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ABSTRACT

The information bottleneck (IB) is a principled approach to obtain a succinct repre-
sentation x → z for a given downstream task x → y: namely, it finds z that (a)
maximizes the (task-relevant) mutual information I(z;y), while (b) minimizing
I(x; z) to constrain the capacity of z for better generalization. In practical scenar-
ios where the training data is limited, however, many predictive-yet-compressible
signals in the data can be rather from some biases in data acquisition (i.e., less
generalizable), so that even the IB objective cannot prevent z from co-adapting on
such (so-called) “shortcut” signals. To bypass such a failure mode, we consider an
adversarial threat model of x under constraint on the mutual information I(x;y).
This motivates us to extend IB to additionally model the nuisance information
against z, namely zn, so that (z, zn) can reconstruct x. To enable the idea, we pro-
pose an auto-encoder based training upon the variational IB framework, as well as
practical encoder designs to facilitate the proposed hybrid discriminative-generative
training considering both convolutional- and Transformer-based architectures. Our
experimental results show that the proposed scheme improves robustness of learned
representations (remarkably without using any domain-specific knowledge), with
respect to multiple challenging modern security measures including novelty detec-
tion, corruption (or natural) robustness and certified adversarial robustness.

1 INTRODUCTION

Despite the recent breakthroughs with the development of deep learning, e.g., in vision and language
processing (He et al., 2016; Vaswani et al., 2017; Brown et al., 2020; Mildenhall et al., 2020),
reinforcement learning (Vinyals et al., 2019; Jang et al., 2021), and scientific discovery (Davies
et al., 2021; Jumper et al., 2021), deploying current deep learning models to the real-world still
places a significant burden on contents providers as the models are likely to affect the reliability
of their services: in many cases, deep neural networks make substantially fragile predictions for
out-of-distribution inputs, i.e., samples that are not likely from the training distribution, even when
the inputs are semantically close enough to in-distribution samples for humans: e.g., for samples
perturbed by an imperceptable, adversarially-crafted noise (Szegedy et al., 2014; Goodfellow et al.,
2015), or natural corruptions such as “fog” (Hendrycks & Dietterich, 2019; Hendrycks et al., 2021).

Generally speaking, a neural network, say f , is a parametric mapping of a given random variable
x into its representation z := f(x), that encodes “useful” features in x to predict a target random
variable y: i.e., a simpler (e.g., linear) mapping can recover y from z. In other words, a “good”
representation z should keep information of x that is correlated with y, while preventing z from being
too complex. The information bottleneck (IB) principle (Tishby et al., 1999; Tishby & Zaslavsky,
2015) is a simple and natural implementation of this idea, which sets the mutual information I(x; z)
as the complexity measure of z. Specifically, it aims to maximize the following objective:

max
f

RIB(f), for RIB(f) := I(z;y)− βI(x; z), (1)

where β ≥ 0 controls the capacity constraint which ensures I(x; z) ≤ Iβ for some Iβ .

However, the brittleness of neural networks for out-of-distribution samples can still persist even with
the IB objective (1): in other words, a “good” model f from the objective can work poorly under a
certain distribution shift in x, say x̂, so that I(x;y) = I(f(x);y)≫ I(f(x̂);y). In practice, this can
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occur especially when the (hard-to-compute) mutual information terms in (1) are approximated based
on limited, and potentially biased data: for example, many well-curated datasets commonly used in
research (Krizhevsky, 2009; Russakovsky et al., 2015) are likely to be processed prior to release for
quality control, e.g., by filtering out some severely corrupted samples from its original collection.
Such a bias can make the computation of I(z;y) to be also biased, i.e., toward over-estimating a
“shortcut” signal (Geirhos et al., 2020) in the data that is not generalizable for x̂. Even worse, by
jointly minimizing I(x; z) in (1), it can further compress out other useful signal in x if the shortcuts
are already predictive enough.

Contribution. In this paper, we rethink the implementation of the information bottleneck (IB)
principle under presence of distribution shifts (between training and test data). Specifically, we argue
that a “robust” representation z should always encode every signal in x that is correlated with y,
rather than extracting only a few shortcuts; the capacity constraint in IB (1) can still be applied
for the nuisance information which is not related to predict y at all. This motivates us to consider
an adversarial form of threat model of distribution shifts in x, under a constraint on the mutual
information I(x,y). To enable this idea, we propose a practical design by incorporating a nuisance
representation zn alongside z of the standard IB framework so that (z, zn) can reconstruct x. This
results in a novel synthesis of adversarial autoencoder (Makhzani et al., 2015) and variational
information bottleneck (Alemi et al., 2017) into a single framework. For more details on the neural
architectural side, we propose (a) to utilize the internal feature statistics for convolutional network
based encoders, i.e., the collection of mean and variance of each feature map, and (b) to incorporate
vector-quantized patch representations for Transformer-based (Dosovitskiy et al., 2021) encoders to
model zn along with continuous z, mainly to efficiently encode the nuisance representation zn (as
well as z) in a scalable manner.

We perform an extensive evaluation on the representations learned by our scheme, particularly
focusing on their generalization ability on out-of-distribution inputs. Overall, we demonstrate that our
framework can now successfully address possible future corruptions in the input, making consistent
improvements in all the modern robustness measures considered compared to the standard (e.g., cross-
entropy based) training. The results are particularly remarkable as the gains are not from assuming
a prior on out-of-distribution. For example, we obtain a significant reduction in CIFAR-10-C error
rates of the highest severity, i.e., by 26.5%→ 19.5%, without any domain-specific priors as assumed
in recent methods, e.g., AugMix and PixMix (Hendrycks et al., 2020; 2022). Here, we also show
that the effectiveness of our method is scalable to larger-scale (ImageNet) datasets. For novelty
detection, we show that our representations can provide a more semantic information to better
discriminate out-of-distribution samples: e.g., we could advance AUROCs in recent OBJECTS (Yang
et al., 2022) benchmarks by 78.4% → 87.2% in average upon the previous best results. Finally,
we also demonstrate how the representations can further offer enhanced certified robustness against
adversarial examples “for free”, by applying randomized smoothing (Cohen et al., 2019) on them.

2 NUISANCE-EXTENDED INFORMATION BOTTLENECK

Notation. Given two random variables x ∈ X , the input, and y ∈ Y , the target, we consider a
general problem of representation learning (Bell & Sejnowski, 1995; Kohonen, 1990; Dinh et al.,
2014; Alemi et al., 2017; Donahue et al., 2017; Oord et al., 2018), where the goal is to find a mapping
(or an encoder) f : X → Z from data D = {(xi, yi)}ni=1

1 so that z := f(x), the representation,
can predict y with a simper (e.g., linear) mapping. We assume that the encoder f is parametrized
by a neural network, and the mapping is stochastic to adopt an information theoretic view of neural
networks (Tishby & Zaslavsky, 2015), i.e., the encoder output is a random variable defined as pf (z|x)
rather than a constant. In practice, such a modeling can be done through the reparametrization trick
(Kingma & Welling, 2014), i.e., by allowing an independent random variable ϵ to the (deterministic)
mapping f as an additional input, namely z := f(x, ϵ). For example, a popular design of Gaussian
decoder parametrizes f by:

f(x, ϵ) := fµ(x) + ϵ · fσ(x), (2)

where fµ ∈ R|Z| and fσ ∈ R|Z|
+ are deterministic mappings modeling µ and σ in N (x;µ, σ2I),

respectively, so that they can still be learned through a gradient-based optimization.

1Although we focus on supervised learning, the framework itself in general does not rule out more general
scenarios, e.g., when the target y can be self-supervised from x (Oord et al., 2018; Chen et al., 2020).
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Figure 1: An overview of our proposed framework, nuisance-extended information bottleneck (NIB),
instantiated by an autoencoder-based design. Here, the illustration is based on convolutional architec-
tures, while we also propose a similar instantiation for Transformer-based models in Appendix C.
Overall, the training incorporates adversarial autoencoder into the variational information bottleneck
framework by introducing a nuisance zn with respect to y in representation learning.

Conventionally, the given data D is usually assumed to consist of i.i.d. samples from a certain data
generating distribution (xi, yi) ∼ pd(x,y), and one expects that f learned from D could generalize
well to predict pd(y|x) for unseen samples from pd(x,y). The formulation, however, does not
specify how f should behave for inputs that are not likely from pd, say x̂. This becomes problematic
for those who additionally expect that the decision making of f should be close to that of human
being, at least when x̂ differs from pd only up to what humans regard as nuisance: where the current
neural networks commonly fail under the standard training practices.

Nuisance-extended IB. The standard information bottleneck (IB) objective (1) obtains a representa-
tion z := f(x) on premise that the future inputs will be also from the data generating distribution
pd(x,y). In this paper, we aim to extend the IB objective under assumption that the input x can
possibly be corrupted through an unknown noisy channel in the future, say x → x̂, while x̂ still
preserves the semantics of x with respect to y: in other words, we assume I(x;y) = I(x̂;y) > 0.
Intuitively, one can imagine a scenario that a given input x contains multiple signals that each is
already highly correlated with y, i.e., filtering out the remainder from x does not affect its mutual
information with y. It may or may not be surprising that such signals are quite prevalent in practical
deep neural networks, e.g., Ilyas et al. (2019) empirically observe that adversarial perturbations
(Szegedy et al., 2014; Goodfellow et al., 2015) crafted from a given neural network are sufficient for
the model to perform accurate classification.

In the context of IB framework, where the goal is to obtain a succinct encoder f , it is now reasonable
to presume that the noisy channel x̂ acts like an adversary, i.e., it minimizes:

min
x̂

I(ẑ := f(x̂);y) subject to I(x;y) = I(x̂;y), (3)

given that one has no information on how the channel would behave a priori. This minimax
optimization thus would require f to extract every signal in x whenever it is highly correlated with
y, to avoid the case when x̂ filters out all the signal except one that f has missed. We notice that,
nevertheless, directly optimizing (3) with respect to x̂ is computationally infeasible in practice,
considering that (a) it is in many cases an unconstrained optimization in a high-dimensional X , (b)
with a constraint on (hard-to-compute) mutual information.

