
ProtMamba: a homology-aware but alignment-free protein state space model

Damiano Sgarbossa * 1 2 Cyril Malbranke * 1 2 Anne-Florence Bitbol 1 2

Abstract
Protein design has important implications for drug
discovery, personalized medicine, and biotechnol-
ogy. Models based on multiple sequence align-
ments efficiently capture the evolutionary infor-
mation in homologous protein sequences, but mul-
tiple sequence alignment construction is imper-
fect. We present ProtMamba, a homology-aware
but alignment-free protein language model based
on the Mamba architecture. In contrast with
attention-based models, ProtMamba efficiently
handles very long context, comprising hundreds
of protein sequences. Trained on a large dataset of
concatenated homologous sequences, ProtMamba
combines autoregressive and masked language
modeling through a fill-in-the-middle objective.
We demonstrate ProtMamba’s usefulness for the
generation of novel sequences and for fitness pre-
diction. ProtMamba reaches competitive perfor-
mance with other protein language models despite
its smaller size, which sheds light on the impor-
tance of long-context conditioning.

1. Introduction
Proteins are essential building blocks of life, serving vital
roles in metabolic processes, cellular transport, structural in-
tegrity, and immune responses. Composed of long chains of
amino acids (polypeptides), proteins fold into specific three-
dimensional structures critical for their biological functions.
One of the key challenges in biology is protein engineering
and design: conceiving protein sequences to exhibit en-
hanced or novel functions. While experimental approaches
like directed evolution and mutational scanning are effective
in this regard, they only allow exploring the neighbors of
existing sequences. However, the recent growth of extensive

*Equal contribution 1Institute of Bioengineering, School
of Life Sciences, EPFL, CH-1015 Lausanne, Switzerland
2SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne,
Switzerland. Correspondence to: Anne-Florence Bitbol <anne-
florence.bitbol@epfl.ch>.

Proceedings of the ICML 2024 Workshop on Accessible and Effi-
cient Foundation Models for Biological Discovery, Vienna, Austria.
2024. Copyright 2024 by the author(s).

databases has opened up new avenues for computational
methods that exploit the breadth of biological evolution. For
instance, UniProt (The UniProt Consortium, 2021) contains
more than two hundreds of millions of protein sequences.
Biological functions exert evolutionary constraints on pro-
tein sequences, which can be probed by considering families
of homologous proteins (i.e. proteins that share an evolu-
tionary history) and analyzing this data through statistical
methods and, more recently, through deep learning methods.

Protein language models rely on recurrent (Bepler and
Berger, 2019), transformer (Rives et al., 2021) or convo-
lutional (Yang et al., 2024) architectures, and are trained
through masked language modeling, autoregressive model-
ing, or discrete diffusion techniques (Alamdari et al., 2023),
on large ensembles of single protein sequences (Khakzad
et al., 2023). The representations learned by these models
correlate with biochemical properties of proteins (such as
function, structure, contacts) (Elnaggar et al., 2021; Vig
et al., 2021; Rives et al., 2021; Madani et al., 2023), and
can be used to generate protein sequences or to evaluate
the fitness of variants. The vast majority of these meth-
ods are trained on non-structured ensembles of single pro-
tein sequence and do not have direct access to homology,
or to conservation and variability within protein families.
Models trained on multiple sequence alignments (MSAs)
of homologous sequences have also been introduced, de-
spite raising memory challenges and potentially suffering
from the imperfections of MSAs (Thompson et al., 2011).
Successful MSA-based transformer models, such as MSA
Transformer (Rao et al., 2021) or the EvoFormer module of
AlphaFold2 (Jumper et al., 2021) alternate attention along
protein sequences and across homologs. More recently,
PoET (Truong Jr and Bepler, 2024) was trained on concate-
nations of non-aligned homologous sequences, offering a
promising autoregressive alternative to MSA Transformer
for protein fitness prediction and design.

State space models such as S4 (Gu et al., 2021), Hyena (Poli
et al., 2023) and Mamba (Gu and Dao, 2023a) are catching
up with transformers thanks to their ability to efficiently
handle very long sequences of tokens. These models were
quickly adapted to work with biological data. Approaches
such as HyenaDNA (Nguyen et al., 2023) or Evo (Nguyen
et al., 2024) were trained on long DNA sequences and cap-
ture regulatory mechanics. Meanwhile, PTM-Mamba ad-
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dresses post-translational modifications of protein sequences
(Peng et al., 2024).

Here, we introduce ProtMamba, a model trained autore-
gressively to predict the next amino-acids in chains of pro-
tein sequences of the same family. First, we highlight the
main contributions of this paper (section 2, see supplemen-
tary section A for detailed methods). We then show the
benefits of being able to handle long context (section 3.1)
and the strength of the model for fitness prediction on the
ProteinGym dataset (section 3.2) and on the chorismate
mutases enzyme (supplementary section B). In supplemen-
tary section C, we also provide an analysis on the abil-
ity of ProtMamba to generate novel sequences. We pro-
vide the code for ProtMamba: https://github.com/
Bitbol-Lab/ProtMamba-ssm

2. Contributions
1. To harness the evolutionary information present in ho-

mologous sequences without relying on multiple se-
quence alignments (MSAs), we use as input a con-
catenation of homologous sequences for each protein
family. In each of these long arrays, sequences are
separated with a specific token. The motivation is that
evolutionary information is extremely useful for pro-
tein modeling (Jumper et al., 2021; Rao et al., 2021;
Abramson et al., 2024), but MSAs can be inaccurate.
This approach is similar to that used recently in the au-
toregressive transformer PoET (Truong Jr and Bepler,
2024).

