
Enhanced Text Communication System Using
Sentiment-Based Prompting for End-User

Deepshikhar Tyagia, Ishwer Kumara, Manish Kumar Singha, Rishabh Mehrotraa, Sanket Jaina, Shubham
Sahaa and Yuvasree Pamujulaa

aIndian Institute of Science, Bengaluru, India
deepshikhart@iisc.ac.in, ishwerkumar@iisc.ac.in,manishsingh@iisc.ac.in,

rishabhmehro@iisc.ac.in,sanketjain@iisc.ac.in, shubhamsaha2@iisc.ac.in,yuvasreep@iisc.ac.in

Abstract. This paper introduces a Chat Application in a Web-UI
focusing on Sentiment Analysis. The idea is to enhance user experi-
ence for text based communication mediums by providing rich emo-
tion data in real-time. The application utilizes - Fine-tuned Mobile-
BERT Model with BiLSTM for sentiment inferencing, LLM calls for
response suggestions to the user, RAG context retriever for relevant
past messages to feed to LLM for appropriate responses, multivari-
ate distributions on a buffer of past messages for sentiment analytics
and BART model based paraphrasing to improve user responses.

1 Introduction

Problem Definition: Modern chat applications are increasingly be-
ing relied upon for both personal and professional communication.
However, these platforms often fail to convey the emotional tone
behind textual content, leading to ambiguity and misinterpretation.
This issue arises due to the absence of non-verbal cues such as fa-
cial expressions or vocal tone. Current solutions attempt to mitigate
this problem using emojis or multimedia but still fall short in many
real-time scenarios.

This project addresses the core challenge of sentiment misalign-
ment in textual communication. It aims to enhance text-based chats
by analyzing sentiment in real time and assisting users in crafting
responses that are contextually and emotionally appropriate.

Problem Analysis: Most chat apps rely on static UI features (e.g.,
emojis, templates) to help users clarify tone. These fail in dynamic
conversations or emotionally sensitive contexts. This motivates the
need for intelligent, real-time, context-aware sentiment assistance.

2 Methodology / System Architecture

2.1 Overview

The system is designed as a modular architecture that integrates natu-
ral language understanding, sentiment detection, and large language
model (LLM) capabilities into a real-time chat interface. The core
idea is to interpret the sentiment and context of each incoming mes-
sage and offer appropriate, emotionally aware suggestions before the
user replies.

Figure 1: System Architecture Diagram: Flow from chat input to
prompt suggestion

2.2 Component Descriptions

2.2.1 Sentiment Classifier

The sentiment analysis model uses HuggingFace’s MobileBERT ar-
chitecture, fine-tuned for classification in 6 different emotions (joy,
sadness, angry, love, fear and surprise). The model outputs a class
label based on input text. No regression head is used. Sequence mod-
eling is done on these messages using a BiLSTM on the output of
MobileBERT that allows emotion prediction of input text incorpo-
rating context from previous messages.

2.2.2 Sentiment Analytics

Message sentiments are converted to meaningful analytics using us-
ing multivariate normal distributions. Below data is generated:

• User’s & Group’s emotional state based on recent messages
• User’s & Group’s emotional state based on entire history
• User’s & Group’s emotional state trend plot
• User’s emotional volatility

In B2B and B2C use-cases, the analytics can be used to make busi-
ness decisions such as PR evaluations, customer profiling, service
agent evaluation, etc.

2.2.3 Sentiment based Paraphrasing

The module uses BART (encoder-decoder) transformer model to
paraphrase the user’s messages into a positive or neutral tone. The
model is trained using a small LLM generated dataset and further
finetuned on a larger non-labeled dataset using Reinforcement Learn-
ing. Paraphrasing module can be a low cost and privacy sensitive re-
placement for LLM

2.2.4 Context Manager

Chat context is maintained dynamically by storing previous user
messages, sentiment detected for each message and the most recent
message.

2.2.5 RAG Context Retriever

The system integrates Retrieval-Augmented Generation (RAG) using
a Chroma vector store and sentence-transformer embeddings (all-
MiniLM-L6-v2). Incoming user messages are used to retrieve se-
mantically similar historical chat entries or relevant past examples.

