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ABSTRACT

This paper introduces RankMatch, an innovative approach to Semi-Supervised
Label Distribution Learning (SSLDL). Addressing the challenge of limited labeled
data, RankMatch effectively leverages a minimal set of labeled examples along
with a substantial volume of unlabeled data, significantly reducing the manual
labeling requirements for label distribution learning. Specifically, RankMatch
employs an ensemble learning-inspired averaging strategy to generate pseudo-
label distributions from multiple weakly augmented images, enhancing prediction
stability and model robustness. Additionally, RankMatch incorporates a novel
pairwise relevance ranking (PRR) loss to capture complex inter-label correlations,
ensuring alignment of the predicted label distributions with the ground truth. We
establish a theoretical generalization bound for RankMatch, and through extensive
experiments, demonstrate its superiority in performance against existing SSLDL
methods. The code is available in the supplementary materials.

1 INTRODUCTION

Label Distribution Learning (LDL) (Geng, 2016) is machine learning paradigm developed to
address the issue of label ambiguity. Unlike Multi-label Learning (MLL) (Zhang & Zhou,
2014), LDL does more than assign a specific number of labels to each instance; it also
quantifies the importance of each label. This additional metric, referred to as the label de-
scription degree (Geng, 2016; Jia et al., 2023), provides deeper semantic information, en-
hancing the interpretative richness of the data. For example, as demonstrated in Fig. 1,
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Figure 1: An illustration of an example from a
facial SJAFFE dataset (Shih et al., 2008) annotated
with a label distribution.

an instance from a facial emotion dataset (Shih
et al., 2008) is annotated not just with labels
but with a distribution that specifies the rela-
tive importance of each emotion. This approach
to labeling offers a more nuanced representa-
tion of real-world data. Recent advancements
in LDL have significantly improved its applica-
tion across various domains, such as expression
recognition (Chen et al., 2020), facial age esti-
mation (Geng et al., 2013), image object detec-
tion (Xu et al., 2023), joint acne image grading
(Wu et al., 2019), and head-pose estimation (Liu
et al., 2019). These developments underscore
LDL’s utility and effectiveness in practical settings.

The success of deep learning heavily rely on large-scale and accurately labeled datasets, which
are necessary to train very deep neural networks (DNNs) with superior generalization. However,
acquiring such labeled data can be an arduous and costly process. Especially, it is more costly
to obtain large dataset annotated with label distribution. For instance, considering the RAF-LDL
dataset (Li & Deng, 2019), 315 trained annotators were employed, and each image is annotated for
enough independent times to get the appropriate label distribution. As a result, the conflict emerges
prominently when LDL embraces DNNs. A possible way to address the challenge is to leverage
the highly available unlabeled data. In this paper, we attempt to address this issue by fundamentally
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developing an LDL model that utilizes a small amount of labeled data along with a larger pool of
unlabeled data.

Notice that semi-supervised learning (SSL) has already make significant advancements (Basak &
Yin, 2023; Fini et al., 2023), especially in the era of deep learning. However, SSLDL has not been
explored to the same extent. Traditional SSL approaches are mainly designed for single label learning
or multi-label learning, which often rely on confidence-based pseudo-labeling (Jiang et al., 2022),
(Sohn et al., 2020) and fall in Semi-Supervised Label Distribution Learning (SSLDL) because it
aims to predict the whole label distribution, not just the most likely label. Moreover, exiting SSL
methods typically ignore the correlation between labels (Xu & Zhou, 2017), potentially hindering
their performance for LDL.

To address the complexities of SSLDL, this paper introduces a novel methodology termed RankMatch.
This approach leverages an ensemble learning-derived averaging strategy (Zhou & Zhou, 2021) to
compute the mean of predictions from variously augmented images (Sohn et al., 2020), thereby
forming a robust pseudo-label distribution. Furthermore, to capture the correlations between labels,
we introduce a new loss function called the pairwise relevance ranking loss (PRR loss). We apply
a stringent version of PRR loss to labeled samples to ensure precise alignment with the ground-
truth label distributions, and a version based on pseudo-label distributions for unlabeled samples.
Essentially, both are designed to preserve the inherent label correlations on a rational basis, ensuring
that the predicted distributions align with either ground-truth or pseudo-label distributions. In the
theoretical analysis, we establish a generalization bound for RankMatch. Finally, in the experiments,
we demonstrate that RankMatch can effectively address the SSLDL problem and outperform existing
methods. In summary, our contributions can be summarized as

• We propose RankMatch, a novel approach that introduces a pairwise relevance ranking loss
function, which captures inter-label correlations, effectively tackling the SSLDL problem.

• We provide a theoretical generalization bound for RankMatch, contributing to the under-
standing of SSLDL methods by analyzing their generalization capabilities.

• Through comprehensive experiments across multiple real-world datasets, we demonstrate
that RankMatch consistently outperforms existing SSLDL methods.

2 RELATED WORK

2.1 LABEL DISTRIBUTION LEARNING

Label Distribution Learning (LDL) (Geng, 2016) assigns a range of labels to each instance, enabling a
direct relationship between instances and their label distributions. Originally developed for facial age
estimation (Geng et al., 2013), LDL generates distributions for all age categories, offering advantages
over single-label approaches. This method is particularly effective in applications like facial emotion
recognition, where it accurately represents complex emotional states by modeling the uncertainties
within the label space (Xu & Zhou, 2017).

LDL’s versatility extends to various applications. NASA, for instance, has used LDL to determine
the chemical compositions of Martian meteorites (Morrison et al., 2018), fine-tuning the algorithm
to predict elemental abundances from crystallographic data. In mental health, LDL has improved
depression diagnosis through the Deep Joint Label Distribution and Metric Learning (DJ-LDML)
method, which detects subtle facial expression variations across different depression levels (Zhou
et al., 2020). Additionally, LDL has proven effective in static environments like indoor venues, where
Ling (Ling & Geng, 2019) implemented it for crowd counting by assigning label distributions that
accurately describe the crowd density in video frames.

2.2 SEMI-SUPERVISED LABEL DISTRIBUTION LEARNING

Lack of sufficient training data with exact labels is still a challenge for label distribution learning.
To address this issue, several Semi-Supervised Label Distribution Learning (SSLDL) algorithms
have been developed. For example, Hou (Hou et al., 2017) leverages the average labels from the
neighbors of unlabeled data to determine its label distribution, then uses both labeled and unlabeled
data to train the LDL model. Jia (Jia et al., 2021b) enhances label distribution recovery by harnessing
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relationships among graph nodes. Liu (Liu et al., 2022) introduced a co-regularization based SSLDL
algorithm that employs dual model structures to manage both labeled and unlabeled data, showing
improved robustness and consistency.

While these SSLDL methods are varied, they generally do not provide an end-to-end solution.
Traditional techniques often require manual intervention for feature engineering and struggle to
handle large-scale, high-dimensional data effectively. They also fail to fully utilize unlabeled data. In
contrast, deep learning excels in automatically learning complex features and has shown effectiveness
in various data-rich environments. Therefore, there is significant interest in applying deep learning to
overcome the inherent limitations of existing semi-supervised approaches and enhance the capabilities
of SSLDL.

