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Abstract

Because of the compositionality of natural lan-001
guage, syntactic structure is one of the key fac-002
tors for semantic understanding. However, the003
Transformer block, which is widely used for004
obtaining the distributed representations of sen-005
tences in dialogue generation tasks, views sen-006
tences as a sequence of words and does not007
effectively learn the syntactic structure. In008
this work, we explore how to effectively in-009
corporate dependency relation knowledge that010
contains syntactic structure information into011
Transformer block and propose Dependency012
Relation Attention(DRA). Experimental results013
demonstrate that DRA can further improve014
the performance of state-of-the-art models for015
multi-turn dialogue generation.016

1 Introduction017

Due to the strong ability to capture long-term de-018

pendencies(Tang et al., 2018), many recent works019

have adopted the Transformer block(Vaswani et al.,020

2017) for dialogue generation tasks to extract con-021

text features(Su et al., 2019; Liu et al., 2020; Song022

et al., 2021). The standard Transformer block con-023

sists of a multi-head attention network and a feed-024

forward neural network followed by residual con-025

nections(He et al., 2016) and normalization. Since026

there is no recurrence and no convolution, the net-027

work simply adds the position embeddings to the028

corresponding word embeddings to make use of029

the order of sequence.030

In natural language, complex semantics are often031

expressed by combining words with certain rules.032

Prior works have achieved great success in NLP033

tasks by leveraging syntactic structure knowledge,034

such as semantic relatedness(Tai et al., 2015; Gupta035

and Zhang, 2018), sentiment analysis(Ma et al.,036

2015; Sun et al., 2019), relation extraction(Tian037

et al., 2021), and named entity recognition(Aguilar038

and Solorio, 2019; Xu et al., 2021). This demon-039

strates that syntactic structure plays an important040

Figure 1: An example of dependency parse.

role in NLP. However, the Transformer block con- 041

tains no explicit modeling of syntax, and we believe 042

that the following reasons make it difficult for the 043

Transformer block to learn syntactic structure in 044

the training of dialogue generation: (1)The Trans- 045

former encoder learns the local position informa- 046

tion that can only be effective in masked language 047

modeling(Wang and Chen, 2020). (2)The compu- 048

tation of attention weights on unrelated word pairs 049

is redundant and decreases performance. 050

To obtain better distributed representations of 051

sentences, in this paper, we propose Dependency 052

Relation Attention to incorporate dependency re- 053

lation knowledge that contains syntactic structure 054

information into the Transformer block. Specifi- 055

cally, as shown in Figure 1, we use the dependency 056

parser(Chen and Manning, 2014) in the Stanford- 057

CoreNLP toolkit(Manning et al., 2014) to obtain 058

the dependency relations of sentences before the 059

encoding process. Then, the Dependency Relation 060

Mask is generated to avoid performing attention 061

on words without dependency relations. The fu- 062

sion of information among words depends on the 063

direction specified by the dependency relation. Our 064

contributions can be summarized as follows: 065

• We propose Dependency Relation Attention, a 066

novel method of incorporating dependency re- 067

lation knowledge into the Transformer block. 068

• We demonstrate that our method can further 069

improve the performance of Transformer and 070

DialogBERT(Gu et al., 2021) in multi-turn 071

dialogue generation task by conducting exper- 072

iments on two datasets. 073
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Figure 2: Dependency Relation Mask.

2 Method074

In multi-turn dialogue generation task, given075

a piece of context containing m sentences076

U = {X1, ..., Xm} as inputs, where Xi =077

{xi,1, ..., xi,ni}, i ∈ [1,m] indicates the i-th sen-078

tence containing ni words, dialogue generation079

models map it into feature vectors and estimate080

the generation probability of the corresponding re-081

sponse Y = {y1, ..., yt}:082

p(y1, ..., yt|U) =
t∏

k=1

p(yk|y<k, U) (1)083

To obtain a better representations of context, we084

incorporate dependency relation knowledge into085

the Transformer block, which is widely used in086

recent works.087

2.1 Dependency Relation Mask088

We use the StanfordCoreNLP toolkit1 to parse the089

dependency relations and obtain a set of triples090

Ri,j = (ri,j , gi,j , di,j), j ∈ [1, ni] for each sen-091

tence, where ri,j , gi,j , and di,j represent the name092

of the relation, the index of the governor, and the093

index of the dependent(the j-th word in the i-th094

sentence) respectively. For the sentence in Figure095

1, here is the triples R returned from the parser:
•(nsubj, 3, 1) •(aux, 3, 2) •(ROOT, 0, 3)

•(mark, 5, 4) •(xcomp, 3, 5) •(det, 8, 6)
•(compound, 8, 7) •(obj, 5, 8) •(punct, 3, 9)096
The indexes in dependency relation triples E =097

{(g1, d1), ..., (gn, dn)} are used to generate the De-098

pendency Relation Mask M ∈ R(n+1)×(n+1). Fig-099

ure 2 shows an example:100

Mu,v =


0, u = 0

0, u = v

0, (u, v) ∈ E

−∞, otherwise

(2)101

1https://nlp.stanford.edu/software/
nndep.html

Figure 3: Illustration of applying DRA to standard
Transformer encoder.