In this paper, to make sure that f still exhibits the adversarial behavior without (3), we propose to let
f to model the nuisance representation zn as well as z: specifically, zn aims to model the “remainder”
information from z needed to reconstruct x, i.e., it maximizes I(x; z, zn), while compressing out
information that is correlated with y, i.e., it also minimizes I(zn;y): therefore, every information that
is correlated with y should be encoded into z in a complementary manner. Here, we remark that now
the role of the capacity constraint in (1) becomes even more important: not only for regularizing z to
attain simpler representation, it additionally penalizes zn from pushing out unnecessary information
to predict y into z, making the objective competitive again between z and zn as like in (3). Combined
with the original IB objective (1), we define nuisance-extended IB (NIB) as the following:

max
f

RNIB(f) := RIB(f)− I(zn;y) + αI(x; z, zn), (4)
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where α ≥ 0. The proposed NIB objective can be viewed as a regularized form of IB by introducing
a nuisance zn. Specifically, this optimization additionally forces I(x; z, zn) and I(zn;y) in (4) to
be maximized and minimized, i.e., towards H(x|z, zn) = 0 and I(zn;y) = 0, respectively. The
following observation highlights that having these conditions, additionally with the independence
z ⊥ zn, leads f that can recover the original information of I(x;y) from the noisy channel I(ẑ;y):

Lemma 1. Let x ∈ X , and y ∈ Y be random variables, x̂ be a noisy observation of x with
I(x;y) = I(x̂;y). Given that a representation [ẑ, ẑn] := f(x̂) of x̂ satisfies (a) H(x̂|ẑ, ẑn) = 0, (b)
I(ẑn;y) = 0, and (c) ẑ ⊥ ẑn, it holds I(ẑ;y) = I(x;y).

In the following sections, we provide a practical design of the proposed NIB objective based on an
autoencoder-based architecture. Section 2.1 and 2.2 detail out its losses and architectures, respectively,
and Section 2.3 summarizes the overall training. Figure 1 illustrates an overview of our framework.

2.1 AENIB: A PRACTICAL AUTOENCODER-BASED DESIGN

Based on the NIB objective defined in (4) and Lemma 1, we design a practical training objective to
implement the proposed framework. Here, we present a simple instantiation of NIB by approximating
it with an autoencoder-based architecture upon variational information bottleneck (VIB) (Alemi
et al., 2017), calling it autoencoder-based nuisance-extended information bottleneck (AENIB).

Overall, Lemma 1 states that a robust encoder f demands for a “good” nuisance model that achieves
generalization on ẑ in three aspects: (a) a good reconstruction, (b) nuisance-ness, and (c) the
independence between z and zn. To model these behaviors, we consider a decoder g : Z → X
as well as the encoder f : X → Z , and adopt the following practical training objectives which
incorporates an autoencoder-based loss and two adversarial losses (Goodfellow et al., 2014):

(a) We first pose a reconstruction loss to maximize log p(x|z, zn); the standard design assumes that
the decoder output follows N (x, σI), which is equivalent to the mean-squared error (MSE).
Here, we use the normalized MSE (NMSE) to efficiently balance with other losses:2

Lrecon := −C · log p(x|z, zn) = 1
∥x∥2

2
∥x− g(z, zn)∥22 =: NMSE(x; g(z, zn)). (5)

(b) To force the nuisance-ness of zn with respect to y, on the other hand, we approximate p(y|zn)
variationally with a multi-layer perceptron (MLP), say qn, and perform an adversarial training:

Lnuis := Ex[CE(q∗n(zn), 1
|Y| )], where q∗n := min

qn
Ex,y[CE(qn(zn),y)], (6)

where CE denotes the cross entropy loss. Here, it optimizes the cross-entropy towards the
“uniform” distribution in Y .

(c) To induce the independence between z and zn, we assume that the joint prior of z and zn is the
isotropic Gaussian, i.e., p(z, zn) ∼ N (0, I), and performs a GAN-based training:

Lind := max
qz

Ex[log(qz(f(x)))] + Ez,zn∼N (0,I)[log(1− qz(z, zn))], (7)

where qz is an MLP that discriminates [z, zn] from N (0, I).

Lastly, to approximate the original IB objective RIB(f) in NIB (4), we instead maximize the vari-
ational information bottleneck (VIB) (Alemi et al., 2017) objective Lβ

VIB, that can provide a lower
bound on RIB.3 Specifically, it makes variational approximations of: (a) p(y|z) by a (parametrized)
“decoder” neural network q(y|z), and (b) p(z) by an “easier” distribution r(z), e.g., isotropic Gaussian
N (z|0, I). Recalling that we assume a Gaussian decoder (2) for f(x, ϵ), we have:

Lβ
VIB :=

1

n

n∑
i=1

Eϵ[− log q(yi|f(xi, ϵ))] + β KL (p(z|xi)∥r(z)). (8)

2We also explore a SSIM-based (Wang et al., 2004) reconstruction loss as given in Appendix C, which we
found beneficial for robustness particularly with Transformer-based models.

3A more detailed description on the VIB framework (as well as on GAN) can be found in Appendix F.2.
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2.2 ARCHITECTURES FOR NUISANCE MODELING

In principle, our framework is generally compatible with existing any deep network architectures:
e.g., say an encoder f : X → Z and decoder g : Z → X , respectively. In order to apply VIB, we
assume that the encoder has two output heads of dimension 2K, where K denotes the size of latent
representation z: here, each output head models the Gaussian random variable by reparametrization,
i.e., by modeling (µ, σ) as the encoder output for both z ∈ RK and zn ∈ RKn .

Although it is possible that the encoder f models representations z and zn by simply taking outputs
from a deep feed-forward representations following conventions, we observe that modeling nuisances
zn (which should be essentially “generative”) as well as z in standard discriminative architectures
can incur a bottleneck in training stability thus in performance compared to modeling without zn: the
nuisance information often requires to model the fine details in a given inputs, which is available in
early layers of f , but may not in the later layers for classification.

Here, we propose a simple architectural treatment to improve stability of nuisance modeling that
are applicable for any convolutional networks: specifically, we encode zn (as well as z) from the
collection of internal features statistics, rather than by a mapping from the last layer of f .

Motivation: Feature statistics discriminator (FSD) for GANs. Designing a stable discriminator
has been crucial for GANs: a usual practice in the literature is to have a separate, carefully-designed
network with a comparable generator, but with a significant overhead. We observe that the internal
feature statistics of a convolutional encoder f can be a surprisingly effective representation to define
a simple yet efficient discriminator. Concretely, for a given encoder f and an input x, we consider L
intermediate feature maps of x, namely x(1), · · · ,x(L) from f(x), and define the projection of x by:

Πf (x) :=

[
m(1) m(2) · · · m(L)

s(1) s(2) · · · s(L)

]
, (9)

where m(l) and s(l) are the first- and second moment of channel-wise feature maps in x(l), assuming
that x(l) ∈ RHWC follows the format of convolutional feature maps:

m(l)
c :=

1

HW

∑
h,w

x
(l)
h,w,c, and s(l)c :=

1

HW

∑
h,w

(x
(l)
h,w,c −m(l)

c )2. (10)

The features statistics discriminator (FSD) we consider here is then simply a 3-layer MLP applied
on Πf (x). In Appendix G.1, we empirically confirm that this simplest design of discriminator can
dramatically accelerate GAN training, particularly when applied upon pre-trained discriminative
encoders: similarly to Sauer et al. (2021) but with a simpler architecture.

Motivated by the observation that the features statistics based projection Πf can better encode gener-
ative representations in discriminative models, we apply this to model the encoder representations z
and zn: specifically, we encode z and zn by simply applying MLPs to the feature statistics projection
Πf (x) (9). Despite its simplicity, we observe this modeling indeed enables a faster and stable training
of AENIB: in the context of autoencoder modeling, this architecture not only stabilizes the training
but also opens up new ways to further improve their generation quality, e.g., via adversarial similarity
or by leveraging pre-trained representations, where the details can be found in Appendix G.2.

In Appendix C, we also present a nuisance-aware architecture applicable for ViT-based (Dosovitskiy
et al., 2021) models, which is even simpler thanks to their patch-level representations available.

2.3 OVERALL TRAINING OBJECTIVE

Combining the proposed objectives as well as the original VIB loss, Lβ
VIB (8) leads us to the final

objective. Although combining multiple losses in practice may introduce additional hyperparameters,
we found most of the proposed losses can be added without scaling except for the reconstruction loss
Lrecon and the β in the original VIB loss. Hence, we get:

LAENIB := Lβ
VIB + α · Lrecon + Lnuis + Lind. (11)

Algorithm 1 in Appendix A summarizes the overall procedure of AENIB training.

3 EXPERIMENTS

We verify the effectiveness of our proposed AENIB training for various aspects of out-of-distribution
generalization compared to the standard training methods: specifically, we cover (a) novelty detection
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Table 1: Comparison of AUROC (%; ↑) for various
OOD detection methods trained on CIFAR-10 with five
OOD datasets: SVHN, LSUN, ImageNet, CIFAR-100,
and CelebA. Bolds indicate the best results.

Method Score SVHN LSUN ImageNet C100 CelebA
JEM log p(x) 0.67 - - 0.67 0.75
JEM maxy p(y|x) 0.89 - - 0.87 0.79
SupCon maxy p(y|x) 0.97 0.93 0.91 0.89 -
Cross-entropy maxy p(y|x) 0.94 0.94 0.92 0.86 0.64
Cross-entropy log Dir0.05(y) 0.96 0.95 0.94 0.86 0.61
VIB maxy p(y|x) 0.95 0.94 0.92 0.88 0.76
VIB log Dir0.05(y) 0.97 0.96 0.94 0.88 0.78
AENIB (ours) maxy p(y|x) 0.88 0.88 0.86 0.84 0.81
AENIB (ours) log Dir0.05(y) 0.90 0.95 0.92 0.86 0.80
AENIB (ours) + logN (zn; 0, I) 0.98 0.99 0.99 0.86 0.79

Table 2: Comparison of test error rates
(%; ↓) of ViT-S/4 on CIFAR-10 and
its variants: CIFAR-10-C/10.1/10.2, and
CINIC. Bold and underline indicate the
best and runner-up results, respectively.

Method C10 C10-C C10.1 C10.2 CINIC

Cross-ent. 6.08 16.0 13.4 18.3 23.7
VIB 5.98 15.2 13.6 16.8 23.6
AugMix 6.52 15.1 14.2 17.2 24.2
PixMix 5.43 10.3 13.1 16.6 23.2

AENIB 4.97 12.3 11.6 15.5 22.2
+ AugMix 5.35 12.0 12.5 15.8 22.6
+ PixMix 4.67 8.08 10.4 14.8 22.1

Table 3: Comparison of OOD detection performances on the OBJECTS benchmark (Yang et al.,
2022), which considers CIFAR-10-C and ImageNet-10 as in-distribution as well as the training
in-distribution of CIFAR-10. Bold and underline denote the best and runner-up results, respectively.