3 THE METHOD

3.1 PROBLEM STATEMENT AND NOTATION

In Semi-Supervised Label Distribution Learning (SSLDL), our training set, denoted by D, comprises
both labeled and unlabeled datasets: DL = {(xi,di)|i ≤ n} contains labeled samples, and DU =
{xg|g ≤ m} consists of unlabeled samples. Here, x represents an instance with the instance denoted
by xi, and di = {dy1xi

, dy2xi
, ..., dycxi

} describes the label distribution for xi, where c is the number
of labels, and dylxi

signifies the degree to which label yl is applicable to xi, with the constraint that∑c
j=1 d

yj
xi = 1. The objective is to train a Deep Neural Network (DNN), symbolized as f(x; θ), to

accurately predict these label distributions. Each label’s output fj from the model is normalized
using the Softmax function (Jang et al., 2016) to ensure it forms a valid probability distribution:

h(yj |xi; θ) =
exp(fj(xi; θ))∑
q exp(fq(xi; θ))

, (1)

where fj(xi; θ) represents the DNN’s raw output for label yj and instance xi. And h(yj |xi; θ)
represents the importance degree of the label yj for xi. The denominator aggregates the exponential
outputs for all potential labels, guaranteeing that the sum of outputs for each instance equals 1 (Gao
et al., 2017).

3.2 THE SUPERVISED LOSS

In Label Distribution Learning (LDL), we transition from using traditional binary cross-entropy
loss, common in multi-label learning (Hershey & Olsen, 2007), to employing Kullback-Leibler (KL)
divergence as our loss function. This shift is necessary because LDL predicts continuous real-valued
vectors instead of discrete binary outcomes. The KL divergence (Hershey & Olsen, 2007) effectively
measures the difference between the actual and the predicted label distributions. The formula for the
supervised loss is defined as:

Ls =
1

n

n∑
i=1

c∑
j=1

d
yj
xi ln

(
d
yj
xi

h(yj | Augw(xi); θ)

)
, (2)

here, Augw(xi) indicates the weak augmentation (Sohn et al., 2020) applied to the i-th sample, and
h(yj | Augw(xi); θ) denotes the DNN’s predicted label description degree for yj . Employing data
augmentation promotes sample diversity, which helps the model learn more generalized features
rather than overfitting to specific noise within the training data. This approach not only minimizes
the risk of overfitting but also enhances the model’s performance on unseen data.

3.3 THE UNSUPERVISED CONSISTENCY LOSS

In the realm of SSLDL, a principal challenge is to effectively harness both labeled and a substantial
volume of unlabeled data. A prominent strategy that addresses this challenge is consistency regu-
larization, a technique inspired by recent innovations in SSL (Jiang et al., 2022) (Sohn et al., 2020)
(Yang et al., 2022) (Zhang et al., 2021). The core idea of this approach is to maintain the consistency
of classifier outputs for various augmentations of the same unlabeled instance, thereby ensuring the
reliability of label distribution predictions.

3
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To enhance the stability of predictions and maximize the utility of unlabeled data, we adopt an
ensemble learning-based approach (Zhou & Zhou, 2021). Instead of relying solely on high-confidence
predictions, this method averages the outputs from multiple weakly augmented versions of the same
unlabeled image (Sohn et al., 2020), creating what we term the pseudo-label distribution (PLD) for
each instance, denoted as pi. Specifically, for an unlabeled image x, the model produces probability
distributions for each of its H weakly augmented versions Augw(x). The PLD is then obtained by
averaging these distributions and applying the softmax function to smooth out discrepancies caused by
random variations in the data augmentation process: pi = softmax

(
1
H

∑H
k=1 p(y|Augw(x)k; θ)

)
.

We quantify the unsupervised consistency loss, Luc, by comparing the PLD against the predictions
for strongly augmented versions of the same instances (Sohn et al., 2020). The loss function is
mathematically represented as follows:

Luc =
1

m

m∑
u=1

c∑
j=1

(
p
yj
xu ln

(
p
yj
xu

h (yj | Augs(xu); θ)

))
, (3)

where h (yj | Augs(xu); θ) denotes the prediction for label yj following strong augmentation (Sohn
et al., 2020). By integrating this loss function, our model is guided to exploit the inherent structure of
the data, fostering learning even in the absence of explicit labels.

3.4 THE PAIRWISE RELEVANCE RANKING LOSS

The supervised loss and the unsupervised consistency loss both treat the predicted results and
ground-truth (or PLD) as multiple independent prediction tasks, thereby overlooking the inter-label
correlation (Xu & Zhou, 2017), which may lead to a decrease in performance. In LDL, a sample is
assigned multiple label description degree, and these description degree are often not completely
independent of each other (Jia et al., 2018). The correlation between the description degrees can
be either positive or negative. For example, if an image x has a label distribution of dy1x = 0.6
and dy2x = 0.2, we consider labels y1 and y2 to be negatively correlated. Similarly, if the labels
have a distribution of dy1x = 0.4 and dy2x = 0.4, we consider labels y1 and y2 to be positively
correlated. This pairwise ranking relationship implicitly expresses the label correlation between label
distributions. To tackle this challenge, we introduce a pairwise relevance ranking (PRR) loss LPRR
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Figure 2: An example to illustrate the LPRR loss.

to align this inherent semantic structure. For labeled data, we aim for a strict alignment between
the ranking of predicted label distributions and the ground-truth. This means that we not only need
to align the ranking relationships between label descriptions but also maintain the margin with the
ground-truth. Additionally, for certain “close” description degrees, studying their ranking is not
meaningful. For instance, consider a scenario where the label description degrees dyix and dykx are
0.32 and 0.33, respectively. The negligible discrepancy between these two values could be attributed
to variations in annotation. Consequently, we opt not to adjust their ranking order to account for such
minor differences, which may not reflect actual dissimilarities in label importance. Simplifying our
notation, let hj(xi) represent the predicted degree of relevance for the j-th label after applying a weak
augmentation Augw to the i-th instance. The LPRRL

loss is then defined as follows:

LPRRL
=

∑
1<j<k<q

I(d
yj
xi , d

yk
xi
) ·max(0, δ − (hj(xi)− hk(xi)))

+ I(dykxi
, d
yj
xi) ·max(0, δ − (hk(xi)− hj(xi))),

(4)
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Fig. 2, Part (a), presents an image from the RAF-LDL dataset and its label distribution, illustrating
the application of the LPRRL

loss. Here, δ = dykxi
− dyjxi and the function I(dyjxi , d

yk
xi
) is an indicator

that outputs 1 if the first label’s degree is greater than the second’s and their difference is significant,
i.e., dyjxi > dykxi

and |dyjxi − dykxi
| > t. The loss comes into play in two key scenarios: Case 1, when

the model’s predicted ranking of labels is incorrect, and Case 2, when the ranking is correct but the
margin does not align with the ground truth. Both cases indicate opportunities for the model to learn
and adjust its predictions.

In the unsupervised component of our model, we confront the absence of ground-truth labels by
employing pseudo-label distributions (PLDs) as a stand-in during training. Recognizing that PLDs
may not always be precise, we focus on aligning the predicted pairwise relevance rankings of label
descriptions to mitigate the potential for overfitting and to correct inaccuracies inherent in SSL. We
define the unsupervised pairwise relevance ranking loss, LPRRu

, where hj(xsi ) denotes the predicted
relevance of the j-th label after strong augmentation, Augs, is applied to the i-th instance. The loss
function is as follows:

LPRRu
=

∑
1<j<k<q

I(p
yj
xi , p

yk
xi
) ·max(0,−(hj(xsi )− hk(xsi )))

+ I(pykxi
, p
yj
xi) ·max(0,−(hk(xsi )− hj(xsi ))),

(5)

where the indicator function, I(pyjxi , p
yk
xi
), outputs 1 if the pseudo-label of one label is greater than the

other and their difference is substantial, specifically when pyjxi > pykxi
and the difference |pyjxi − pykxi

|
exceeds a threshold t; otherwise, it outputs 0. This loss addresses the scenario where the model’s
ranking of label predictions is inaccurate, as illustrated in Fig. 2, Part (b). Here, we see an image from
the RAF-LDL dataset and its associated pseudo-label distribution. For example, when the PLD for
surprise (pyix ) is 0.6 and for fear (pyjx ) is 0.2, the LPRR loss is activated as max(0,−(hi(x)−hj(x))),
emphasizing the need for the model to correct the predicted rankings to reflect the pseudo-labels
more accurately.

