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Abstract
Recently, incorporating knowledge from pre-
trained language models (PLMs) into decision
transformers (DTs) has generated significant at-
tention in offline reinforcement learning (RL).
These PLMs perform well in RL tasks, raising
an intriguing question: what kind of knowledge
from PLMs has been transferred to RL to achieve
such good results? This work first dives into this
problem by analyzing each head quantitatively
and points out Markov head, a crucial component
that exists in the attention heads of PLMs. It leads
to extreme attention on the last-input token and
performs well only in short-term environments.
Furthermore, we prove that this extreme atten-
tion cannot be changed by re-training embedding
layer or fine-tuning. Inspired by our analysis, we
propose a general method GPT2-DTMA, which
equips a pretrained DT with Mixture of Attention
(MoA), to accommodate diverse attention require-
ments during fine-tuning. Extensive experiments
corroborate our theorems and demonstrate the ef-
fectiveness of GPT2-DTMA: it achieves compara-
ble performance in short-term environments while
significantly narrowing the performance gap in
long-term environments.

1. Introduction
Transformers (Vaswani et al., 2017) achieve significant im-
provements in natural language processing (Devlin et al.,
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2018), computer vision (Yuan et al., 2021) and AI4Science
(Wang et al., 2024) tasks, for it encodes the input data into
powerful features via the attention mechanism. Applying
transformers to the field of reinforcement learning (RL), De-
cision Transformer (DT) (Chen et al., 2021) which models
the offline RL problem (Levine et al., 2020) to a return-
conditional sequence-to-sequence problem, has demon-
strated superior performance in solving different types of
RL problems (Correia & Alexandre, 2023; Mezghani et al.,
2023; Badrinath et al., 2024; Janner et al., 2021).

Recently, using pretrained language models (PLMs) and
fine-tuning them for specific tasks (Kenton & Toutanova,
2019; Raffel et al., 2020) has gradually replaced training
Transformers from scratch. Pretraining phase enables PLMs
to gain rich universal language representations transferable
to various downstream tasks (Xiong et al., 2024). Remark-
ably, Noorbakhsh et al. (2021); Goel et al. (2022) showed
that PLMs can effectively tackle tasks beyond NLP. Inspired
by the powerful knowledge transfer capabilities of PLMs,
Reid et al. (2022); Shi et al. (2024) attempt to transfer NLP
knowledge to RL domain, indicating that PLMs can en-
hance the performance of downstream offline RL tasks as
well. We collectively refer to the DT variant models, which
are initialized with PLMs, as GPT2-DT.

To understand this surprising efficacy when transferring
knowledge from PLMs to offline RL, Shi et al. (2024) con-
cluded that sequential modeling ability is the key to un-
leashing the potential of PLMs for RL tasks. Furthermore,
Takagi (2022) proposes a hypothesis that pretraining with
text is likely to make PLMs get context-like information
and utilize it to solve the downstream task. However, it is
still unclear that why these key features are essential for
RL tasks and how to acquire these knowledge through pre-
training. To bring clarity to PLMs in offline RL and provide
more insightful guidance on how to better train and adapt
transformer-based models for RL tasks, we dive into the
mechanism of PLMs and do more quantitative analysis on
the direct transferred parameters to RL. Based on our quan-
titative analysis, we first propose the definition of Markov
heads, which inherit from PLMs and are fundamental for
RL tasks and then adapt PLMs to all kinds of RL tasks by
flexibly utilizing the properties of Markov heads.
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Figure 1. We compare the attention score distribution of DT and GPT2-DT during the process of fine-tuning within fewer iterations and
more iterations under Hopper-medium environment. More comparisons of the attention score distribution on Walker2d-medium and
Halfcheetah-medium can be found in Appendix B.

In this work, we investigate both short-term and long-term
planning ability (Shang et al., 2022) of PLMs. To be more
specific, we define short-term environments as where the
actions prediction recalls a small amount of contextual in-
formation from most recent timesteps (e.g. MuJoCo Loco-
motion), and long-term environments that require the agent
to extract useful information from the whole previous con-
text (e.g. PointMaze), as context from far-off timesteps is
helpful to predict reasonable actions under this scenario.
The reason why we want to consider both short-term and
long-term is that, our investigation found while PLMs per-
form better in short-term environments, it is less effective
in long-term environments compared to a DT trained from
scratch. Therefore, we are interested in what kind of NLP
knowledge from PLMs has been successfully transferred to
short-term RL tasks but failed in long-term RL task.

We discover that, as shown in Figure 1, GPT2-DT (Reid
et al., 2022; Shi et al., 2024; Yang & Xu, 2024) has shared
similar attention score distribution with well-trained DT,
even at the initial stage of its training. We define the im-
portance score of each head by zero-out each head and
measuring the difference of the predictions. We also demon-
strated the heatmap of each head and found that all attention
heads can be divided into two categories. In particular, we
define Markov heads as one kind of special heads inheriting
from NLP tasks and identify that these heads lead DTs to
focus more on the most recent state in short-term RL tasks
by our theoretical analysis. Furthermore, we examine that
Markov heads will be retained under any random embedding
initializations and cannot be easily switched to Non-Markov
heads by fine-tuning both theoretically and practically.

Naturally, we are also curious if we can still adapt PLMs
to all kinds of RL tasks without training from scratch even
though Markov heads will not be changed by fine-tuning. To
bridge the performance gap in long-term environments, we

propose GPT2-DTMA, combining PLMs with Mixture of
Attention (MoA). Here, we consider each attention head as
an expert and learn the weights of each expert adaptively ac-
cording to each downstream RL task, so that GPT2-DTMA
can automatically identify the required planning abilities
by adjusting the weights of Markov heads when predicting
the next action. GPT2-DTMA achieves comparable perfor-
mance in short-term environments and narrows performance
gap in long-term environments.