2.2.6 LLM Prompt Generator

Retrieved messages from RAG in the form of - last message, own
messages & other’s messages, along with the last message emotion
are passed to a LLM in a prompt to generate user response sugges-
tions.

2.2.7 Chat Interface and Backend

The backend is built using FastAPI that exposes endpoints for:

• Performing sentiment analysis using the fine-tuned classifier
• Generating suggestions using an LLM based on current message

+ chat history

The back-end takes care of all pre-processing steps, along with re-
sponse handling and feeds it back to the front-end UI. The front-end
displays the chat interface, sentiment tags, and suggestions in real
time.
Inferencing and data formatting is done in the back-end before
calling model functions in order to keep the payload light, thus
allowing faster response times.

3 Implementation Details

3.1 Sentiment Classification

This section details our two–stage training recipe, the datasets, the
evaluation protocol, sequence modeling using BiLSTM and how the
models adapt from Twitter prose to chat-style conversation.

3.1.1 Two-Stage Training Pipeline

Figure 2. visualises the workflow. Stage 1 fine-tunes eight BERT-
family backbones—each in three variants (MLP, LoRA, full)—on
Tweet-Emotion. A validation leaderboard retains the six best
weighted-F1 models. Stage 2 evaluates those checkpoints zero-shot
on Chat-2k (pre), then runs a three-epoch incremental update (post).

Base
models

(LoRA/MLP/Full)

Tweet-Emotion
(16 k)

Stage 1
fine-tune

Leaderboard
top-8

Chat-2k
(ours)

Stage 2
incremental FT

Pre-scores Post-scores

top 8

Figure 2: Two-stage sentiment adaptation pipeline.

3.1.2 BiLSTM Training and Inference

Sequential flow of messages in a texting application contain tempo-
ral information that should be utilised to predict emotion better. For
this purpose, a BiLSTM neural net is appended to the trained BERT
model. This provides a way to capture messages in a sequence, and
embed each message’s context to derive the final message’s emotion.
BiLSTM is selected over a Transformer model since it is lightweight,
can be trained with limited data, and suits the application given hys-
teresis over only the last few messages is sufficient.
Example
"I just got fired from my job."
"But it’s fine, I never liked it anyway."
"Best day ever."
The last message may be predicted as "joy" using BERT inferencing
in isolation, but with a BiLSTM added context from previous mes-
sages will indicate that the predicted emotion is closer to "sadness".
This is a classic example of sarcasm that is difficult to capture when
inferencing on a single message.

msg1

msg2

...

msgN

BERT

BERT

...

BERT

BiLSTM

Classifier

Emotion (last msg)

[CLS] embedding

Sequence of embeddings

Figure 3: Two-stage sentiment adaptation pipeline.

3.2 Sentiment Analytics

The backbone of sentiment analytics is multivariate normal distri-
butions. Each identities (user/group) emotion state is maintained
through a multivariate normal distributions. Each distribution is ex-
pressed using a 6 x 1 dimension µ vector and 6 x 6 dimension Σ
matrix.
As an optimisation, the distribution for entire conversation history is
updated using Welford’s method, thereby removing the need to main-
tain entire history of emotion vectors.

For the distribution relevant to each buffer, the distribution is recal-
culated from the stored history everytime the user sends a new mes-
sage.
The pseudocode for the implementation is shared below:

Algorithm 1 SentimentAnalytics Function

Require: Chat History (min. 1) chat_history, buffer sizes
(min. 1) buffers

Ensure: Updated user emotion distribution user_emo_dist
1: Extract last message and username from chat_history
2: Update user’s µ and Σ for entire history using Welford’s method
3: Compute CV = σ

µ

4: Update history buffer with new emotion vector while main-
taining max buffer size

5: for each buffer size k in buffers do
6: Compute µk = mean over last k emotion vectors
7: Compute Σk = covariance over last k vectors
8: Compute coefficient of variation CVk = σk

µk

9: end for
10: Set/Reset volatile flag using (CVk) for largest k
11: Update µ and µk for __group__ by averaging across users
12: return user_emo_dict ▷ contains user, group analytics

3.3 Sentiment based Paraphrasing

Sentiment paraphrasing requires the input text to be rephrased with
a positive/neutral tone. A suitable architecture for this is encoder-
decoder transformers. Based on experiments between variants of
BART and T5, BART-base was finalized. The training of paraphras-
ing model was performed in 2-stages as shown in Figure 4a.