Overall, the RankMatch algorithm utilizes this dual-phase training strategy to effectively differen-
tiate between labeled and unlabeled data, continuously refining the model’s learning process. The
combined application of supervised and unsupervised ranking losses under the PRR framework is
modulated by a lambda coefficient (λ), balancing their contributions. Consequently, the total loss is
computed as:loss = Ls + Luc + λ(LPRRL

+ LPRRu
) ensuring the model effectively learns from

both labeled and unlabeled datasets in a structured manner. The pseudo-code of the RankMatch
algorithm can be found in Appendix A.

4 THEORETICAL ANALYSIS

Generalization Bound: In this section, we establish a theoretical foundation for our RankMatch
algorithm within the realm of Semi-Supervised Label Distribution Learning (SSLDL) by defining
a generalization bound. Initially, we define the true risk associated with the classification model
f(x; θ):

R(f) = E(x,y)[L(f(x),d)].

Our objective is to construct a robust classification model by reducing the empirical risk R̂(f) =
R̂L(f) + R̂U (f), where R̂L(f) pertains to the empirical risk associated with the labeled data
LL(f(x),d) and R̂U (f) pertains to that of the unlabeled data LU (f(x),d):

R̂L(f) =
1

n

n∑
i=1

L(f(xi),di), R̂U (f) =
1

m

m∑
j=1

LU (f(xj),dj).

During model training, direct optimization of R̂U (f) is impractical as the actual labels of the
unlabeled data are unknown. Instead, the model is trained using R̂′U (f) =

1
m

∑m
j=1 LU (f(xj), d̂j),

where d̂j is the estimated label distribution of the instance xj .

Let Lk(f(x)) = dykx ln
(

d
yk
x

h(yk|Augw(x))

)
denote the loss for label k, with LE representing any chosen

(but not necessarily optimal) Lipschitz constant for L. Let RN (F) denote the expected Rademacher
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complexity for the function class F over N = m + n training samples. Assume f̂ minimizes the
empirical risk, and f∗ is the actual risk minimizer. We establish the following theorem to provide a
bound on the generalization error. The proof can be find in Appendix D.

Theorem 1. Assuming `(·) is limited by B, and for some ε > 0, if
∑m
j=1 | I(fk (xj))− I

(
dykxj

)
|

/m ≤ ε across all k ∈ [q], for any δ > 0, with a minimum likelihood of 1− δ, we have

R(f̂)−R(f∗) ≤ 2qBε+ 4qLERN (F) + 2qB

√
log 2

δ

2N
.

Theorem 2 indicates that f̂ ’s generalization effectiveness primarily hinges on the pseudo-labeling
error ε and the aggregate number of training instances N . Notably, reducing ε tends to enhance model
generalization. Given its inherent robustness and empirical validation, f̂ is expected to perform well
in real-world settings. Moreover, as N increases indefinitely and ε approaches zero, Theorem 2
confirms that f̂ will asymptotically align with the true minimizer f?.

4.1 EXPERIMENTS

4.1.1 EXPERIMENTAL CONFIGURATIONS

Experimental Datasets We evaluate our approach using four real-world datasets 1. Briefly:

• Twitter-LDL (Yang et al., 2017): Comprises 10,045 images annotated for eight emotions,
collected via emotion-specific keyword searches on Twitter.

• Flickr-LDL (Yang et al., 2017): A Flickr subset of 10,700 images, labeled for eight emotions
by 11 annotators, gathered using adjective-noun pairs.

• Emotion6 (Peng et al., 2015): Contains 1,980 images sourced from Flickr using keywords
for six emotions, each represented in a probability distribution.

• RAF-LDL (Li & Deng, 2019): Consists of around 5,000 multi-label distribution facial
images, annotated to capture a wide array of emotional expressions.

Comparing Methods To evaluate the effectiveness of our proposed RankMatch method, we bench-
mark it against four distinct groups of algorithms:

• Deep Learning SSLDL Algorithms: We introduce two novel algorithms, FixMatch-LDL
(Sohn et al., 2020) and MixMatch-LDL (Berthelot et al., 2019), designed to bridge the gap in
open-source semi-supervised LDL (SSLDL) approaches within deep learning frameworks.

• Dual-Network SSLDL Algorithm: We present and evaluate our own GCT-LDL (Chen
et al., 2021), a dual-network SSLDL approach that we developed, which leverages mutual
supervision of unlabeled data between two independent networks for enhanced learning.

• Traditional SSLDL Algorithm: The traditional SA-LDL (Hou et al., 2017) algorithm, orig-
inally for tabular data, is adapted for image datasets through necessary feature engineering,
detailed in Appendix A.

• Existing LDL Algorithms: Comparisons are also made with state-of-the-art LDL algo-
rithms including Adam-LDL-SCL (Jia et al., 2019), sLDLF (Shen et al., 2017), DF-LDL
(González et al., 2021), and LDL-LRR (Jia et al., 2021a), highlighting their potential
limitations in SSLDL contexts.

All algorithm configurations and additional methodological details are provided in Appendix A.

Evaluation Metrics: In evaluating LDL methods, we employ six distinct metrics (Geng, 2016):
Chebyshev, Clark, and Canberra distances, along with Kullback-Leibler divergence, where lower
values are preferable, and Intersection and Cosine similarities, where higher values indicate better
performance. Details of the evaluation metrics are provided in the Appendix B.

1The dataset’s author has made the dataset publicly available at the following link:
http://cv.nankai.edu.cn/projects/SentiLDL. Detailed of these datasets are provided in Appendix A.
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4.1.2 COMPARATIVE EXPERIMENT ANALYSIS

Table 1: Performance metrics of RankMatch and benchmark semi-supervised label distribution
learning algorithms on Emotion6, Flickr, RAF, and Twitter datasets. Results are evaluated at different
training sample proportions: 10%, 20%, and 40%. Metrics are shown for Canberra, Clark, KL and
Chebyshev distances, with lower scores denoting superior model performance.

Emotion6 Flickr-LDL Twitter-LDL RAF-LDL
Method 10% 20% 40% 10% 20% 40% 10% 20% 40% 10% 20% 40%

Can.↓

Rankmatch 3.3902 3.3176 3.2504 4.4060 3.9964 3.9013 3.7370 3.6962 3.2913 3.0178 2.9358 2.8341
fixmatch-LDL 3.5080 3.5680 3.6050 5.5570 5.5310 5.4350 6.1750 6.0060 5.8340 3.1220 3.0920 3.0770
mixmatch-LDL 3.6080 3.4860 3.4880 5.6450 5.5026 5.5750 6.3530 6.2489 6.2960 3.1580 3.1111 3.0630

GCT-LDL 3.5980 3.5490 3.6410 5.5860 5.5872 5.5260 6.3010 6.3078 6.2380 3.1920 3.1260 3.1470
SALDL 3.4836 3.3737 3.1931 5.4612 4.7789 4.8199 5.0380 4.0868 4.0742 3.1947 3.1415 3.0527
sLDLF 4.4164 4.3398 4.1322 6.2280 6.1238 6.2589 5.3084 6.0008 6.1910 4.0586 4.1705 4.1189

DF-LDL 4.2427 4.0717 3.7221 5.5348 5.5549 5.5207 6.4184 6.3120 6.2588 3.3281 3.3865 3.3582
LDL-LRR 4.6528 4.0496 3.7719 5.6325 5.4988 5.4319 6.4215 6.3295 6.2905 3.8677 4.0116 4.1890

