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ABSTRACT

The original version of the Kolmogorov-Arnold representation theorem states
that for any continuous function f : [0, 1]d → R, there exist (d + 1)(2d + 1)
univariate continuous functions such that f can be expressed as product and linear
combinations of them. So one can use this representation to find the optimum size
of a neural network to approximate f . Now the important question is to check
how does the size of the neural network depends on d. It is proved that function
space generated by special class of activation function called EUAF (elementary
universal activation function), with 36d(2d+ 1) width is dense in C([a, b]d) with
11 hidden layers. In this paper, we provide classes of d-variate functions for
which the optimized neural networks will have O(d) number of neurons with
elementary super expressive activation function defined by Yarotsky. We provide a
new construction of neural network of O(d) neuron size to approximate d-variate
continuous functions of certain classes. We also prove that the size O(d) is optimal
in those cases.

1 INTRODUCTION

The study of the universal approximation property (UAP) of neural networks has a long-standing
history in deep learning. A simple feed forward network is defined by its maximum number of
neurons in a hidden layer (called width), number of hidden layers (depth), activation functions used
on the neurons on the hidden layers etc. The study can be subdivided in to different parts, where
a neural network can have arbitrary width, arbitrary depth, bounded width, bounded depth with
different classes of activation functions. The questions that arise in this study are: for which of
the property above for a feed forward network, space of continuous functions on a compact set or
space of functions on Rn equipped with various Lp norms (where 1 ≤ p ≤ ∞) can be arbitrarily
approximated by the feed forward network with said property.

1.1 HISTORY

Cybenko (1989) proved that a feed forward network with arbitrary width, bounded depth and
sigmoidal activation functions can arbitrarily approximate continuous functions on a compact set
in sup norm. When considering the case where the feed forward network has bounded width and
arbitrary depth, Lu et al. (2017) proved that networks of width n+ 4 with ReLU activation functions
can approximate any Lebesgue integrable function on n-dimensional input space with respect to L1

distance if network depth is allowed to grow. Maiorov and Pinkus (1999) has proved the existence of
a network with bounded depth and width that can approximate a continuous function on [0, 1]d within
arbitrary error in euclidean norm. All of these results provides existence on such neural networks.
There are other results Guliyev and Ismailov (2018a;b) that yields an algorithm on how to choose the
weights and activation functions on the neural network to approximate the various spaces of functions.
But this problem is difficult due to curse of dimensionality issues. Further research, Hannin and
Sellke; Kidger and Lyons (2020); Park et al. (2021), improved the minimum width bound for ReLU
networks. Particularly, Park et al. (2021) revealed that the minimum width is wmin = max(dx+1, dy)
for the Lp(Rdx ,Rdy ) UAP of ReLU networks and for the C(K,Rdy ) UAP of ReLU+STEP networks,
where K is a compact domain in Rdx .
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1.2 TABLE

The table below gives summary of known minimum width neural network that has universal approxi-
mation properties.

Functions Activations minimum and optimal width References
C(K,R) RELU wmin = dx + 1 Hannin and Sellke

Lp(Rdx ,Rdy ) RELU wmin = max{dx + 1, dy} Park et al. (2021)
Lp(K,Rdy ) Conti. nonpoly wmin ≤ max{dx + 2, dy + 1} Park et al. (2021)
Lp(K,Rdy ) Leaky-ReLU wmin = max{dx, dy, 2} Cai (2023)
Lp(K,Rdy ) Leaky-ReLU+ABS wmin = max{dx, dy} Cai (2023)
C(K,Rd

y) Arbitrary wmin ≥ max{dx, dy} Cai (2023)
C(K,Rd

y) ReLU+Floor wmin = max{dx, dy, 2} Cai (2023)

1.3 PROBLEM AND CONTRIBUTION

1. We provide a theoretical construction of a neural network of width 24d and bounded depth that
can approximate any d− variate continuous function on [0, 1]d within arbitrary error in Euclidean
norm. So the curse of dimensionality is allayed by our result.

2. We also provide some classes of d− variate continuous functions on [0, 1]d so that to approximate
these classes the width 24d of the feed forward network constructed above is minimum.