2. We develop an architecture based on Mamba blocks
(Gu and Dao, 2023a) , an alternative to attention that
relies on state space models. In Mamba, which is a
recurrent neural network, memory scales linearly in
sequence length, bypassing the quadratic memory con-
straints of transformers. This allows handling signif-
icantly longer input sequences, in addition to being
faster to train and to use at inference. This is a key
asset here, as concatenating homologous sequences
results in long inputs. Note that PoET (Truong Jr and
Bepler, 2024) employed attention matrix chunking to
address this issue, but this results in potential losses of
statistical dependence signals, and only partially solves
the memory limit.

3. We combine elements of both autoregressive modeling
and masked language modeling (MLM), by training
our model using the fill-in-the-middle (FIM) objective
(Bavarian et al., 2022; Fried et al., 2022). The model
learns to predict masked patches extracted randomly
from a sequence and positioned at the end of it, and
can therefore leverage the full sequence context, while
being trained autoregressively. This is of particular in-

terest for biological sequences, because preceding and
subsequent tokens can all be informative to predict a
new token. While autoregressive models are generative
by definition, they yield the probability of each new to-
ken conditioned on previous ones (ignoring subsequent
ones). Besides, MLM can be productively used for
protein sequence generation (Sgarbossa et al., 2023).

4. To promote the model’s ability to reason over in-
sequence positions, which is particularly useful for
the FIM task, we modify the original Mamba imple-
mentation by introducing sequence-level positional em-
beddings. This enables the model to pay attention to
relative positions inside each sequence. In inference
and generation, it opens the possibility of controlling
the number of amino-acids to generate.

5. We train a foundation model (ProtMamba Foundation)
using 32,000 tokens in context and we improve the
model capabilities on long context using 128,000 to-
kens in a second training phase (ProtMamba Long
Foundation). We also specialize the models to per-
form better in FIM tasks (which is particularly useful
for scoring the effect of mutations) by fine-tuning it
on predicting tokens in FIM setup only (ProtMamba
Fine-tuned and ProtMamba Long Fine-tuned).

3. Results
3.1. ProtMamba benefits from long context

To evaluate the effectiveness of incorporating context in-
formation in ProtMamba, we examine the scaling of the
model’s perplexity with context length for natural sequences.
Perplexity is commonly used to evaluate autoregressive mod-
els and assesses how uncertain they are about a sequence.
It is the exponential of the cross entropy loss. Figure 2
shows the scaling of perplexity for the masked parts of the
sequences as a function of the number of context sequences,
when using the FIM objective. ProtMamba Long (Fine-
tuned) achieves remarkably low values of perplexity for
small numbers Nm of masked tokens. Furthermore, per-
plexity decreases when increasing the number of context
sequences, revealing the positive impact of richer context
on model performance. This decrease tends to be steeper for
larger Nm, suggesting that these difficult tasks particularly
benefit from richer context. Given the diverse lengths of se-
quences across protein families, we report perplexity versus
the number of sequences in the context rather than versus
the total length of the context. Indeed, there can be different
amounts of information in contexts of similar lengths but
composed of sequences of varying lengths.

Figure 6 shows the scaling of the per-sequence perplex-
ity (i.e. the standard autoregressive perplexity of the full
non-masked sequence) computed on the test set using Prot-

2

https://github.com/Bitbol-Lab/ProtMamba-ssm
https://github.com/Bitbol-Lab/ProtMamba-ssm


ProtMamba: a homology-aware but alignment-free protein state space model
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Natural sequences:

0         1   2    3    4   5    6   7    8            9           12  13  14  15          16          18  19 20  21 22  23        0                  9            9   10  11           16         16  17

Figure 1. Input to ProtMamba. Each element of the input is a concatenation of unaligned homologous sequences separated by <cls>
tokens. Each sequence starts with a <cls> token and ends with an <eos> token. Masked segments are replaced by numbered mask tokens,
<mask1>, . . . , <mask5>. The masked tokens are appended to the sequence, after the <eos> token, each masked segment being preceded
by its associated mask token. The position indices (“pos-ids") follow the succession of tokens in the natural sequence. Thus, the masked
tokens have their initial position indices in the natural sequence. The position index of each mask is set to that of the first associated
masked token. In this particular example we sampled two masks i = 1, 2 with length P1 = 3 and P2 = 2.
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Figure 2. Scaling of the FIM perplexity with the number of
context sequences. We show the perplexity of the FIM part for
different number Nm of masked amino acids versus the number
of context sequences. Results are averaged over all 500 clusters
of the test set and 100 replicates for each cluster (differing by the
random sampling of context sequences). Context sizes go up to
217 amino acids.

Mamba Long (Foundation). Initially, we notice a decrease
of perplexity to a minimum of 7.70 as the number of se-
quences in the context increases, with lower perplexity
values for shorter individual sequences, but this reduction
plateaus after a certain point. We attribute this behavior to
the finite size (d = 1024, see Section A) of the hidden state
of the model, which limits its capacity to effectively lever-
age context information at each step. We hypothesize that a
larger model with a higher-dimensional hidden state could
increase the amount of information transferred from the con-
text to the next predicted token. For completeness, we also
report perplexity versus context length measured in tokens
in Figure 7. There, we observe a rise in perplexity when the

context sizes reaches 217 = 131, 072 tokens, which is the
highest context length seen during training. We expect that
further training the model for longer contexts could lead
to lower perplexity values, yet ultimately reaching a lower
bound due to the limitations imposed by the hidden state
dimension and model size.