3.3.1 Stage-1 Training

Stage-1 is a supervised finetuning approach. The pre-trained BART
model facebook/bart-base is loaded and trained on the LLM
generated Paraphrase-3k dataset (7.3). The loss function used is to-
ken level cross-entropy loss

L = −
T∑

t=1

logP (yt | y<t,x) (1)

Where:

• x is the input sequence.
• y<t are the previously generated tokens.
• yt is the target token at time step t.
• P (yt | y<t,x) is the probability of generating yt given the input

and past outputs.

3.3.2 Stage-2 Training

Stage-2 is a Reinforcement Learning approach that allows finetuning
on a larger dataset in the absence of labeled data, i.e. paraphrased ver-
sion of the input text. It involves the use of a DistilBERT sentiment
classification model as the reward model for finetuning the BART
model (policy model). Refer Fig. 4b. The BART generated text is
passed through the DistilBERT model to get classification scores
and output embedding vectors for reward calculation as mentioned in
5. For stage-2 trainings of BART model, two implementations were
tried as below:

1. A simple policy+reward model training: loss function of BART
was chosen as -reward from DistilBERT

2. RL using PPO algorithm

• Policy model: BART

• Reference model: BART

• Reward model: DistilBERT (classification + similarity)

• Value model: DistilBERT+linear_layers

3.4 RAG

Vector Store ChromaDB is used with cosine similarity.

RAG The RAG model was tested using as_retriever,
similarity_search_with_score, and cosine similarity for
vector database storage, with SIMILARITY_THRESHOLD values
of 0.9, 0.95, and 0.8. The final setup with a threshold of 0.8 im-
proved retrieval precision and response relevance, as evaluated using
both relevant and irrelevant queries.

3.5 LLM

The LLM module is implemented as a backend Python service that
programmatically builds prompts from the most recent message, de-
tected emotion, and conversation context, tried with Zero-Shot and
Few-Shot Prompting. It supports integration with OpenAI, Gemini,
Mistral, HuggingFace, and Ollama models, with the provider chosen
by configuration. The service calls the selected LLM API and parses
the generated output to produce up to three concise, empathetic reply
suggestions, following formatting rules for brevity and anonymity.
The implementation is modular, allowing for easy extension to new
model providers and seamless switching between cloud and local in-
ference. An attempt was made to implement LLM Guardrails using
an XML-based schema to enforce input and output constraints—such
as message safety, sentiment validity, and exclusion of personal or
sensitive information—using the Guardrails library. This mechanism
was designed to validate both user inputs and LLM outputs against
ethical, privacy, and length requirements before delivering sugges-
tions to end users. This validation pipeline is not present in the code-
base, practical integration challenges prevented full deployment, and
the Guardrails component is not currently active in production.

4 Experiments and Results
4.1 Sentiment Classification
4.1.1 Metrics

: In Annexure

4.1.2 Results

: In Annexure

4.1.3 Observations & model choice

Insights.

1. Severe domain loss. Models retain on average only 28% of their
Twitter F1 when evaluated on chat data without further training.

2. Incremental fine-tune pays off. A short three-epoch update re-
covers ≈46% of the lost performance, pushing BERT-large from
0.30 to 0.68 F1.

3. Size vs speed. TinyBERT-6L (68 M params) reaches 0.60
F1—only 0.08 below BERT-base—but is > 3× faster on CPU,
making it an attractive deployment target.

4. Adapter efficiency. A DistilBERT LoRA adapter (just 2 M train-
able weights) retains 35% out-of-domain accuracy and recovers
another 33% after tuning, confirming that cheap, on-device up-
dates are viable.

5. Why two stages? Training only on the small 2 k-chat set would
have been unstable; pre-training on sentiment-rich Twitter texts
provides robust lexical priors, while Stage-2 injects conversational
pragmatics—striking.