FS-OOD: OBJECTS AUROC (%; ↑) / AUPR (%; ↑) / FPR@TPR95 (%; ↓)
Method Score MNIST FashionMNIST Texture CIFAR-100-C

Cross-entropy maxy p(y|x) 66.98 / 52.66 / 93.54 73.78 / 90.15 / 88.08 74.18 / 93.34 / 85.64 74.12 / 89.74 / 87.26
ODIN 70.31 / 49.58 / 82.04 80.98 / 91.53 / 68.73 70.14 / 89.97 / 72.91 67.51 / 83.97 / 84.26
Energy-based 54.55 / 34.14 / 92.23 76.50 / 89.80 / 72.40 68.63 / 89.51 / 75.57 68.37 / 85.54 / 83.64
Mahalanobis 77.04 / 65.31 / 84.59 80.33 / 92.28 / 77.17 72.02 / 88.46 / 72.98 68.13 / 82.97 / 85.53
SEM 75.69 / 76.61 / 99.70 79.40 / 93.14 / 93.72 79.69 / 95.48 / 82.15 78.89 / 92.07 / 83.92

logDir0.05(y) 76.75 / 66.26 / 83.51 82.88 / 93.97 / 77.19 70.69 / 92.68 / 91.35 78.80 / 92.21 / 82.50

VIB maxy p(y|x) 80.23 / 73.50 / 80.69 76.35 / 91.22 / 84.75 74.67 / 94.09 / 87.22 76.12 / 91.03 / 84.99

logDir0.05(y) 86.13 / 79.45 / 64.92 81.11 / 93.12 / 77.82 73.84 / 93.50 / 88.00 78.54 / 91.85 / 81.47

AENIB (ours) maxy p(y|x) 79.67 / 71.50 / 80.22 77.33 / 91.63 / 84.31 74.95 / 93.97 / 86.01 74.31 / 89.89 / 86.26

logDir0.05(y) 90.53 / 85.68 / 52.08 84.56 / 94.61 / 74.24 75.04 / 93.83 / 86.01 79.39 / 92.33 / 81.51
+ logN (zn; 0, I) 92.43 / 89.38 / 48.10 84.85 / 94.84 / 74.67 88.91 / 97.49 / 48.44 82.66 / 93.62 / 74.14

(Section 3.1), (b) corruption robustness (Section 3.2), and (c) adversarial robustness (Section 3.3) tasks
which all have been challenging without assuming task-specific priors (Hendrycks et al., 2020; 2019a;
Madry et al., 2018). We also present evaluations on the effectiveness of our proposed components in
the context of unconditional generative modeling in Appendix G. We provide an ablation study in
Appendix D for a component-wise analysis on the method. The full details on the experiments, e.g.,
datasets, training details, and hyperparameters, can be found in Appendix B.

3.1 OUT-OF-DISTRIBUTION DETECTION

We first show that our AENIB model can be a good detector for out-of-distribution samples (OODs),
i.e., to solve the novelty detection task: in general, the task is defined by a binary classification
problem that aims to discriminate novel samples from in-distribution samples. A typical practice here
is to assign a score function for each input based on the model, e.g., the maximum confidence score
(Hendrycks & Gimpel, 2017) as commonly used for supervised models, to threshold out samples
as out-of-distribution when the score is low. To define a score function for our AENIB models,
we first observe that the log-likelihood score of the nuisance representation zn, which is a unique
information for AENIB, can be a strong score function especially for detecting novelties those are
semantically far from in-distribution, i.e., we use logN (zn; 0, I) = − 1

2∥zn∥
2, as we assume that z

follows isotropic Gaussian N (0, I). For detecting so-called “harder” novelties, we propose to use
the log-likelihood score of y under a symmetric Dirichlet distribution of parameter α > 0, namely
Dirα(y) ∈ ∆|Y|−1, rather than simply using maxy p(y|x): i.e., logDirα(y) = (α − 1)

∑
i log yi.

Note that the distribution gets closer to the symmetric (discrete) one-hot distribution as α→ 0, which
makes sense for most classification tasks, and here we simply use α = 0.05 throughout experiments.4

We consider two evaluation benchmarks and compare ResNet-18 (He et al., 2016) models trained on
CIFAR-10: (a) the “standard” benchmark, that has been actively adopted in the literature (Hendrycks
& Gimpel, 2017; Liang et al., 2018; Lee et al., 2018b) assumes the test set of CIFAR-10 as in-
distribution and measures the detection performance of other independent datasets; (b) the OBJECTS

4In practice, we observe that other choices in a moderate range of α near 0 do not much affect performance.

6



Under review as a conference paper at ICLR 2023

Table 4: Comparison of average corruption error rates (%; ↓) per severity level on CIFAR-10/100-C
(Hendrycks & Dietterich, 2019). Bold and underline denote the best and runner-up, respectively.

CIFAR-10-C CIFAR-100-C

Architecture Severity Clean 1 2 3 4 5 Avg. Clean 1 2 3 4 5 Avg.

ResNet-18
Cross-entropy 5.71 12.9 18.1 24.3 31.7 43.5 26.1 26.9 39.2 46.9 53.2 59.8 69.3 53.7
VIB 5.47 12.5 17.5 23.6 30.7 42.5 25.4 26.5 39.7 47.5 53.8 60.5 70.1 54.3

AENIB (ours) 7.07 13.2 17.2 21.7 27.5 37.0 23.3 28.0 39.0 45.5 51.4 57.6 67.0 52.1

ViT-S/4

Cross-entropy 6.08 8.89 11.1 14.0 19.7 26.5 16.0 25.1 31.4 35.1 39.3 46.8 54.0 41.3
VIB 5.98 8.68 10.7 13.4 18.6 24.9 15.2 26.0 31.9 35.9 40.4 47.8 55.2 42.2
AugMix 6.52 8.97 10.8 13.4 18.4 23.9 15.1 24.9 29.9 33.3 37.1 43.6 51.1 39.0
PixMix 5.43 7.10 8.14 9.40 12.1 14.9 10.3 23.2 26.7 28.7 30.8 35.0 39.0 32.0

AENIB (ours) 4.97 7.49 8.96 11.0 14.8 19.5 12.3 22.6 27.6 30.5 34.1 39.8 47.1 35.8
+ AugMix 5.35 7.65 8.99 11.0 14.2 18.4 12.0 21.9 26.4 29.1 32.4 37.8 44.3 34.0
+ PixMix 4.67 5.90 6.55 7.45 9.12 11.4 8.08 21.2 24.4 26.0 27.8 31.1 34.8 28.8

Table 5: Comparison of test error rates (%; ↓) or mean corruption error (mCE, %; ↓) on ImageNet
and its variants, namely ImageNet-C (Hendrycks & Dietterich, 2019), ImageNet-R (Hendrycks et al.,
2021), and ImageNet-Sketch (Wang et al., 2019). Bold indicate the best results.

Architecture Method ImageNet Corruption (mCE) Rendition Sketch

ViT-S/16 Cross-entropy 25.1 65.9 70.3 80.3
AENIB (ours) 25.1 65.2 (−0.7) 67.1 (−3.2) 77.7 (−2.6)

ViT-B/16 Cross-entropy 21.8 58.6 66.3 76.5
AENIB (ours) 21.9 57.5 (−1.1) 64.4 (−1.9) 74.4 (−2.1)

benchmark, recently proposed by Yang et al. (2022), further extends the CIFAR-10 benchmark to also
consider “near” in-distribution in OOD evaluation. Specifically, OBJECTS assumes CIFAR-10-C
(Hendrycks & Dietterich, 2019) and ImageNet-10 as in-distribution in test-time as well as CIFAR-10,
making the detection task much more challenging as shown by Yang et al. (2022).

The results are reported in Table 1 and 3 for the standard and OBJECTS benchmarks, respectively:
overall, we confirm that the score function combining the information of zn and y of AENIB
significantly improves novelty detection in a complementary manner over strong baselines, showing
the effectiveness of modeling nuisance. For example, in Table 1, the combined score achieves
near-perfect AUROCs for detecting SVHN, LSUN and ImageNet datasets. Regarding Table 3, on the
other hand, our method of AENIB shows even more significant improvements here: e.g., AENIB
improves the previous best AUROC (of Mahalanobis (Lee et al., 2018b)) on OBJECTS vs. MNIST
from 77.04→ 92.43. This shows that both representation and score obtained from AENIB help to
better discriminate in- vs. out-of-distribution in a more semantic sense compared to prior arts.

3.2 ROBUSTNESS AGAINST NATURAL CORRUPTIONS

Next, we evaluate corruption robustness of our method, namely, the generalization ability of a
representation in the situation that the given input can be distorted with natural corruptions (e.g.,
fog, brightness, etc.) those are still semantic to humans. To this end, we consider a wide range
of benchmarks those are constructed from CIFAR-10 and ImageNet for the purpose of measuring
generalization. Namely, for CIFAR-10 models we test on (a) CIFAR-10/100-C (Hendrycks &
Dietterich, 2019), a corrupted version of CIFAR-10/100 simulating 15 common corruptions in 5
severity levels, respectively, as well as (b) CIFAR-10.1 (Recht et al., 2018), CIFAR-10.2 (Lu et al.,
2020), and CINIC-10 (Darlow et al., 2018), i.e., three re-generations of the CIFAR-10 test set.
For ImageNet models, on the other hand, we test ImageNet-C (Hendrycks & Dietterich, 2019), a
corrupted version of ImageNet validation set, as well as ImageNet-R (Hendrycks et al., 2021), a
collection of rendition images for 200 ImageNet classes, and ImageNet-Sketch (Wang et al., 2019).
We test two different encoder architectures for CIFAR-10, namely ResNet-18 (He et al., 2016) and
ViT-S (Dosovitskiy et al., 2021; Touvron et al., 2021), to also investigate the effect of architectures in
AENIB. For the ImageNet experiments, on the other hand, we consider ViT-S and ViT-B (Touvron
et al., 2021) to further examine the scalability of our method.

Table 2, 4, and 5 summarize the results. In Table 4, we observe that AENIB significantly and
consistently improves corruption errors upon VIB in both architectures tested, and these gains are
strong even compared with state-of-the-art methods: e.g., AENIB can solely outperform a strong
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Figure 3: Comparison of certified adversarial robust accuracy at
various radii on CIFAR-10. The sharp drops in the plots are due
to the statistical upper bound in radius the current certification
protocol (Cohen et al., 2019) can output for a given σ.

baseline of AugMix (Hendrycks et al., 2020). Although a more recent method of PixMix (Hendrycks
et al., 2022) could achieve a lower corruption error by utilizing extra (pattern-like) data, we remark
that (a) AENIB also benefit from PixMix (i.e., the extra data) as given in “AENIB + PixMix”, and
(b) the results on Table 2 show that the generalization capability of AENIB is better than PixMix on
CIFAR-10.1, 10.2 and CINIC-10, i.e., in beyond common corruptions, by less relying on domain-
specific data. Interestingly, we observe that the impact of AENIB in the clean error can be different
depending on the encoder architecture: with the ViT-S, AENIB could even further improve the
clean errors compared to both Cross-entropy and VIB. This is possibly due to that the representation
induced via AENIB can be extracted better with non-local (attention-based) operations.

Next, Table 5 highlights that the effectiveness of AENIB can generalize to a more larger-scale, higher-
resolution dataset of ImageNet: we still observe that AENIB can consistently improve robust accuracy
for diverse corruption types, again without leveraging any further data augmentation during training.
Lastly, Figure 2 compares the linear trends made by Cross-entropy and AENIB across different data
augmentations and hyperparameters, confirming that AENIB exhibits a better operating points even
in terms of effective robustness (Taori et al., 2020), given the strong performance correlations recently
observed between in- vs. many out-of-distribution benchmarks across models (Taori et al., 2020;
Hendrycks et al., 2021; Miller et al., 2021).