1.4 RELATED WORK

One of the ways to obtain the width of the feed forward network that can approximate any d− variate
continuous functions on a compact set is to apply the Kolmogorov-Arnold representation theorem.
The original version of the Kolmogorov-Arnold Schmidt-Hieber (2021) representation theorem states
that for any continuous function f : [0, 1]d → R, there exist univariate continuous functions gj , hi,j
such that:

f(x1, x2, · · · , xd) =
2d∑
j=0

gj

d∑
i=0

hi,j .

So the expression above implies that we would need a neural network with at most O((2d+1)(d+1))
neurons with some special class of activation functions to approximate a d variate continuous function
on d-dimensional unit cube. It was shown in Yarotsky (2021) that, for an arbitrary ϵ > 0 and any
function f in C([0, 1]d), there exists a network of size only depending on d constructed with multiple
activation functions either (sin and arcsin ) or (a non-polynomial analytic function) to approximate f
within an error ϵ. The next important question is to check how the neural network size depends on d.
To approximate the d variate continuous functions as above uniformly, Shen et al. (2022) discovered
a special class of activation functions called EUAF (elementary universal activation function). Shen
et al. (2022) proved that the function space generated by EUAF networks with width 36d(2d+ 1),
is dense in C([a, b]d) with 11 hidden layers. Their idea was to prove the above estimation in two
steps. In the first step they prove it for one variable and then in the second step they use above
Kolmogorov-Arnold representation to come up with precise number of width and depth. In this paper,
we improve the number of the neurons a network must have to approximate a d -variate continuous
function with bounded depth. Now to get a network with less number of neurons, we can use the
theory of space-filling curve. The space filling curve is a continuous surjective function,

ℓ : [0, 1] → [0, 1]d.

Then a d− variate continuous function f can be represented as (f ◦ℓ)◦ℓ−1. Then f can be represented
as g ◦ ℓ−1, where ℓ−1 is a function from [0, 1]d to [0, 1] and g = f ◦ ℓ. So, ℓ−1 is a d−variate function
and g is a one-variate function. So the composition of g and ℓ−1 would possibly need O(d) number
of neurons with a network with 2 hidden layers. But due to Netto’s theorem Kupers we can not
possibly have a ℓ−1 which is an injective continuous function. Therefore, to get around this obstacle,
Schmidt-Hieber (2021) discussed a way to replace the inside function as cantor type function. Now
in this method one does not require f to be a continuous function, and the inside function which is
a cantor type does not need to be a continuous function rather a monotone additive function. The
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image of the monotone functions is defined on a Cantor set, C and the outside function is defined
on the Cantor set. Then if f is continuous, then the outside function is also continuous. And to
approximate f uniformly, one can approximate the inside function uniformly by continuous function
by a deep neural network. The activation functions that can be used for the corresponding deep
neural network are Linear activation function and 1x≥1/2. And one can use combination of RELU
function to approximate 1x≥1/2 as activation function on the deep neural network. Therefore, the
above approximation of d− variate continuous function can be approximated efficiently by a deep
RELU network. Hannin and Sellke proved the following question regarding parameters needed to
approximate continuous function with deep RELU networks:for a fixed d ≥ 1, what is the minimal
width w so that neural nets with ReLU activations, input dimension d, hidden layer widths at most w,
and arbitrary depth can approximate any continuous, real-valued function of d variables arbitrarily
well? It turns out that this minimal width is exactly equal to d+1. Now another important direction to
allay the curse of dimensionality is to use advanced activation functions. Yarotsky and Zhevnerchuk
(2020) showed that (sin,ReLU)-activated neural networks with W parameters can approximate
Lipschitz continuous functions with an asymptotic approximation error O(e−cd

√
W ), where cd is

a constant depending on d, the input dimension of the function. Shen et al. (2021a) showed that
Lipschitz continuous functions can be approximated by a (Floor,ReLU)-activated neural networks
with width O(N) and depth O(L) within a error of O(

√
dN−

√
L).