In summary, our contributions are as follows:

• We first propose the definition of Markov heads and fur-
ther explore the properties of Markov heads. We prove
that Markov heads will be preserved under any embed-
ding initializations and fail to modify by fine-tuning.
We also validate our theorems through extensive com-
parative experiments.

• We do a comprehensive quantitative analysis on the
heads of PLMs by using different ways to explore the
deeper mechanism of PLMs based on our definitions
and theoretical analysis. We show that Markov heads
are the key information transferred from NLP.

• Finally, we propose a general model GPT2-DTMA that
can learn the weights of each head automatically and
it significantly narrowed the performance gap of our
model between short-term and long-term RL tasks com-
pared to baselines.

2. Related Work
2.1. Decision Transformer

Transformer-based architecture (Vaswani et al., 2017) is
widely explored in offline RL. Decision Transformer (DT)
(Chen et al., 2021) firstly models RL as an autoregressive
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generation problem. By conditioning on previous trajec-
tories and returns-to-go, DT can generate desired actions
without explicit reward modeling or dynamic programming.
Furthermore, Furuta et al. (2021) explores other kinds of
hindsight information instead of returns-to-go that can ben-
efit sequential decision-making. Q-learning DT (Yamagata
et al., 2023) proposes to combine DT with dynamic program-
ming by utilizing a conservative value function to relabel
returns-to-go in the training dataset. In addition to modi-
fying the context by augmented information (Wang et al.,
2024), some other work is also attempting to modify the
model architecture of DTs. Shang et al. (2022) argues that
the DT structure, which requires all tokens as input, is inef-
ficient for learning Markovian-like dependencies. Kim et al.
(2023) proposes replacing the attention layers with convolu-
tional layers to better capture the inherent local dependent
patterns in trajectories of RL tasks. However, all existing
work focuses mainly on data augmentation for whole of-
fline datasets and model redesign. These methods are still
struggling with low computation-efficiency and unstable
performance on all RL tasks. In our work, we aim at with-
out modifying the model architecture or introducing new
hidden information, and prove that PLMs can effectively
capture local information thanks to Markov heads.

2.2. Pretrained Methods for Offline RL

A variety of approaches have been proposed to leverage
pretraining technique in offline reinforcement learning. Nair
et al. (2020); Zheng et al. (2022); Kostrikov et al. (2021)
follow the standard pretrain-finetune paradigm, pretrain-
ing on a single-task offline dataset followed by fine-tuning
in an online environment. Xie et al. (2023) pretrain deci-
sion transformers (DTs) using reward-free trajectories, and
then fine-tune the model using reward-tagged trajectories
collected online. Additionally, pretraining on mixed data
collected from various RL tasks (Liu et al., 2022; Xu et al.,
2022; Sun et al., 2022; Carroll et al., 2022; Wu et al., 2023)
can achieve good performance on downstream tasks through
fine-tuning or few-shot learning.

However, the scale of pretraining datasets with trajectory
structures in RL domain is not comparable to the scale of
text-structured datasets in NLP domain, which limits DTs’
ability to thoroughly explore the nature of RL tasks. To ad-
dress this, a pretraining paradigm on language datasets has
been proposed; more details can be found in Appendix A.
Reid et al. (2022); Shi et al. (2024) suggest that initializ-
ing DTs with pretrained parameters from PLMs, such as
those from GPT-2, can overcome this limitation and outper-
form DTs that are initialized randomly. Yang & Xu (2024);
Zheng et al. (2024) also utilize text content as pretraining
samples, but during the fine-tuning phase, they incorporate
the concept of Prompt-DT (Xu et al., 2022) by using tra-
jectories from the single-task or multi-tasks as prior input

information to assist DTs in action prediction.

3. Preliminaries
3.1. Offline Reinforcement Learning

In offline RL, the policy model π is trained on a pre-
collected dataset, rather than interacting with the environ-
ment in real time. We consider learning in a Markov deci-
sion process (MDP) described by M = ⟨ρ0,S,A, P,R, γ⟩,
where ρ0 is the initial state distribution, S is the state space,
A is the action space, P (s′|s, a) is the transition probability,
R(s, a) is the reward function and γ ∈ (0, 1] is the discount
factor. We use st, at and rt = R(st, at) to denote the state,
action and reward at timestep t, respectively. The goal of
offline RL is to find an optimal policy π∗ that maximizes
the γ-discounted expected return:

max
π

Es0:T ,a0:T∼ρ0,π,P

[ T∑
t=0

γtR(st, at)
]
. (1)

3.2. Decision Transformer

DTs (Chen et al., 2021) are designed to generate next ac-
tions relied on the information about expected future re-
wards for the current trajectories, therefore they propose
returns-to-go (RTG) denoted as R̂t ≜

∑T
i=t ri, which rep-

resents the sum of expected future rewards from the current
timestep t. In order to incorporate RL problems into a
sequential model, DTs transform the trajectory into the for-
mat of τ = (R̂0, s0, a0, R̂1, s1, a1, . . . , R̂T , sT , aT ), where
R̂t, st, at are the RTG, state and action at timestep t, respec-
tively. The next action predicted by policy πθ is conditioned
on the previous trajectory τ up to the timestep t− 1, current
RTG R̂t and current state st:

a′t = πθ(R̂0, s0, a0, ...at−1, R̂t, st), (2)

and πθ is trained by minimizing the squared error between
the true action at and the predicted next action a′t:

LDT =

T∑
t=0

∥at − a′t∥22 . (3)

4. Methodology
In this section, we will first give the definition of Markov
heads and analyze the properties of Markov heads. Based
on our theoretical analysis, we then introduce a general
approach GPT2-DTMA, that shows great adaptive abilities
to either long-term or short-term environments.