3.2. ProtMamba predicts mutational effects in different
protein families

Next, we evaluate ProtMamba’s ability to predict mutational
effects, leveraging its inpainting capabilities arising from
the FIM training objective. Indeed, by masking specific
amino acids in the wild-type sequence of interest, we can
predict the fitness of all variants at these sites. Our first
step to evaluate variant fitness is to collect a context of
homologs to the wild-type sequence. We use the ColabFold
protocol (Mirdita et al., 2022) for this, ensuring that diverse
sequences are found in a few minutes. Then, we randomly
subsample 200 sequences among those that have between
30% and 98% similarity to the wild type to construct the
context, and we sort these sequences by increasing similarity
to the wild type, as in (Truong Jr and Bepler, 2024). In
practice, we average over 3 random subsampling of the
context.

To evaluate the effect of a variant with a single mutated site,
we append the wild-type sequence to the context, mask the
mutated residue in it, and predict this residue using the FIM
method. To predict the fitness effects of variants involving
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mutations at multiple sites, we add all the single mutation
likelihoods. This approximate, but fast method avoids com-
puting the complete likelihood for all variants, thus reducing
the number of calls to ProtMamba. It is accurate when the
mutations can be considered independent.

We consider the ProteinGym benchmark (Notin et al., 2023),
which contains 217 datasets of substitutions in protein se-
quences (both single and multiple) and allows comparing
to state-of-the-art methods. We evaluate our model’s perfor-
mance using different context sizes and using the 4 different
ProtMamba versions (see Section A). In Figure 8, we report
the mean Spearman correlation for each of these models
using different context lengths. Models fine-tuned on the
FIM task clearly outperform foundation models. Further-
more, ProtMamba Long performs better than ProtMamba,
confirming the importance of training the model with a long
context. In Figure 9(a), we break down the performance of
ProtMamba Long for different context lengths and different
protein sequences lengths. We observe that variants with
long sequences particularly benefit from long contexts, as
they allow including more sequences. This interpretation is
supported by Figure 9(b), which shows that this dependence
on context length is weaker when considering context length
in terms of number of sequences. Based on performance on
a validation set (see in supplementary data D) and shown in
Figure 10, we chose to use a context of 200 sequences to
predict fitness using ProtMamba Long (fine-tuned).

Table 1 is divided in two parts: the first part shows only
single-sequence models which do not use alignment infor-
mation and have not been ensembled with other models;
the second part shows models that use MSA information,
either by incorporating it directly in the input like MSA
Transformer (Rao et al., 2021) or by ensembling with other
models like a site-independent model based on first order
MSA statistics or EVE (Frazer et al., 2021). In the first part
we show that ProtMamba outperforms all single-sequence
models of the same size, except ESM-IF1 (Hsu et al., 2021)
which uses structural information. Moreover, ProtMamba
outperforms even larger models like Tranception L (Notin
et al., 2023), showing the importance of the context.

Since MSA information remains useful in scoring variants,
in the second part of the table we also show results mak-
ing explicit use of MSAs via retrieval, by ensembling the
models with a Site-Independent model, as in (Notin et al.,
2023) (denoted by “R” in Table 1). Using this method, Prot-
Mamba obtains the same performance as Tranception L and
MSA Transformer, which also leverages MSA information.
Both of these models were trained using at least one order
of magnitude more FLOPs than ProtMamba. We observe
that for datasets with more than one mutation (last column
in Table 1) ProtMamba with retrieval slightly outperforms
even the state-of-the-art model TranceptEVE L and reaches

performance close to the structure-based model ESM-IF1.

Finally, in Figure 11, we break down these comparisons
between models by category of experiment (panel (a)), tax-
onomic category (panel (b)) and sequence length (panel
(c)). We also show scores for different models on randomly
selected example experimental datasets in Figure 12.

4. Discussion
Here, we presented ProtMamba, a homology-aware but
alignment-free generative protein language model. Prot-
Mamba leverages the long-context capabilities of state space
models, allowing it to handle concatenated sequences of ho-
mologous proteins. It also benefits from their faster speed
compared to attention-based models (Gu and Dao, 2023a),
allowing fast sequence generation. ProtMamba was trained
using a hybrid strategy combining autoregressive model-
ing and masked language modeling via the FIM objective.
This allows ProtMamba to efficiently predict the next amino
acid in a protein sequence as well as to inpaint masked
regions. Our results demonstrate ProtMamba’s versatility
across multiple tasks, including conditioned generation and
protein fitness prediction, both for close and for distant vari-
ants. For the latter task, the sequence inpainting abilities of
ProtMamba, via the FIM objective, proved to be particularly
useful. Overall, ProtMamba benefits from capturing signal
across multiple scales. In particular, it is able to predict
fitness by exploiting constraints shared broadly across the
proteome via its pre-training, but also specific constraints
shared between homologs via the context, and it can exploit
the full context of a given protein sequence when predicting
only part of it.

Limitations. So far, ProtMamba did not reach perplex-
ity values as low as those of larger transformer models like
PoET (Truong Jr and Bepler, 2024) for full sequences. How-
ever, it can handle longer context sizes, which is extremely
beneficial for the sequence inpainting task. We believe that
scaling the model to larger sizes and training times (compa-
rable to PoET) may result in comparable performance while
retaining ProtMamba’s assets of lower memory cost and
inference time. We did not provide a direct test of the gener-
ative ability of ProtMamba for protein sequence inpainting.
Indeed, this is a highly specific task lacking clear bench-
marks so far. However, we believe that our two analyses on
fitness prediction constitute a convincing indirect proof of
the usefulness of ProtMamba’s inpainting ability. It would
be very interesting to experimentally test ProtMamba’s in-
painting ability, as well as its de novo sequence generation
ability (Verkuil et al., 2022).