Final-Selected model -MobileBERT
Now we tested our final candidate models TinyBERT-6L , Mo-

bileBERT and ALBERT-base and from Refer Table 4. contains the
probability for each model and it shows the MobileBERT is more
confident in its prediction and is accurate while TinyBERT-6L also
have correct prediction but the probabilities are low and is unstable
and ALBERT-base classified wrong, 2 of the sentences so based on
this analysis we finalized MobileBERT to be our base model for
sentiment analysis of the user queries.

4.1.4 Sequence Modeling using BiLSTM

Training the BiLSTM model was done using sequence of messages
(length 6-8 with padding before input to model), with classified emo-
tion (ground truth) for the last message in the sequence. The mes-
sages are fed in to the fine-tuned BERT model, and the embeddings
are sequentially passed through BiLSTM.
Training metrics as seen in Table 9 are average due to the lack of
clean data-sets, but inferencing still works for basic message se-
quences.
Synthetic datasets are generated using a LLM in two ways:

1. Generator function: Some messages are split into multiple lists
and sequences are randomly generated (Claude)

2. Organic data: Data is directly provided by LLM (6000 sequences)
(GPT4o)

With a coherent flow of messages in organic data from LLM as
compared to the generator function, the model performs better post
training.
An example is given in in section

Evidently, with the context of previous messages used for classifi-
cation allow for a better sentiment prediction.

4.2 Sentiment based Paraphrasing

4.2.1 Model Choice

Experiments were performed with T5 and BART models. T5 model
has been majorly pre-trained for English-German translation task.
As a result the tuning for paraphrasing did not show good results.
In some cases, the T5 model was generating translated texts as para-
phrased versions. BART is trained for a wide variety of tasks and
performed much better thus making it the default choice for further
experiments

4.2.2 Evaluation

Three evaluation schemes are explored:

1. Sentiment Classification: Generated response should have a posi-
tive sentiment

2. BERTScore: High context similarity between input and para-
phrased texts

3. LLM Evaluation: An LLM is provided the input and paraphrased
texts and asked to evaluate naturalness and relevance

Refer Table 7 to check the distribution of sentiment classification
for paraphrased text. We see most of the texts have a positive tone.
Refer Table 8 to check the evaluation results for BERTScore and
LLM Evalutaion. We see that LLM rates the responses high on Nat-
uralness and medium on Relevance. Overall BERTScore of 0.584
shows the texts have similarity but are not the exact same. Refer Ta-
ble 11 to see sample outputs.

Team Member Contribution Area
Deepshikhar Tyagi

• Architecture Design: Initiated the architecture design for the application

• Sentiment Analytics Engine (2.2.2): Created the multivariate distribution based analytics
method to convert per message sentiments into user and group emotion states and trend plots

• Sentiment based Paraphrasing (3.3): Created the module that paraphrases the input texts with
a positive sentiment

– Worked on data creation using LLM

– Devised and performed 2-stage training (Supervised Finetuning + Reinforcement Learning
finetuning)

– Prepared train, inference and evaluation scripts

• Sentiment Classification: (2.2.1)

– Prepared train, test, inference scripts

– Performed stage-1 trainings for MobileBERT and DistilBERT models

Ishwer Kumar
• Integrated the UI template with real-time chat functionality using Supabase

• Developed sentiment analysis components for the user interface

• Created an initial proof-of-concept with dummy sentiment data and Gemini LLM integration

• Designed and incorporated relevant charts for data visualization

• Connected all backend APIs to the frontend interface

• Worked on LLM evaluation using the LLM-as-judge methodology

Manish Kumar Singh
• Two-stage domain adaptation: pre-train on Tweet-Emotion (16 k) then apply a 3-epoch incre-

mental fine-tune on Chat-2k, recovering 46 % of the zero-shot F1 loss.

• Comprehensive model sweep: evaluated 8 BERT-family backbones in three modes (MLP,
LoRA, full) for 24 distinct checkpoints, giving a controlled view of architecture vs. tuning
strategy.

• Cross-domain performance audit: quantified a 72 % weighted-F1 drop when moving fro m
Twitter prose to chat conversations, emphasising the need for conversational adaptation.

