and minimized loops and redundant CI tests, ensuring a lean and fast codebase.

8.1 Source Code Organization

The source code of the RCD package available on our GitHub repository is divided into
four directories.

e rcd: It contains the implementation of the methods.

e tests: It contains unit tests in the framework of pytest that ensure the correctness
of the implementation of each method.
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e examples: It contains working demonstrations of each method.

e docs: It contains the configuration for MkDocs, which is responsible for generating
our documentations site.

8.2 Method Implementation

Our proposed methods in the RCD package are implemented as Python modules:
marvel, 1l marvel, rsld, rslw, rolhc

RCD is designed with modularity at its core. Each module requires a CI testing function
upon initialization and optionally accepts a Markov boundary matrix finding function. This
design enables users to incorporate their own CI testing and Markov boundary-finding
algorithms. If a Markov boundary-finding function is not given, our methods use a naive
approach to find the initial Markov boundary matrix.

Each module has a primary public function that is intended to be used by the user,
which is the learn_and_get_skeleton function. This function receives a Pandas Dataframe
as input, which contains data samples for each variable, with each column representing a
variable. The function then returns the learned skeleton as an undirected NetworkX graph.

Below is a small snippet showing the module corresponding to the RSLp method, named
rsl_d, being used to learn the skeleton corresponding to a dataset using the Fisher-Z test.

from rcd import rsl_d
from rcd.utilities.ci_tests import fisher_z

# run RSL-D on data with the Fisher Z test

ci_test = lambda x, y, z, data: fisher_z(x, y, z, data,
significance_level=2 / n **x 2)
learned_skeleton = rsl_d.learn_and_get_skeleton(ci_test, data_df)

9. Experiments

In this section, we present a series of simulations to compare our RCD algorithms with other
commonly used causal discovery algorithms for learning the skeleton of a causal graph. We
study the effect of varying the number of variables, graph density, and sample size. We also
include experiments on real-world networks.

9.1 Experimental Setup

We provide an overview of the experimental setup, including the algorithms compared,
datasets used, experimental environment, evaluation metrics, and methods for Markov
boundary estimation.

9.1.1 ALGORITHMS

We compare our proposed algorithms in the rcd package—namely, RSLp, RSL,,, L-MARVEL,
MARVEL, and ROLgc—with the following seven causal discovery algorithms: PC, FCI,
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Algorithm Original Paper Source Code
~ RSLp Mokhtarian et al. (2022)  rcd package
%f RSL,, Mokhtarian et al. (2022)  rcd package
A L-MARVEL Akbari et al. (2021) rced package
g MARVEL Mokhtarian et al. (2021)  rcd package
ROL-HC Mokhtarian et al. (2023a) rcd package
PC Spirtes et al. (2000)  causal-learn package
%33 FCI Spirtes et al. (2000) causal-learn package
a CD-NOD Huang et al. (2020) causal-learn package
C: GRaSP Lam et al. (2022) causal-learn package
2 GES Chickering (2002) causal-learn package
5 fGES Ramsey et al. (2016) py-tetrad package
SparseRC Misiakos et al. (2024) Paper’s repository

Table 4: The causal discovery algorithms used in our experiments.

CD-NOD, GRaSP, GES, fGES, and SparseRC. More information about these methods is
provided in Table 4.

9.1.2 DATASETS

For the ground-truth DAGs, we consider both synthetic random graphs generated from
Erdés-Rényi (ER) models and real-world networks available at https://www.bnlearn.
com/bnrepository. For the synthetic datasets, we generate linear SEMs with Gaussian
noises based on the generated DAGs. Details of the data generation process are as follows:

e For each graph, we assign edge weights sampled uniformly from the intervals [—1.5, —1]
and [1, 1.5], allowing for both positive and negative dependencies.

e Gaussian noise with a standard deviation randomly chosen from [0.7,1.2] is added to
each variable to introduce variability.

e The value of each variable is computed as a linear combination of its parent variables,
weighted by the assigned edge weights, plus the corresponding noise term.

9.1.3 EXPERIMENT ENVIRONMENT

We ran all algorithms using Python 3.10, except for f{GES, which was executed using JPype
to connect to Tetrad running on the Amazon Corretto 22 JDK. All simulations were con-
ducted on a PC equipped with two Intel Xeon E5-2680 v3 CPUs, 256 GB of RAM, and
running Ubuntu 20.04.4 LTS. We set a time limit of 100 seconds for each algorithm, after
which the execution is terminated.
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9.1.4 METRICS

In all experiments, we measured the process-time taken by each algorithm to learn and
produce the skeleton from the given data, the average conditioning set size, the number of
CI tests, and the F1 score when compared with the true skeleton. Note that the CI test-
related metrics are only measured and reported for algorithms that utilize CI tests—namely,
all RCD algorithms, PC, FCI, and CD-NOD.