4.1. Markov Head

Definition 4.1. For any matrix A ∈ Rd×d, A is a Markov
matrix if and only if A satisfies the following conditions:
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(i). The diagonal elements {Ai,i}di=1 are all positive.

(ii). The ratio between the mean of absolute diagonal ele-
ments and the mean of absolute off-diagonal elements
are strictly greater than some large positive number
r, i.e., |Aii|

|Aij |
> r, where |Aii| =

∑d
i=1 |Aii|

d and

|Aij | =
∑

i,j=1,··· ,d,i ̸=j |Aij |
d2−d .

For each head, we have three weight matrices corresponding
to key, query and value. According to the definition of atten-
tion scores, we will focus our analysis on W q(W k)T , which
is the matrix multiplication between key weight matrix and
query weight matrix. Then, we introduce the definition of
Markov head based on Definition 4.1.

Definition 4.2. For head i, if the weight matrix W q
i (W

k
i )

T

is a Markov matrix, then we say head i is a Markov head.

4.1.1. THEORETICAL ANALYSIS

Markov matrix has some important properties that can give
us more insight about what knowledge in PLMs is benefi-
cial for RL tasks or limit the performance of generalization
ability in RL tasks. In this section, we provide a theoreti-
cal analysis and a detailed explanation of the properties of
Markov matrix and Markov heads.

Theorem 4.3. For any random embedding vector ei ∈
R1×d, i = 1, · · · ,K, the elements of each ei are i.i.d. sam-
pled from a normal distribution. For any given Markov ma-
trix A ∈ Rd×d satisfying Definition 4.1, then E[EAET ] is
also a Markov matrix, where E = (e1, · · · , eK)T ∈ RK×d.

Proof. See more details in Appendix E.1.

Based on Theorem 4.3, we extend the expectation result to
a high probability bound. As a corollary, we show that for
any random embedding matrix E, any given Markov matrix
A satisfies Definition 4.1 with high probability.

Corollary 4.4. Define the diagonal mean and off-diagonal
mean of Π ≜ EAET as

D ≜
1

K

K∑
i=1

|Πii|, O ≜
1

K(K − 1)

∑
i ̸=j

|Πij |. (4)

Given a Markov matrix A ∈ Rd×d satisfying Definition 4.1,
for any ε ≜ E[D]−rE[O]

2r > 0, there exists constants c1, c2 >
0 such that

P
(
D

O
> r

)
≥ 1− 2e(−c1Kϵ̃) − 2e(−c2K(K−1)ϵ̃), (5)

where ϵ̃ is defined as min( ε2

∥A∥2
F
, ε
∥A∥ ), and ∥A∥F is the

Frobenius norm of Markov matrix A, defined as ∥A∥F ≜√∑m
i=1

∑n
j=1 |Aij |2.
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Figure 2. Importance score of each head of GPT2-DT in Hopper-
medium environment. The red bar represents the importance scores
allocated to the Markov head in the first attention layer. We also
demonstrate importance score in PointMaze-large in Appendix D.

Proof. See more details in Appendix E.2.

In the next theorem, we can show that Markov matrix will
be maintained after finite-time fine-tuning.

Theorem 4.5. Suppose all the norm of the gradients
are upper bounded by some positive number B and the
learning rate ηk has a uniformly upper bound η0. For
any Markov matrix A0, for any training iterations K <

⌊min
{

ρ
r+1

|A0
ij |

η0B
,
A0

ii

η0B
for i = 1, · · · , d

}
⌋, AK is still a

Markov matrix.

Proof. See more details in Appendix E.3

Remark 4.6. According to Theorem 4.5, we can conclude
that during the stage of fine-tuning on the specific down-
stream RL tasks, Markov heads preserve and they can never
be switched to Non-Markov heads.

4.1.2. QUANTITATIVE ANALYSIS

In this section, we conduct quantitative analysis on the
weight matrices transferred from PLMs to examine the exis-
tence of Markov heads in PLMs and their properties.

First, we measure the importance of each attention head.
We initialize DT with pretrained GPT2-small parameters
(GPT2-DT) and fine-tune it on RL tasks (Reid et al., 2022;
Shi et al., 2024). Then, we test GPT2-DT under online
environments, obtaining the predicted action ã. To obtain
the importance score of each head, we replace the output of
the head i with a zero vector (Bau et al., 2020; Michel et al.,
2019) and notate the corresponding predicted action after
removing head i as ã−i. We define the importance score of
the head i as ||ã − ã−i||2. The results are visualized in in
Figure 2.

It is notable that some heads exhibit higher importance
scores than the others. To further explore the inner property
of these heads, we focus our analysis on the weight matrix
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Table 1. We analyze the weight matrix W q
i (W

k
i )

T of each head i
in GPT2 without fine-tuning (Initialization) and after fine-tuning
(Fine-tuned). Details of (i) and (ii) can be found in Definition 4.1.

Head Index Initialization Fine-tuned

(i) (ii) (i) (ii)

0 × × × ×
1 ✓ ✓ ✓ ✓
2 × × × ×
3 ✓ × × ×
4 ✓ × × ×
5 ✓ ✓ ✓ ✓
6 × × × ×
7 × × × ×
8 × × × ×
9 × × × ×

10 ✓ ✓ ✓ ✓
11 × × × ×

W q
i (W

k
i )

T of each head i. From the statistical data in
Table 1 and the heatmaps visualized in Figure 3, we can
conclude that these heads with higher importance scores are
exact Markov heads. Indeed, Markov heads exist in both
PLMs and GPT2-DT, and such heads play a significant role
on next-action prediction tasks.
Remark 4.7. Let m and n denote the mean of the absolute
diagonal and off-diagonal elements in Definition 4.1. After
applying the softmax function, the attention weight on the
diagonal becomes em

em+(d−1)en , where d is the embedding
dimension. To determine a reasonable range for r, we as-
sume em

em+(d−1)en should be at least 0.5 to ensure that the
head focuses more on the most recent input token. Solving
this inequality yields r > ln(d− 1) + 1. In our setup, the
embedding dimension d = 64 and we set r = 8 to identify
Markov heads in GPT2-DT.