• Efficient recovery with minimal training: showed that three extra chat epochs lift Mobile-
BERT from 0.23 → 0.57 F1 and BERT-large to 0.68, avoiding full retraining costs.

• Deployment-oriented trade-off study: reported parameters, chat F1, and CPU throughput;
identified MobileBERT (25 M params, 6.3 steps/s, 0.57 F1) as the “elbow” for real-time use.

• Adapter viability on edge devices: demonstrated that a DistilBERT LoRA adapter (2 M train-
able weights) preserves 35 % zero-shot accuracy and regains another 33 % after tuning.

Rishabh Mehrotra Worked on LLM Part which incudes - Designed and implemented the LLM prompt
generation(Zero-Shot and Few-Shot) and response module supporting OpenAI, Gemini, Hugging-
Face, and Ollama models, - Integrated environment variable and configuration-based switching
between cloud and local LLM providers, Prototyped and tried Guardrails for input and output val-
idation to enforce safety, privacy, and ethical constraints on LLM interactions, - Contributed to ro-
bust error handling and modular backend design for seamless extension to future model providers,
- Collaborated on ensuring system-generated replies are concise, anonymized, and emotionally
supportive

Sanket Jain
• Worked on lightweight language models, including Phi-2 and Falcon RW, to generate context-

aware responses for chat messages.

Shubham Saha
• BiLSTM Model in Sentiment Classification Trained and added a BiLSTM model on top of

the fine-tuned MobileBERT model. This completes the chat application using sequence mod-
eling for emotion classification, improving performance since previous message context is also
considered for latest message emotion classification.

• Backend Developed the complete back-end from scratch, using FastAPI to create various end-
points integrating Sentiment Inferencing, Analysis, RAG & Sentiment Paraphrasing. The API
service is hosted using ’Uvicorn’ and forwarded using ’Ngrok’.

• RAG Vector Store Created the context manager using ChromaDB for storing incoming mes-
sages via the RAG API, for efficient storage and retrieval for further processing.

Yuvasree Pamujula
• Chroma DB Integration and Vectorization: Developed a vector database using Chroma DB to

store and retrieve chat messages efficiently. Utilized MiniLM from HuggingFaceEmbeddings to
convert chat messages into vector embeddings and explored various similarity configurations,
identifying cosine similarity as the most effective. Also added functionality to clear and reset
the database to support iterative testing and refinement.

• RAG Pipeline Integration: Developed a Retrieval-Augmented Generation (RAG) module by
integrating Chroma DB for efficient context retrieval. Implemented as_retriever and
similarity_search_with_score methods to fetch relevant information based on user
queries.

• Context Relevance Enhancement: Identified and addressed the issue of irrelevant context being
returned for unrelated queries. Introduced similarity score thresholds (0.9 and 0.8) within the
retrieval logic to filter out low-relevance results, significantly improving the precision and con-
textual accuracy of the RAG system.

(a) Training Process (b) RL Finetuning Process (Stage-2)

Figure 4: a shows the overall training procedure, and b details the RL
finetuning process.

5 Sentiment based Paraphrasing - Equations

Given:

• x : the original input text
• ŷ : the generated response
• Hx ∈ RTx×d : hidden states from DistilBERT for x
• Hŷ ∈ RTŷ×d : hidden states from DistilBERT for ŷ
• h̄x = 1

Tx

∑Tx
t=1 H

(t)
x : mean-pooled embedding for x

• h̄ŷ = 1
Tŷ

∑Tŷ

t=1 H
(t)
ŷ : mean-pooled embedding for ŷ

• p = f(h̄ŷ) : predicted probability vector over emotion classes
(e.g., output of softmax)

r = 0.5 cos(h̄x, h̄ŷ) + 0.5

(
pih + pil

2

)
Where:

cos(h̄x, h̄ŷ) =
h̄x · h̄ŷ

∥h̄x∥ · ∥h̄ŷ∥

The cosine similarity over DistilBERT embeddings is same as gen-
erating BERTScore.

6 BiLSTM exmaples

Example for BiLSTM based classification and performance

1. “I had the strangest dream last night.”
2. “What happened?”
3. “I saw my parents”
4. “Oh wow”
5. “They crossed the line this time!”