Adam-LDL-SCL 4.0815 4.1128 4.1204 6.1634 5.9889 5.6508 6.5220 6.4081 6.3575 3.0891 3.0242 2.9912
Emotion6 Flickr-LDL Twitter-LDL RAF-LDL

Method 10% 20% 40% 10% 20% 40% 10% 20% 40% 10% 20% 40%

Cla. ↓

Rankmatch 1.5298 1.5050 1.4834 1.8189 1.7051 1.6737 1.6480 1.6190 1.5138 1.4506 1.4190 1.3843
fixmatch-LDL 1.5950 1.6230 1.6390 2.2220 2.2110 2.1910 2.3830 2.3310 2.2820 1.5130 1.5060 1.5050
mixmatch-LDL 1.6240 1.5810 1.5840 2.2330 2.1996 2.2160 2.4280 2.4034 2.4150 1.5150 1.5020 1.4870

GCT-LDL 1.6090 1.6050 1.6390 2.2200 2.2238 2.2080 2.4170 2.4216 2.4060 1.5350 1.5170 1.5290
SALDL 1.6019 1.5751 1.5100 2.1967 2.0369 2.0446 2.1288 1.8938 1.8964 1.5445 1.5288 1.5035
sLDLF 1.8922 1.8566 1.8049 2.3722 2.3436 2.3761 2.1480 2.3384 2.3746 1.9300 1.9645 1.9750

DF-LDL 1.8217 1.7746 1.6781 2.2253 2.2072 2.1992 2.4313 2.4108 2.4033 1.6071 1.6229 1.6138
LDL-LRR 1.9899 1.7745 1.6953 2.2285 2.2026 2.1919 2.4429 2.4223 2.4121 1.7907 1.8298 1.8919

Adam-LDL-SCL 1.7851 1.7976 1.8014 2.3534 2.3093 2.2312 2.4639 2.4324 2.4160 1.5134 1.4980 1.4905
Emotion6 Flickr-LDL Twitter-LDL RAF-LDL

Method 10% 20% 40% 10% 20% 40% 10% 20% 40% 10% 20% 40%

Int. ↑

Rankmatch 0.6735 0.6832 0.6940 0.6921 0.7073 0.7151 0.7036 0.7190 0.7316 0.6551 0.6813 0.7044
fixmatch-LDL 0.6638 0.6797 0.6916 0.6857 0.7042 0.7119 0.7009 0.7147 0.7283 0.6570 0.6760 0.6987
mixmatch-LDL 0.6372 0.6418 0.6496 0.6639 0.6686 0.6831 0.6819 0.6806 0.6986 0.6133 0.6381 0.6534

GCT-LDL 0.6116 0.6602 0.6770 0.6639 0.6879 0.6863 0.6787 0.7018 0.7102 0.6321 0.6669 0.6910
SALDL 0.6457 0.6612 0.6723 0.5559 0.5108 0.5091 0.6632 0.5724 0.5687 0.6298 0.6504 0.6708
sLDLF 0.5935 0.5861 0.6162 0.4813 0.4750 0.4616 0.6487 0.5652 0.5336 0.2433 0.2315 0.2199

DF-LDL 0.5057 0.5461 0.6353 0.4173 0.4176 0.4169 0.3541 0.3536 0.3505 0.7022 0.7083 0.7085
LDL-LRR 0.3721 0.6213 0.6626 0.5322 0.5519 0.5600 0.5746 0.5904 0.5979 0.5649 0.5389 0.4411

Adam-LDL-SCL 0.3409 0.5627 0.6040 0.4724 0.3933 0.4628 0.5488 0.5828 0.5200 0.6177 0.5768 0.4843
Emotion6 Flickr-LDL Twitter-LDL RAF-LDL

Method 10% 20% 40% 10% 20% 40% 10% 20% 40% 10% 20% 40%

Cos. ↑

Rankmatch 0.8121 0.8257 0.8331 0.8489 0.8614 0.8679 0.8544 0.8698 0.8790 0.7901 0.8140 0.8375
fixmatch-LDL 0.8079 0.8200 0.8312 0.8487 0.8573 0.8673 0.8517 0.8647 0.8758 0.7881 0.8123 0.8311
mixmatch-LDL 0.7585 0.7863 0.7901 0.7888 0.8381 0.8468 0.8463 0.8552 0.8602 0.7536 0.7680 0.7820

GCT-LDL 0.7530 0.8017 0.8134 0.8313 0.8508 0.8531 0.8499 0.8587 0.8716 0.7660 0.7977 0.8181
SALDL 0.7784 0.7874 0.7981 0.7361 0.6643 0.6624 0.8479 0.7612 0.7615 0.7711 0.7938 0.8135
sLDLF 0.7037 0.6980 0.7350 0.6276 0.6066 0.5897 0.8002 0.7454 0.6988 0.3262 0.3506 0.3459

DF-LDL 0.6035 0.6470 0.7689 0.5436 0.5539 0.5569 0.5069 0.5233 0.5209 0.8427 0.8492 0.8470
LDL-LRR 0.4604 0.7362 0.7905 0.7020 0.7316 0.7399 0.7767 0.8027 0.8125 0.7253 0.6938 0.5757

Adam-LDL-SCL 0.4311 0.6670 0.7144 0.6104 0.4888 0.6166 0.7163 0.7661 0.7403 0.7717 0.7337 0.6191

We employed a range of labeled data proportions (10%, 20%, and 40%) to simulate varying levels
of label availability, a critical factor in semi-supervised learning scenarios. Our evaluation metrics
included Canberra, Clark, Intersection and Cosine2. The experiments are presented in Table. 1.
Furthermore, we train using full supervision information on RankMatch, and the experimental results
are presented in Table .2.from that we can draw the following conclusions

• RankMatch consistently achieves top performance across all datasets (Emotion6, Flickr,
Twitter, RAF) and metrics (Intersection, Cosine, KL, Chebyshev).

• As a deep learning-based method, RankMatch substantially outperforms traditional models
such as GCT-LDL and fixmatch-LDL. It excels by leveraging complex, hierarchical features
from data, which traditional models often miss due to reliance on simpler features and
assumptions.

• Despite the enhancements in SSLDL algorithms like fixmatch-LDL and mixmatch-LDL
through deep learning, RankMatch surpasses them in all metrics. Its advantage stems
from the effective use of deep learning techniques combined with an understanding of
label relationships. This is vital in LDL tasks like emotion recognition, where the accurate
modeling of emotional intensity and distribution is crucial. RankMatch’s ability to account
for these relationships enables it to deliver more precise and relevant predictions than models
processing labels independently, enhancing both practicality and accuracy in applications.

• Analyzing Table. 2, RankMatch’s performance improves significantly as the percentage of
training samples increases, closely approaching fully supervised outcomes by using just 40%
of the data. This demonstrates RankMatch’s effectiveness as a semi-supervised learning

2The results utilizing KL and Chebyshev are detailed in the Appendix C.
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method, efficiently utilizing less labeled data to achieve near-complete performance, which
highlights its potential in applications with limited labeled resources.

Table 2: RankMatch’s performance across varying training sample sizes is measured by six metrics.
During the 100% data training process, no unsupervised components are included.

