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Abstract

Models pre-trained on synthetic data like computer
graphics (CG) and formula-driven supervised learning
(FDSL) often underperform models pre-trained on real data
in downstream tasks. One approach to resolve this accu-
racy gap involves defining measurable metrics for differ-
ences between real and synthetic data or models trained on
these data, and then addressing the gaps in these metrics.
Conventional metrics often fail to accurately evaluate all
synthetic data types, as they are tailored to specific types or
designed for real images. Therefore, we propose utilizing
the feature compactness measure as an evaluation metric
for finding the gap between models. Our experiments show
that our metric strongly correlates with downstream task
accuracy across a broad range of synthetic data. Addition-
ally, we demonstrate that our metric is useful for designing
training methods using synthetic data.

1. Introduction

Pre-trained models are crucial for achieving high accu-
racy on downstream tasks, but those pre-trained on real data
like ImageNet [3] and JFT-300 [23] face privacy, copyright,
and bias issues. Synthetic data, generated via methods like
computer graphics (CG) [5, 19] and formula-driven super-
vised learning (FDSL) [10, 11, 17, 24], offer an alternative.
However, models pre-trained on synthetic data often exhibit
a performance gap than those on real data.

To find the factor of accuracy gaps between models pre-
trained on synthetic data and real data, evaluation metrics
other than accuracy have been proposed (Table 1). While
accuracy shows just a comparison of performance, metrics
are values designed to define an ideal state of a data feature
or a model’s output and measure how closely they approach
that ideal. The gap can be reduced by redesigning the data
or model based on that behavior. These metrics can be di-
vided into image-based metrics, focusing on the characteris-
tics of specific synthetic data (Table 1(a)), and model-based
metrics, which evaluate the feature distributions of models

methods \ datatypes real CG FDSL
spectrum [25] X X X
(a) FID [8] oo/ X
SIFTer [6] v X v
) transferability [21, 27] v v X
ours v v v

Table 1. Correlation of evaluation methods with downstream ac-
curacy. v//X indicates the presence/absence of correlation. Con-
ventional image-based methods (a) and model-based methods (b)
fail to correlate with accuracy for certain synthetic data types (e.g.,
FDSL data). Our proposed metric is robust across all types of data.

(Table 1(b)). Each type of metric is described below.

image-based methods (Table 1(a)): Image-based metrics
are indicators that represent the ideal state of image char-
acteristics. Representative image-based metrics include the
Fréchet Inception Distance (FID) [8] and SIFTer [6]. The
FID evaluates the similarity of contextual information by
comparing the mean and variance of the feature distribu-
tions between pre-training data and downstream task data.
SIFTer measures the entropy of the distribution of scale-
invariant feature transform (SIFT) features [14, 15] in pre-
training data. This is based on the finding by Yoshinski et
al. [26] that shallow layers, which extract SIFT-like fea-
tures, are transferable to downstream tasks. On the other
hand, there are various methods for generating synthetic
data, such as CG data and FDSL data, and each is designed
to mimic different characteristics of real data. These image-
based metrics cannot correctly evaluate synthetic data gen-
erated based on characteristics unfocused by the metric.

model-based methods (Table 1(b)): Model-based metrics,
like transferability [21, 27], analyze feature distributions
from pre-trained models when given downstream task data.
The core idea in these methods is that models creating well-
clustered feature distributions are transferable. These meth-
ods are not effective for evaluating models trained on pre-
training data with labels that are semantically different from
the labels of real data. For example, FDSL data uses mathe-
matical parameters as class labels, which do not correspond
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to real classes (e.g., ’dog”, ”cat”). Therefore, metrics based
on the clustering ability of downstream data are unsuitable
for FDSL-trained models due to this label mismatch, failing
to correlate with downstream accuracy.

Thus, conventional metrics fail to compare models pre-
trained on various synthetic data. Therefore, we investi-
gated the influence of synthetic data label definitions using
feature visualization. The results showed that while label
definitions impact the separation of interclass features, the
clustering of intraclass features is scarcely affected. Conse-
quently, we propose a metric that eliminates label depen-
dency by focusing on intraclass compactness. Our con-
tribution is to utilize the well-known intraclass compact-
ness metric as a general-purpose evaluation tool for pre-
trained models and experimentally demonstrate its effec-
tiveness. The results confirmed that our metric correlates
more strongly with downstream task accuracy than conven-
tional metrics and can be applied to various synthetic data.
Image generation methods for synthetic data are diversify-
ing. Our metric, independent of generation methods and la-
bels, enables broad evaluation and advances future research.