Model Predicted Emotion

BERT Fear
BERT+BiLSTM Anger

7 Datasets

7.1 Tweet-Emotion (Stage 1).

16,000 English tweets labelled with the six emotions {anger, fear,
joy, love, sadness, surprise}. We use the cleaned release from
the Tweet-Emotion corpus. 1 The corpus was gathered via emo-
tion–specific hashtags, then pre-processed (user mentions, URLs and
hashtags removed, lower-cased). We adopt a 70 / 15 / 15 % train /
validation / test split (16,000 / 2,000 / 2,000 tweets).

7.2 Chat-2k (Stage 2).

2 000 two-to-four-turn snippets generated with claude-opus-4.
Prompts enforce (i) conversational style, (ii) exactly one target emo-
tion per snippet, (iii) lexical diversity (slang, code-switching, sar-
casm). Ten per-cent were manually sanity-checked.

7.3 Paraphrase-3k

3500 samples are generated for sentiment based paraphrasing dataset
using claude-sonnet-4. This dataset is used for supervised fine-
tuning of paraphrasing model. The dataset consists of input texts and
their paraphrased versions with a neutral or positive tone. The LLM
is instructed to randomly select the target sentiment for the para-
phrased

7.4 Sentiment Classification

7.4.1 Metrics

We conducted the experiment as shown in Fig 2. In the stage 1 we
took 8 models as shown in Table 1. and tried [full, LORA and MLP]
based training and had 24 distinct model+finetunning variants and
based on stage 1 result we took top 8 models and used to further do
incremental finetunning on Chat-2k data.
We report (i) accuracy and (ii) weighted-F1 across the six labels.
Weighted F1 is needed because Chat-2k is moderately imbalanced
(12−24% per class).

7.4.2 Results

Accuracy before vs. after Stage 2 : Refer: Table 1
Result-1 Incremental gains. Refer Table 1. All finalists improve on
chat data: MobileBERT +0.31 (0.26 → 0.57), TinyBERT-6L +0.31,
and even the tiny TinyBERT-4L jumps +0.24 despite its size.

Weighted-F1 before vs. after Stage 2 : Refer Table 2.
Result-2 F1 recovery. Refer Table 2. Zero-shot chat F1 averages
only 0.26; the incremental update lifts this to 0.56 (+0.30). BERT-
large again tops the chart (0.68), but MobileBERT and TinyBERT-6L
closes in at 0.60 with one-third the parameters.

Checkpoint trade-offs (size / quality / speed) Refer Table 2.
Result-3 Deployment trade-off. Refer Refer Table 3. Throughput
spans almost an order of magnitude—from 2.9 steps / s (BERT-large)
to 23.7 (TinyBERT-4L). MobileBERT offers the best "elbow": 25 M
params, 0.57 chat-F1, 6.3 steps / s.

https://www.kaggle.com/datasets/parulpandey/emotion-dataset

Table 1: Per-model accuracy on Tweet-Emotion and on Chat-2k be-
fore (pre) and after (post) incremental fine-tuning.

Backbone (variant) AccTwitter AccChat-pre AccChat-post

BERT-large (full) 0.94 0.38 0.68
BERT-base (full) 0.94 0.34 0.65
TinyBERT-6L (full) 0.93 0.29 0.60
DistilBERT (full) 0.93 0.31 0.59
MobileBERT (full) 0.92 0.26 0.57
ALBERT-base (full) 0.93 0.31 0.55
TinyBERT-4L (full) 0.87 0.26 0.42
DistilBERT (LoRA) 0.76 0.34 0.42

Table 2: Weighted-F1 on Tweet-Emotion and Chat-2k (pre vs. post)

Backbone (variant) F1Twitter F1Chat-pre F1Chat-post

BERT-large (full) 0.94 0.31 0.68
BERT-base (full) 0.94 0.29 0.65
TinyBERT-6L (full) 0.93 0.27 0.60
DistilBERT (full) 0.94 0.25 0.59
MobileBERT (full) 0.93 0.23 0.57
ALBERT-base (full) 0.93 0.26 0.55
TinyBERT-4L (full) 0.87 0.20 0.42
DistilBERT (LoRA) 0.75 0.26 0.42