To verify both Theorem 4.3 and Theorem 4.5, we compare
the attention score distributions before and after fine-tuning
of both Markov heads and Non-Markov heads. Figure 4
visualizes the comparison with heatmaps. On the one hand,
we observe that the attention distribution of Markov heads
prior to fine-tuning is consistent with Theorem 4.3. Even
when the embedding vectors for states, actions, and returns-
to-go are randomly initialized, Markov heads exhibit strong
attention to the last input token. This aligns with our theoret-
ical result that E[eiAeTi ] ≫ E[eiAeTj ], where the last token
corresponds to the current state st. On the other hand, we
find that after fine-tuning, the weight product W q

i (W
k
i )

T

for all Markov heads in GPT2-DT continues to satisfy the
definition of a Markov matrix, providing empirical support
for Theorem 4.5.
Remark 4.8. By Theorem 4.3 , we show that under any

Figure 3. The heatmaps of W q
i (W

k
i )

T in Non-Markov head (left)
and Markov head (right).

Figure 4. The two sub-figures above / below show the attention
score matrices for Non-Markov head / Markov head before (left)
and after fine-tuning (right). Lighter colors represent higher atten-
tion scores, while darker colors represent lower scores.

random embedding matrix, the property of extreme attention
to the last input token preserves in expectation. Figure 4
further confirms our theorems that the property of Markov
Heads holds before and after fine-tuning.

Remark 4.9. During the fine-tuning process, we set our
learning rate as 1e-4 and used 10K steps for warming up, so
the upper bound η0 is approximately 1e-4. We observe that
the magnitude of the maximum norm gradient of W q(W k)T

is on the order of 1e-6, while the average absolute value
of the off-diagonal elements is on the order of 1e-2. Given
our setting of r = 8, these observations indicate that the
assumptions required by Theorem 4.5 are easy to satisfy
under standard hyperparameter configurations.

4.2. GPT2-DTMA: A General Approach with Adaptive
Planning Ability

Our analysis of Markov heads in GPT2-DT reveals that
their extreme attention to the last-input token aligns closely
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Figure 5. Mixture of Attention heads (MoA) allocates different
weights to each attention head through a gate controller network.

with the behavior of memoryless policies (Littman, 1994).

However, such behavior may limit performance in long-term
environments, where past trajectories carry rich contextual
information that is crucial for accurate action prediction. In
addition, it is often unclear whether long-term or short-term
planning is required without prior knowledge of the environ-
ment. To address this challenge, we extend GPT2-DT and
propose a general framework with adaptive planning abil-
ity, GPT2-DTMA, to handle both short-term and long-term
environments adaptively.

From the results in Table 2, we observe that GPT2-DT
performs well in MuJoCo Locomotion (short-term) environ-
ments, but exhibits a significant performance drop in Point-
Maze (long-term) environments, where it underperforms
compared to the baseline DT. This suggests that the effec-
tiveness of Markov heads is inherently biased toward envi-
ronments with specific planning ability requirements. This
raises a natural question: How can we improve GPT2-DT
so that it retains its advantages in short-term scenarios while
closing the performance gap in long-term environments?

To address this key challenge, a natural idea is to adaptively
control the influence of Markov heads based on the implicit
requirement for planning ability of each environment. While
the feed-forward network (FFN) following the attention
layers is capable of integrating information, our analysis
in Appendix F shows that it fails to effectively balance
the contributions of Markov and Non-Markov heads. To
overcome this limitation, we propose enhancing GPT2-DT
with a Mixture of Attention (MoA) mechanism (Zhang et al.,
2022; Jin et al., 2024), which results in our method named
GPT2-DTMA. An illustration of the proposed architecture
is shown in Figure 5. MoA treats each attention head as an
expert specialized in capturing certain features or temporal
dependencies. A trainable gating network Gi is introduced
to adaptively assign weights to each head i’s output. Given
an input embedding vector e, MoA computes a weighted
sum over all attention head outputs, where the weights are
dynamically determined by Gi. Formally, the MoA output

Table 2. We compare DT and GPT2-DT with mean normalized
score (↑) in MuJoCo Locomotion and mean test episode length
(↓) in PointMaze respectively. Dataset names are abbreviated as
follows: medium as m, medium-replay as m-r.

Environment Dataset DT GPT-DT

MuJoCo
Locomotion

Hopper-m 67.4 77.9
Hopper-m-r 74.1 77.9
Walker2d-m 74.3 77.1

Walker2d-m-r 71.9 74.0

PointMaze
umaze 56.3 59.7

medium 158.7 188.0
large 195.3 257.3

can be expressed as:

y(e) =

N∑
i=1

Gi(e) ·Headi(e). (6)

The dense gate controller network G is implemented as a
linear layer Wg followed by a softmax activation:

Gi(e) = softmaxi(Wg(e)), (7)

where Gi(e) is the trainbale weight assigned to head i and
Headi(e) denotes the output of attention head i with query
projection W q

i , keyword projection W k
i , and value projec-

tion W v
i . Headi(e) is defined as:

Headi(e) = softmax(
(eW q

i )(EW k
i )

T

√
dk

)(EW v
i ), (8)

where dk denotes the dimension of the embedding layer.