2.2 Dependency Relation Attention 102

The main idea of our proposed method is to use 103

Dependency Relation Attention(DRA) to model 104

the relationships between words instead of position 105

embeddings. Figure 3 is an illustration of applying 106

Dependency Relation Attention to a standard Trans- 107

former encoder. Specifically, for the l-th layer of 108

the Transformer block in the encoding process, the 109

hidden states of words W l ∈ Rn×dhidden are lin- 110

early mapped to three subspaces in different heads 111

of multi-head attention network: Ql ∈ Rn×dhead , 112

K l ∈ Rn×dhead and V l ∈ Rn×dhead . The atten- 113

tion score matrix Sl ∈ Rn×n, which indicates the 114

strength of relationships between words, is calcu- 115

lated by: 116

Sl =
QlK lT

√
dhead

(3) 117

Then, the attention scores of unrelated word pairs 118

are masked: 119

Sl
masked = Sl +M (4) 120

The hidden states of words W are updated based 121

on the dependency relations: 122

Al
masked = softmax(Sl

masked)

Ol,i = Al,i
maskedV

l,i

Ol = concat(Ol,1, ..., Ol,nhead)

W l+1 = W l +Ol

(5) 123

3 Experiments 124

Our method aims to further enhance the semantic 125

understanding of the Transformer encoder. It can 126

be applied to models that use Transformer blocks 127

to map context into feature vectors. In this section, 128

we explore whether our method is effective. 129
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Model
DailyDialog EmpatheticDialogues

PPL BLEU-2 Dist-2 PPL BLEU-2 Dist-2
HRED 37.005 17.865 2.180 45.399 13.741 2.037
HRAN 28.411 18.359 8.073 40.901 19.002 4.355
ReCoSa 20.799 21.354 19.137 35.289 19.638 8.878

Transformer 19.168 19.314 18.317 33.052 18.643 8.222
Transformer+DRA 18.682 20.822 19.358 32.209 20.488 8.503

DialogBERT 20.766 18.008 16.370 36.325 19.404 6.356
DialogBERT+DRA 19.279 21.744 19.519 33.386 21.247 8.687

Table 1: Automatic evaluation results on DailyDialog and EmpatheticDialogues. The best results are in bold.

3.1 Settings130

3.1.1 Datasets131

In our experiment, we use two public dialogue132

datasets to verify the effectiveness of our method.133

One is DailyDialog(Li et al., 2017), a dataset de-134

veloped by crawling the raw data from websites135

that serve English learners. It covers various top-136

ics in our daily life and contains 11,118, 1000137

and 1000 dialogues for training, validation and138

testing, respectively. The other is EmpatheticDia-139

logues(Rashkin et al., 2019), a dataset grounded in140

emotional situations. It contains 19,533, 2,770 and141

2,547 dialogues for training, validation and testing,142

respectively. StanfordCoreNLP toolkit is used to143

tokenize sentences. Words with word frequencies144

less than 3 are replaced by "[UNK]". The length of145

dialogue turns and the sentence length are limited146

to 4 and 50, respectively.147

3.1.2 Compared Methods148

We apply DRA to Transformer(Vaswani et al.,149

2017) and DialogBERT(Gu et al., 2021), and com-150

pare the performance before and after the modifica-151

tion. In addition, the following methods are com-152

pared: HRED(Serban et al., 2016), HRAN(Xing153

et al., 2018), and ReCoSa(Zhang et al., 2019).154

We set the hidden sizes of all models to 768.155

The number of Transformer layers is set to 3.156

Each Transformer block contains 16 attention157

heads. We initialize the word embedding lay-158

ers with GloVe 300-dimensional word embed-159

dings(Pennington et al., 2014). The batch size is 40.160

All models are trained by the AdamW(Loshchilov161

and Hutter, 2018) optimizer with an initial learning162

rate of 5e-4.163

3.1.3 Evaluation Metrics164

Automatic evaluation. PPL, BLEU(Papineni et al.,165

Model +2 +1 +0 Avg.
HRED 3.7 45.3 51.0 0.53
HRAN 26.7 62.7 10.7 1.16
ReCoSa 37.7 52.3 10.0 1.28