Emotion6 Flickr-LDL Twitter-LDL Raf-LDL
10% 20% 40% 100% 10% 20% 40% 100% 10% 20% 40% 100% 10% 20% 40% 100%

Can. ↓ 3.3902 3.3176 3.2504 3.203 4.4060 3.9964 3.9013 3.625 3.7370 3.6962 3.2913 2.902 3.0178 2.9358 2.8341 2.794
Cla.↓ 1.5298 1.5050 1.4834 1.467 1.8189 1.7051 1.6737 1.595 1.6480 1.6190 1.5138 1.395 1.4506 1.4190 1.3843 1.366
Cos. ↑ 0.8121 0.8257 0.8331 0.845 0.8489 0.8614 0.8679 0.8694 0.8544 0.8698 0.8790 0.8827 0.7901 0.8140 0.8375 0.8478
Int. ↑ 0.6735 0.6832 0.6940 0.7055 0.6735 0.6832 0.6940 0.7176 0.7036 0.7190 0.7316 0.7411 0.6551 0.6813 0.7044 0.7188

(a) Emotion6 (b) Flickr-LDL (c) RAF-LDL (d) Twitter-LDL

Figure 3: The convergence curve on Emotion6, FLickr-LDL, RAF-ML, and Twitter-LDL.

(a) (b) (c) (d)

Figure 4: Parameter Sensitivity Analysis on (a) Emotion6, (b) Flickr-LDL, (c) RAF-LDL and (d)
Twitter-LDL.

4.1.3 FURTHER ANALYSIS

Ablation Study Our ablation study analyzed the impact of PRR loss and unsupervised consistency
loss on the performance of RankMatch. Initially, the model was pre-trained with only 10% of
labeled data to establish a baseline. This phase highlighted the model’s ability to utilize minimal data
effectively.

Next, unsupervised consistency loss was applied to enhance learning from unlabeled data. In the final
phase, PRR loss was introduced, leveraging the same 10% labeled data to refine the model further
with supervised ranking loss. Ablation experiment results are shown in Table. 7. From this, we can
draw the following conclusions

• The integration of unsupervised consistency loss markedly improves RankMatch’s perfor-
mance across datasets, as observed in the ablation results. This confirms the effectiveness of
using unsupervised data to enhance model accuracy.

• The incorporation of pairwise relevance ranking (PRR) loss significantly boosts performance,
particularly in scenarios where it surpasses the baseline. This improvement demonstrates the

Table 3: Ablation Results on Emotion6 and Twitter-LDL.

Che.↓ Cla.↓ Can.↓ KL↓ Cos.↑ Int.↑

Emotion6
pretrain 0.2504 1.6524 3.6893 0.4642 0.793 0.6557

pretrain + consistency 0.2362(5.7%↑) 1.623(1.8%↑) 3.5537(3.7%↑) 0.4273(7.9%↑) 0.8216(3.6%↑) 0.6789(3.5%↑)
pretrain + consistency+PRR loss 0.2186(7.5%↑) 1.6028(1.2%↑) 3.4761(2.2%↑) 0.3776(11.6%↑) 0.8349(1.6%↑) 0.6982(2.8%↑)

Twitter-LDL
pretrain 0.2538 2.463 6.4139 0.7908 0.8502 0.701

pretrain + consistency 0.2442(3.8%↑) 1.9025(22.8%↑) 4.6251(27.9%↑) 0.6854(13.3%↑) 0.8608(1.2%↑) 0.7242(3.3%↑)
pretrain + consistency+PRR loss 0.2262(7.4%↑) 1.7382(8.6%↑) 4.0088(13.3%↑) 0.6232(13.3%↑) 0.8799(2.2%↑) 0.7369(1.8%↑)
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PRR loss’s critical role in refining label discrimination within the semi-supervised learning
framework.

Convergence Analysis The convergence behavior of the RankMatch algorithm is evaluated in Fig. 3,
showing varied learning dynamics across datasets. For Emotion6 and Flickr-LDL, rapid initial loss
declines indicate swift learning and quick stabilization, suggesting efficient adaptation. Conversely,
RAF-LDL and Twitter-LDL exhibit slower, steadier loss reductions, highlighting methodical learn-
ing. Overall, consistent loss improvement across all datasets demonstrates RankMatch’s effective
optimization, enhancing predictive accuracy over training.

Parameter Sensitivity Analysis Based on the results shown in Figure. 4 3, we analyze the impact of
parameter λ on RankMatch’s performance across Emotion6, Flickr-LDL, RAF-LDL, and Twitter-LDL
datasets. The analysis yields the following insights

• Stability Across λ Values: RankMatch shows high stability when λ ranges from 0.01 to
0.05, with minimal variations in key performance metrics (KL, Chebyshev, Intersection, and
Cosine) across all datasets. This range appears to be optimal for λ, allowing the algorithm
to maintain effective performance.

• Impact of Low λ Values: At λ values close to 0.005, performance deteriorates significantly,
as seen in the increase in KL for the Emotion6 dataset. This suggests that low λ values
reduce the effectiveness of the regularization, leading to poorer learning outcomes.

Table 4: Impact of Threshold t on the Performance of the RankMatch.

Emotion6 t=0 t=0.01 t=0.05 t=0.1 t=0.2 t=0.3 t=0.4 t=0.7 t=1
Cos.↑ 0.7912 0.7903 0.7921 0.7964 0.7977 0.8033 0.7967 0.7933 0.7857
KL↓ 0.4603 0.4577 0.4505 0.4425 0.4491 0.4419 0.4502 0.4603 0.4597

RAF-LDL t=0 t=0.01 t=0.05 t=0.1 t=0.2 t=0.3 t=0.4 t=0.7 t=1
Cos.↑ 0.7512 0.7533 0.7671 0.771 0.7726 0.7743 0.7642 0.7581 0.7554
KL↓ 0.5268 0.5224 0.522 0.5078 0.4954 0.5114 0.5226 0.5284 0.5339

Impact of Threshold t on Experimental Results The threshold t in the Pairwise Relevance Ranking
(PRR) loss significantly influences RankMatch’s sensitivity to label ranking discrepancies. As detailed
in Table 4, our experiments across various datasets and metrics lead to two key conclusions about
this impact on the algorithm’s performance.

• Optimal Performance Range: For both datasets, Emotion6 and RAF, RankMatch shows
optimal performance when t is set between 0.2 and 0.3. This range yields the lowest scores
for both the Cosine and KL divergence metrics, indicating an effective balance in the model’s
ability to manage the inter-label dynamics. This suggests that a moderate threshold level is
crucial for maximizing the utility of the PRR loss.

• Performance Decline at Extreme Values of t: At the extremes, t = 0 and t = 1, there
is a significant decline in performance. At t = 0, the PRR loss component is essentially
non-operational, which results in inadequate penalization for misranked labels. Conversely,
at t = 1, an overly restrictive threshold may limit the model’s adaptability, hindering its
learning capabilities from the data. This behavior is especially pronounced in the RAF
dataset, where performance metrics deteriorate notably at these values.

5 CONCLUSION

In this paper, we introduce RankMatch, an innovative semi-supervised label distribution learning
(SSLDL) method. RankMatch utilizes a combination of a small amount of labeled data with a
substantial quantity of unlabeled data, minimizing the need for extensive manual labeling. It employs
an averaging approach inspired by ensemble learning to generate stable pseudo-label distributions
and incorporates a novel relevance ranking loss to effectively manage label correlations. We provide
a theoretical generalization bound for RankMatch, and our comprehensive experimental results
demonstrate its superiority over existing SSLDL approaches in effectively tackling various SSLDL
challenges.

3Extended parameter results are presented in Appendix C.
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A APPENDIX

B APPENDIX (DETAIL OF THE DATASET, AND COMPARISON SETTINGS OF
ALGORITHMS.)