5. Experiments
From the previous analysis, we identified the existence of
Markov head in both PLMs and GPT2-DT and showed that
they assign higher attention weights to the current state.
However, it remains unclear whether this property bene-
fits all reinforcement learning tasks. Prior studies (Reid
et al., 2022; Shi et al., 2024; Yang & Xu, 2024) evaluate
PLM-initialized decision transformers mainly on short-term
environments such as MuJoCo Locomotion and Atari. In
contrast, we aim to investigate whether Markov heads also
contribute to next-action prediction in long-term environ-
ments. To this end, we adopt LaMo (Shi et al., 2024), a
representative PLM-based decision transformer, as the im-
plementation of our baseline GPT2-DT, and refer to it as
such throughout the rest of the paper. We then compare
our proposed method, GPT2-DTMA, with several baselines,
including the standard Decision Transformer (DT) (Chen
et al., 2021), the value-based offline RL algorithm CQL
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Table 3. Mean normalized score (↑) with three seeds in MuJoCo Locomotion (short-term environment). The dataset names are abbreviated
as follows: medium as m, medium-replay as m-r, medium-expert as m-e and Halfcht as Halfcheetah.

Dataset CQL DT DC DTMA GPT2-DT GPT2-DTMA GPT2-P

Hopper-m 57.7±1.6 67.4±1.7 79.7±1.1 65.2±2.3 77.9±1.1 77.4±0.8 70.8±1.4

Hopper-m-r 73.7±4.4 74.1±4.1 82.3±2.5 74.7±3.7 77.9±2.1 80.4±1.8 75.3±2.9

Hopper-m-e 107.3±0.4 108.6±0.3 111.4±0.2 109.4±0.1 111.7±0.1 111.6±0.1 109.4±0.2

Walker2d-m 72.6±1.3 74.3±1.9 79.3±1.3 74.0±1.4 77.1±1.1 79.9±0.8 73.3±2.7

Walker2d-m-r 78.3±2.2 71.9±2.7 79.2±1.8 70.5±3.4 74.0±2.9 77.0±2.5 71.5±3.5

Walker2d-m-e 107.8±0.2 107.6±0.1 108.3±0.2 108.1±0.2 108.1±0.1 108.6±0.1 108.2±0.1

Halfcheetah-m 43.1±0.3 42.8±0.4 43.1±0.2 43.5±0.3 42.6±0.5 43.0±0.4 42.3±0.6

Halfcheetah-m-r 42.4±1.9 39.2±2.4 38.3±3.4 38.8±3.3 39.8±3.1 40.3±2.9 39.6±3.1

Halfcheetah-m-e 88.4±1.1 91.9±1.3 92.1±1.3 91.8±1.1 92.3±0.7 92.5±1.1 92.2±0.5

Table 4. Episode length (↓) in different size of Maze (long-term environment).

Environment Dataset CQL DT DC DTMA GPT2-DT GPT2-DTMA

PointMaze
umaze 58.0±1.0 56.3±1.7 54.3±2.3 58.7±1.3 59.0±3.0 55.0±2.0

medium 134.0±8.0 158.7±7.3 236.3±6.7 155.0±8.0 188.0±13.0 146.3±9.3

large 162.0±6.0 195.3±14.7 288.0±12.0 217.0±16.0 257.3±13.3 203.0±11.0

(Kumar et al., 2020), and Decision Convformer (DC) (Kim
et al., 2023). Full experimental setup details are provided in
Appendix C.

5.1. Short-term and Long-term Environments

In this section, we provide brief introduction to each ex-
perimental task and categorize them into short-term and
long-term environments, as follows:

• MuJoCo Locomotion tasks (Fu et al., 2020) are physics
engines designed primarily for simulating and control-
ling articulated rigid body systems. Kim et al. (2023)
believe that short-term planning ability is enough for
achieving a good performance in those tested environ-
ments. If a policy can control the agent to reach further
or move faster while maintaining stable posture, then
the normalized score will be higher.

• In a Maze task, such as PointMaze, a policy model is
trained to direct the object from a random start position
to the goal in a maze. Note that this point mass can only
observe its own position and the position of the goal; it
has no knowledge of the positions of obstacles in the
maze. The policy model needs to learn how to outline
the entire maze based on past trajectory information.
Therefore, this environment is generally considered to
require model’s long-term planning ability (Lin et al.,
2022). We evaluate whether the policy model can
guide the point mass to the goal using a shorter episode
length as the evaluation metric.

5.2. Main Results

To validate the effectiveness of MoA in regulating the at-
tention heads of GPT2-DT, we evaluate the performance
of GPT2-DTMA proposed in Section 4.2 across both short-
term and long-term environments. As shown in Table 3,
GPT2-DTMA outperforms DT in most short-term environ-
ments. Notably, MoA introduces only a modest increase
in model complexity—approximately a 3% rise in param-
eter count over the base DT—making it a lightweight yet
effective enhancement.

In long-term environments, Table 4 shows that integrating
the MoA architecture into GPT2-DT enables the agent to
reach the goal in PointMaze with shorter episode lengths.
However, as stated in Theorem 4.5, MoA can only regulate
the influence of Markov heads, whose inherent properties
are preserved through fine-tuning. Consequently, due to
the adverse impact of Markov heads in long-term scenar-
ios, GPT2-DTMA can reduce the performance gap with DT
while suffering difficulty to outperform it. Detailed trends in
how MoA adjusts the weights of Markov and Non-Markov
heads across short-term and long-term environments are
provided in Appendix G.

By comparing the performance of the same model in Table 3
and Table 4, we observe that both DC and CQL exhibit
strong performance only in specific scenarios that align
with their respective planning ability biases, but struggle
in other settings. In contrast, our model GPT2-DTMA with
adaptive planning ability maintains relatively consistent and
competitive performance across both short-term and long-
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Table 5. GPT2-DTMA with different context length (k) in
PointMaze-large. GMarkov represents the sum of weights for all
Markov heads. RMarkov represents the percentage of GMarkov rela-
tive to that when k = 10.

k Episode length (↓) GMarkov RMarkov

k = 10 236.3 0.397 100.0%
k = 20 230.7 0.310 78.1%
k = 30 226.0 0.234 58.9%
k = 40 214.3 0.188 47.3%
k = 50 203.0 0.167 42.1%

term environments.