3.3 ROBUSTNESS AGAINST ADVERSARIAL EXAMPLES

We also evaluate adversarial robustness (Szegedy et al., 2014; Goodfellow et al., 2015; Madry et al.,
2018) adopting the randomized smoothing framework (Cohen et al., 2019) that can measure a certified
robustness for a given representation: specifically, any classifier can be “robustified” by averaging
its predictions under Gaussian noise N (0, σ2I), where the robustness at input x depends on how
consistent the classifier is on classifying N (x, σ2I) (Jeong & Shin, 2020). We adopt such a certified
(or provable) protocol since it better aligns with our focus of testing robustness of representations
that are not adversarially-trained (Madry et al., 2018): empirical robustness, i.e., that reports the
worst-case accuracy after directly attacking a classifier with diverse adversarial attacks, is usually
hard to get a non-trivial accuracy without a thorough adversarial training. The randomized smoothing
based evaluation, on the other hand, provides a more meaningful metric for classifiers even for the
“Cross-entropy” baseline, while still representing a lower-bound in robustness that a given classifier
can achieve (with an aid of randomized smoothing) against every adversarial attack method.

We follow the standard certification protocol (Cohen et al., 2019) to compare the certified test
accuracy at radius r, which is defined by the fraction of the test samples that a smoothed classifier
classifies correctly with its certified radius larger than r. We consider both ResNet-18 and ViT-S
architectures on CIFAR-10, and assume σ = 0.1 for this experiment. The results summarized in
Figure 3 show that our proposed AENIB achieves significantly better certified robustness compared to
the baselines at all radii tested: e.g., it improves certified robust accuracy of VIB by 39.6%→ 56.8%
at ε = 0.1 with ViT-S. Again, the robustness obtained from AENIB is not from specific knowledge on
the threat model, which implies that AENIB could offer free adversarial robustness when combined
with randomized smoothing. This confirms that the robustness of AENIB is not only significant but
also consistent per input, especially considering its high certified robustness at higher r’s.
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4 RELATED WORK

Out-of-distribution robustness. Since the seminal works (Szegedy et al., 2014; Nguyen et al.,
2015; Amodei et al., 2016) revealing the fragility of neural networks for out-of-distribution inputs,
there have been significant attempts on identifying and improving various notions of robustness: e.g.,
detecting novel inputs (Hendrycks & Gimpel, 2017; Lee et al., 2018b;a; Tack et al., 2020), robustness
against corruptions (Hendrycks & Dietterich, 2019; Geirhos et al., 2019; Hendrycks et al., 2020), and
adversarial noise (Madry et al., 2018; Athalye et al., 2018; Cohen et al., 2019; Carlini et al., 2019), to
name a few. Due to its fundamental challenges in making neural network to extrapolate, however,
most of the advances in the robustness literature has been made under assuming priors closely related
to the individual problems: e.g., an external data or data augmentations (Hendrycks et al., 2019a;
2020), extra information from test-time samples (Wang et al., 2021), or specific knowledge in threat
models (Tramer & Boneh, 2019; Kang et al., 2019). In this work, we aim to improve multiple notions
of robustness without assuming such priors, through a new training scheme that extends the standard
information bottleneck principle under noisy observations in test-time.

Hybrid generative-discriminative modeling. Our proposed method can be also viewed as a new
approach of improving the robustness of discriminative models by incorporating a generative model,
in the context that has been explored in recent works (Lee et al., 2018b; Schott et al., 2019; Grathwohl
et al., 2020; Yang & Ji, 2021). For example, Lee et al. (2018b; 2019) have incorporated a simple (but
of low expressivity for generation) Gaussian mixture model into discriminative classifiers; a line of
research on Joint Energy-based Models (JEM) (Grathwohl et al., 2020; Yang & Ji, 2021) assumes an
energy-based model but with a notable training instability for the purpose. In this work, we propose
an autoencoder-based model to avoid such training instability, and consider a design that the nuisance
can succinctly supplement the given discriminative representation to be generative. We demonstrate
that our approach can take the best of two worlds; it enables (a) stable training, while (b) attaining
the high expressive generative performances.

Nuisance modeling. The idea of incorporating nuisances can be also considered in the context of
invertible modeling, or as known as flow-based models (Dinh et al., 2016; Kingma & Dhariwal, 2018;
Behrmann et al., 2019; Grathwohl et al., 2019), where the nuisance can be defined by splitting the
(full-information) encoding z for a given subspace of interest as explored by Jacobsen et al. (2019);
Ardizzone et al. (2020). Unlike such approaches, our autoencoder-based nuisance modeling does not
focus on the “full” invertibility for arbitrary inputs, but rather on inverting the data manifold given,
which enabled (a) a much flexible encoder design in practice, and (b) a more scalable generative
modeling of nuisance zn, e.g., beyond an MNIST-scale as done by Jacobsen et al. (2019). Other
related works (Jaiswal et al., 2018; 2019; Pan et al., 2021) instead introduce a separate encoder for
nuisance factors, although the notion of nuisance-ness has been focused as the independence to z
(mostly for the purpose of disentangling), rather than to y as we focus in this work (for the purpose
of robustness): e.g., DisenIB (Pan et al., 2021) applies FactorVAE (Kim & Mnih, 2018) between
semantic and nuisance embeddings to force their independence.5 Yet, the literature has been also
questioned on that the idea can be scaled-up beyond, e.g., MNIST, and our work does explore and
establish a practical design recent architectures and datasets addressing modern security metrics.

We provide more extensive and detailed discussions on related works in Appendix F.

5 CONCLUSION

In this work, we suggest that having a good nuisance model can be a tangible approach to induce
a robust representation. Specifically, we develop a practical method of learning deep nuisance
representation from data, and show its effectiveness to improve various notions of model robustness
under a challenging setup of assuming no prior (Taori et al., 2020). We believe our work can be
a useful step towards better understanding of the robustness in deep neural networks. Although
the scope of this paper currently focuses on a particular design of autoencoder based models, our
framework of nuisance-extended IB is not limited to it and future works could consider a more diverse
class of implementations, e.g., a bi-directional GAN (Donahue et al., 2017) based design. Ultimately,
we aim to approximate a challenging form of adversarial training with a mutual information constraint,
which we believe will be a promising future direction to explore.

5We provide a more direct empirical comparison with DisenIB (Pan et al., 2021) with AENIB in Appendix H.
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ETHICS STATEMENT

Securing reliable deep learning based models is arguably essential for AI safety (Amodei et al., 2016),
especially for security-concerned systems (Caruana et al., 2015; Yurtsever et al., 2020). Nevertheless,
one should also recognize that current techniques for assessing robustness in deep learning have a
clear gap to the real-world, which should be considered deliberately to avoid any potentially biased,
false sense of security in use.

REPRODUCIBILITY STATEMENT

We provide all the details to reproduce our experimental results in Appendix B (for training details,
hyperparameters, and datasets) and Appendix C (for architectural details). We plan to publicly release
our code and models upon publication of our manuscript.
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Concrete problems in AI safety. arXiv preprint arXiv:1606.06565, 2016.

Jyoti Aneja, Alex Schwing, Jan Kautz, and Arash Vahdat. A contrastive learning approach for training
variational autoencoder priors. Advances in Neural Information Processing Systems, 34, 2021.

Lynton Ardizzone, Radek Mackowiak, Carsten Rother, and Ullrich Köthe. Training nor-
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Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-
time adaptation by entropy minimization. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=uXl3bZLkr3c.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations
by penalizing local predictive power. In Advances in Neural Information Processing Systems, pp.
10506–10518, 2019.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612,
2004.

Zhisheng Xiao, Qing Yan, and Yali Amit. Likelihood regret: An out-of-distribution detection score
for variational auto-encoder. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 20685–20696. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
file/eddea82ad2755b24c4e168c5fc2ebd40-Paper.pdf.

Jingkang Yang, Kaiyang Zhou, and Ziwei Liu. Full-spectrum out-of-distribution detection. arXiv
preprint arXiv:2204.05306, 2022.

Xiulong Yang and Shihao Ji. JEM++: Improved techniques for training JEM. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 6494–6503, October 2021.

17

https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/1390156.1390294
https://openreview.net/forum?id=uXl3bZLkr3c
https://proceedings.neurips.cc/paper/2020/file/eddea82ad2755b24c4e168c5fc2ebd40-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/eddea82ad2755b24c4e168c5fc2ebd40-Paper.pdf


Under review as a conference paper at ICLR 2023

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved VQGAN.
In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=pfNyExj7z2.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
CutMix: Regularization strategy to train strong classifiers with localizable features. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032, 2019.

Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A survey of autonomous
driving: Common practices and emerging technologies. IEEE Access, 8:58443–58469, 2020.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning, pp. 7472–7482. PMLR, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=r1Ddp1-Rb.

Zijun Zhang, Ruixiang Zhang, Zongpeng Li, Yoshua Bengio, and Liam Paull. Perceptual generative
autoencoders. In International Conference on Machine Learning, pp. 11298–11306. PMLR, 2020.

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for
data-efficient GAN training. Advances in Neural Information Processing Systems, 33:7559–7570,
2020.

18

https://openreview.net/forum?id=pfNyExj7z2
https://openreview.net/forum?id=pfNyExj7z2
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb


Under review as a conference paper at ICLR 2023

A TRAINING PROCEDURE OF AENIB

Algorithm 1 Autoencoder-based nuisance-extended information bottleneck (AENIB)

Require: encoder f , decoder g, discriminators d, prior p0(z), α, β, τ > 0.