1.5 ORGANIZATION

Our paper is formulated by the following: in section 2 we derive the uniform approximation of
any continuous d−variate function on [0, 1]d by a neural network using a composition of functions
from the set of super expressive activation functions, using the decomposition of such d−variate
continuous function by cantor type functions. In section 3 we give examples of continuous functions
such that width d is minimum for the above neural network to uniformly approximate these continuous
functions. In theorem 2 we can use the super expressive functions defined in Yarotsky (2021), instead
of using EUAF defined in Shen et al. (2022) to minimize the total number of parameters in the
architecture (not the order). As in (Yarotsky, 2021, Lemma 3) the two variable function f(x, y) = xy
is approximated by a network of width 6 and depth 2, on the other hand by using the EUAF the
network needed the width 9 and depth 2 (Shen et al., 2022, Lemma 16). Approximation of this
multiplier function is an important step to prove the approximation of one variable continuous
function using set of activation functions.

2 MAIN RESULTS

First we collect the definitions of super-expressive activation functions and EUAF.

Super expressive activation function: Yarotsky (2021) We call a finite family A of univariate activation
functions super-expressive for dimension d if there exists a fixed d-input network architecture with
each hidden neuron equipped with some fixed activation from the family A, so that any function
f ∈ C([0, 1]d) can be approximated on [0, 1]d with any accuracy in the uniform norm ||∞ by such
a network, by adjusting the network weights. We call a family A simply super-expressive if it is
super-expressive for all d = 1, 2, ... We refer to respective architectures as super-expressive for A.
Examples of this type of families are A1 = {σ, ⌊.⌋}, A2 = {sin, arcsin} where σ is a real analytic
and non-polynomial function defined on (a, b) ∈ R etc.

EAUF: Shen et al. (2022) A function ρ : R → R is said to be a universal activation function (UAF) if
the function space generated by ρ-activated networks with Cρ,d neurons is dense in C([0, 1]d), where
Cρ,d is a constant determined by ρ and d. An example of this type of family is A3 = {σ1, σ2}, where
σ1 is a continuous triangular wave function with period 2 i.e.

σ1 =

∣∣∣∣x− 2⌊x+ 1

2
⌋
∣∣∣∣, ∀x ∈ R.

And σ2 is the soft sign activation function i.e.

σ2 =
x

|x|+ 1
.

It is important to note that most of all standard activation functions (except for sin and arcsin) do not
belong to the super-expressive activation family of functions (Yarotsky, 2021, Theorem 5).
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2.1 UNIFORM APPROXIMATION

We have the following theorem of Schmidt-Hieber (2021).

Theorem 1. Let F ∈ C[0, 1]d, then there exists a continuous function g : C → R, where C is the
cantor set and a monotone function ϕ : [0, 1] → C such that:

F (x1, x2, . . . xd) = g(3

d∑
j=1

3−jϕ(xj)),

where

ϕ(x) =

∞∑
i=1

2axi
31+d(i−1)

, x = [0.ax1a
x
2 . . . ]2.

Now let

ϕk =

k∑
i=1

2axi
31+d(i−1)

,

then it can be shown that ϕk is a continuous function on [0, 1]. Here g is defined on the cantor set C,
which is a closed subspace of the normal space [0, 1] so we can extend g to a continuous function
G on [0, 1] using Tietze extension such that G|C = g. Therefore, using Yarotsky’s result we can
approximate g with a function from the set of super expressive activation functions, say N1 with an
arbitrary approximation error, for this we will need a neural network with width 24. Similarly, let
ϕk be approximated by a function N2 from the set of super expressive activation functions with an
arbitrary approximation error. Therefore, we can make the following claim:

Theorem 2. The function F ∈ C[0, 1]d can be approximated with an arbitrary approximation error
by the following composition:

N1(3

d∑
j=1

3−jN2(xj))

Proof. It will be enough for us to prove that for any ϵ > 0 there exists functions N1, N2 belonging to
the class of super expressive activation functions such that:∣∣∣∣∣∣F (x1, x2, . . . xd)−N1(3

d∑
j=1

3−jN2(xj))

∣∣∣∣∣∣ < ϵ.