2. Method

Section 2.1 explains and investigates conventional
model-based metrics, highlighting their limitations with
synthetic data. Section 2.2 then describes our proposed met-
ric, which improves upon these conventional methods.

2.1. Conventional model-based metrics and associ-
ated issues

2.1.1. Evaluation metrics of pre-trained models based on
transferability

Model-based methods aim to rank pre-trained models
according to downstream task accuracy when pre-trained
models (m = 1,2, ..., M) and downstream task data 7, =
{(z,yn)}_; are given. An easy way to rank the models
is to compare the accuracy of the models, but fine-tuning
all the models on the downstream task data is computation-
ally expensive. Therefore, model-based methods estimate
transferability without fine-tuning. Generally, during trans-
ferability evaluation, a downstream task data z; is input into
a feature extractor 6,,, of a pre-trained model. From the fea-
tures ; obtained in this step, the conditional probability
p(y: | zi;0m) of the correct label y; of the input down-
stream task data is calculated [21, 27]. Transferability is
then calculated as the sum of the logarithms of the condi-
tional probabilities:

N
T =Y 1ogp(yi | i3 0m). (1)
=1

In the next step, we calculate the correlation between two
model series (i) and (ii): (i) is the model series obtained by

125 -

8.0 interclass 0
(] X Failed to separate classes :
6.0 M ) tracl 3
A so intraclass 4
4.0 & 4 v Successful 5
. class compaction o
20 ImageNet (Label) g 2 N - ;
Kubric (Label) ﬁ 9

0.0 VisualAtom (Image) 4

50 00 50 100 150

(a) Label feature distribution  (b) FDSL feature distribution

Figure 1. Effects of labels on conventional transferability evalua-
tion. (a) Distribution of label features in the CLIP model. (b) Fea-
ture distribution of CIFAR10 used for the FDSL-trained model. %
represents the mass center of each class feature.

arranging the 7}, values for multiple pre-trained models in
the ascending order, and (ii) is the model series obtained by
arranging the accuracy values obtained after fine-tuning the
pre-trained models in the ascending order. A transferability
metric showing correlation between (i) and (ii) is a good
metric reflecting the accuracy of fine-tuned models and is
useful for finding the gap between pre-trained models.

2.1.2. Investigation of issues in conditional probability
based on class labels

While real and CG data use names, such as object names
and scene names, as class labels, FDSL data assigns class
labels based on differences in its generative formula param-
eters. This labeling scheme is different from the class defi-
nitions of real data. Hence, we investigated how differences
in class labels between real, CG, and FDSL data affect fea-
ture distributions when using transferability as a metric.

To analyze the label difference, we used Contrastive
Language-Image Pre-Training (CLIP [20]"). By measuring
the distance in CLIP’s joint feature space between FDSL
data features and the text-based label embeddings from
real and CG data, we quantify how distant FDSL data is
from conventional class definitions. To demonstrate this
approach, we extracted features from representative data
selected from each class of FDSL data (VisualAtom [24])
and extracted text features from all labels in ImageNet and
CG data (Kubric [5]). To visualize the feature distributions,
we used Uniform Manifold Approximation and Projection
(UMAP [16]).

Figure 1(a) shows the distribution of these features,
showing that the FDSL data features are far from real data
and CG data class label (text) features. In the CLIP feature
space, image and text features are similar, indicating that
FDSL data and real or CG data are distant in terms of im-
age features and class label features. General domain shift
refers to cases where class labels are the same but image
features are different. In this case, image features of data

https://github.com/openai/CLIP is used. The image en-
coder architecture uses Vision Transformer [4] (ViT-B,/'32).
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with the same label in the CLIP feature space should be
similar if the domain shifts. FDSL data are far from real
data even in the CLIP feature space, which indicates that
FDSL data are out of distribution with real data and CG
data not only in terms of image features but also in terms
of class labels. Hence, FDSL-trained models cannot cor-
rectly represent the feature distributions of real and CG data
in relation to the label distributions. In such cases, FDSL-
trained models are likely influenced by their dependency
on labels y during the calculation of conditional probability
p(Y: | ©i; 0mn) in model-based metrics.