Perspectives. ProtMamba responds very well to prompt
engineering. We propose that this could become an al-
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Spearman correlation by MSA depth by mutations
Model Par. All depths Deep Medium Shallow 1 2+

ESM2 150M 0.387 0.497 0.358 0.306 0.367 0.379
ESM-IF1 142M 0.422 0.544 0.431 0.300 0.413 0.471
Tranception L (w/o R) 700M 0.374 0.419 0.371 0.358 0.358 0.390
ProtMamba (w/o R) 107M 0.406 0.468 0.412 0.395 0.379 0.444

MSA Transformer 100M 0.434 0.488 0.450 0.404 0.409 0.436
Tranception L (w/ R) 700M 0.434 0.473 0.438 0.432 0.404 0.463
TranceptEVE L >700M 0.456 0.492 0.467 0.451 0.426 0.467
ProtMamba (w/ R) 107M 0.434 0.472 0.439 0.450 0.406 0.468

Table 1. Performance of different models on the ProteinGym benchmark. We report Spearman correlation values obtained both
based on retrieval (w/ R) and non-retrieval (w/o R) methods, and parameter count for each model. We report results divided according
to MSA depth and number of mutations in the benchmark dataset. Results for benchmark models were obtained from https:
//proteingym.org/.

ternative or complement to fine-tuning of language mod-
els. ProtMamba is also naturally designed to take advan-
tage of retrieval augmented generation (RAG) techniques
(Lewis et al., 2021), as it allows for using retrieved pro-
tein sequences from any external database, to condition the
generation process. Furthermore, we envision the possi-
bility to use the model for homology search, by scoring
sequences within specific contexts. This would be very fast,
because only one forward pass would be required. An inter-
esting further extension of ProtMamba would be to make
it explicitly structure-aware, e.g. using a structural alpha-
bet (van Kempen et al., 2023), like SaProt (Su et al., 2023)
or ProstT5 (Heinzinger et al., 2023).
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A. Methods
A.1. Model architecture and training strategy

ProtMamba’s architecture is adapted from Mamba (Gu and Dao, 2023b). An important modification is that we introduce
learned positional embeddings for the input tokens. Among different variants, we observed that the most effective and
stable method to integrate positional embeddings is to concatenate them with the input token embeddings into a single
vector. Specifically, we allocated half of the embedding dimension d to token information and the other half to positional
information.

We trained a 107 million parameters model with 16 layers, embedding dimension d = 1024, and hidden state dimension
equal to embedding dimension. We started with a maximal total input sequence length of 211 = 2048 amino acids (recall
that input sequences are concatenated homologous protein sequences). The model was trained following (Gu and Dao,
2023b) with some minor modifications. We used the AdamW optimizer with the following parameter values: weight decay
w = 0.1 and (β1, β2) = (0.9, 0.95). We scheduled the learning rate to increase from zero to 6×10−4 with a linear warm-up
of 500 steps followed by a constant learning rate. To optimize memory usage, we trained the model using the bfloat16
format.

To avoid training instabilities observed in (Nguyen et al., 2024), we implemented a callback mechanism to revert to a
previous checkpoint if the loss never assumed values below a threshold for 10 successive evaluation steps. The threshold
value was chosen as the lowest training loss increased by 0.5%. This ensures that the loss decreases overall, while allowing
it to transiently increase. We also prevented gradient explosions by clipping the gradient norm to 1.0.

The model was trained by scheduling the context length of the input using sequence length warm up (SLW) (Nguyen et al.,
2023). Initially, we used inputs of length L = 211 tokens with a batch size of 64. We doubled input length each time the
loss reached a plateau, simultaneously reducing batch size to maintain a fixed total number of tokens per batch. In case of
memory constraints, we decrease the batch size and use gradient accumulation. This heuristic approach is based on the
idea that a longer context should provide more information. It is useful because of training instabilities for long contexts
(Nguyen et al., 2023; 2024). Note that we did not start training the model with a long context to benefit from a larger batch
size, which helps to approximate the loss landscape more efficiently. Finally, once we reached a context length of L = 217,
we implemented gradient checkpointing to minimize memory consumption. This allowed us to increase the batch size for
the final part of the training and obtain a better approximation of the loss landscape, see (Nguyen et al., 2023; 2024).

Figure 4 reports the loss and perplexity during training, computed on the training set and on a validation set of 192 held-out
OpenProteinSet sequence clusters (see Section A.2). The model was trained on one NVIDIA RTX A6000 for 35 days, and
then on two of them for 15 days. This allowed us to keep the batch size large enough when the context size increased. In
total, the model was trained on 1.95× 1011 tokens (approximately 1.5 epochs) and used 2.0× 1020 FLOPs during training.

We consider two different ProtMamba versions that were obtained by saving checkpoints at different moments of the training.
Our model ProtMamba, Foundation was trained on a maximum context length of 215 tokens. Our model ProtMamba Long,
Foundation was trained until the context length reached 217 tokens. Both models were fine-tuned for 2 days on predicting
only the FIM amino acids to improve inpainting capabilities, yielding the models ProtMamba/ProtMamba Long, Fine-tuned.

A.2. Dataset construction

We trained ProtMamba on OpenProteinSet (Ahdritz et al., 2024), a dataset which comprises 16 millions MSAs, one for
each sequence cluster within Uniclust30 (Mirdita et al., 2017). This dataset was curated to train OpenFold (Ahdritz et al.,
2022). We used a filtered subset of the full dataset, consisting of maximally diverse representative MSA clusters, built by
iteratively eliminating redundant clusters whose representative sequences appeared in other clusters’ MSAs (Ahdritz et al.,
2024). This ensures that each representative sequence is only present in its cluster, as detailed in (Ahdritz et al., 2024). This
dataset comprises 268,000 clusters including a total of 508 million sequences and 110 billion residues, see Figure 5 for
additional statistics. A validation set and a testing set are formed by holding out respectively 192 and 500 randomly chosen
clusters from the training set. Importantly, our use of the filtered version of OpenProteinSet (Ahdritz et al., 2024) ensures
that overlap between clusters in the training, validation and test set is strongly minimized. Indeed, this filtering is based
on selecting only MSAs of maximal diversity and ensuring that the reference sequences used to build each cluster are not
present in any other cluster.