Using the triangle inequality we have the following:∣∣∣∣∣∣F (x1, x2, . . . xd)−N1(3

d∑
j=1

3−jN2(xj))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣g(3
d∑

j=1

3−jϕ(xj))− g(3

d∑
j=1

3−jϕk(xj)) + g(3

d∑
j=1

3−jϕk(xj)−N1(3

d∑
j=1

3−jN2(xj))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣g(3
d∑

j=1

3−jϕ(xj))− g(3

d∑
j=1

3−jϕk(xj))

∣∣∣∣∣∣+
∣∣∣∣∣∣g(3

d∑
j=1

3−jϕk(xj))−N1(3

d∑
j=1

3−jN2(xj))

∣∣∣∣∣∣ .
The last step is due to triangle inequality. Now we would like to invoke the uniform continuity of
g, as g is continuous on compact set C. Therefore, for every ϵ > 0, there exists a δ > 0 such that
for all z1, z2 ∈ C, satisfying |z1 − z2| < δ implies |f(z1) − f(z2)| < ϵ. Now we approximate the
following:

3

d∑
j=1

3−j |ϕ(xj)− ϕk(xj)| = 3

d∑
j=1

3−j

( ∞∑
i=k+1

2a
xj

i

31+d(i−1)

)
.
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Then the right-hand side of the above expression is bounded by (as xj ∈ [0, 1], for all j)

3

d∑
j=1

3−j

( ∞∑
i=k+1

2

31+d(i−1)

)
.

Now, using the geometric sum we get that the expression above is bounded above by

2

d∑
j=1

3−j 1

3kd
3

2
.

We again apply the infinite geometric series to get the following expression as an upper bound

1

2

1

3dk−1
.

So for a given ϵ > 0 we can always find a k ∈ N such that 1
2

1
3dk−1 < δ, so that∣∣∣∣∣∣g(3

d∑
j=1

3−jϕ(xj))− g(3

d∑
j=1

3−jϕk(xj))

∣∣∣∣∣∣ < ϵ

3
.

Now let us investigate the second summand in the above expression. Again using the triangle
inequality we get: ∣∣∣∣∣∣g(3

d∑
j=1

3−jϕk(xj))−N1(3

d∑
j=1

3−jN2(xj))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣g(3
d∑

j=1

3−jϕk(xj))− g(3

d∑
j=1

3−jN2(xj))

∣∣∣∣∣∣+
∣∣∣∣∣∣g(3

d∑
j=1

3−jN2(xj))−N1(3

d∑
j=1

3−jN2(xj))

∣∣∣∣∣∣
Now for the first summand in the above inequality, we can use the result of Shen et al. (2022) to
choose N2 (with the same δ > 0 we used in the previous inequality), such that:

|ϕk(xj)−N2(xj)| <
δ

3
.

Therefor summing over all j of the above expression, we get:

3

d∑
j=1

3−j |ϕk(xj)−N2(xj)| <
d∑

j=1

3−jδ < δ.

Hence the first summand in the above triangle inequality is less than ϵ
3 , using the uniform continuity

of g.
The second summand of the above triangle inequality is less than ϵ

3 , using the result of Shen et al.
(2022). Therefore, we arrive at the following approximation:∣∣∣∣∣∣F (x1, x2, . . . xd)−N1(3

d∑
j=1

3−jN2(xj))

∣∣∣∣∣∣ < ϵ.

2.2 MAIN THEOREM

Therefore, using the methods of Shen et al. (2022) on section 5 we have the following theorem:
Theorem 3. Let F ∈ C[0, 1]d, then F can be approximated within arbitrary error by a function Ψ
which is generated by 24d width neural network with a combination of super expressive activation
functions and EUAF.

Proof. To prove the above theorem we follow the methods of Shen et al. (2022). The key ideas are as
follows:
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• First prove the theorem for the one-dimensional case. Suppose that an activation function ζ
has a point x0 where the second derivative d2

dx2 (ζ)(x0) exists and is nonzero. e.g. we can
take ζ = sin(x) and x0 = πk for k some integer. This type of activation function is an
example of an elementary super expressive activation function defined by Yarotsky (2021).
To prove this one-dimensional case we invoke the following results:

– (Yarotsky, 2021, Lemma 3) For any M > 0, there exists a function ϕ generated by a
network with activation function ζ and width 6, depth 2 such that

ϕ(x, y) = xy, ∀x, y ∈ [−M,M ].

– (Shen et al., 2022, Theorem 14) Let f ∈ C([0, 1]) be a continuous function. Given any
ϵ > 0, if K is a positive integer satisfying

|f(x1 − f(x2))| < ϵ/2 ∀x1, x2 ∈ [0, 1] with |x1 − x2| < 1/K,

then there exists a function ϕ generated by an EUAF network with width 2 and depth 3
such that ∥ϕ∥L∞([0,1]) ≤ ∥f∥L∞([0,1]) + 1 and

|ϕ(x)− f(x)| < ϵ, ∀x ∈
2K⋃
k=0

[
2k

2K
,
2k + 1

2K
].