Furthermore, we conduct an ablation study by incorporating
the MoA mechanism into a randomly initialized DT, referred
to as DTMA. Table 3 shows that this method does not lead to
performance gains, as evidenced by the comparable results
between DTMA and DT. This suggests that the effectiveness
of MoA primarily lies in its ability to modulate the influence
of Markov heads when predicting the next action, a property
not present in models without pretraining.

5.3. Attention Score Distribution of GPT2-DTMA in
Different Environments

In this section, we investigate whether GPT2-DTMA is ca-
pable of adaptively adjusting the weights of Markov heads
to better adapt to different environments. We use the most
challenging task, PointMaze-large, as our testbed, which
is a typical long-term environment. In long-term environ-
ments, models are required to extract useful information
from past sequences, rather than relying primarily on current
state. However, the Markov heads tend to focus attention
disproportionately on the most recent input, limiting the
model’s ability to leverage long-range context and thereby
negatively affecting performance. By using MoA to reduce
the influence of Markov heads, GPT2-DTMA can alleviate
their negative impact on action predictions. As shown in
Table 5, it can be seen that as the length of context length in-
creases, both the sum of weight GMarkov assigned to Markov
heads and the number of steps required for the point mass
to reach the goal gradually decrease. This suggests that
GPT2-DTMA endeavors to capture previous information
that is further away from the current state.

Similarly, we conducted a comparative experiment examin-
ing the effect of context length in short-term environments.
As context length increases, the model shows a growing ten-
dency to attend to distant information, leading to an overall
decrease in GMarkov, as shown in Table 6. However, at the
same context length, the RMarkov in short-term environments
is significantly higher compared to those in long-term envi-
ronments. This suggests that, in short-term environments,

Table 6. GPT2-DTMA performance using different context length
(k) in Hopper-medium environment. GMarkov represents the sum of
weights for all Markov heads. RMarkov represents the percentage of
GMarkov relative to that when k = 10.

k Normalized score (↑) GMarkov RMarkov

k = 10 77.1 0.505 100.0%
k = 20 77.4 0.488 96.6%
k = 30 76.3 0.480 95.0%
k = 40 77.0 0.461 91.3%
k = 50 75.8 0.440 87.1%

MoA allows Markov heads to retain a higher influence in
action prediction, whereas in long-term environments, the
model relies more heavily on other attention heads. These
findings indicate that MoA can effectively identify whether
the environment requires short-term or long-term planning
ability and adaptively modulate weights across different
heads to suit the environment.

6. Discussion
To further validate the critical role of Markov head in short-
term environments, we design two different approaches: The
first approach explicitly reduces the influence of Markov
heads by lowering their MoA weights. The second approach
modifies the initialization of the GPT2-DT model, using
parameters that do not satisfy the Markov matrix property.

6.1. Reducing the Weights of Markov Heads in Action
Prediction

To assess the role of Markov heads in short-term envi-
ronments, we conduct a comparative experiment against
GPT2-DTMA by intentionally reducing their contribution to
action prediction. To this end, we develop a variant model
called GPT2-P, which introduces a penalty on the weights
of Markov heads in the loss function:

LGPT2-P = LDT + α ·
∑

i∈[1,5,10]

Gi(x), (9)

where [1, 5, 10] are the indices of Markov heads.

By applying a penalty coefficient of α = 0.1, the cumulative
weight assigned to the Markov heads is reduced from 0.488
in GPT2-DTMA to 0.184 in its variant, GPT2-P. As shown
in Table 3, GPT2-P fails to match the policy performance
of GPT2-DTMA in short-term tasks. This degradation under-
scores the significance of Markov heads in improving action
selection under limited planning ability. In many cases,
reducing their contribution causes GPT2-P to regress to
the performance of the standard DT baseline. Furthermore,
these results suggest that other components pretrained for

8
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Table 7. Mean normalized score (↑) of DT initialized with different pretrained parameters in MuJoCo Locomotion.

Dataset DT GPT2-DT CLIP-DT GPTJ-DT

Hopper-m 67.4±1.7 77.9±1.1 66.9±1.3 71.6±1.5

Hopper-m-r 74.1±4.1 77.9±2.1 76.1±2.5 72.9±1.7

Hopper-m-e 108.6±0.3 111.7±0.1 109.2±0.2 109.6±0.1

Walker2d-m 74.3±1.9 77.1±1.1 74.2±0.8 74.8±1.2

Walker2d-m-r 71.9±2.7 74.0±2.9 70.3±4.1 70.4±2.3

Walker2d-m-e 107.6±0.1 108.1±0.1 107.9±0.3 108.1±0.1

Halfcheetah-m 42.8±0.4 42.6±0.5 42.6±0.6 42.9±0.3

Halfcheetah-m-r 39.2±2.4 39.8±3.1 39.8±3.3 39.3±2.5

Halfcheetah-m-e 91.9±1.3 92.3±0.7 92.1±0.9 92.1±0.9

NLP tasks—such as the feed-forward network (FFN) lay-
ers—may offer limited transferability to the reinforcement
learning domain.

6.2. Initializing DT Using Pretrained Parameters
without Markov Heads

In our offline RL setup with an autoregressive formulation,
we initialize the model using pretrained text encoders from
CLIP and GPT-J. While CLIP includes both text and image
encoders, we adopt only its text encoder, which is an autore-
gressive Transformer pretrained on large-scale textual data.
CLIP is trained to align textual descriptions with correspond-
ing images, whereas GPT-J is a GPT2-style causal language
model, but pretrained on a different dataset (Pile) rather
than the WebText corpus used by GPT2. Despite architec-
tural similarity and pretraining on textual data, we find that
the attention layers in both CLIP and GPT-J do not exhibit
the Markov matrix structure observed in our GPT2-DTMA
model. We attribute this to differences in training objectives:
unlike GPT2, whose next-token prediction loss may encour-
age local temporal dependencies, the contrastive objective in
CLIP and the different pretraining distribution of GPT-J do
not appear to induce the same structural bias in the attention
heads.