Algorithm 1: The pseudo-code of the RankMatch
Input: Set of labeled examples and their label distribution DL = {(xi, di)|i ≤ n}, Set of

unlabeled data DU = {xj |j ≤ m}, Model pretrained on labeled dataset fp(· ; θp),
number of train epochs N , number of different weakly augmentations K

Output: model f(· ; θ)
1 Init a model f(· ; θ);
2 for i = 1, . . . , N do
3 for each x in {DL ∪ DU} do
4 if x ∈ DL then // Processing for labeled data
5 hl = Softmax(f(Augs(x); θ));
6 Loss = Ls(hl, d) + λLPRRL

(hl, d);
7 else if x ∈ DU then // Processing for unlabeled data

// Average outputs from K weakly augmented unlabeled

image p = 1
K

∑K
j=1 Softmax(fp(Augwj(x); θp);

8 hU = Softmax(f(Augw(x); θ));
9 Loss = Luc(hu, p) + λLPRRu

(hu, p);
10 Update θ via minθ Loss;

Experimental Datasets :In this paper, we validate our approach using four distinct real-world datasets
4. The details of these datasets are as follows:

Twitter-LDL : A large-scale Visual Sentiment Distribution dataset was constructed from Twitter,
encompassing eight distinct emotions Amusement, Anger, Awe, Contentment, Disgust, Excitement,
Fear, Sadness. Approximately 30,000 images were collected by searching various emotional key-
words, such as ”sadness,” ”heartbreak,” and ”grief.” Subsequently, eight annotators were hired to
label this dataset. The resulting Twitter LDL dataset comprises 10,045 images.

Flickr-LDL : A subset of the Flickr dataset , unlike other datasets that searched for images using
emotional terms, the Flickr dataset collected 1,200 pairs of adjective-noun pairs, resulting in 500,000
images. We employed 11 annotators to label this subset with tags for eight common emotions. In the
end, the Flickr LDL was created, containing 10,700 images, with roughly equal quantities for each
class.

Emotion6 : Emotion6: We collected 1,980 images from Flickr using six category keywords and
synonyms as search terms for Emotion6. A total of 330 images were collected for each category, and
each image was assigned to only one category (dominant emotion). Emotion6 represents the emotions
related to each image in the form of a probability distribution, consisting of 7 bins, including Ekman’s
6 basic emotions and neutral.

RAF-LDL : RAF-LDL is a multi-label distribution facial expression dataset, comprising approxi-
mately 5,000 diverse facial images downloaded from the internet. These images exhibit variations
in emotion, subject identity, head pose, lighting conditions, and occlusions. During annotation, 315
well-trained annotators are employed to ensure each image can be annotated enough independent
times. And images with multi-peak label distribution are selected out to constitute the RAF-LDL.

Comparing methods In order to assess the effectiveness of the proposed approach, we benchmark it
against four sets of methods:

1) The first group consists of two deep learning SSLDL algorithms that we introduced, named
FixMatch-LDL and MixMatch-LDL. Since there are currently no open-source semi-supervised LDL

4The dataset’s author has made the dataset publicly available at the following link:
http://cv.nankai.edu.cn/projects/SentiLDL.
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works in deep learning, these two algorithms were developed by us, based on the current most
effective two deep learning SSL algorithms.

(a) FixMatch-LDL :Fixmatch-LDL is an adaptation we made based on the classic semi-supervised
algorithm fixmatch (Sohn et al., 2020). Specifically, we pre-trained on images using ResNet50, then
trained the model with labeled data. Subsequently, we assigned pseudo-label distributions to the
unlabeled data, and finally, we aligned the model’s strongly augmented output with the pseudo-label
distribution. For all datasets, the number of epochs is set as 30 and the batch size is set as 32. We
perform all experiments on GeForce RTX 3090 GPUs. The random seed is set to 1 for all experiments.

(b) MixMatch-LDL: Mixmatch is a semi-supervised LDL algorithm designed by us. Specifically, we
first use linear interpolation to blend images, creating new samples. Similarly, we generate the label
distributions for these new samples. Following this, we train the data using the same training strategy
as Mixmatch. It’s worth mentioning that producing new samples enhances the model’s ability to
prevent overfitting. For all datasets, the number of epochs is set as 30 and the batch size is set as
32. We perform all experiments on GeForce RTX 3090 GPUs. The random seed is set to 1 for all
experiments.

2) The second group of algorithms is a deep learning SSLDL algorithm based on the dual-network
concept, which we named GCT-LDL. The core idea involves mutual supervision of the outputs from
two independent networks using unlabeled data. GCT-LDL : Two models utilized two different
pretrained initializations of ResNet50 provided by PyTorch (ResNet50-Weights.IMAGENET1K-V1
and ResNet50-Weights.IMAGENET1K-V2). During training, labeled and unlabeled data were mixed.
The loss used is the cross-entropy loss, divided into two parts: for labeled data, the loss is calculated
directly between the prediction results and the ground truth. For unlabeled data, the loss is calculated
between the prediction results of each model and the results of the other model. Hyperparameter
settings are the same as those used in other methods.

3) The third group consists of traditional SSLDL algorithms, referred to as SA-LDL (Hou et al.,
2017). Since SA-LDL is an SSLDL algorithm designed for tabular data, we needed to perform feature
engineering on image data, first, we use ResNet-50 for feature extraction from all datasets, followed
by dimensionality reduction to 128 dimensions using PCA. For the remaining settings, we adhere to
the defaults as specified in the paper.

4) The fourth category consists of existing LDL algorithms. As there is currently only one open-source
SSLDL algorithm, which is SA-LDL (Hou et al., 2017), we compared it with some state-of-the-art
LDL algorithms. In this regard, we selected four state-of-the-art LDL algorithms: Adam-LDL-SCL
(Jia et al., 2019), sLDLF (Shen et al., 2017), DF-LDL (González et al., 2021), and LDL-LRR (Jia
et al., 2021a). These algorithm settings are defaulted to be consistent with those specified in the paper.
Additionally, for these algorithms, we directly use labeled data to train the classifier. Then, we use
the trained model to assign pseudo-labels to the unlabeled samples. Finally, we use the pseudo-labels
to update the model.

Implementation Following (Cole et al., 2021), we employ ResNet-50 (He et al., 2016) pre-trained on
ImageNet (Krizhevsky et al., 2012) for training the classification model. For training images, we adopt
standard flip-and-shift strategy (Sohn et al., 2020) for weak data augmentation, and RandAugment
(Cubuk et al., 2020) and Cutout (DeVries & Taylor, 2017) for strong data augmentation. We employ
AdamW (You et al., 2019) optimizer and one-cycle policy scheduler (Hannan et al., 2021) to train the
model with maximal learning rate of 0.0001. For all datasets, the number of epochs is set as 30 and
the batch size is set as 32. Furthermore, we perform exponential moving average (EMA) (Klinker,
2011) for the model parameter θ with a decay of 0.98. We adjust the parameter λ across a range
of values, specifically {0.005, 0.01, 0.05, 0.1}. We perform all experiments on GeForce RTX 3090
GPUs. The random seed is set to 1 for all experiments.

Implementation Following (Cole et al., 2021), we employ ResNet-50 (He et al., 2016) pre-trained on
ImageNet (Krizhevsky et al., 2012) for training the classification model. For training images, we adopt
standard flip-and-shift strategy (Sohn et al., 2020) for weak data augmentation, and RandAugment
(Cubuk et al., 2020) and Cutout (DeVries & Taylor, 2017) for strong data augmentation. We employ
AdamW (You et al., 2019) optimizer and one-cycle policy scheduler (Hannan et al., 2021) to train the
model with maximal learning rate of 0.0001. For all datasets, the number of epochs is set as 30 and
the batch size is set as 32. Furthermore, we perform exponential moving average (EMA) (Klinker,
2011) for the model parameter θ with a decay of 0.98. We adjust the parameter λ across a range
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of values, specifically {0.005, 0.01, 0.05, 0.1}. We perform all experiments on GeForce RTX 3090
GPUs. The random seed is set to 1 for all experiments.
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C APPENDIX (DETAILS OF THE EVALUATION METRICS FOR THE
EXPERIMENTS.)