Now suppose K ≥ 10. Let f be a uniform continuous function defined on [−1, 1] Then we
can define fi = f(x− i/4K) for all i = 1, 2, 3, 4 and for all x ∈ [0, 1]. Then we apply the
second result above to the functions fi. Therefore, for each i, a function ϕi is generated
by an EUAF network with width 2 and depth 3. We now construct another function ψ as
defined by (Shen et al., 2022, pg. 40) such that our desired Ψ can be written as :

Ψ(x) =

4∑
i=1

ϕi(x+ i/4K)ψ(2Kx+ i/2) ∀x ∈ [0, 9/10].

Therefore as the inside function in the sum above is a product function, we invoke the first
result on each i. Hence to construct Ψ we need a 6× 4 = 24 width neural network with a
combination of super-expressive activation functions and EUAf. Now as [0, 9/10] can be
mapped bijectively to [0, 1] we have the desired proof of the theorem.

• Now we invoke Theorem 1 to extend the one-dimensional case to d-dimensional case.

3 COLLECTION OF FUNCTIONS FOR WHICH WIDTH-d IS OPTIMUM

Next, we show that the number of neurons d is optimum. So we will try to construct functions for
which we need at least d as suggested by the above analysis.
Theorem 4. Let F : [0, 1]d → R be a function which is d−linear combination of sin and, cos i.e.

F (x1, x2, · · ·xd) =
d∑

k=1

CkFk(xk),

where Fk(xk) = sinxk or cosxk. Then we need a neural network of width at least d to approximate
this function arbitrarily within ϵ > 0.

Proof. We will first prove it for d = 2, then we will prove it for the generel case.

• For d=2, Let F (x, y) = cosx + sin y. Suppose for any ϵ > 0, there exists w1, w2 ∈
R and g a continuous (probably composition of functions from EUAF) such that
|F (x, y)− g(w1x+ w2y)| < ϵ. Let x = y = 0, then |1− g(0)| < ϵ. Now assume
y = −w1x

w2
when w2 ̸= 0, then g(0) = cosx − sin w1x

w2
, which may not be close to 1,

not for all x ∈ R. And when w2 = 0, we can choose y such that, sin(y) > 2ϵ so that
|1 + sin(y)− g(0)| > ϵ. If w1 = w2 = w, then we get that |1− g(πw/2)| < ϵ and
|g(πw/2)| < ϵ. Which is contradictory as it will mean 1− ϵ < g(πw/2) < ϵ, for all ϵ > 0.
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• For d = 3. Let F (x, y, z) = sinx + sin y + sin z. Claim is, we can not approximate
F (x, y, z) with a width 2 neural network with σ1, σ2 being the activation function. Let the
function represented by the neural network be

a′σ2(α) + b′σ2(β),

where,
α = aσ1(w1x+ w2y + w3z) + bσ1(w

′

1x+ w
′

2y + w
′

3z)

and
β = a1σ1(w1x+ w2y + w3z) + b1σ1(w

′

1x+ w
′

2y + w
′

3z).

Now without loss of generality we can assume that the function above can be written as
g(h(w1x + w2y + w3z), h(w

′

1x + w
′

2y + w
′

3z)) for some suitable g, h, where h = σ1.
Moreover, we can assume that h(0) = 0 Suppose on the contrary we assume that for any
ϵ > 0 we have :∣∣∣F (x, y, z)− g(h(w1x+ w2y + w3z), h(w

′

1x+ w
′

2y + w
′

3z))
∣∣∣ < ϵ,

for some w1, w2, w3, w
′

1, w
′

2, w
′

3 ∈ R. We know that F (0, 0, 0) = 0. Therefore, at origin
we have that

|g(0, 0)| < ϵ

Now the following system :

w1x+ w2y + w3z = 0, w
′

1x+ w
′

2y + w
′

3z = 0,

has infinitely many solutions. We can think of z as free variable. Therefore, the solution
vector would look like: [

(w3w
′
1 − w′

3w1)z

(w′
1w2 − w1w′

2)
,
(w3w

′
2 − w′

3w2)z

(w′
2w1 − w2w′

1)
, z

]
Now when (w′

1w2 − w1w
′
2) = 0, then we have that w1

w′
1
= w2

w′
2

. In that case, we will have

two free variables. For some fixed, w1, w2, w3, w
′

1, w
′

2, w
′

3 we can choose the value of the
free variable such that |sin(x) + sin(y) + sin(z)− g(0, 0)| > ϵ. Therefore we arrive at the
contradiction.

