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Abstract

The shared lexicon can reveal genealogical re-
lationships between languages in a linguistic
area. However, widespread cross-linguistic bor-
rowings have increasingly blurred traditional
phylogenetic distinctions based on lexical sim-
ilarities, leading to a distorted perception of
language clusters based on prior diachronic
knowledge. To better understand language clus-
ters at a synchronic level, including the influ-
ence of borrowings, this study investigates the
relatedness of 9 Indic languages by leverag-
ing the lexical knowledge of pre-trained lan-
guage models: mBERT, XLM-RoBERTa, In-
dicNLP, and MuRIL. We extract the embed-
dings of cognate reflexes from the CogNet
dataset for the selected languages. By perform-
ing hierarchical agglomerative clustering on
the embedding-based cosine similarity scores
of language pairs, we identify language clusters
that reflect contemporary language groupings,
carefully considering the impact of borrowings.
This study also aims to assess how well word
embedding-based lexical similarity aligns with
string similarity-based genealogical clustering
and the actual phylogenetic groupings. The re-
sults demonstrate that cognates play a crucial
role in extracting phylogenetic signals, even
when using pre-trained language models.

1 Introduction

Most often, the historical relatedness of languages
comes from inferences of linguistic phylogenies
in historical-comparative linguistics using word
sets that share a common origin regardless of
their meaning, and barring borrowed words (Trask,
2000; Campbell, 2020; List et al., 2022). Such
sets of cognates are composed of tuples of cognate
reflexes pertaining to basic vocabulary items such
as body parts, colors, numbers, etc. This is a de
facto choice given the resistance of such words to
be affected by the process of borrowing. And, as
a result, we have language groupings that reflect
linguistic histories but not necessarily the present.

There are cases of the basic vocabulary items
also being borrowed, for example, the complemen-
tizer ‘that’ in Hindi ‘ki’ has been borrowed from
Classical Persian ‘ki’. Such words have been so
well integrated into the linguistic system of the lan-
guage that they cannot be teased apart from the
native vocabulary items, therefore it is worthwhile
to include borrowings to infer phylogenetic signals
based on lexical data.

For handling such cases computationally, there
have been attempts to simplify the definition of
cognates, following Kondrak et al. (2003) which
states that two words in different languages are cog-
nates if they have the same meaning and present
a similarity in orthography, resulting from a pro-
posed underlying etymological relationship due to
common ancestry or borrowing. CogNet v2 (Bat-
suren et al., 2019) is curated on the basis of this
definition and therefore is a suitable choice for our
experiments.

For our experiments, we use contextual embed-
dings of cognate reflexes by studying the embed-
ding representations of pre-trained language mod-
els (PLMs): mBERT, XLLM-RoBERTa, IndicNLP,
and MuRIL. The last two models were specifically
adapted to process Indic languages. These contex-
tualized embeddings can recover more lexical rela-
tion knowledge than static embeddings, and there-
fore have a substantial amount of lexical knowledge
(Vuli¢ et al., 2020), which makes them ideal for our
study. The research questions that we pose are:

RQ1. Can word embeddings from PLMs be used
to capture phylogenetic information?

RQ2. Is considering an embedding-based repre-
sentation of cognate reflexes useful in extract-
ing signals of language-relatedness?

We conducted experiments for 9 Indic languages
representing the Indo-Aryan (Bengali, Gujarati,



Languages

Concept D Gloss Bengali  Gujarati Hindi Marathi Kannada Malayalam Tamil Telugu
n03046257 clock ghori ghadiyal  ghari  ghadyal gadiyara ghatikaram Kkattikaram gadiyaram
n00729285 lesson path - path - patha patham patam pathyamu
n07873464  pilaf polao pulav pulav pulav palav biriyani pulav pulav
n03580615 internet intaronet intarnet intarnet intarnet antarjala  inrarnerr intarnet intarnet

Table 1: Cognate reflexes for some of the selected languages in CogNet. The concepts are labeled using IDs and

transliterations for the reflexes are provided.

Hindi, Punjabi, and Marathi) and Dravidian (Kan-
nada, Malayalam, Tamil, and Telugu) language
families. We highlight that borrowings influence
language clusters, which we demonstrate by den-
drograms generated through agglomerative hierar-
chical clustering of language distances based on
cosine similarities between language pairs.

2 Related Work

There has been a significant amount of research
done in inferring phylogenetic signals through
phoneme sequence comparison in historical lin-
guistics such as Kondrak (2000), List (2014, 2016),
and List et al. (2017).

Rosa and Zabokrtsky (2015) introduce a lan-
guage similarity measure based on distributions
of coarse POS tags in the source and target POS-
tagged corpora for delexicalized parsing.