Sample Chat Screenshots

GitHub

Link to full source code and demo README.
https://github.com/Helinskii/dost-com

BERT MODEL STATS Wandb

We trained the model and used WANDB to log the training and val-
idation stats which can be accessed using the link provided below ,
along with screenshot of the report.

i) BERT MODEL- STAGE 1 WANDB link

Interactive Report Access

Full Interactive Report: STAGE-1-WANDB
Click here to access WandB report

Note: The complete report includes interactive charts, de-
tailed metrics, and real-time training logs.

i) BERT MODEL- STAGE 2 WANDB link

Interactive Report Access

Full Interactive Report: STAGE-2-WANDB
Click here to access WandB report

Note: The complete report includes interactive charts, de-
tailed metrics, and real-time training logs.

1 Original repository: dair-ai/emotion_dataset.

Table 3: Model-selection trade-off: parameters, final chat accuracy
F1, and validation throughput.

Backbone (variant) Params (M) AccChat-post F1Chat-post Throughput (steps/s)

TinyBERT-4L (full) 15 0.42 0.42 23.7
MobileBERT (full) 25 0.57 0.57 6.3
ALBERT-base (full) 12 0.55 0.55 7.9
TinyBERT-6L (full) 67 0.60 0.60 8.8
DistilBERT (full) 66 0.59 0.59 10.3
DistilBERT (LoRA) 66(+2*) 0.42 0.42 9.2
BERT-base (full) 110 0.65 0.65 9.7
BERT-large (full) 335 0.68 0.68 2.9

Figure 5: Screenshot

Figure 6: Screenshot

Figure 7: Stage -1 Wandb dashboard

Figure 8: Enter Caption

https://wandb.ai/coolmanishks-indian-institute-of-science/bert_sentiment_analysis_twitter_finetunned_v11/reports/Stage-1-Finetunning-BERT-models-with-Twitter-emotion-data--VmlldzoxMzMzNTcxMw
https://wandb.ai/coolmanishks-indian-institute-of-science/bert_sentiment_eval_vs_finetune_final_v1/reports/Stage-2-incremental-finetunning-on-Chat-2k-data---VmlldzoxMzMzNDkwMg
https://github.com/dair-ai/emotion_dataset

Table 4: Six-way Emotion Classification Probabilities – All Stage-2 Checkpoints

Model Text Sample Sad Joy Love Anger Fear Surp
TinyBERT-6L "I totally love this!" 0.6 35.8 62.6 0.3 0.1 0.7

"Exam makes me ner-
vous"

3.7 0.2 1.1 0.4 94.2 0.5

"App crashing – furious" 1.3 0.3 0.4 96.3 1.5 0.3
"Help meant a lot" 0.5 26.9 72.1 0.1 0.1 0.3

ALBERT-base "I totally love this!" 1.4 42.3 48.8 3.0 1.4 3.3
"Exam makes me ner-
vous"

42.1 2.4 2.9 6.4 41.2 4.9

"App crashing – furious" 29.0 4.9 3.6 23.4 22.8 16.2
"Help meant a lot" 0.6 4.8 94.0 0.2 0.1 0.3

MobileBERT "I totally love this!" 0.7 4.3 91.5 0.9 0.5 2.1
"Exam makes me ner-
vous"

2.5 0.2 1.2 0.2 95.4 0.6

"App crashing – furious" 1.2 1.1 2.4 89.1 5.2 1.0
"Help meant a lot" 1.4 16.0 81.9 0.2 0.1 0.4

Note: Highest values highlighted in red. Background colors group text samples for cross-model comparison. Values are percentages.