• we can extend the above example to d variable function
∑d

i=1 sin(xi). Suppose, on the
contrary, we can approximate this function arbitrarily with error ϵ > 0 by

f

(
g(

d−1∑
j=1

w1jxj), g(

d−1∑
j=1

w2jxj), · · · , g(
d−1∑
j=1

wd−1jxj)

)
,

for some fixed wij , depending on ϵ. We can assume without loss of generality that g(0) = 0.
Therefore, at the origin, we have f(0, 0, · · · , 0) < ϵ Again the solution space of the system:[

w11 w12 · · ·w1d

· · ·
wd−11 wd−12 · · ·wd−1d

]x1x2· · ·
xd

 = 0,

will have at least one dimension as a vector space. So we can choose the values of the free
variables just like the previous examples such that :∣∣∣∣∣

d∑
i=1

sin(xi)− f(0, 0, · · · , 0)

∣∣∣∣∣ > ϵ.

Therefore the functions for which we will need at least d neurons could have the following form
d∑

i=1

Fi(xi), where Fi’s are continuous functions in one variable and none of them are linear.
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Theorem 5. Let F be a d−variate continuous real valued function on [0, 1]d, such that it has the
following form:

F (x1, x2, · · · , xd) = f(x1, x2, · · · , xd)(a1x1 + a2x2 + · · · adxd),
where f is a non-linear, real valued continuous function on [0, 1]d such that it is zero whenever at
least one of xi = 0 and ai’s are real numbers. Then we need a neural network of width at least d to
approximate this function arbitrarily within ϵ > 0.

Proof. Let us assume by contradiction that the above function F is approximated by a width d− 1
neural network arbitrarily within error ϵ > 0. Without loss of generality, let the following function
represent the neural network for suitable g and h:

g

(
h(

d−1∑
j=1

w1jxj), h(

d−1∑
j=1

w2jxj), · · · , h(
d−1∑
j=1

wd−1jxj)

)
,

for some fixed wij depending on ϵ. Moreover, we can assume that g(0) = 0. Therefore, at the origin
we will have |g(0, 0, · · · , 0)| < ϵ. Now let f(x1, x2, · · · , xd) = 0, whenever xk = 0, for some fixed
1 ≤ k ≤ d. The solution space of the homogeneous system:[

w11 w12 · · ·w1d

· · ·
wd−11 wd−12 · · ·wd−1d

]x1x2· · ·
xd

 = 0,

will have at least one dimension as a vector space, corresponding to the free variables. If xk is one of
the free variables, then we can always choose the values of the free variables along with xk ̸= 0 such
that

|F (x1, x2, · · · , xd)− g(0, 0, · · · 0)| > ϵ.

If xk is not one of the free variables, then xk = 0 can be written as a linear combination of the free
variables. If xk = 0, then F (x1, x2, · · · , xk−1, 0, xk+1, · · ·xd) = 0. Now we can always choose the
values of the free variables such that :

|g
(
h(

d−1∑
j=1

w1jxj), h(

d−1∑
j=1

w2jxj), · · · , h(
d−1∑
j=1

wd−1jxj)

)
| > ϵ,

hence we arrive at the contradiction.

Corollary 5.1. The homogeneous polynomials of degree k of the following form:

d∏
i=1

xki
i (a1x1 + a2x2 + · · · adxd),

where
d∑

i=1

ki + 1 = k can not be approximated by arbitrarily within ϵ > 0 by a neural network of

width < d.
Theorem 6. The homogeneous polynomials of even degree of the following form:

F (x1, x2, · · · , xd) =
d∑

i=1

x2mi ,

can not be approximated by arbitrarily within ϵ > 0 by a neural network of width < d.

Proof. We can follow the same method as above. Therefore, we can choose at least one free variable
xj such that :

d∑
i=1

a2mi x2mj > ϵ.
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