1: for # training iterations do
2: Sample (xi, yi)

m
i=1 ∼ pd(x,y)

3: z(i), z
(i)
n ← f(xi), and sample z(i), z

(i)
n ∼ z(i), z

(i)
n

4: x̂i ← g(z(i), z
(i)
n )

5: // UPDATE DISCRIMINATORS
6: Lind ← Ez,zn∼N (0,I)[log dz(z, zn)] +

1
m

∑
i log(1− dz(z, zn))

7: LD
nuis ← 1

m

∑
i CE(qn(y|z

(i)
n ), yi)

8: LD ← LD
nuis − Lind

9: dz, qn ← Update dz, qn to minimize LD

10: // UPDATE ENCODER AND DECODER
11: Lβ

VIB ← 1
m

∑
i [− log q(yi|zi) + βKL(p(z|xi)∥p0(z))]

12: Lrecon ← 1
m

∑
i
1
2∥xi − x̂i∥22

13: Lnuis ← 1
m

∑
i CE(q∗n(y|z

(i)
n ), 1

|Y| )

14: LAENIB ← Lβ
VIB + αLrecon + Lnuis + Lind

15: f, g,Πf ← Update f, g,Πf to minimize LAENIB

16: end for

B EXPERIMENTAL DETAILS

B.1 TRAINING DETAILS

Unless otherwise noted, we train each model for 200K updates for CIFAR-10 models, and 1M
updates for ImageNet models. For training AENIB models, we use α = 10.0, β = 0.0001 unless
otherwise noted. We use different training configurations depending on the encoder architecture,
i.e., whether is it ResNet or ViT: (a) For ResNet-based models, we train the encoder part (f ) via
stochastic gradient descent (SGD) with batch size of 64 using Nesterov momentum of weight 0.9
without dampening. We set a weight decay of 10−4, and use the cosine learning rate scheduling
(Loshchilov & Hutter, 2016) from the initial learning rate of 0.1. For the remainder parts of our
AENIB architecture, e.g., the decoder g and discriminator MLPs, on the other hand, we follow
the training practices of GAN instead: specifically, we use Adam (Kingma & Ba, 2015) with
(α, β1, β2) = (0.0002, 0.5, 0.999), following the hyperparameter practices explored by Kurach et al.
(2019). (b) For ViT-based models, on the other hand, we train both (transformer-based) encoder and
decoder models via AdamW (Loshchilov & Hutter, 2019) with a weight decay of 10−4, using batch
size 128 and (α, β1, β2) = (0.0002, 0.9, 0.999) with the cosine learning rate scheduling (Loshchilov
& Hutter, 2016). We use 2K and 100K steps of a linear warm-up phase in learning rate for CIFAR and
ImageNet models, respectively. Overall, we observe that a stable training of ViT (even for CIFAR-10)
requires much stronger regularization compared to ResNets, otherwise they often significantly suffer
from overfitting. In this respect, we apply the regularization practices those are now widely used for
ViTs on ImageNet, namely mixup (Zhang et al., 2018), CutMix (Yun et al., 2019), and RandAugment
(Cubuk et al., 2020), following those established in Beyer et al. (2022).

B.2 DATASETS

CIFAR-10/100 datasets (Krizhevsky, 2009) consist of 60,000 images of size 32×32 pixels, 50,000
for training and 10,000 for testing. Each of the images is labeled to one of 10 and 100 classes, and
the number of data per class is set evenly, i.e., 6,000 and 600 images per each class, respectively.
By default, we use the random translation up to 4 pixels as a data pre-processing. We normalize the
images in pixel-wise by the mean and the standard deviation calculated from the training set. The full
dataset can be downloaded at https://www.cs.toronto.edu/˜kriz/cifar.html.
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CIFAR-10/100-C, and ImageNet-C datasets (Hendrycks & Dietterich, 2019) are collections of
75 replicas of the CIFAR-10/100 test datasets (of size 10,000) and ImageNet validation dataset
(of size 50,000), respectively, which consists of 15 different types of common corruptions each of
which contains 5 levels of corruption severities. Specifically, the datasets includes the following
corruption types: (a) noise: Gaussian, shot, and impulse noise; (b) blur: defocus, glass, motion,
zoom; (c) weather: snow, frost, fog, bright; and (d) digital: contrast, elastic, pixel, JPEG compression.
In our experiments, we evaluate test errors on CIFAR-10/100-C for models trained on the “clean”
CIFAR-10/100 datasets, where the error values are averaged across different corruption types per
severity level. For ImageNet-C, on the other hand, we compute and compare the mean Corruption
Error (mCE) proposed by Hendrycks & Dietterich (2019). Specifically, mCE is the average of
Corruption Error (CE) over corruption types, where CE is defined by the error rates normalized by
those from AlexNet (Krizhevsky et al., 2012) to adjust varying difficulties across corruption types.
Formally, for a classifier f , CE for a specific corruption type c is defined by:

CEf
c :=

(
5∑

s=1

errorfc,s

)/(
5∑

s=1

errorAlexNet
c,s

)
, (12)

where s denotes the severity level (1 ≤ s ≤ 5). The full datasets, as well as the information on
the pre-computed AlexNet error rates on ImageNet-C (to compute mCE), can be downloaded at
https://github.com/hendrycks/robustness.

CIFAR-10.1/10.2 datasets (Recht et al., 2018; Lu et al., 2020) are reproductions of the CIFAR-
10 test set that are separately collected from Tiny Images dataset (Torralba et al., 2008). Both
datasets consist 2,000 samples for testing, and designed to minimize distribution shift relative to
the original CIFAR-10 dataset in their data creation pipelines. The datasets can be downloaded
at https://github.com/modestyachts/CIFAR-10.1 (for CIFAR-10.1; we use the “v6”
version) and https://github.com/modestyachts/cifar-10.2 (for CIFAR-10.2).

CINIC-10 dataset (Darlow et al., 2018) is an extension of the CIFAR-10 dataset generated via addition
of down-sampled ImageNet images. The dataset consists of 270,000 images in total of size 32×32
pixels, those are equally distributed for train, validation and test splits, i.e., the test dataset (that we use
for our evaluation) consists of 90,000 samples. Due to the discrepancy in distributions between CIFAR
and ImageNet, CINIC-10 by design contains a more significant distribution shift compared to CIFAR-
10.1/10.2, thus is more challenging when considered as a generalization benchmark from CIFAR-10.
The full datasets can be downloaded at https://github.com/BayesWatch/cinic-10.

ImageNet dataset (Russakovsky et al., 2015), also known as ILSVRC 2012 classification dataset,
consists of 1.2 million high-resolution training images and 50,000 validation images, which are labeled
with 1,000 classes. As a data pre-processing step, we perform a 256×256 resized random cropping
and horizontal flipping for training images. For testing images, on the other hand, we apply a 256×256
center cropping for testing images after re-scaling the images to have 256 in their shorter edges.
Similar to CIFAR-10, all the images are normalized by the pre-computed mean and standard deviation.
A link for downloading the full dataset can be found in http://image-net.org/download.

ImageNet-R dataset (Hendrycks et al., 2021) consists of 30,000 images of various artistic renditions
for 200 (out of 1,000) ImageNet classes: e.g., art, cartoons, deviantart, graffiti, embroidery, graphics,
origami, paintings, patterns, plastic objects, plush objects, sculptures, sketches, tattoos, toys, video
game renditions, and so on. To perform an evaluation of ImageNet classifiers on this dataset, we
apply masking on classifier logits for the 800 classes those are not in ImageNet-R. The full dataset
can be downloaded at https://github.com/hendrycks/imagenet-r.

ImageNet-Sketch dataset (Wang et al., 2019) consists of 50,000 sketch-like images, 50 images for
each of the 1,000 ImageNet classes. The dataset is constructed with Google image search, using
queries of the form “sketch of [CLS]” within the “black and white” color scheme, where
[CLS] is the placeholder for class names. The full dataset as well as the scripts to collect the dataset
can be accessed at https://github.com/HaohanWang/ImageNet-Sketch.

CelebFaces Attributes (CelebA) dataset (Liu et al., 2015) consists of 202,599 face images, where
each is labeled with 40 attribute annotations. We follow the standard train/validation/test splits of
the dataset as provided by Liu et al. (2015), and use the train split for training and computing FID
scores following the protocol of other baselines (Parmar et al., 2021; Aneja et al., 2021). We also
follow the pre-processing procedure of (Liu et al., 2015) to fit in the images into the size of 64×64:

20

https://github.com/hendrycks/robustness
https://github.com/modestyachts/CIFAR-10.1
https://github.com/modestyachts/cifar-10.2
https://github.com/BayesWatch/cinic-10
http://image-net.org/download
https://github.com/hendrycks/imagenet-r
https://github.com/HaohanWang/ImageNet-Sketch


Under review as a conference paper at ICLR 2023

namely, we first perform a center crop into size 140×140 to the images, followed by a resizing
operation into 64×64. The full dataset can be downloaded at https://mmlab.ie.cuhk.edu.
hk/projects/CelebA.html.

B.3 COMPUTING INFRASTRUCTURE

Unless otherwise noted, we use a single NVIDIA Geforce RTX-2080Ti GPU to execute each of the
experiments. For experiments based on StyleGAN2 architecture (reported in Table 8), we use two
NVIDIA Geforce RTX-2080Ti GPUs per run. For the ImageNet experiments (reported in Table 5 in
the main text), we use 8 NVIDIA Geforce RTX-3090 GPUs per run.

C ARCHITECTURAL DETAILS

Figure 4: An overview of our proposed framework, nuisance-extended information bottleneck (NIB),
instantiated by an autoencoder-based design with Transformer-based architectures.

Recall that our proposed AENIB architecture consists of (a) an encoder f , (b) a decoder g, and (c)
MLP-based discriminators dy, dz, and an MLP for feature statistic projection Πf . We set 128 as the
nuisance dimension zn, and use hidden layer of size 1,024 for MLP-based discriminators, e.g., dy,
dz, and MLPs for projection Πf .

ConvNet-based architectures. We mainly consider ResNet-18 (He et al., 2016) as a ConvNet-based
encoder. For this encoder, we consider the generator architecture of FastGAN (Liu et al., 2021) as the
decoder, but with a modification on normalization layers: specifically, we replace the standard batch
normalization (Ioffe & Szegedy, 2015) layers in the architecture with adaptive instance normalization
(AdaIN) (Karras et al., 2019) so that the affine parameters can be modulated by z and zn as well as
the decoder input: we observe a consistent gain in FID from this modification.

Transformer-based architectures. We consider ViT-S and ViT-B (Dosovitskiy et al., 2021;
Touvron et al., 2021) in our experiments. When Transformer-based encoder is used, we use the same
Transformer architecture as the decoder model where it is preceded by linear layers that maps both z
and zn into the space of patch embedding. We assume the patch size of ViT to be 4 for CIFAR-10
and 16 for ImageNet, i.e., we denote it as ViT-S/4 and ViT-S/16, respectively, so that the outputs from
the models have similar numbers of patch embeddings (8× 8 and 16× 16, respectively) to those of
ResNet-18. To model z and zn in the ViT architecture, we simply split the output patch embedding
into two separate embeddings (of reduced embedding dimensions): one of these embeddings is
average-pooled to define z, and the remaining one is vector-quantized (Yu et al., 2022) to define a
nuisance representation zn, as described in the next paragraph in more details. Figure 4 illustrates an
overview of our proposed AENIB for ViT-based architectures.