Figure 1 illustrates the construction of a training example. First, a cluster is randomly selected from the filtered OpenPro-
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teinSet database described in Section A.2. As OpenProteinSet uses MSAs, we restore the original unaligned sequences
by removing gaps and converting all lowercase insertion residues to uppercase. Each amino acid is tokenized using a
unique token. Then, N sequences are sampled uniformly at random and concatenated into a single array, with a <cls> token
separating each sequence from the next one. The value of N is chosen for the total length of the concatenated sequence
to exceed the desired training context length L (e.g. L = 211 at the beginning of training), and the input is then cropped
precisely at L.

Next, the sequences are prepared for the FIM task. For each sequence, some patches of consecutive tokens are randomly
sampled (see below) and masked by replacing them with a mask token <mask i>, with one such token representing patch i.
For each patch, we append to the sequence another mask token followed by the corresponding masked amino acids (which
are unmasked). An <eos> token is used to separate the main (masked) sequence from its unmasked patches. Finally, each
token is allocated a position index (used to obtain the associated positional embedding) that tracks its position in the original
sequence. The position indices of <cls> and <eos> are set to zero, while the mask tokens <mask i> have the same position
indices as the first token they are masking, see Figure 1.

The following rules are applied when masking each sequence:

1. The number of masked patches in a sequence is sampled from a Poisson distribution with λ = 1, and capped at 5
(by resampling in case values above 5 are obtained). This yields no mask in 36% of sequences, one mask in 36% of
sequences, and more in 28% of sequences.

2. The starting position of each patch is sampled uniformly (without replacement) from all possible positions in the
sequence.

3. The length Pi of each patch i is sampled uniformly in [1,max(Pi)], where max(Pi) is 0.2 times the distance from the
start point of patch i to the start point of patch i+ 1 (or to the end of the sequence for the last patch). This ensures that
no more than 20% of all tokens in each sequence are masked, in line with masking fractions of similar models (Rao
et al., 2021; Rives et al., 2021).

Finally, each token is allocated a position index (used to obtain the associated positional embedding) that tracks its position
in the original sequence. The position indices of <cls> and <eos> are set to zero, while the mask tokens <mask i> have the
same position indices as the first token they are masking, see Figure 1.

B. ProtMamba accurately predicts the activity of chorismate mutase enzyme variants
Next, we evaluate ProtMamba, and in particular the power of the FIM objective, on a dataset of experimentally tested
natural and in silico generated sequences from the chorismate mutase family from (Russ et al., 2020). Chorismate mutase
functions as an enzyme involved in the catalysis of synthesis of amino acids, and is a domain of the bifunctional chorismate
mutase/prephenate dehydratase. We use ProtMamba to evaluate the activity of experimentally studied variants of this
enzyme. For this, we sample 100 sequences, either randomly among the natural sequences that were experimentally studied,
or randomly among the subset of those that were experimentally shown to be active in E. coli. For these two types of
context, we test three different protocols to predict the activity of the other variants in the dataset of (Russ et al., 2020) with
ProtMamba. First, we use only the chorismate mutase domains (cropped sequences) as context, and autoregressively evaluate
the likelihood of the full sequence (“from left to right”). Second, we use the full sequences (chorismate mutase/prephenate
dehydratase) as context and we evaluate the perplexity of the full sequence autoregressively from left to right. Third, we use
the full sequences (chorismate mutase/prephenate dehydratase) as context and evaluate the perplexity of the chorismate
mutase domain using the FIM objective. In Figure 13, we report the ROC curve for the two different context types and the
three different protocols. We observe that focusing on active variants in the context consistently improves the discrimination
power of ProtMamba. We further observe that the quality of our activity predictions increases with context quality. For both
context types, using full sequences improves the prediction over using only domains, and using FIM improves accuracy.
Moreover, using fill-in-the middle reduces the computation time per variant compared to autoregressively scoring the full
sequence (from 1.1 second per variant to 3.4 seconds per variant in line with the domain counting for a third of the protein
total length).

In Figure 14 a, we show the impact of context size on the performance of our best activity predictor (using only active
variants in context, full domains and FIM). The accuracy of this predictor increases with context length and plateaus at the
longest context length seen in training (i.e. 217 residues). In Figure 14 b and c, we compare the perplexity of the variants
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when using only active variants as context and when using both inactive and active variants as context. We observe that the
perplexity of inactive variants is often higher when using a context of active variants, which shows a better ability to predict
inactivity in this case. Furthermore, the perplexity of active variants is often lower in this case, also showing better ability to
predict activity with high-quality context.

C. ProtMamba autoregressively generates promising novel sequences
Finally, we evaluate ProtMamba on the autoregressive generation of novel protein sequences given a context of known
homologs, corresponding to members of a given cluster of sequences. We generate sequences from 19 randomly selected
clusters in the test set, varying the following parameters: temperature (T ), top-k number, and top-p fraction, following the
approach proposed by (Ferruz et al., 2022). These parameters are commonly employed to control the output of autoregressive
models. At each step, top-k limits their output to the top-k most probable tokens, while top-p only includes the top tokens
reaching a cumulative probability p. Meanwhile, temperature T adjusts the randomness of sampling. Additionally, we
vary the number of sequences in the context to assess the impact of different levels of conditioning on the generated
sequences. Specifically, for each cluster, we perform generation using context lengths of n = 10, 100, 500, 1000 and N
sequences, where N is the total number of sequences in the cluster. For each value of n, we consider the following
(T, top-k, top-p) triplets: (0.8, 10, 0.9), (0.9, 10, 0.95), (1, 10, 0.95), (1, 10, 1), (1, 15, 1). We generate 100 sequences for
each (n, T, top-k, top-p), obtaining a total of 2500 sequences per family. As expected, we observed that the parameters
which promote higher sampling variability tend to yield sequences with higher perplexity. Note that sequences with more
than 750 amino acids, i.e. longer than the longest natural sequence considered here, were discarded from further analysis.
They represented ∼5% of the generated sequences.