Bella et al. (2021) compute pairwise similarity
for 338 languages from CogNet (Batsuren et al.,
2019). They also stress the handicap of traditional
comparative-historical linguistic methods of using
basic vocabulary items as they do not provide in-
formation about the present state of lexicons.

3 Data and Resources

We use CogNet! version 2.0, a large-scale multi-
lingual cognate database. It contains 8.1 million
sense-tagged word pairs in 338 languages and 35
writing systems.

Table 1 provides a brief view of the data. The
concept n03046257 “clock” can be found in the
cited languages, whereas there are also concepts
such as n00729285 “lesson”. However, they are
present in languages like Gujarati and Marathi but
are not captured in CogNet. Words like “pilaf” of
Dravidian origin according to Wiktionary can have
different equivalents such as biriyani (which is of
Persian origin) in Malayalam. This again indicates
the relaxed definition of cognates used in CogNet.

"http: //cognet.ukc.disi.unitn.it

Furthermore, we also find examples where one
language uses the calque of English words such as
Kannada antarjala for “internet”.

We extract contextualized word embeddings for
cognate reflexes for every ID of concepts” from
the PLMs. The PLMs trained on huge data have
already learned a lot about language structure and
semantics, making the features they produce highly
informative. We extract word embeddings from
mBERT (Devlin et al., 2018), XLM-RoBERTa
(Conneau et al., 2019), IndicBERT (Kakwani et al.,
2020), and MuRIL (Khanuja et al., 2021). In-
dicBERT is a multilingual ALBERT (Lan et al.,
2020) model pre-trained exclusively in 12 major
Indic languages, and MuRIL is a pre-trained BERT
model in 17 Indic languages and their transliter-
ated counterparts. We limit our analysis to 9 Indic
languages, as all the selected models have been
pre-trained in these languages.

4 Experiments

The experimental setup® mainly comprises the ex-
traction of contextualized embeddings. The motiva-
tion is that these dense vector representations make
it easier to perform cross-lingual lexical similarity
calculations without language-specific normaliza-
tions like transliteration, etc. For extracting the em-
beddings from the PLMs, we tokenize the words
using the respective tokenizer of the PLMs and ex-
tract the contextual representations, i.e. we process
each word in isolation, which may not capture its
intended meaning in real language use. However,
this is not a concern for our experiments, since cog-
nate sets are initially curated based on semantic
concepts, and we assume that the PLMs would still
provide useful embeddings. We take the output of
the last hidden state and get the embedding of each
word by averaging the sub-word embeddings.

“Sometimes for a given concept there is a tuple of syn-
onyms available in the data, but for our experiments, we ran-
domly select only one of them.

3Python libraries like spaCy and scikit-learn were used for
our experiments, along with ChatGPT.
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Figure 1: The language clusters are derived from mBERT. The Glottolog-based GOLD clustering identifies two
primary groups: Indo-Aryan and Dravidian. The PAIR clustering highlights modifications in the language groupings.
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Figure 2: The Spearman’s rank correlation for all the
experimental setups for mBERT.

Our experimental design is composed of 4 differ-
ent embedding-based methods and 2 control setups:

AVG: Here, the embeddings for all the words
in a language present in CogNet were extracted
and averaged, and then the cosine similarity across
the thus obtained language embeddings were cal-
culated for the language pairs. In this method,
CogNet serves as a wordlist for the individual lan-
guages.

PAIR: Here, we considered the embeddings of
cognate reflex pairs, computing their cosine simi-
larity and averaging the values to obtain a single
similarity score for each language pair. As shown
in Table 1, some concepts lack cognate reflexes.

Therefore, for each language pair, only concepts
with available cognate reflexes were included in
the calculation. This is also true for the following
embedding-based methods.

MIN: For each word in a given language, the
most distant pair was identified based on the mini-
mum cosine similarity across all words in the other
language, without explicitly considering the corre-
sponding cognate reflex. The resulting scores were
then averaged to mitigate data sparsity.

MAX: For each word in a given language, the
closest pair was identified based on the maximum
cosine similarity across all words in the other lan-
guage, without explicitly considering the corre-
sponding cognate reflex. The final score was then
obtained by averaging across all such tuples for
language pairs.

GOLD: For comparing the thus obtained cluster-
ings or dendrograms based on embeddings, we in-
duce a phylogenetic tree for the selected languages
based on Glottolog*. The distances between the
languages are assigned based on their membership
within the same language families and subfamilies.
For example, Tamil (tam) and Hindi (hin) are as-
signed a language similarity score of 0.5 because
they belong to different families, but Tamil and
Malayalam (mal) are assigned a score of 1 as they
are both Dravidian languages. The choice of the
scores is arbitrary.