VQ-based nuisance modeling for ViT-AENIB. Remark that our current ViT-based design allocates
different numbers of feature dimension for z and zn: specifically, we only apply global average
pooling for z (not for zn), so that its dimensionality becomes independent to the input resolution,
while the nuisance zn would still get an increasing dimensionality for higher-resolution inputs. In
practice, this difference in feature dimension may cause some training difficulties in AENIB training:
(a) it makes harder to balance between the objectives given that AENIB is essentially a “competition”
between two information channels, i.e., z and zn; also, (b) it becomes increasingly difficult to
force zn to follow the independent Gaussian marginal for a tractable sampling as zn gets higher
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dimensions, unlike our ConvNet-based design. To alleviate these issues, we propose to apply the
vector quantization (VQ) (van den Oord et al., 2017; Yu et al., 2022) to the nuisance embedding:
namely, we train the output of the nuisnace head, say ẑn, to have one of (discrete) vectors in a learned
dictionary e. With this, now zn becomes independent to the dimensionality of per-patch embeddings,
which allows a more scalable balancing with z, as well as offering a tractable marginal distribution
to sample: given that zn now gets a sequence of discrete distribution, one can apply a post-hoc
generative modeling (e.g., with an autoregressive prior (van den Oord et al., 2017), or with a diffusion
model (Gu et al., 2022)) to allow an efficient sampling. Specifically, we add the following objective
upon our proposed AENIB objective (11) to enable VQ-based nuisance modeling:

LVQ(x; e) := ∥sg[ẑn(x)]− e∥22 + β∥ẑn(x)− sg[e]∥22, (13)

where e := mini ∥ẑn(x)− ei∥22, and sg(·) denotes the stop-gradient operator defined by sg(x) ≡ x
and d

dxsg(x) ≡ 0. Here, the commitment hyperparameter β is set to 0.25 following (van den Oord
et al., 2017; Yu et al., 2022). We allocate 32 per-patch dimensions for zn, with an embedding
dictionary e of size 256. We adopt the embedding normalization (Yu et al., 2022) as we found it
consistently improves the stability of VQ-based training.

SSIM-based D2
2 reconstruction loss. Recall that our proposed AENIB is based on minimizing

reconstruction loss (5) to implement I(x; z, zn) in NIB (4). Although we introduce the normalized
mean-squared error (NMSE) as a default design choice, the choice may not be limited to that: here,
we demonstrate a SSIM-based (Wang et al., 2004) reconstruction loss as an alternative, and show its
effectiveness on improving corruption robustness. Specifically, for a given pair of images6 (x, y), the
structural similarity index measure (SSIM) defines a similarity metric between x and y considering
differences in luminance (represented by S1) and structures (represented by S2):

SSIM(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
· 2σxy + c2
σ2
x + σ2

y + c2
=: S1 · S2, (14)

where c1 := 0.012 and c2 := 0.032 are small constants for numerical stability, as well as to simulate
the saturation effects of visual system under low luminance (and contrast) (Brunet et al., 2011). Given
that SSIM itself is not a distance metric (e.g., it often allows the value to be negative), however, we
instead consider the following modification of SSIM, the squared-D2 (D2

2), as our reconstruction
loss, which is originally defined by Brunet et al. (2011), and shown to be a distance

D2
2(x, y) := (1− S1) + (1− S2) = 2− S1 − S2. (15)

In Table 6, we compare the effect of having different reconstruction losses in AENIB between the
default choice of NMSE and D2

2: the results on CIFAR-10/100-C with ViT-S/4 show that D2
2-based

reconstruction loss can reliable improve corruption robustness of the AENIB models over NMSE.
This confirms that the choice of reconstruction loss impacts the final robustness of AENIB, and also
suggests that a more perceptually-aligned similarity metric could possibly make the model less biased
toward spurious features that are not necessary to build a robust representation.

In this respect, we adopt the D2
2-based loss in AENIB for ViT-based models in our experiments:

somewhat interestingly, we found the objective becomes much harder to be minimized for ConvNet-
based models, where we keep the default choice of NMSE. This is possibly because that there can be
a discrepancy between what ConvNets typically extract and those from a D2

2-based reconstruction.

Table 6: Comparison of average per-corruption error rates (%; ↓) on CIFAR-10/100-C (Hendrycks &
Dietterich, 2019). We use ViT-S/4 for this experiment. All the models reported here are trained via
AENIB but with different reconstruction losses.
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CIFAR-10-C NMSE 20.0 15.8 19.2 10.2 18.3 12.7 11.9 9.76 10.0 11.0 6.33 11.3 10.5 13.4 14.7 13.0
D2

2 17.8 14.0 17.6 10.2 19.7 13.2 12.4 9.12 8.87 9.56 5.86 8.29 10.7 14.3 13.5 12.3

CIFAR-100-C NMSE 48.2 42.8 43.2 32.4 48.6 36.1 35.6 31.4 32.3 35.2 25.3 33.7 33.2 36.2 40.9 36.9
D2

2 45.7 40.1 42.1 32.2 47.9 35.8 35.1 31.1 31.7 34.1 24.4 31.5 32.4 34.5 38.4 35.8

6In practice, SSIM is often computed in per-patch basis for a sliding window of a certain kernel size, e.g., 8.
The values are then averaged to define the metric. In our experiments, we also follow this implementation.
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D ABLATION STUDY

Figure 5: Reconstructions under random nuisance zn.
The leftmost per row shows the original reconstruction.

Table 7: Comparison of the test error rate
(Err.; %, ↓), corruption error (C-Err.; %, ↓)
and FID on CIFAR-10 across ablations.

β Lrecon Lnuis Lind Lsim Err. C-Err. FID

1e-4 ✓ ✓ ✓ ✓ 7.07 23.3 33.3

1e-3 ✓ ✓ ✓ ✓ 7.32 24.5 31.0
1e-2 ✓ ✓ ✓ ✓ 7.38 26.3 30.8

1e-4 ✗ ✓ ✓ ✓ 8.29 29.2 33.8
1e-4 ✓ ✗ ✓ ✓ 8.01 24.1 29.2
1e-4 ✓ ✓ ✗ ✓ 7.31 22.4 78.3
1e-4 ✓ ✓ ✓ ✗ 7.95 28.6 83.1

We further perform an ablation study on CIFAR-10 for a detailed analysis of the proposed AENIB:

Effect of β. As also introduced in the original IB objective, β ≥ 0 plays the key role in AENIB
training as it controls the information balance between the semantic z and the nuisance zn. Here,
Figure 5 examine how using different value of β affect the actual representations, by comparing the
reconstructed samples for a fixed input while randomizing the nuisance zn. Indeed, we observe a
clear trend from this comparison demonstrating the effect of β: having larger β makes the model
to push more “semantic” information into zn regarding it as the nuisance. Without information
bottleneck, i.e., in case when β = 0.0, we qualitatively observe that the network rather encodes most
information in z, due to the minimax loss applied to the nuisance zn. Quantitatively, this behavior is
further evidenced in Table 7 as an increase in the corruption errors when using larger β.

Reconstruction loss. The reconstruction loss Lrecon is one of essential part to make AENIB work
as a “nuisance modeling”: in Table 7, we provide an ablation when this loss is omitted, showing a
significant degradation in the final accuracy, and more crucially in the corruption error. This confirms
the necessity of reconstruction loss to obtain a robust representation in AENIB. Nevertheless, due to
the adversarial similarity loss Lsim that can also work (while not perfectly) as a reconstruction loss,
one can still observe that the FID of the model can be moderately preserved.

Nuisance loss. From the ablation of Lnuis given in Table 7, we observe not only a considerable
degradation in clean accuracy but also in its corruption robustness. This shows that strictly forcing
the nuisance-ness to zn (against y) indeed helps z to learn a more robust representation, possibly
from encouraging z to extract more diverse class-related information in a faithful manner by keeping
the remainder information in zn sufficient to infer x.

Independence loss. The independence loss Lind in our current design, which essentially performs
a GAN training toward p(z, zn) ∼ N (0, I), not only forces z ⊥ zn but also leads z and zn to
have a tractable marginal distribution: so that one could efficiently perform a sampling from the
learned decoder. In a practical aspect, therefore, omitting Lind in AENIB can directly harm its
generation quality as given in Table 7. Nevertheless, it is still remarkable that the ablation could
rather improve the corruption error: this suggests that our current design of forcing the full Gaussian
may be restrictive. An alternative design for the future work could assume a weaker condition for z
and zn, instead with a more sophisticated sampling to obtain a valid generative model from AENIB.

Adversarial similarity. When the Lsim is omitted, we observe a significant degradation in FID
rather than accuracy, showing the effectiveness of our proposed adversarial similarity based guidance
to improve decoder performance while affecting less to the accuracy compared to the case when
Lrecon is ablated. It is quite remarkable that there is still a degradation in both clean and corruption
accuracies compared to the case when Lsim is jointly minimized: we observe that in this scenario
of missing Lsim, the overall reconstruction loss Lrecon is often also less optimized, which could
eventually affect the quality of z.
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E PROOF OF LEMMA 1

Lemma 1. Let x ∈ X , and y ∈ Y be random variables, x̂ be a noisy observation of x with
I(x;y) = I(x̂;y). Given that a representation [ẑ, ẑn] := f(x̂) of x̂ satisfies (a) H(x̂|ẑ, ẑn) = 0, (b)
I(ẑn;y) = 0, and (c) ẑ ⊥ ẑn, it holds I(ẑ;y) = I(x;y).

Proof. Given that f is invertible for the random variable x̂, the statement follows from the chain rule
of mutual information and that of conditional mutual information, as well as by applying (b) and (c):

I(x;y) = I(x̂;y) = I(y; ẑ, ẑn) = I(y; ẑn) + I(y; ẑ|ẑn) (16)
= I(y; ẑ) +H(ẑn|y) +H(ẑn|ẑ)−H(ẑn|y, ẑ)−H(ẑn) (17)
= I(y; ẑ) = I(ẑ;y). (18)

F ADDITIONAL BACKGROUND

F.1 DETAILED SURVEY ON RELATED WORK

Out-of-distribution robustness. Since the seminal works (Szegedy et al., 2014; Nguyen et al.,
2015; Amodei et al., 2016) revealing the fragility of neural networks for out-of-distribution inputs,
there have been significant attempts on identifying and improving various notions of robustness: e.g.,
detecting novel inputs (Hendrycks & Gimpel, 2017; Lee et al., 2018b; Hendrycks et al., 2019a;b;
Lee et al., 2018a; Tack et al., 2020; Xiao et al., 2020), robustness against corruptions (Hendrycks
& Dietterich, 2019; Geirhos et al., 2019; Hendrycks et al., 2020; Wang et al., 2021; Diffenderfer
et al., 2021), and adversarial noise (Goodfellow et al., 2015; Madry et al., 2018; Athalye et al., 2018;
Zhang et al., 2019; Cohen et al., 2019; Carlini et al., 2019), to name a few. Due to its fundamental
challenges in making neural network to extrapolate, however, most of the advances in the robustness
literature has been made under assuming priors closely related to the individual problems: e.g.,
Outlier Exposure (Hendrycks et al., 2019a) and AugMix (Hendrycks et al., 2020) assume an external
dataset or a pipeline of data augmentations to improve the performances in novelty detection and
corruption robustness, respectively; Tent (Wang et al., 2021) leverages extra information available
from a batch of samples in test-time to adapt a given neural network; Tramer & Boneh (2019);
Kang et al. (2019) observe that neural networks robust to a certain type of adversarial attack (e.g., an
ℓ∞-constrained adversary) do not necessarily robust to other types of adversary (e.g., an ℓ1 adversary),
i.e., adversarial robustness hardly generalizes from the adversary assumed a priori for training. In this
work, we aim to improve multiple notions of robustness without assuming such priors, through a new
training scheme that extends the standard information bottleneck principle under noisy observations.