We compare the sampled sequences (aggregated across all parameter sets mentioned above) with natural sequences from
the cluster used as context for generation using various scores evaluating novelty, homology, and structure. Novelty is
assessed by computing the pairwise Hamming distance (using pairwise Smith-Waterman alignment) with each natural
sequence in the cluster, after which it is possible to focus on distance to the closest natural neighbor if desired. Homology
evaluation involves training an HMM (using HMMER (Eddy, 2020)) on the cluster’s MSA, obtained from OpenProteinSet,
and computing the scores it gives to generated sequences.Structure is assessed by predicting the structure of each sampled
sequence using ESMFold (Lin et al., 2023). As ESMFold is a single sequence model, it provides predictions that are
less biased by MSAs than those of MSA-based models. Futhermore, it is faster than AlphaFold2. ESMFold’s confidence
measures, both global with pTM scores and local with pLDDT scores, allow for a precise comparison of different sequences
sampled from the same cluster. Figure 17 shows that ProtMamba’s estimated sequence perplexity correlates well with
HMMER scores, Hamming distance to the closest natural neighbor in the cluster and structural scores. Thus, ProtMamba
assigns lower perplexity values to sequences that are more likely to be part of the cluster. The absolute Pearson correlation
value averaged over all clusters and scores is above 0.57. Detailed results for each family and each score are presented in
Figure 18. Figure 3 shows that the median scores of our generated sequences that have low perplexity are comparable to
those of natural ones. Overall, these results are promising for protein design applications.
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Figure 3. Comparison of low-perplexity generated sequences with natural ones. We report the median and the standard deviation
of sequence length, Hamming distance to the closest natural neighbor in the sequence cluster from which the context is drawn (“Min
Hamming”), HMMER score (rescaled), pLDDT and pTM scores from ESMFold. For each of 19 test clusters, we compare the 100
sequences with lowest perplexity values out of 2500 generated sequences (x-axis) with a randomly chosen subset of 100 natural sequences
in the sequence cluster (y-axis). Dashed black lines: y = x.

10



ProtMamba: a homology-aware but alignment-free protein state space model

D. ProteinGym assays used in validation
We extracted 20 assays to be used for choosing some hyperparameters (see below)

A0A2Z5U3Z0_9INFA_Wu_2014
AMFR_HUMAN_Tsuboyama_2023_4G3O
CAR11_HUMAN_Meitlis_2020_lof
CBS_HUMAN_Sun_2020
CUE1_YEAST_Tsuboyama_2023_2MYX
DYR_ECOLI_Nguyen_2023
GDIA_HUMAN_Silverstein_2021
HIS7_YEAST_Pokusaeva_2019
HXK4_HUMAN_Gersing_2023_abundance
KCNE1_HUMAN_Muhammad_2023_expr
KKA2_KLEPN_Melnikov_2014
PITX2_HUMAN_Tsuboyama_2023_2L7M
PPM1D_HUMAN_Miller_2022
R1AB_SARS2_Flynn_2022
RDRP_I33A0_Li_2023
S22A1_HUMAN_Yee_2023_abundance
SCN5A_HUMAN_Glazer_2019
SHOC2_HUMAN_Kwon_2022
TRPC_SACS2_Chan_2017
VILI_CHICK_Tsuboyama_2023_1YU5

E. Supplementary figures
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Figure 4. Loss and perplexity during training. Cross entropy loss and perplexity computed for both the full non-masked sequences and
the FIM tokens. We show them as a function of the number of tokens processed during the training of ProtMamba.
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Figure 6. Loss and perplexity of the full sequences vs. number of sequences in the context. Scaling of the per-sequence perplexity (i.e.
the standard autoregressive perplexity of the full non-masked sequence) versus the number of context sequences. Results are averaged
over all 500 clusters of the test set and 20 replicates for each cluster (differing by the random sampling of context sequences). Context
sizes go up to 217 amino acids.
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Figure 7. Loss and perplexity of the vs. number of sequences in the context. Scaling of the per-sequence perplexity (i.e. the standard
autoregressive perplexity of the full non-masked sequence) versus the size of the context (i.e. the number of preceeding tokens). Results
are averaged over all 500 clusters of the test set and 20 replicates for each cluster (differing by the random sampling of context sequences).
Context sizes go up to 217 amino acids.