STR: We also want to compare our embedding-
based clusters with string similarity-based ones;

*https://glottolog.org/
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hence we use the lexical similarity scores® pro-
vided by Bella et al. (2021). They calculate the
cognate-based similarity between languages using
Levenshtein distance on words, with Latin translit-
erations for different scripts. A smoothing factor
prevents excessive penalization of dissimilar cog-
nates. The similarity score is normalized by the
harmonic mean of lexicon sizes to account for dif-
ferences in vocabulary size and completeness.

4.1 Results: Constructing Phylogenetic Trees
from Embeddings

The negative logarithms for the cosine similari-
ties obtained from all 4 embedding-based meth-
ods were taken to represent the language distances
and the dendrograms (See Appendix A) were con-
structed using Ward’s minimum variance® method.
Figure 1 illustrates the visualization for mBERT-
based language clusters. It shows that mBERT to a
fair extent captures phylogenetic information. For
example, all Dravidian languages Kannada (kan),
Telugu (tel), Tamil, and Malayalam are part of
the same cluster. The Indo-Aryan languages form
two exclusive groups, one with Hindi and Marathi
(mar) and the other with Bengali (ben), Gujarati
(guj), and Punjabi (pan).

4.2 Results: Correlations with Glottolog

We calculated the Spearman rank correlation for
the language distances obtained from all experi-
mental setups (See Appendix A). We find posi-
tive correlations for embedding-based methods for
mBERT with GOLD, except for MIN (Figure 2),
suggesting that mBERT is sensitive to cognates or,
in other words, it captures well the phonological
and semantic information of cognate reflexes, also
indicated by higher correlations in the case of AVG
and PAIR with GOLD. The negative correlation
of MIN with the control methods indicates that
semantically closer translation equivalents are not
ideal candidates to align with phylogenetic clusters,
whereas cognates are more suitable.

5 Discussion

Concerning our RQ1, we find that the contextual
embeddings from PLMs can be used to infer the
phylogenetic signals and especially to observe the
impact of borrowings. The use of cognates in

5http: //ukc.disi.unitn.it/index.php/lexsim/

The Ward’s linkage method aims to create clusters that
are compact and well-separated by minimizing the spread of
data points within clusters.

traditional methods builds upon the similarity of
phonemes in cognate reflexes, and PLMs do seem
to encode that information on par with the semantic
information. All of our results are based on cognate
reflexes, which serve as the prime component for
extracting such signals. The AVG and PAIR having
higher correlations with GOLD than STR, show
that cognate reflexes do enable the mapping of the
phylogenetic relations, answering our RQ?2.

6 Conclusion

This study clusters 9 Indic languages based on lex-
ical similarities using contextual embeddings of
cognate reflexes. We experiment with 4 PLMs and
apply agglomerative hierarchical clustering based
on language distances derived from different meth-
ods using cosine similarity. The resulting dendro-
grams reveal modern-day language groupings. Our
findings suggest that contextual embeddings can
effectively capture phylogenetic signals, with cog-
nates playing a crucial role in this process.

7 Limitations

Currently, the choice of languages is confined to the
language pre-trained in all the PLMs that we use.
We rely on the fact that these PLMs are efficient
enough to produce the embeddings without giving
the cognates any sentential context and that the
embedding representations extracted from the last
output layer are optimal.
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A Appendix

Since the CogNet is based on cognate reflexes for
various semantic concepts, we examine how PLMs
represent some of these reflexes (Figure 3). Addi-
tionally, we visualize the shared embedding space
of the PLMs (Figures 4, 5, 6, and 7).

To interpret these results, we consider the train-
ing data used for pre-training each model. mBERT
was trained on large Wikipedia corpora; XLM-
RoBERTa on 2.5TB of filtered CommonCrawl
data; IndicBERT on a combination of news-domain
crawls and Wikipedia; and MuRIL on Common-
Crawl, Wikipedia, and additional machine transla-
tion datasets for Indic languages. The results (Fig-
ure 8) show that only the mBERT-based setups ex-
hibit higher correlations with GOLD compared to
other models. This likely arises because Wikipedia
articles contain relatively fewer borrowed words
in Indic languages compared to CommonCrawl] or
news-domain data, where borrowed English vocab-
ulary and neologisms are more prevalent.

The dendrograms (Figures 9, 10, 11, and 12)
visually capture the synchronic clustering of lan-
guages, revealing a shift from the phylogenetic clas-
sification found in GOLD or Glottolog. This shift
can be attributed to the substantial influx of foreign
vocabulary into Indian languages, particularly from
English. At the same time, these visualizations also
reflect how PLMs structure their multilingual rep-
resentation space.
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Figure 3: The word-embeddings for the cognate reflexes encoding the meaning ‘name’ in all the 9 languages. ® are
the Dravidian languages and A are the Indo-Aryan languages. The language codes used belong to ISO 639-3. The
t-SNE plot were created using scikit-learn with perplexity of 1 and 250 iterations.
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Figure 12: The language clusters derived from XLM-RoBERTa.
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