Next, we investigated how label mismatch affects trans-
ferability by visualizing feature distributions extracted from
an FDSL-trained model. Conventional model-based meth-
ods define conditional probability p(y; | x;;6,,) on a down-
stream task as transferability. In other words, transferabil-
ity is high when the distribution of & is separated between
classes and concentrated within classes. Therefore, we vi-
sualized the distribution of features & obtained by inputting
real data into a model pre-trained on FDSL (Visual Atom)
data. The input downstream task data was CIFAR10 [13].

As shown in Figure 1(b), the FDSL-trained model suc-
cessfully generates a dense intraclass feature distribution.
On the other hand, the model fails to achieve interclass sep-
aration, as the feature distributions of different classes over-
lap. In this way, the effect of the label mismatch between
FDSL and real data appears as a failure of interclass sepa-
ration. However, FDSL data served as a high-performance
pre-trained model. Therefore, model-based methods that
use the conventional transferability estimation methods can-
not accurately evaluate synthetic data with labels that do
not match those of real data. Our analysis of FDSL data
revealed this label dependency problem. This problem is
a potential limitation in conventional transferability evalua-
tion, and the problem does not appear when comparing data
with similar class labels, such as real and CG data.

2.2. Proposed metric based on intraclass feature
distribution

Despite lower interclass separations on real data because
of the label mismatch, an FDSL-trained model shows high
performance on downstream tasks. Furthermore, a FDSL-
trained model produced sufficiently dense intraclass distri-
butions of features on real data. Thus, the lower intraclass
feature variance is an important factor to achieve a high-
performance pre-trained model.

Therefore, we propose a metric that uses the within-
cluster sum of squares (WCSS) as a metric that can be
evaluated for real and synthetic data. The metric for given
downstream task data 7,, = { (2, 3, )}, is calculated as

1

Wm = ’
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where k is the number of classes in the downstream task

data, C; is the data group belonging to each class, and p;
is the centroid vector of features in C;. As smaller WCSS
indicates greater compactness, we take its inverse (Eq. 2)
so that higher metric values correspond to higher accuracy.

3. Experiment
3.1. Experiment setting

To validate our proposed metric, we compare it with con-
ventional image-based (FID [8], SIFTer [6]) and model-
based (LogMe [27], SFDA [21]) metrics. The comparison
is based on the correlation between each metric and down-
stream task accuracy. We calculate the correlation between
each metric and the accuracy of the fine-tuned model using
the weighted Kendall’s T,,, commonly used in conventional
model-based metrics [21, 27]. Details of 7, can be found in
the SciPy implementation”. The larger the value of 7,,, the
higher the correlation, which makes for a good metric.

The experimental settings for pre-training and the down-
stream tasks are detailed below. These settings are com-
mon to all metrics. The training model was ViT-tiny [4],
which has been used in a previous FDSL study [24]. We
used cross-entropy as the loss function and followed a previ-
ous study for configuring learning settings such as the mini-
batch size, learning rate, and data augmentation method. In
addition, since the model-based metrics use the output of
the feature extractor of a pre-trained model, we used the
class tokens of the final transformer block of ViT-tiny.

Regarding pre-training data, we used ImageNet [3] as
real data, RCDB [10], VisualAtom [24] as FDSL data;
Kubric [5] and VisDA [19] as CG data; and Shaders [1]
as other synthetic data. The data scale is 100,000 images
for VisDA, 1.2 million images for Kubric, and 1 million
images for the other datasets. For comparing a model pre-
trained on Kubric with a model pretrained on VisualAtom
in Section 3.3, we reduced the amount of data in Kubric to
be equivalent to the amount of data in VisualAtom. In par-
ticular, we reduced the number of images from the classes
with the largest number of images within the class.

We use downstream task data from CIFAR10 [13], CI-
FAR100 [13], Stanford Cars [12], Flowers [18], IN100 [9],
Describable Textures Dataset (DTD) [2], and UCF101 [22].
For fair comparison, we adopted the experimental settings
from previous studies, as the amount of data used can dif-
fer depending on the metric. We calculated the model-
based and proposed metrics using only the test data from
the downstream task.

3.2. Experiment results

Table 2 shows the correlation between each metric and
the accuracy of fine-tuned models. The conventional image-

2https: //docs . scipy . org/doc/scipy/reference /
generated/scipy.stats.weightedtau.html
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Table 2. Comparison of the correlation between evaluation met-
rics and the accuracy of downstream tasks. The highest values are
displayed in bold.