Transformer 40.3 56.0 3.7 1.37
Transformer+DRA 45.7 48.3 6.0 1.40

DialogBERT 24.3 69.7 6.0 1.18
DialogBERT+DRA 46.3 49.0 4.7 1.42

Table 2: Human evaluation results. (in %)

2002) and Distinct(Li et al., 2016) are employed to 166

reflect the degree of fluency, relevance and diver- 167

sity of generated responses respectively. They are 168

widely used in dialog generation tasks(Song et al., 169

2020; Liang et al., 2021). 170

Human evaluation. We randomly select 100 con- 171

texts from the DailyDialog test set and generate 172

responses with models trained on DailyDialog. 173

Based on grammatical correctness and contextual 174

coherence, three annotators are asked to score the 175

generated responses independently with the fol- 176

lowing grading scale: "+0"(response is not fluent), 177

"+1"(response is fluent but irrelevant), and "+2"(re- 178

sponse is fluent and relevant). 179

3.2 Experimental Results 180

Table 1 gives the automatic evaluation results. 181

For both datasets, Transformer+DRA and Dialog- 182

BERT+DRA achieved the best performance on 183

PPL and BLEU-2 respectively. DialogBERT+DRA 184

achieved comparable Dist-2 scores in contrast to 185

ReCoSa. It is worth noting that DRA improved 186

the performance of Transformer and DialogBERT 187

on all automatic metrics, which indicates that our 188

method can help these two models generate more 189

fluent, relevant, and diverse responses. 190

The results of human evaluation are shown in 191
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Speaker1: My niece is super talented lately.
Speaker2: What is her best talent?
Speaker1: Art, she was accepted into a special program for high school.

Gold Resp: Does she draw or paint? How many students are in this program?
HRED: That’s great!
HRAN: I’m sure he is going to be a great time.

ReCoSa: That’s really great. What kind of her does she do?
Transformer: Wow, that is a pretty cool name.

Transformer+DRA: Oh wow! That is impressive. I bet she is proud of her.
DialogBERT: That’s great. What kind of job?

DialogBERT+DRA: Wow, that is impressive. You must be so proud.

Table 3: Example responses from different models.

(a) Standard Transformer. (b) Transformer+DRA.

Figure 4: The average attention weights of the last layer of Transformer encoder in different models.

Table 2. The Fleiss’ kappa score(Fleiss, 1971) for192

assessing agreement among annotators was 0.510,193

which can be interpreted as “moderate agreement”.194

This shows that DRA can enhance the semantic195

understanding of Transformer block and help mod-196

els generate more relevant responses, especially for197

the hierarchical Transformer encoder architecture.198

3.3 Discussions199

Table 3 is an example of a generated dialogue that200

demonstrates that Dependency Relation Attention201

can help Transformer and DialogBERT generate202

better responses.203

To further explore why our method can improve204

the performance of the Transformer encoder, we vi-205

sualized the attention weights of the last layer of the206

Transformer encoder in different models. Taking207

the sentence in Figure 1 as input, Figure 4 shows208

the mean value of attention weights of 16 heads in209

standard Transformer and Transformer+DRA. We210

can see that, in standard Transformer, the Trans-211

former block assigns very similar weights to each212

part of the sentence when updating the hidden state213

of different words. This means that standard Trans-214

former encoder can find the key parts of the sen- 215

tence, but does not learn the relationships between 216

words. In Transformer+DRA, attention weights are 217

assigned to appropriate parts for each word. For 218

example, when updating the hidden state of "re- 219

verse", the Transformer block pays more attention 220

to the "room" that has merged the information of 221

"a" and "hotel". In other words, DRA makes it 222

easier for Transformer encoder to understand the 223

relationships between words and generate more 224

meaningful distributed representations. 225

4 Conclusion and Future Work 226

In this paper, we propose Dependency Relation At- 227

tention(DRA) to model the relationships between 228

words instead of position embeddings in the Trans- 229

former encoder. Experimental results show that 230

our method can further improve the performance 231

of models that use Transformer block to obtain the 232

distributed representations of context in multi-turn 233

dialogue generation task. In the future, we will fur- 234

ther explore the methods of modeling language and 235

study the possibility of improving the performance 236

of pretrained language models with DRA. 237
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