Evaluation Metrics: We evaluate LDL algorithms using six metrics: five distance-based (Chebyshev,
Clark, Kullback-Leibler, and Canberra) and two similarity-based (Cosine and Intersection). Formulas
for these metrics are provided in the appendix. Lower values indicate better performance for distance-
based metrics (↓), while higher values indicate better performance for similarity-based metrics (↑).

Table 5: The distribution distance/similarity measures

Measure Formula

Chebyshev ↓ Dis1(d, d̂) = maxj

∣∣∣dj − d̂j∣∣∣
Clark ↓ Dis2(d, d̂) =

√∑c
j=1

(dj−d̂j)
2

(dj+d̂j)
2

Canberra ↓ Dis3(d, d̂) =
∑c
j=1
|dj−d̂j|
dj+d̂j

Kullback-Leibler↓ Dis4(d, d̂) =
∑c
j=1 dj ln

dj

d̂j

Cosine ↑ Sim1(d, d̂) =
∑c

j=1 dj d̂j√∑c
j=1 d

2
j

√∑c
j=1 d̂

2
j

Intersection ↑ Sim2 = 1
n

∑n
i=1

∑c
j=1 min

(
d
yj
xi , d̂

yj
xi

)
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D APPENDIX (PRESENTATION OF THE REMAINING EXPERIMENTAL
RESULTS.)

Table 6: Performance metrics of RankMatch and benchmark semi-supervised label distribution
learning algorithms on Emotion6, Flickr, RAF, and Twitter datasets. Results are evaluated at different
training sample proportions: 10%, 20%, and 40%. Metrics are shown for Intersection and Cosine
distances, with higher scores denoting superior model performance.

Emotion6 Flickr-LDL Twitter-LDL RAF-LDL

Method 10% 20% 40% 10% 20% 40% 10% 20% 40% 10% 20% 40%

KL ↓

Rankmatch 0.4214 0.3916 0.3896 0.4961 0.4836 0.4800 0.2386 0.2279 0.2241 0.2348 0.2248 0.2191
fixmatch-LDL 0.4175 0.4095 0.4072 0.4921 0.5054 0.4856 0.2433 0.2305 0.2245 0.2382 0.2272 0.2190

mixmatch-LDL 0.504 0.4504 0.4417 0.5109 0.4768 0.4550 0.2685 0.2565 0.2527 0.2543 0.2446 0.2367
GCT-LDL 0.5151 0.4276 0.4201 0.5017 0.4552 0.4449 0.2815 0.2469 0.2391 0.2519 0.2355 0.2329
SALDL 0.5885 0.5620 0.5608 0.7567 1.7464 1.7848 0.2595 0.2590 0.2486 0.3388 0.3648 0.3651
sLDLF 0.8382 0.8905 0.704 1.7006 1.6464 1.4217 0.3195 0.3263 0.3054 0.4032 0.414 0.4152

DF-LDL 1.0926 0.8023 0.4954 1.1285 1.0817 1.0679 0.3681 0.3377 0.2772 0.4376 0.4419 0.4442
LDL-LRR 3.2914 0.648 0.4431 0.8502 0.7682 0.7418 0.5708 0.2986 0.2611 0.3506 0.3392 0.3363

Adam-LDL-SCL 0.7687 0.8933 0.7725 1.5907 1.1059 0.8454 0.3002 0.3067 0.2989 0.4171 0.3824 0.3527

Emotion6 Flickr-LDL Twitter-LDL RAF-LDL

Method 10% 20% 40% 10% 20% 40% 10% 20% 40% 10% 20% 40%

Che.↓

Rankmatch 0.6646 0.5490 0.5227 0.454 0.4093 0.3585 0.2505 0.237 0.2284 0.281 0.265 0.2452
fixmatch-LDL 0.8077 0.6438 0.5703 0.4706 0.4188 0.3812 0.2511 0.2403 0.232 0.2798 0.2677 0.2489

mixmatch-LDL 0.5590 0.5136 0.4904 0.5297 0.4945 0.4612 0.2599 0.255 0.2446 0.3141 0.302 0.2921
GCT-LDL 0.5461 0.5263 0.4757 0.5164 0.4466 0.3987 0.2592 0.2468 0.2365 0.2977 0.2768 0.2611
SALDL 0.7364 1.8742 1.9519 0.5919 0.4918 0.4912 0.267 0.3434 0.3438 0.295 0.2784 0.2679
sLDLF 1.1756 1.5865 1.5537 6.2799 6.4985 7.9414 0.3073 0.3705 0.3963 0.741 0.7646 0.7801

DF-LDL 1.4356 1.3234 1.307 0.5124 0.4665 0.432 0.5153 0.52 0.5293 0.256 0.2521 0.2471
LDL-LRR 0.8999 0.7729 0.7212 1.3878 1.4658 2.2773 0.3364 0.3206 0.3153 0.4102 0.4332 0.5192

Adam-LDL-SCL 0.9974 0.8017 0.7367 0.9481 1.1863 1.7387 0.3612 0.3333 0.3213 1.6141 1.1399 0.9903

Table 7: Ablation Results on 2 Datasets.

Che.↓ Cla.↓ Can.↓ KL↓ Cos.↑ Int.↑

Flickr

pretrain 0.2411 2.2594 5.6885 0.5371 0.8427 0.6873

pretrain + consistency 0.2262(6.2%↑) 2.1131(6.5%↑) 5.1536(9.4%↑) 0.5293(1.5%↑) 0.8633(2.4%↑) 0.7188(4.6%↑)

pretrain + consistency+PRR loss 0.2184(3.4%↑) 2.0158(4.6%↑) 4.9008(4.9%↑) 0.5227(1.2%↑) 0.8714(0.9%↑) 0.7208(0.3%↑)

Che.↓ Cla.↓ Can.↓ KL↓ Cos.↑ Int.↑

RAF

pretrain 0.2938 1.5412 3.206 0.5146 0.7687 0.6411

pretrain + consistency 0.255(13.2%↑) 1.5021(2.5%↑) 3.1345(2.2%↑) 0.3699(28.1%↑) 0.8189(28.1%↑) 0.7073(10.3%↑)

pretrain + consistency+PRR loss 0.2341(8.2%↑) 1.4914(0.7%↑) 3.0459(2.8%↑) 0.3464(6.4%↑) 0.8476(3.5%↑) 0.7194(1.7%↑)

Table 8: The impact of different λ values on experimental results.

λ=0 λ=0.005 λ=0.01 λ=0.1 λ=1 λ=10 λ=100 λ=1000

Che.↓ 0.2696 0.2574 0.25 0.2519 0.2587 0.2572 0.3024 0.3073

Int.↑ 0.6392 0.6576 0.6586 0.6562 0.648 0.635 0.5477 0.5353

λ=0 λ=0.005 λ=0.01 λ=0.1 λ=1 λ=10 λ=100 λ=1000

Che.↓ 0.3102 0.2975 0.2909 0.2904 0.3104 0.3462 0.3561 0.3553

Int.↑ 0.6202 0.6344 0.6416 0.644 0.635 0.5859 0.5734 0.5726

E APPENDIX (THE PROOF PROCESS OF THEOREM 1.)

E.1 GENERALIZATION BOUND

We study the generalization performance of Rankmatch. Before providing the main results, we first
define the true risk with respect to the classification model f(x; θ):

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

R(f) = E(x,y)[L(f(x),d)].