Method C10 C100 Cars Flowers INIO0O DTD UCFIOl Average
FID -0.14  —-0.13  0.13 —0.4 0.06 —0.65 —0.26 -0.20
SIFTer 0.41 037 053 0.69 0.53 0.68 0.32 0.50
LogME 0.32 032 0.3 0.72 0.13 0.76 0.37 0.39
SFDA 0.32 032 023 0.69 0.13 0.62 0.37 0.38
WCSS (Eq. (2))  0.54 041 047 0.79 0.47 0.76 0.74 0.59

based metrics showed low average correlations, as did the
model-based metrics. The results support our analysis by
showing that model-based metrics (LogME and SFDA)
are label dependent and therefore not suitable for evaluat-
ing FDSL data across a range of downstream tasks (Fig-
ure 1(b)). In contrast, our proposed metric achieved a sig-
nificantly higher average correlation. Thus, intraclass com-
pactness was less affected by the labels of downstream task
data, as revealed in the analysis results in Figure 1(b), and it
was observed for various downstream task data. These re-
sults demonstrate that during model pre-training, intraclass
compactness strongly correlates with downstream task ac-
curacy regardless of the data type (real or synthetic data).

3.3. Combined model training via FDSL and CG
data based on the proposed metric

This section shows how the proposed metrics improve
the pre-training model and offers insights into future direc-
tions for advancing synthetic-image research.

Intraclass compactness measures feature closeness
within each class. The correlation between feature com-
pactness and accuracy suggests that better pre-trained mod-
els are more robust to intraclass fluctuations. To improve
this robustness, we can use data that are robust against dif-
ferent intraclass fluctuations. In this paepr, we attempt to
improve robustness by learning a combination of FDSL
and CG data. Figure 2 (left) plots WCSS against IN100
downstream accuracy. Despite their differences, FDSL and
CG data exhibit similar intraclass compactness. This sug-
gests they differ in robustness. Figure 2 (right) qualita-
tively confirms this, showing the top 4 feature-similar im-
ages retrieved from IN100 queries by models pre-trained on
FDSL and CG data. These results imply the FDSL-trained
model resists color shifts by selecting images with fine cor-
ner shapes, while the CG-trained model resists shape shifts
by choosing images with similar colors.

We then tested if dataset combinations based on the met-
ric, each with distinct robustness, enhance performance. We
chose VisualAtom [24] (FDSL) and Kubric [5] (CG) for
their strong standalone performance. We evaluated three
combination methods: multitask learning, continual learn-
ing, and image mixing. In multitask learning, we merged
FDSL and CG as one dataset, using their combined classes
during training. This doubles the data size (2 million) ver-
sus using only FDSL (1 million) or CG (1 million). Thus,
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Figure 2. Investigation of downstream task accuracy improvement
methods guided by WCSS. (left) WCSS vs. accuracy scatter plot.
(right) Randomly selected query images from IN100.

Table 3. Mean WCSS and top-1 accuracy across downstream tasks
for different pre-training methods. The highest values are dis-
played in bold.

pre-train WCSS  accuracy
Visual Atom 0.0067 83.4
Kubric 0.0141 82.9

FDSL (VisualAtom) + CG (Kubric)
multitask learning  0.0176 84.0
continuous learning  0.3710 85.0
PIXMIX 0.0112 83.6

we randomly sampled half of the data from each class in
each dataset. For continuous learning, after pre-training on
FDSL data, an additional pre-training step was performed
on CG data. The data quantity was handled as in multitask
learning. For image mixing, we overlaid FDSL onto CG
using PIXMIX [7] and trained models. Table 3 shows that
multitask and continual learning boost intraclass compact-
ness (WCSS) over single datasets. All combination meth-
ods also improved downstream accuracy. Thus, optimizing
intraclass compactness guides improved synthetic-data pre-
training and suggests new research directions.

4. Conclusion

We proposed a method for assessing pre-trained mod-
els on arbitrary synthetic images by utilizing the intra-
class compactness (WCSS). By analyzing CLIP features,
we found that WCSS was effective because the differ-
ence in label definitions between real and synthetic im-
ages affects the evaluation of some models using con-
ventional metrics, but has little effect on intraclass com-
pactness. We demonstrated the effectiveness of WCSS
through its correlation with downstream tasks. We also con-
firmed WCSS can guide performance improvement strate-
gies, like combining synthetic data. Thus, WCSS is valu-
able for designing future synthetic data and training meth-
ods.
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