As shown in Table 7, initializing DT with pretrained param-
eters from CLIP (CLIP-DT) or GPT-J (GPTJ-DT) does
not yield performance comparable to GPT2-DT. The pres-
ence of Markov heads in GPT2-DT enables the model to
allocate sufficient attention to the current state, resulting
in improved performance over the vanilla DT. The absence
of the Markov matrix structure in CLIP-DT is expected,
given its contrastive training objective. However, although
GPT-J is pretrained using the same next-token prediction
loss as GPT2, it fails to exhibit this property. This discrep-
ancy may be attributed to differences in the pretraining data
distribution and scale.

7. Conclusion
In this paper, we addressed a key question: how do pre-
trained language models (PLMs) influence fine-tuning per-
formance in offline reinforcement learning? We introduced
the concept of Markov heads and investigated their distinc-
tive properties. Our analysis reveals that Markov heads are
the primary transferable inductive bias from PLMs, benefi-
cial in short-term tasks but detrimental in long-term scenar-
ios. To address this challenge, we proposed GPT2-DTMA,
a general and adaptive approach that enables the model
to automatically adjust its planning capacity across differ-
ent environments. Experimental results demonstrate that
GPT2-DTMA significantly narrows the performance gap
in both short- and long-term settings. We believe that un-
derstanding the mechanisms behind PLM transfer opens
promising directions for future research, such as optimiz-
ing the use of pretrained parameters in RL or designing
pretraining objectives tailored for decision-making tasks.
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A. Pretrained Language Models for Offline RL Tasks

Figure 6. The paradigm for transferring PLM parameters to offline RL tasks.

Figure 6 follows the paradigm for transferring knowledge from the natural language domain to the RL domain in previous
work (Reid et al., 2022). In the first stage, we pretrain Transformer with language data to predict the next token. In the
second stage, we fine-tune pretrained Transformer on downstream offline RL tasks to predict the next actions.

B. Comparisons of Attention Score Distributions

Figure 7. We compare the attention score distribution of DT and GPT2-DT during the process of fine-tuning within fewer iterations and
more iterations in Walker2d-medium (upper row) and Halfcheetah-medium (lower row) environments.

We explore how the attention score distribution differs between DT and GPT2-DT when fine-tuning with a smaller number
of iterations versus a larger number of iterations. Figure 7 illustrates that in different environments, GPT2-DT can still learn
the ability to focus on closer positional information in fewer training iterations compared to DT. This ability to concentrate
on recent information is precisely what is needed to excel in short-term environments.

C. Experiment Setup
We use GPT2-small pretrained parameters to initialize DT transformer layer. To fine-tune pretrained language models, we
set the learning rate as 1e-4 with 10K warmup steps and weight decay as 1e-4. We fine-tune the model with 100K steps and
batch size as 64. Our training process uses a single Nividia A100 and four Tesla V100 with cuda version of 12.3. During
training, the agent is evaluated every 500 steps, by running 20 episodes. We report results averaged among 3 seeds (seeds
0, 1, 2 are used). The offline datasets used for training the model are collected in D4RL (Fu et al., 2020) benchmark. For
MuJoCo Locomotion tasks, the tasks we selected are halfcheetah, hopper and walker2d. Each task has 3 datasets collected
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with different strategies: medium dataset consisting of 1M interaction samples of a middle-level RL agent. medium-replay
includes the whole replay buffer when training an RL agent until it reaches middle-level performance. medium-expert is a
mixture of the medium dataset and 1M interaction samples of an expert-level RL policy. For Maze tasks, umaze, medium
and large represent square mazes with side lengths of 5, 8, and 12, respectively.

D. Influence of Markov heads in Long-term Environments
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Figure 8. Importance scores on different heads in PointMaze (long-term environment). The red bar represents the importance scores
allocated to the Markov head in the first attention layer.

Figure 8 shows the importance scores of different attention heads when predicting actions. Similar to the phenomenon
in short-term environments, the Markov heads exhibit large influences in predicting actions. It indicates that the poor
performance of GPT2-DT in long-term environments may stem from the Markov heads focusing only on the current state.

E. Theoretical Proofs
In this section, we present proofs of Theorem 4.3, Corollary 4.4 and Theorem 4.5.

E.1. Proof of Theorem 4.3

We will give a simple proof showing that Markov matrix, i.e., W q
i W

k
i
T satisfies Definition 4.1, will pay most attention on

the last-input token under random embedding initializations, i.e., E
[
E(W q

i W
k
i
T
)ET

]
also satisfies Definition 4.1, where

E ∈ RK×d is a random embedding matrix, K is the sequence length and in this case, A = E
[
E(W q

i W
k
i
T
)ET

]
.

Proof. For any em = (e1m, e2m, · · · , edm) and en = (e1n, e
2
n, · · · , edn), where m,n ∈ {1, · · · ,K} and m ̸= n, we have

E[emAeTn ] =

d∑
i=1

d∑
j=1

AijE[eimejn]

=

d∑
i=1

Ai,iE[eimein] +
∑

i,j=1,··· ,d,i̸=j

Ai,jE[eimejn]

=

d∑
i=1

Ai,iE[eimein] +
(
E[eim]

)2 ∑
i,j=1,··· ,d,i̸=j

Aij

=

d∑
i=1

Ai,iE[eimein] = 0,

(10)

where the last equality is because E[eim] = E[ein] = 0. And we know that eim and ein are i.i.d, hence by taking the

13



Unveiling Markov Heads in Pretrained Language Models for Offline Reinforcement Learning

expectation, we can obtain that

E[eimein] = E[eim]E[ein] =
(
E[eim]

)2

< E
[
(eim)2

]
, (11)

where the last inequality is due to V ar[eim] = E
[
(eim)2

]
−

(
E[eim]

)2

> 0. Also, by simply replacing eTn with eTm in
Equation (10), we have

E[emAeTm] =

d∑
i=1

Ai,iE
[
(eim)2

]
+
(
E[eim]

)2 ∑
i,j=1,··· ,d,i̸=j

Aij

=

d∑
i=1

Ai,iE
[
(eim)2

]
=

d∑
i=1

Ai,i.