Figure 8. Comparison of 4 ProtMamba variants on the ProteinGym benchmark. We show the predictive power for variant effect on
the ProteinGym benchmark, via the Spearman correlation between predictions and experimental results, for "ProtMamba, Foundation"
(215 = 32768 tokens context seen in training), "ProtMamba, Fine-tuned" (fine-tuned on predicting only FIM tokens), ProtMamba
Long, Foundation" (217 = 131072 tokens context seen in second phase of training) and "ProtMamba Long, Fine-tuned" (fine-tuned on
predicting only FIM tokens). We notice that models fine-tuned only on the FIM objective outperform the foundation models. ProtMamba
Long is overall performing better than ProtMamba and its performance does not decrease as sharply as ProtMamba for longer context.
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a b

Figure 9. Impact of context length on results on the ProteinGym benchmark. (a) We run ProtMamba Long on the ProteinGym dataset,
building contexts of different sizes in terms of numbers of tokens (from 8,000 to 128,000). We see that the increase in performance
is more important for long sequences, which highlights the benefit of long context to model long protein sequences. (b) We also run
ProtMamba Long on the ProteinGym dataset, building contexts of different sizes in terms of numbers of sequences (from 25 to 200).
Overall, we notice a rise in the Spearman correlation, showing that prediction benefits from longer context.

a b

Figure 10. Choice of context length and retrieval coefficient using a validation set. We randomly extracted a validation set of 20
datasets (see supplementary Section D) to select the best context length and retrieval coefficient. (a) The prediction improves with the
context size in the validation set. This trend was later observed in the rest of the benchmark (testing set) too. (b) Retrieval requires mixing
the fitness score Fm obtained from ProtMamba and the fitness score obtained from the independent-site model Fi through the retrieval
fitness score Fr = αFi + (1− α)Fm. The best model on the validation set was obtained for a retrieval coefficient α = 0.5, which was
later verified on the rest of the dataset.
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Eukaryote Human Prokaryote Virus

Taxonomic category

Figure 11. Breakdown by categories of results on the ProteinGym benchmark. Results of ProtMamba Long and of existing specialized
models on the ProteinGym benchmark, averaged over all datasets, are shown broken down by category of experiments (left), taxonomic
category (middle) and wild-type sequence length (right). ProtMamba is fairly competitive with these models. We note that the inverse
folding model ESM-IF1 outperforms sequence-based models for stability assessment, as expected (see left panel).

Figure 12. Example results on the ProteinGym benchmark. Results of ProtMamba Long are shown on 25 randomly sampled deep
mutational scan (DMS) experimental datasets from ProteinGym, and are compared to existing methods (see main text). The score shown
is the Spearman correlation between predictions and experimental results.
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Figure 13. Impact of various context construction methods on results on chorismate mutase activity. The ROC curve is shown for
various context construction methods (see main text) for predicting active variants in the chorismate mutase dataset, and for baseline
methods from (Russ et al., 2020). Overall, we observe that restricting to active variants in context helps improving prediction quality
(Spearman correlation ρ going from 0.41-0.46 to 0.50-0.53). Giving full proteins instead of restricting to the chorismate mutase domain
also improves the results. Using FIM to condition the domain to score using the rest of the protein also improves performance. ProtMamba
also outperforms the baselines provided in (Russ et al., 2020), namely the Potts or DCA energy and the logistic regression trained directly
on amino-acid sequences.

a b c

Figure 14. (a) Impact of context length on results on chorismate mutase activity. Spearman correlation between experimental activity
and predictions from ProtMamba is shown using a different number of active sequences in the context (using FIM and full active proteins
as context to score variants using ProtMamba). The Spearman correlation quickly increases with the number of proteins sequences given
in context, especially from 0 to 25 sequences (or 10,000 tokens) before slowly increasing with context size. (b) and (c) Perplexity of
generated variants when using only active variants in context (b) or using active and inactive variants in context (c). Inactive
variants tend to have higher perplexity (implying lower fitness score) when the context contains only active variants (b) while active
variants have lower perplexity (implying higher fitness score) when the context contains only active variants (c) .
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Figure 15. ProtMamba captures chorismate mutase activity. Experimental activity of chorismate mutase enzyme variants from (Russ
et al., 2020) is shown versus ProtMamba per-token perplexity, determined using FIM and full active proteins as context. The per-token
perplexity is a good proxy of the activity. We obtain a Spearman correlation of 0.53 between this score and experimental activity, and it
yields an AUC of 0.84 to discriminate active from inactive sequences.
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Figure 16. ProtMamba perplexity versus DCA energy for chorismate mutase variants. ProtMamba perplexity is evaluated using full
sequences, FIM and only active variants in the context, and is shown versus the Potts or DCA energy from (Russ et al., 2020). Active
variants are in green, while inactive variants are in red. We observe that most of the variants that are active have low perplexity, and that
many inactive variants that were not discriminated as inactive by DCA are labelled as such by ProtMamba (bottom right part of the plot).

19



ProtMamba: a homology-aware but alignment-free protein state space model

Cluster Hamming HMMER pLDDT pTM

A0A2H9MP70 0.45 −0.44 −0.77 −0.54
A0A135YUE9 0.76 −0.68 −0.61 −0.58

G4ZH78 0.23 −0.42 −0.47 −0.47
A0A1A8YWK1 0.79 −0.7 −0.84 −0.81
A0A0A0HZM8 0.46 −0.47 −0.69 −0.63
A0A091TDH7 0.31 −0.32 −0.46 −0.46
A0A2N1P554 0.18 −0.35 −0.37 −0.4
A0A1C5UJ41 0.81 −0.78 −0.81 −0.77
A0A194V424 0.66 −0.71 −0.7 −0.54

S7UZ45 0.56 −0.57 −0.74 −0.66
F2CV06 0.89 −0.85 −0.81 −0.79

A0A146ZGL6 0.72 −0.75 −0.56 −0.64
D8SD16 0.65 −0.74 −0.71 −0.61

A0A139IN77 0.18 −0.2 −0.15 −0.27
A0A1C6Q5J2 0.55 −0.22 −0.45 −0.27

I4B642 0.44 −0.52 −0.61 −0.52
A0A2X4BAY2 0.27 −0.63 −0.63 −0.54
A0A241VGM5 0.44 −0.59 −0.62 −0.55
A0A1S3G530 0.88 −0.72 −0.8 −0.74

Mean 0.54 −0.56 −0.62 −0.57
0.2 0.4 0.6 0.8

Pearson Correlation
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Figure 17. Pearson correlation between ProtMamba perplexity and scores for generated sequences. For each of 19 test clusters, we
used all the sequences generated by ProtMamba to compute the Pearson correlation between the model perplexity and the Hamming
distance to the closest natural neighbor, the HMMER score, the pLDDT and pTM scores from ESMFold.