Hybrid generative-discriminative modeling. Our proposed method can be also viewed as a new
approach of improving the robustness of discriminative models by incorporating a generative model,
in the context that has been explored in recent works (Lee et al., 2018b; Schott et al., 2019; Grathwohl
et al., 2020; Yang & Ji, 2021): for example, Lee et al. (2018b; 2019) have shown that assuming
a simple Gaussian mixture model on the deep discriminative representations can improve novelty
detection and robustness to noisy labels, respectively; Schott et al. (2019) develop an empirical defense
against adversarial examples via generative classifiers; A line of research on Joint Energy-based
Models (JEM) (Grathwohl et al., 2020; Yang & Ji, 2021) assumes the entire discriminative model as
a joint generative model by interpreting the logits of p(y|x) as unnormalized log-densities of p(x|y),
and shows that modeling p(x|y) as well as p(y|x) can improve out-of-distribution generalization of
the classifier. Nevertheless, it is still an unexplored and open question that how to “better” incorporate
generative representation into discriminative models: in case of novelty detection, for example, several
recent works (Nalisnick et al., 2019; Ren et al., 2019; Serra et al., 2020; Xiao et al., 2020) observe
that existing likelihood-based generative models are not accurate enough to detect out-of-distribution
datasets, suggesting that relying solely on (likelihood-based) deep generative representation may
not enough for robust classification (Fetaya et al., 2020). In case of JEM, on the other hand, it has
been shown that directly assuming a joint generative-discriminative representation often makes a
significant training instability. In this work, we propose to introduce an autoencoder-based model to
avoid the training instability, and consider a design that the nuisance can succinctly supplement the
given discriminative representation to be generative.
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Invertible representations and nuisance modeling. The idea of incorporating nuisances can
be also considered in the context of invertible modeling, or as known as flow-based models (Dinh
et al., 2016; Kingma & Dhariwal, 2018; Jacobsen et al., 2018; Behrmann et al., 2019; Chen et al.,
2019; Grathwohl et al., 2019),7 which maps a given input x into a representation z of the same
dimension so that one can construct an inverse of z to x: here, the nuisance can be naturally defined
as the remainder information of z for a given subspace of interest, e.g., to model y. For example,
Jacobsen et al. (2019) adopt a fully-invertible variant of i-RevNet (Jacobsen et al., 2018) to analyze
excessive invariance in neural networks, i.e., the existence of pairs of completely different samples
with the same representation in a neural network, and proposes to maximize the cross-entropy for
the nuisances in a similar manner to our proposed minimax-based nuisance loss ((6) in the main
text); Ardizzone et al. (2020), on the other hand, leverages invertible neural network to model a
Gaussian mixture based generative classifier in the representation space, so that nuisance information
can be preserved until its representation. Compared to such approaches relying on invertible neural
networks, our autoencoder-based nuisance modeling does not guarantee the “full” invertibility for
arbitrary inputs: instead, it only focuses on inverting the data manifold given, and this enables (a) a
much flexible encoder design in practice, i.e., other than flow-based designs, and (b) a more scalable
generative modeling of nuisance representation zn while forcing its independence to the semantic
space z. This is due to that it works on a compact space rather than those proportional to the input
dimension, which is an important benefit of our modeling in terms of the scalability of nuisance-aware
training, e.g., beyond an MNIST-scale as done by Jacobsen et al. (2019). More closer related works
(Jaiswal et al., 2018; 2019; Pan et al., 2021) in this respect instead introduce a separate encoder for
nuisance factors, where the nuisanceness is induced by the independence to z: e.g., DisenIB (Pan
et al., 2021) applies FactorVAE (Kim & Mnih, 2018) between semantic and nuisance embeddings to
force their independence.8 Yet, similarly to the invertible approach, the literature has been questioned
on that the idea can be scaled-up beyond, e.g., MNIST, and our work does explore and establish a
practical design that is applicable for recent architectures and datasets addressing modern security
metrics, e.g., corruption robustness. On the technical side, for example, we find that the “nuisanceness
to y” is more important for zn than the “independence with z” (as usually done in the previous works
(Jaiswal et al., 2018; 2019; Pan et al., 2021)) to induce a robust representation, as verified in our
ablation study in Appendix D, which can be a useful practice for the future research concerning
robust representation learning.

Autoencoder-based generative models. There have been steady advances in generative modeling
based on autoencoder architectures, especially since the development in variational autoencoders
(VAEs) (Kingma & Welling, 2014): due to its ability of estimating data likelihoods, and its flexibility
to implement various statistical assumptions (Louizos et al., 2015; Kingma et al., 2016; Kim &
Mnih, 2018). With the advances in its training objectives (Vincent et al., 2008; Makhzani et al.,
2015; Higgins et al., 2016) as well as the architectural improvements (Vahdat & Kautz, 2020; Child,
2021), VAE-based models are currently considered as one of state-of-the-art approaches in likelihood
based generative modeling: e.g., a state-of-the-art diffusion models (Ho et al., 2020; Song et al.,
2021) is built upon the denoising autoencoders under Gaussian perturbations, and recently-proposed
hierarchical VAEs (Vahdat & Kautz, 2020; Child, 2021) have shown that VAEs can benefit from
scaling up its architectures into deeper encoder networks. In perspectives of viewing our method as
a generative modeling, AENIB is based on adversarial autoencoders (Makhzani et al., 2015) that
replaces the KL-divergence based regularization in standard VAEs with a GAN-based adversarial
loss, with a novel encoder architecture that is based on the internal feature statistics of discriminative
models: so that the model can better encode lower-level features without changing the backbone
architecture. We observe that this design enables autoencoder-based modeling even from a large,
pre-trained discriminative models, and this “projection” of internal features can significantly benefit
the generation quality, as well as for generative adversarial networks (GANs) as observed in Table 8.

F.2 TECHNICAL BACKGROUND

Variational information bottleneck. Although the information bottleneck (IB) principle given in
(1) (Tishby et al., 1999) suggests a useful definition on what we mean by a “good” representation,
computing mutual information of two random variables is generally hard and this makes the IB

7A more complete survey on flow-based models can be found in (Kobyzev et al., 2020).
8We provide a more direct empirical comparison with DisenIB (Pan et al., 2021) to AENIB in Appendix H.
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objective infeasible in practice. To overcome this, variational information bottleneck (VIB) (Alemi
et al., 2017; Chalk et al., 2016) applies variational inference to obtain a lower bound on the IB
objective (1). Specifically, it approximates: (a) p(y|z) by a (parametrized) “decoder” neural network
q(y|z), and (b) p(z) by an “easier” distribution r(z), e.g., isotropic GaussianN (z|0, I). Having such
(variational) approximations in computing (1) as well as the Markov chain property y − x − z of
neural networks, one yields the following lower bound on the IB objective (1):

I(z;y)− βI(z,x) ≥ Ex,y

[∫
dz

(
p(z|x) log q(y|z)− βp(z|x) log p(z|x)

r(z)

)]
. (19)

This bound can now be approximated with the empirical distribution p(x,y) ≈ 1
n

∑
i δxi

(x)δyi
(y)

from data. By further assuming a Gaussian encoder p(z|x) := N (z|fµ(x), fσ(x)) as defined in
(2) and applying the reprarametrization trick (Kingma & Welling, 2014), we get the following VIB
objective:

Lβ
VIB :=

1

n

n∑
i=1

Eϵ[− log q(yi|f(xi, ϵ))] + β KL (p(z|xi)∥r(z)). (20)

Generative adversarial networks. Generative adversarial network (GAN) (Goodfellow et al.,
2014) considers the problem of learning a generative model pg from given data {xi}ni=1, where
xi ∼ pd(x) and x ∈ X . Specifically, GAN consists of two neural networks: (a) a generator network
G : Z → X that maps a latent variable z ∼ p(z) into X , where p(z) is a specific prior distribution,
and (b) a discriminator network D : X → [0, 1] that discriminates samples from pd and those
from the implicit distribution pg derived from G(z). The primitive form of training G and D is the
following:

min
G

max
D

V (G,D) := Ex[log(D(x))] + Ez[log(1−D(G(z)))]. (21)

For a fixed G, the inner maximization objective (21) with respect to D leads to the following optimal
discriminator D∗

G, and consequently the outer minimization objective with respect to G becomes to
minimize the Jensen-Shannon divergence between pd and pg , namely D∗

G := pd

pd+pg
.

G EXPERIMENTS ON IMAGE GENERATION

Table 8: Test FID and IS of GANs on CIFAR-10. Bold
and underline indicate the best and runner-up, respec-
tively. We note that the value of ADA∗ (Karras et al.,
2020a) is taken after 2× longer training steps.

CIFAR-10, Unconditional Augment. FID (↓) IS (↑)
StyleGAN2 (Karras et al., 2020b) HFlip 11.1 9.18
+ DiffAug (Zhao et al., 2020) Trans, CutOut 9.89 9.40
+ ContraD (Jeong & Shin, 2021) SimCLR 9.80 9.47
+ ADA∗ (Karras et al., 2020a) Dynamic 7.01∗ -
+ FSD (R-18; ours) HFlip, Trans 8.43 9.68
+ FSD (R-50; ours) HFlip, Trans 7.39 10.0
FastGAN (Liu et al., 2021) HFlip, Trans 34.5 6.52
+ Proj-GAN (R-18) HFlip, Trans 8.48 9.40
+ FSD (R-18; ours) HFlip, Trans 7.80 9.65

Table 9: Test FID and IS of VAE models
on unconditional generation of CIFAR-10
and CelebA. Bold and underline denote
the best and runner-up, respectively.