9.1.5 MARKOV BOUNDARY ESTIMATION

As discussed in Section 5.5, several algorithms exist for discovering Markov boundaries.
In our experiments, we use the Total Conditioning (TC) method (Pellet and Elisseeff,
2008b) to compute the Markov boundary of each variable. Since we are dealing with
linear Gaussian models, we can efficiently evaluate the required conditional independencies
using the precision matrix (the inverse of the covariance matrix). Specifically, we compute
the partial correlations between variables from the precision matrix and apply Fisher’s
z-transform to perform the conditional independence tests. This approach allows us to
compute all the Markov boundaries efficiently. For the significance level in the conditional
independence tests, we set o = 2/n? (Pellet and Elisseeff, 2008b).

9.2 Results

We now present the results of our experiments, organized into four scenarios: varying the
number of variables, varying the graph density, varying the sample size, and using real-world
graphs.

9.2.1 VARYING THE NUMBER OF VARIABLES

We evaluate the performance of each algorithm as a function of the number of variables n.
We investigate two regimes: sparse and dense.

e Sparse Regime: We generate ER graphs with edge probability p = 1/n, varying n
from 10 to 500.

e Dense Regime: We generate ER graphs with edge probability p = logn/n, varying
n from 10 to 150.

For each value of n, we generate 20 DAGs, and for each DAG, we generate 10 datasets,
each containing 50n samples. We present the results for the sparse regime in Figure 6, and
for the dense regime in Figure 7.

In the sparse regime (Figure 6), our RCD algorithms—RSLp, RSL,,, MARVEL, and L-
MARVEL—are the fastest by far. The time plots (note the logarithmic y-axis) demonstrate
that our methods are orders of magnitude faster than the other causal discovery algorithms.
This efficiency is corroborated by the number of CI tests performed, which is significantly
lower for our methods, confirming that the number of CI tests is a good proxy for the
time complexity of constraint-based methods. In terms of accuracy, our methods achieve
near-perfect F1 scores. While f{GES and GRaSP also achieve high accuracy, they are much
slower than our methods in sparse graphs.
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Figure 6: Time taken, average conditioning set size, number of CI tests, and F1 score of
RCD algorithms and other CD algorithms against the number of variables on the
sparse ER dataset.
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Figure 7:
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In the dense regime (Figure 7), RSLp and fGES are the fastest algorithms. However,
fGES suffers from lower accuracy, with F'1 scores dropping below 0.7, whereas our methods
maintain F1 scores around 0.9. GRaSP achieves the best accuracy in dense graphs but is
only scalable up to 40 variables in this setting. In contrast, RSLp can easily be applied to
graphs with up to 150 variables and potentially much larger graphs, demonstrating better
scalability while maintaining high accuracy.

9.2.2 VARYING THE GRAPH DENSITY

We run simulations on ER graphs with n = 50 variables and a sample size of 2500. The
edge probability p varies from 0.02 to 0.2. For each value of p, we generate 10 DAGs, and
for each DAG, we generate 10 datasets.

We present the results in Figure 8. These results confirm our previous observations. For
smaller values of the edge probability (i.e., sparser graphs), our RCD algorithms are faster
than the other methods while achieving similar accuracy. As the graphs become denser, the
runtime of our methods increases, becoming comparable to some of the other algorithms.
In the densest cases, f{GES becomes faster than our methods by an order of magnitude.
However, this speed comes at the cost of accuracy—our methods maintain much higher F1
scores compared to fGES in dense graphs. This demonstrates that while fGES is faster in
very dense graphs, our methods offer a better trade-off between speed and accuracy across
different graph densities.

9.2.3 VARYING THE SAMPLE SIZE

We run simulations on ER graphs with n = 30 variables and an edge probability of p = 0.1.
We generate datasets with sample sizes ranging from 50 to 2000. For each sample size, we
generate 10 DAGs and 10 datasets for each DAG.

We present the results in Figure 9. The figure shows that all algorithms are relatively
insensitive to the number of samples. For sample sizes greater than 500 and up to 2000
samples, the performance of all algorithms remains stable in terms of both accuracy and
runtime. When the number of samples is very low (e.g., only 50 samples), our methods
exhibit slightly worse performance compared to others. However, this difference is not
significant and diminishes quickly as the sample size increases.

9.2.4 REAL-WORLD GRAPHS

We conduct experiments on 16 real-world graphs from the Bayesian Network Repository
with the number of variables ranging from 8 to 724. 7 For each graph, we generate a dataset
following the data generation procedure described earlier. We present the results for graphs
with fewer than 50 variables in Figure 10 and for those with more than 50 variables in
Figure 11.