(12)

Since we know that {Ai,i}di=1 are all positive, we can conclude that E(emAeTm) > E(emAeTn ) = 0. Therefore, for any
r > 0, Definition 4.1 will be satisfied.

E.2. Proof of Corollary 4.4

Proof. By Theorem 4.3, we know that E[D]
E[O] > r for some r > 0. And for any ε ≜ E[D]−rE[O]

2r > 0, we have E[D]−ε
E[O]+ε > r.

We apply concentration bounds for sub-exponential random variables, noting that |Πij | is sub-exponential with sub-Gaussian
proxy ∥A∥F . For the diagonal mean D, there are K i.i.d. terms, and for the off-diagonal mean O, there are K(K − 1)
terms. By Bernstein inequality and Hanson-Wright inequality, we obtain:

P (|D − E[D]| ≥ ε) ≤ 2 exp

(
−c1Kmin

(
ε2

∥A∥2F
,

ε

∥A∥

))
, (13)

and

P (|O − E[O]| ≥ ε) ≤ 2 exp

(
−c2K(K − 1)min

(
ε2

∥A∥2F
,

ε

∥A∥

))
. (14)

Taking union bound and noting that if D ≥ E[D]− ε and O ≤ E[O] + ε , then

D

O
>

E[D]− ε

E[O] + ε
> r. (15)

Then we have

P(
D

O
≤ r) ≤ P(D < E[D]− ε) + P(O > E[O] + ε) ≤ δ0, (16)

where δ0 ≜ 2 exp
(
−c1Kmin

(
ε2

∥A∥2
F
, ε
∥A∥

))
+2 exp

(
−c2K(K − 1)min

(
ε2

∥A∥2
F
, ε
∥A∥

))
. Therefore under the definition

of ε, we obtain the desired high-probability bound.

E.3. Proof of Theorem 4.5

In this section, we will discuss the phenomenon in Table. 2 and give a theoretical analysis for Theorem 4.5.

Proof. Suppose that the total number of training iterations is K, and A0 = W qW kT is a Markov matrix, the difference
between the initialized parameters A0 and the trained parameters is denoted as ∆AK =

∑K
k=1 ηkgk, where ηk denotes

the learning rate at the k-th iteration and AK = A0 −∆AK . By choosing the Adam optimizer, we know that there exists
η0 > 0 such that ηk ≤ η0 for all k = 1, . . . ,K. Hence, we have

0d×d ≤ |∆AK | = |
K∑

k=1

ηkgk| ≤
K∑

k=1

ηk|gk| ≤ η0KB · 1d×d. (17)
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Let amax = max{|∆AK
i,j |, where i, j = 1, · · · , d} and amax ≤ η0KB. Due to Definition 4.1, we know that there exists

ρ > 0, such that A0
ii

|A0
ij |

≥ r + ρ > r, i.e., A0
ii ≥ (r + ρ)|A0

ij |. Since amax < mini=1,··· ,d A
0
ii, then we have

AK
ii = A0

ii −∆AK
ii ≥ A0

ii − amax > 0,

|A0
ij | − amax ≤ |AK

ij | = |A0
ij −∆AK

ij | ≤ |A0
ij |+ amax.

(18)

thus, AK
ii ≥ A0

ij − amax and max{|A0
ij | − amax, 0} ≤ |AK

ij | ≤ |A0
ij | + amax. Since amax ≤ η0KB < ρ

r+1 |A
0
ij |, then

(r + 1)amax < ρ|A0
ij | < A0

ii − r · |A0
ij |, i.e.,

AK
ii

|AK
ij |

≥ A0
ii − amax

|A0
ij |+ amax

> r. (19)

Hence, AK is still a Markov matrix.

F. FFN Cannot Achieve Adaptive Attention Facing Different Environments

Dataset GPT2-DT GPT2-DT (part) GPT2-DTMA

umaze 59 67 55
medium 188 229 146

large 257 286 203

Table 8. Episode length (↓) in different size of PointMaze (a long-term environment). GPT2-DT fine-tune all parameters in the model and
GPT2-DT (part) only fine-tune the parameters in embedding layer and FFN layer.

The FFN layer can weight the output information from different attention heads, but unlike MoA, which assigns a shared
importance score to the output of each attention head, the FFN applies a nonlinear transformation to the outputs of the
attention heads. To verify the necessity of our proposed combining GPT2-DTwith MoA, it can be observed from Table 8 that
relying solely on the FFN layer is insufficient for effectively balancing the influences of the Markov heads and Non-Markov
heads in action prediction.

G. Changes of MoA Weight between Markov Heads and Non-Markov Heads

Figure 9. We illustrate the changes of MoA weight between Markov heads and Non-Markov heads in short-term environment (left) and
long-term environment (right).

To better observe the differences in the impact of MoA in short-term and long-term environments, we show the MoA weights
assigned for Markov heads and Non-Markov heads while training in Figure 9. We found that, after the MoA weights have
converged, the Markov heads is more influential than the Non-Markov heads in predicting actions in short-term environments,
while in long-term environments, the Non-Markov heads hold greater importance. This indicates that combining the MoA
structure enables the model to identify whether the planning ability required by the environment is short-term or long-term.
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