CIFAR-10 CelebA

Method FID ↓ IS ↑ FID ↓
VAE (Parmar et al., 2021) 115.8 3.8 -
VAE/GAN (Parmar et al., 2021) 39.8 7.4 -
2s-VAE (Dai & Wipf, 2019) 72.9 - 44.4
Perceptual AE (Zhang et al., 2020) 51.5 - 13.8
NCP-VAE (Aneja et al., 2021) 24.1 - 5.25
NVAE (Vahdat & Kautz, 2020) 56.0 5.19 13.5
DC-VAE (Parmar et al., 2021) 17.9 8.2 19.9

Lrecon (5) only 65.0 5.73 50.1
+ Adv. similarity (22) 46.8 6.29 25.1
+ Projection (R-18) 12.6 8.86 6.91

G.1 FEATURE STATISTICS DISCRIMINATOR FOR GANS

We evaluate the effect of our proposed feature statistics discriminator (FSD; Section 2.2 to the
generation quality of GANs: here, we consider ImageNet-pretrained ResNet-18 (R-18) and ResNet-
50 (R-50) (He et al., 2016), and define GAN discriminators via FSD upon the pre-trained models.
We adopt StyleGAN2 (Karras et al., 2020b) and FastGAN (Liu et al., 2021) for the generator
architectures. For the StyleGAN2-based models, we follow the training details of DiffAug (Zhao
et al., 2020) and ADA (Karras et al., 2020a) in their CIFAR experiments: specifically, we use Adam
with (α, β1, β2) = (0.002, 0.0, 0.99) for optimization with batch size of 64. We use non-saturating
loss for training, and use R1 regularization (Mescheder et al., 2018) with γ = 0.01. We do not use,
however, the path length regularization and the lazy regularization (Karras et al., 2020b) in training.
We take exponential moving average on the generator weights with half-life of 500K samples. We
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stop training after 800K generator updates, which is about the half of those conducted for the ADA
baseline (Karras et al., 2020a). For the FastGAN baseline, on the other hand, we run the official
implementation of FastGAN9 (Liu et al., 2021) on CIFAR-10 for the length of 6.4M samples with
batch size 16. For the “Projected GAN” baseline, we adapt the official implementation10 (Sauer et al.,
2021) onto the ImageNet pre-trained ResNet-18, and trained for 6.4M samples with batch size 64.
Our results (“FSD”) follows the same training details, but with a difference in its discriminator.

Table 8 summarizes the results. Overall, we observe that FSD can aid GAN training of given generator
network surprisingly effectively: by leveraging pre-trained representations, FSD could achieve FID
competitive with a state-of-the-art level approach of ADA (Karras et al., 2020a) even with using
much weaker data augmentation. Compared to Projected GAN (Sauer et al., 2021) that also leverages
pre-trained models to stabilize GANs, our approach offers a more simpler approach to leverage the
given representations, i.e., by just aggregating the features statistics, yet achieving a better FID.

G.2 FEATURE STATISTICS ENCODER FOR AUTOENCODERS

We also evaluate our proposed architecture and method as a generative modeling, especially focusing
on the effectiveness of the feature statistics encoder (Section 2.2) and the adversarial similarity based
training of autoencoders on CIFAR-10 (Krizhevsky, 2009) and CelebA (Liu et al., 2015) datasets. To
this end, we consider an “unsupervised” version of AENIB which omits the VIB loss (Lβ

VIB; (19))
and the nuisance loss (Lnuis; (6)) in training, so that the model can assume an unconditional setup.
Here, we present an additional adversarial objective based on our feature statistics based encoder
(see Section 2.2) in training AENIB models to enhance the generative modeling capability.

Adversarial similarity based guidance. We found that the feature statistics based encoder for
ConvNet-based architectures can be further leveraged to provide the decoder g an extra guidance
in minimizing the (pixel-level) reconstruction loss (5): specifically, we propose to additionally
place a discriminator network, say dx : R|ΠE | → Re, that computes similarity between Πf (x) and
Πf (g(z, zn)) and performs adversarial training on it:

Lsim := max
dx

log(1− σ( 1τ · sim(dx(Πf (x)), dx(Πf (g(z, zn)))))), (22)

where σ(·) is the sigmoid function and sim(x,y) := x·y
∥x∥∥y∥ denotes the cosine similarity. Here, τ

is a temperature hyperparameter, and we use τ = 0.2 throughout our experiments. We apply this
additional training objective for ConvNet-based AENIB models, which turns out to be helpful to
improve the generation quality of the learned autoencoders.

Table 9 summarizes the quantitative generation results of our AENIB models optimized with different
objectives.11 Firstly, it confirms the effectiveness of adversarial similarity based training: when
it is solely applied upon Lrecon (“Lrecon only”; equivalent to (Makhzani et al., 2015)) it makes a
significant improvements in both FID and IS. To further investigate the effectiveness of our proposed
feature statistics encoder, we also test a scenario that the encoder is fixed by ResNet-18 pre-trained
on ImageNet, akin to the setup of Table 8: we observe that our encoder design can surprisingly
benefit from using better representation, e.g., “+ Projection (R-18)” in Table 9 further improves
FID on CIFAR-10 from 46.8 → 12.6, better than the best results among considered VAE-based
models, by only training an MLP upon the feature statistics of the (fixed) model. It is notable that
the gain only appears when we apply the adversarial similarity based training: i.e., even with the
pre-trained model, it only achieves 67.5 in FID on CIFAR-10 without the training. This observation
suggests an interesting direction to scale-up autoencoder-based models by leveraging large pre-trained
representations, in a similar vein as (Sauer et al., 2021) as presented in the context of GANs.

9https://github.com/odegeasslbc/FastGAN-pytorch
10https://github.com/autonomousvision/projected_gan
11Following other baselines, we compute FIDs from 50,000 generated samples against the training dataset.
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G.3 QUALITATIVE RESULTS

Figure 6: Qualitative comparison on reconstructed samples from fixed samples of unconditional
AENIB model (and its ablations) trained on CelebA.

(a) Lrecon only (FID: 50.1) (b) + Adv. similarity (FID: 25.1) (c) + Projected (FID: 6.91)

Figure 7: Qualitative comparison on uncurated random samples generated from unconditional AENIB
model (and its ablations) trained on CelebA.

(a) Reconstruction (b) Sampling

Figure 8: Qualitative comparison on uncurated random samples generated from unconditional AENIB
model (and its ablations) trained on CelebA.

28



Under review as a conference paper at ICLR 2023

H RESULTS ON MNIST-C

(a) Clean (b) Bright (c) Line (d) Glass (e) Impulse (f) Rotate (g) Shear (h) Spatter

(i) Translate (j) Edges (k) Fog (l) Motion (m) Scale (n) Shot (o) Stripe (p) Zigzag

Figure 9: Sample images in MNIST-C test dataset for different corruption types.

Table 10: Comparison of (a) clean error (%; ↓), (b) AUROC (↑) on detecting Gaussian noise (higher
is better), and (c) corruption errors (%; ↓) per corruption type on MNIST-C (Mu & Gilmer, 2019).
Each classifier is trained on MNIST with random translation as augmentation. We highlight our
results as blue whenever the value improves the baselines more than 3% in absolute values.
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Cross-entropy 0.45 0.987 4.69 69.6 60.3 46.5 1.41 2.97 4.80 88.7 2.45 76.6 88.7 27.3 5.64 27.3 44.1 34.5
VIB 0.44 0.988 4.52 73.5 73.8 71.8 1.73 2.84 5.85 90.1 2.15 78.1 89.8 28.4 5.85 28.5 44.0 37.6
sq-VIB 0.48 0.955 4.32 71.5 63.5 62.3 1.62 2.70 5.74 90.5 2.43 80.3 90.3 24.8 5.91 32.0 43.4 36.4
NLIB 1.15 0.974 7.13 67.9 62.5 57.9 2.15 4.00 7.06 86.9 3.28 81.8 88.7 30.1 8.97 31.0 41.8 36.4
sq-NLIB 3.19 0.908 9.90 73.3 66.7 64.7 4.25 6.19 9.21 88.7 6.43 72.4 89.8 32.4 9.69 36.2 72.5 40.3
DisenIB 0.54 0.997 4.60 68.8 56.4 50.4 1.11 2.04 4.84 88.7 2.01 74.3 88.5 20.1 4.75 27.4 69.0 35.2

AENIB (ours) 0.72 1.000 3.71 48.8 44.0 27.1 0.99 3.15 4.82 89.7 0.88 82.0 89.7 16.4 4.14 33.9 25.9 29.8

We also evaluate our proposed AENIB training on MNIST-C (Mu & Gilmer, 2019), a collection
of corrupted versions of the MNIST (LeCun et al., 1998) test dataset of 15 corruption types (see
Figure 9 for concrete examples) constructed in a similar manner to CIFAR-10/100-C (Hendrycks
& Dietterich, 2019), to get a clearer view on the effectiveness of our method on a simpler setup.
For this experiments, we use a simple 4-layer convolutional network (with batch normalization
(Ioffe & Szegedy, 2015)) as the encoder architecture, and trained every model on the (clean) MNIST
training dataset for 100K updates following other training details of the CIFAR experiments (see
Appendix B.1): again, we notice that the training does not assume specific prior on the corruptions.
We compare AENIB with the direct ablations of cross-entropy and VIB based models, as well as some
variants of VIB, namely Nonlinear-VIB (Kolchinsky et al., 2019), Squared-VIB/NIB (Thobaben
et al., 2020), and DisenIB (Pan et al., 2021). Especially, we compare with DisenIB as (a) it considers
a nuisance modeling (based on FactorVAE (Kim & Mnih, 2018)) as AENIB does, while (b) also
tackling some robustness concerns, e.g., its claimed effectiveness on out-of-distribution detection for
MNIST vs. Gaussian noise.

Table 10 summarizes the results: overall, we observe that the effectiveness of AENIB training
still applies to MNIST-C, e.g., our AENIB training improves the average corruption error from the
baseline cross-entropy based training from 33.1%→ 29.8%, which could not be obtained by simply
sweeping on the baseline VIB training. Given that MNIST-C allows a visually clearer distinction
between contents and corruptions compared to CIFAR-10/100-C, one can better interpret the behavior
of given models on each corruption types: here, we observe that our training can dramatically
improve robustness for certain types of corruptions where the baselines shows poor performances,
e.g., Impulse, Glass, and Motion, while still some types of corruptions are still remaining challenging
even with AENIB, e.g., especially for low-frequency biased corruptions such as Brightness and Stripe.
Compared to DisenIB, on the other hand, we observe that the effectiveness from DisenIB, e.g., its
gain in AUROC (as conducted by Pan et al. (2021)), could not be further generalized on MNIST-C,
where AENIB still improves upon it as well as achieving the perfect score at the same OOD task.
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I APPLICATION TO MODEL DEBUGGING

Figure 10: Qualitative comparisons between (a) the original input (the leftmost column), (b) its
reconstruction (the second column), and (c) its further reconstructions with random nuisance zn (the
remaining columns), examined for test samples misclassified by a CIFAR-10 AENIB model.

To further understand how the proposed AENIB model internally works with its representation z
and zn, we examine an AENIB model trained on CIFAR-10 to analyze how the model reconstruct
given inputs when the model incorrectly classifies them. Specifically, Figure 10 illustrates a subset of
CIFAR-10 test samples misclassified by an AENIB model by comparing the original input with its
reconstructed samples from the model. Overall, we observe that such a qualitative comparison can
provide a useful signal to interpret model errors: it effectively visualizes which visual cues of a given
input negatively affected the decision making process of the given model, also visualizing the closest
(misclassified) realizations that the model decodes for a given representation, i.e., what the model
actually perceived. For example, for the test input given at the first row of Figure 10, one can observe
that the model essentially “ignored” the tiny part that represent the true semantic, i.e., the “deer”, and
reconstructed the remaining part as a “ship”.
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