In almost all cases, our methods are the fastest, with RSLp being the fastest in every
instance. Regarding accuracy, our methods generally outperform others, with the difference
being more significant in larger graphs (Figure 11). Notably, RSLp not only has the best

7. bnlearn.com/bnrepository
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runtime but also achieves the highest accuracy across these 16 real-world graphs. This
highlights that RSLp is the best-performing method in this setting.

It is worth mentioning that some of these networks contain diamond structures, whereas
RSLp has theoretical guarantees when the graph is diamond-free. Despite this, RSLp per-
forms exceptionally well, demonstrating robustness to violations of its structural assump-
tions. This robustness is discussed further in Subsection 6.2.

10. Conclusion, Limitations, and Future Work

In this work, we developed a comprehensive framework for recursive causal discovery, derived
from our previous publications (JR1-9Ry), refined with additional details and enhancements.
Our methodology revolves around identifying removable variables, learning their neigh-
bors, discarding them, and then recursively learning the graph of the remaining variables.
Through this iterative process, we have significantly reduced the number of performed CI
tests, enhancing the computational efficiency and the accuracy of our methods. We further
provided lower bounds on the complexity of constraint-based methods in the worst case and
showed that our proposed methods almost match the lower bounds. Finally, we introduced
RCD, a Python package that efficiently implements our methods. The main results discussed
in this paper are summarized in Table 5.

While our framework offers significant advancements in recursive causal discovery, it
shares a common limitation with all constraint-based methods: it relies on CI tests, which
may not consistently provide reliable results, especially in non-parametric models where
such tests can be less robust. Additionally, our approaches leverage Markov boundaries in
their recursive framework, allowing the application of any existing algorithm for computing
Markov boundaries. Although we proposed methods that iteratively update the Markov
boundaries at a low cost, the initial step may pose a computational bottleneck in large-scale
applications.

In the following, we discuss potential future work.

e Asmentioned earlier, although our current approaches can learn graphs up to the order
of 10% variables with conventional computational power, the initial computation of
Markov boundaries poses a computational challenge for larger graphs. An influential
direction for future work is the development of recursive causal discovery methods
that do not depend on Markov boundary computations.

e In exploring real-world applications of our package, one domain of particular interest
is network biology, specifically for learning Gene Regulatory Networks (GRN). How-
ever, given the large number of genes in the human genome (approximately 20,000),
applying our current methods directly might be challenging due to the dimensionality
issues. While our methods can be used to analyze GRNs of other organisms with
fewer genes or adapted for local analyses within the human genome, future modifica-
tions aimed at tailoring our recursive causal discovery methods for high-dimensional
biology data, such as GRNs, could unlock new opportunities for applying our package
to complex biological systems.

e Another direction for future work involves the parallelization of our proposed recur-
sive causal discovery methods. By leveraging parallel computing techniques, we can
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Result Description
Proposition 17 Only removables can get removed
Theorem 18 Graphical characterization of removables in DAGs
Theorem 19 Graphical characterization of removables in MAGs

Proposition 20
Proposition 21
Proposition 22
Proposition 25
Proposition 26
Lemma 28
Lemma 29
Lemma 30
Theorem 32
Proposition 34
Theorem 36
Proposition 37
Theorem 39
Proposition 40
Theorem 41
Proposition 42
Theorem 45
Theorem 46
Proposition 47
Proposition 49
Proposition 50
Proposition 51
Proposition 53
Proposition 54

Removables exist
Removables have small Mb size
Removables are invariant in a MEC
r-orders are invariant across MEC
r-orders include c-orders
Finding v-structures
Testing condition 1 of removability in DAGs
Testing condition 2 of removability in DAGs
Testing removability in MAGs
Avoiding duplicate CI tests in L-MARVEL
Removability test in RSL,,
Finding neighbors in RSL,,
Removability test in RSLp
Finding neighbors in RSLp
Consistency result of ROL’s objective
RSL,, is verifiable
Lower bound for DAGs
Lower bound for MAGs
Completeness and complexity of MARVEL
Completeness and complexity of L-MARVEL
Completeness and complexity of RSL,,
Completeness and complexity of RSLp
Complexity of ROLy¢
Completeness and complexity of ROLyf

Source
R Ry
R
Ro
R, Ro
R, R

Table 5: Table of results.
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significantly reduce the computational time, making our algorithms more efficient and
scalable.

e Another research question is to analyze the sample complexity of our proposed recur-
sive causal discovery methods. While our methods have empirically shown to require
fewer samples compared to other approaches in $3;-Ry, a theoretical analysis of sample
complexity remains an open question.
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