20



ProtMamba: a homology-aware but alignment-free protein state space model

0.5 1.0
0.0

2.5

5.0

7.5

A0
A2

H
9M

P7
0

D
en

si
ty

0 500
0.000

0.005

0.010

0.015

0.5 1.0
0

5

10

0.6 0.8

5

10

Pe
rp

le
xi

ty

0 500

5

10

0.25 0.50 0.75

5

10

0.50 0.75
0

5

10

A0
A1

35
YU

E9
D

en
si

ty

0 200
0.0000

0.0025

0.0050

0.0075

0.50 0.75
0

5

10

0.6 0.7

5

10

Pe
rp

le
xi

ty

0 200

5

10

0.50 0.75

5

10

0.5 1.0
0

5

10

15

G
4Z

H
78

D
en

si
ty

0 250 500
0.00

0.01

0.02

0.50 0.75 1.00
0.0

2.5

5.0

7.5

0.4 0.6 0.8

5

10

Pe
rp

le
xi

ty

0 250 500

5

10

0.50 0.75 1.00

5

10

0.5 1.0
0

2

4

6

A0
A1

A8
YW

K1
D

en
si

ty

0 200 400
0.0000

0.0025

0.0050

0.0075

0.0 0.5 1.0
0

5

10

0.4 0.6

5

10
Pe

rp
le

xi
ty

0 200 400

5

10

0.25 0.50 0.75

5

10

0.5 1.0
0

5

10

A0
A0

A0
H

ZM
8

D
en

si
ty

0 100 200
0.000

0.005

0.010

0.015

0.25 0.50 0.75
0

2

4

6

0.6 0.8

5

10

15

Pe
rp

le
xi

ty

0 100

5

10

15

0.25 0.50 0.75

5

10

15

0.0 0.5 1.0
0

5

10

A0
A0

91
TD

H
7

D
en

si
ty

0 200
0.000

0.005

0.010

0.015

0.25 0.50 0.75
0

2

4

6

0.0 0.5

5

10

15

Pe
rp

le
xi

ty

0 200

5

10

15

0.25 0.50 0.75

5

10

15

0.5 1.0
0

5

10

15

A0
A2

N
1P

55
4

D
en

si
ty

0 500 1000
0.000

0.005

0.010

0.015

0.50 0.75 1.00
0

5

10

15

0.6 0.8

5

10

Pe
rp

le
xi

ty

0 500 1000

5

10

0.50 0.75 1.00

5

10

0.5 1.0
0

5

10

A0
A1

C
5U

J4
1

D
en

si
ty

0 200
0.0000

0.0025

0.0050

0.0075

0.5 1.0
0

5

10

15

0.6 0.8

5

10

15

Pe
rp

le
xi

ty

0 200

5

10

15

0.25 0.50 0.75

5

10

15

0.5 1.0
0

2

4

6

A0
A1

94
V4

24
D

en
si

ty

0 200 400
0.0000

0.0025

0.0050

0.0075

0.25 0.50 0.75
0

5

10

0.25 0.50 0.75

5

10

15

Pe
rp

le
xi

ty

0 200

5

10

15

0.25 0.50 0.75

5

10

15

0.5 1.0
Hamming distance

0

5

10

S7
U

Z4
5

D
en

si
ty

0 200 400
HMMER score

0.0000

0.0025

0.0050

0.0075

0.25 0.50 0.75
Mean pLDDT

0.0

2.5

5.0

7.5

0.4 0.6 0.8
Min Hamming

5

10

Pe
rp

le
xi

ty

0 200 400
HMMER score

5

10

0.25 0.50 0.75
Mean pLDDT

5

10

200

400

600

Se
qu

en
ce

 le
ng

th

200

400

600

Se
qu

en
ce

 le
ng

th

200

400

600

Se
qu

en
ce

 le
ng

th

200

400

600

Se
qu

en
ce

 le
ng

th

200

400

600

Se
qu

en
ce

 le
ng

th

200

400

600

Se
qu

en
ce

 le
ng

th
200

400

600

Se
qu

en
ce

 le
ng

th

200

400

600

Se
qu

en
ce

 le
ng

th

200

400

600

Se
qu

en
ce

 le
ng

th

200

400

600

Se
qu

en
ce

 le
ng

th

Generated Generated (top 10%) NaturalGenerated Generated (top 10%) NaturalGenerated Generated (top 10%) NaturalGenerated Generated (top 10%) NaturalGenerated Generated (top 10%) NaturalGenerated Generated (top 10%) NaturalGenerated Generated (top 10%) NaturalGenerated Generated (top 10%) NaturalGenerated Generated (top 10%) NaturalGenerated Generated (top 10%) Natural

Figure 18. Properties of generated sequences. Left panels: histograms of Hamming distances, HMMER scores and mean pLDDT
scores from ESMFold of generated sequences for 10 example test clusters (10 rows). Right panels: scatter plots of ProtMamba perplexity
versus the Hamming distance to the closest natural neighbor, the HMMER score and mean pLDDT score from ESMFold for all generated
sequences from each of 10 example clusters (10 rows). Dashed vertical lines: median of the generated sequences (blue), median of the
natural sequences (green) and pLDDT value of the reference structure of the cluster (red). The last one is shown only for the rightmost
plot.
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