Model Prompt Relevance Naturalness Diversity Quality Time (s)

gemini-2.5-flash base 7.05 7.29 5.67 7.38 4.68
gemini-2.5-flash no_positivity 6.72 7.03 5.35 7.28 4.64
gemini-2.5-flash no_sentiment 7.58 7.98 6.42 7.77 4.72
gemini-2.0-flash base 8.23 8.47 7.00 7.90 4.98
gemini-2.0-flash no_positivity 8.17 8.50 7.00 7.93 4.98
gemini-2.0-flash no_sentiment 8.01 8.37 6.98 7.90 6.02
gpt-4.1-mini base 8.08 8.08 7.98 8.06 1.48
gpt-4.1-mini no_positivity 8.08 8.06 7.98 8.02 1.56
gpt-4.1-mini no_sentiment 8.05 8.04 8.00 8.02 1.56
gpt-4o-mini base 8.03 8.03 8.00 8.02 1.23
gpt-4o-mini no_positivity 8.10 8.09 8.00 8.06 1.26
gpt-4o-mini no_sentiment 8.05 8.05 7.98 8.06 1.34

Table 5: Mean values for each model and prompt variant.

Model Prompt Relevance Naturalness Diversity Quality Time (s)

gemini-2.5-flash base 2.97 3.00 2.86 2.86 4.68
gemini-2.5-flash no_positivity 3.19 3.24 3.03 3.03 4.64
gemini-2.5-flash no_sentiment 2.05 1.95 1.95 1.95 4.72
gemini-2.0-flash base 0.92 0.60 1.72 1.72 4.98
gemini-2.0-flash no_positivity 0.90 0.58 1.59 1.59 4.98
gemini-2.0-flash no_sentiment 1.09 0.78 1.33 1.33 6.02
gpt-4.1-mini base 0.86 0.85 0.86 0.86 1.48
gpt-4.1-mini no_positivity 0.84 0.83 0.85 0.85 1.56
gpt-4.1-mini no_sentiment 0.86 0.86 0.89 0.89 1.56
gpt-4o-mini base 0.95 0.94 0.97 0.97 1.23
gpt-4o-mini no_positivity 0.88 0.86 0.88 0.88 1.26
gpt-4o-mini no_sentiment 0.99 0.93 0.96 0.96 1.34

Table 6: Standard deviation for each model and prompt variant.

Table 7: Paraphrased Text: Emotion Distribution
Emotion Count

sadness 11
joy 148
love 2
anger 17
fear 22
surprise 0

Table 8: Evaluation Metrics
Metric Evaluator Value

Naturalness LLM 5.00
Relevance LLM 3.06
BERT_Score DistilBERT 0.584

Table 9: BiLSTM Training Metrics
Metric Score

Training Accuracy 72.64%
Precision 76.39%
Recall 72.56%
F1 71.09%
Validation Accuracy 91.94%

Table 11: Sentiment Paraphrasing Examples and Ratings
Original Text Paraphrased Text Naturalness Relevance BERT_Score Sentiment (Input-Paraphrased

This project is a complete disaster
and nothing is working.

This project is teaching me patience
and patience is key.

5 4 0.674 sadness-joy

My boss never listens to my ideas
and always shuts them down.

My boss listens to my ideas and en-
courages me to share more.

5 5 0.425 anger-joy

The meeting was boring and a
waste of time.

The meeting covered important top-
ics and topics worth noting.

5 3 0.406 sadness-joy

I hate working with this difficult
team.

I’m finding peace in working with
this team.

5 4 0.486 sadness-joy

The deadline is impossible to meet. The deadline requires significant
time management and planning.

5 3 0.817 sadness-joy

	Introduction
	Methodology / System Architecture
	Overview
	Component Descriptions
	Sentiment Classifier
	Sentiment Analytics
	Sentiment based Paraphrasing
	Context Manager
	RAG Context Retriever
	LLM Prompt Generator
	Chat Interface and Backend

	Implementation Details
	Sentiment Classification
	Two-Stage Training Pipeline
	BiLSTM Training and Inference

	Sentiment Analytics
	Sentiment based Paraphrasing
	Stage-1 Training
	Stage-2 Training

	RAG
	LLM

	Experiments and Results
	Sentiment Classification
	Metrics
	Results
	Observations & model choice
	Sequence Modeling using BiLSTM

	Sentiment based Paraphrasing
	Model Choice
	Evaluation

	Sentiment based Paraphrasing - Equations
	BiLSTM exmaples
	Datasets
	Tweet-Emotion (Stage 1).
	Chat-2k (Stage 2).
	Paraphrase-3k
	Sentiment Classification
	Metrics
	Results