Our goal is to learn a good classification model by minimizing the empirical risk R̂(f) = R̂L(f) +

R̂U (f), where R̂L(f) and R̂U (f) are respectively the empirical risk of the labeled loss LL(f(x),d)
and unlabeled loss LU (f(x),d):

R̂L(f) =
1

n

n∑
i=1

L(f(xi),di), R̂U (f) =
1

m

m∑
j=1

LU (f(xj),dj).

Note that during the training, we cannot train a model directly by optimizing R̂U (f), since the labels of
unlabeled data are inaccessible. Instead, we train the model with R̂′U (f) =

1
m

∑m
j=1 LU (f(xj), d̂j),

where d̂j represents the pseudo-label vector of the instance xj .

Let Lk(f(x)) = dykx ln
(

d
yk
x

h(yk|Augw(x))

)
be the loss for the label k, and LE be any (not necessarily

the best) Lipschitz constant of L. Let RN (F) be the expected Rademacher complexity of F with
N = m+ n training points. Let f̂ be the empirical risk minimizer, where F is a function class, and
f∗ be the true minimizer. We derive the following theorem, which provides a generalization error
bound for the proposed method.

Theorem 2. Suppose that `(·) is bounded by B. For some ε > 0, if
∑m
j=1 | I(fk (xj))− I

(
dykxj

)
|

/m ≤ ε for any k ∈ [q], for any δ > 0, with probability at least 1− δ, we have

R(f̂)−R(f∗) ≤ 2qBε+ 4qLERN (F) + 2qB

√
log 2

δ

2N
.

From Theorem 2, it can be observed that the generalization performance of f̂ mainly depends on
two factors, i.e., the pseudo-labeling error ε and the number of training examples N . Apparently,
a smaller pseudo-labeling error ε often leads to better generalization performance. Thanks to its
robustness and the empirical evidence supporting the model, we anticipate strong performance in
practical applications.

F PROOF OF THEOREM 1

Theorem 3. Suppose that `(·) is bounded by B. For some ε > 0, if
∑m
j=1 | I(fk (xj))− I

(
dykxj

)
|

/m ≤ ε for any k ∈ [q] for any δ > 0, with probability at least 1− δ, we have

R(f̂)−R(f∗) ≤ 2qBε+ 4qLERN (F) + 2qB

√
log 2

δ

2N
.

Proof. Before proving the theorem, we first provide two useful lemmas as follows. We primarily
derive the uniform deviation bound between R(f̂) and R(f).
Lemma 1. Suppose that the loss function ` is LE-Lipschitz continuous with respect to θ. For any
δ > 0, with probability at least 1− δ, we have

|R(f̂)− R̂(f)| ≤ 2qLERn+m(F) + qB

√
log 2

δ

2(n+m)
(6)

Proof. In order to prove this lemma, we define the Rademacher complexity of L and F with m+ n
training examples as follows:

Rn+m(L ◦ F) = Ex,d,σ

sup
f∈F

n∑
i=1

σi` (f (xi) ,di) +

m∑
j=1

σj` (f (xj) ,dj)
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where σi and σj are Rademacher variables.

Considering that C(f(x),d) =
∑m
i=1 `(fk,dk), we have

Rn+m(L ◦ F) ≤ qRn+m(` ◦ F) ≤ qLERn+m(F)

where the second line is due to the Lipschitz continuity of the loss function `.

Then, we proceed the proof by showing that one direction supf∈F R(f) − R(f̂) is bounded with
probability at least 1−δ/2, and the other direction can be proved similarly. According to McDiarmid’s
inequality (Combes, 2015), for any δ > 0, with probability at least 1− δ/2, we have

sup
f∈F

R(f̂)−R(f) ≤ sup
f∈F

R(f̂)−R(f) + qB

√
log 2

δ

2(n+m)

According to the result in (Mohri et al., 2018) (Theorem 3.3) that shows E supf∈F R(f̂) − R(f)
≤ 2Rm(F), by further considering the other direction supf∈F R(f) − R(f̂), with probability at
least 1− δ, we have

sup
f∈F
| R(f̂)−R(f) |≤ 2qLERm(F) + qB

√
log 2

δ

2n+m

which completes the proof.

Then, we can bound the difference between R(f̂) and R(f) as follows:

Lemma 2. Suppose that `(·) is bounded by B. For some ε > 0, if
∑m
j=1 | I(fk (xj)) − I

(
dykxj

)
|

/m ≤ ε for any k ∈ [q] for any δ > 0, we have:

| R̂U (f)−RU (f) |≤ qBε

Proof. Without loss of generality, assume that ε is the largest pseudo-labeling error among q classes,
i.e., ε = maxqk=1

∑m
j=1 | I(fk (xj)) − I

(
dykxj

)
| /m ≤ ε for any k ∈ [q]. Obviously, ε consists

below pseudo-labeling error:

ε =

∑m
j=1 I

(
fk (xj) , d

yk
xj

)
m

(7)

Then, we prove the following side, which provide the bounds for RU (f). Firstly, we prove its upper
bound:

R̂′u(f) =
1

m

m∑
j=1

q∑
k=1

I (fk (xj)) ` (fk (xj))

≤ 1

m

m∑
j=1

q∑
k=1

I
(
dykxj

)
` (fk (xj)) + I(dykxj

, fk (xj) ` (fk (xj))

≤ 1

m

m∑
j=1

L
(
f (xj) , d

yk
xj

)
+ ε

q∑
k=1

` (fk (xj))

≤ R̂u(f) + qBε

(8)
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where the second line holds based on Eq.(7). Then, we prove its low bound:

R̂′u(f) =
1

m

m∑
j=1

q∑
k=1

I (fk (xj)) ` (fk (xj))

≥ 1

m

m∑
j=1

q∑
k=1

I
(
dykxj

)
` (fk (xj))− I(dykxj

, fk (xj) ` (fk (xj))

≥ 1

m

m∑
j=1

L
(
f (xj) , d

yk
xj

)
+ ε

q∑
k=1

` (fk (xj))

≥R̂u(f) + qBε

(9)

By combining these two sides, we can obtain the following result:

|R̂U (f)−RU (f)| ≤ qBε

which concludes the proof.

For any δ > 0, with probability at least 1− δ, we have:

R(f) ≤ R̂(f) +RU (f) + 2qLERn+m(F) + qB

√
log 2

δ

2N

≤ R̂(f) +RU (f) + qBε+ 2qLERn+m(F) + qB

√
log 2

δ

2N

≤ R̂(f) +RU (f) + 2qBε+ 2qLERn+m(F) + qB

√
log 2

δ

2N

≤ R̂(f) +RU (f) + 2qBε+ 4qLERn+m(F) + 2qB

√
log 2

δ

2N

≤ R(f) + 2qBε+ 4qLERn+m(F) + 2qB

√
log 2

δ

2N

where the first and fifth lines are based on Eq. 6, and second and fourth lines are due to Lemma 1.
The third line is by the definition of f . Putting all these together, the proof is then finished.

20


	Introduction
	RELATED WORK
	Label Distribution Learning
	Semi-supervised Label Distribution Learning

	The Method
	Problem Statement and Notation
	The Supervised Loss
	The Unsupervised Consistency Loss
	 The Pairwise Relevance Ranking Loss

	Theoretical Analysis 
	Experiments
	 Experimental Configurations
	Comparative Experiment Analysis
	Further Analysis


	Conclusion
	Appendix
	Appendix (Detail of the dataset, and Comparison Settings of Algorithms.) 
	Appendix (Details of the evaluation metrics for the experiments.)
	Appendix (Presentation of the Remaining Experimental Results.)
	Appendix (The proof process of Theorem 1.)
	Generalization Bound

	Proof of Theorem 1

