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Abstract

RAG systems rely on rerankers to identify rel-001
evant documents. However, fine-tuning these002
models remains challenging due to the scarcity003
of annotated query-document pairs. Exist-004
ing distillation-based approaches suffer from005
training-inference misalignment and fail to cap-006
ture interdependencies among candidate doc-007
uments. To overcome these limitations, we008
reframe the reranking process as an attention-009
mask problem and propose Gumbel Reranking,010
an end-to-end training framework for rerankers011
aimed at minimizing the training-inference gap.012
In our approach, reranker optimization is re-013
formulated as learning a stochastic, document-014
wise Top-k attention mask using the Gum-015
bel Trick and Relaxed Top-k Sampling. This016
formulation enables end-to-end optimization017
by minimizing the overall language loss. Ex-018
periments across various settings consistently019
demonstrate performance gains, including a020
10.4% improvement in recall on HotpotQA for021
distinguishing indirectly relevant documents.022

1 Introduction023

Retrieval-Augmented Generation (RAG) has024

shown great potential in natural language process-025

ing tasks (Lewis et al., 2020; Guu et al., 2020;026

Izacard and Grave, 2021b; Borgeaud et al., 2022).027

Despite their remarkable progress, retrieval models028

in RAG systems—comprising both the retriever029

and reranker—are typically trained on publicly030

available datasets and often struggle with long-031

tail queries requiring domain-specific knowledge.032

As a result, they necessitate further fine-tuning for033

specific downstream tasks (Glass et al., 2022; Shi034

et al., 2024). A key challenge in this context is035

the scarcity of labeled query-document pairs (Lee036

et al., 2019; Sachan et al., 2023). Therefore, a criti-037

cal research question is how to end-to-end optimize038

the retrieval models of RAG systems solely relying039

on the system’s final language modeling loss.040

Recent efforts to improve retriever or reranker 041

in RAG systems have explored distilling knowl- 042

edge from LLMs into retrieval components. Tech- 043

niques such as attention-based distillation (Izacard 044

and Grave, 2021a) and perplexity-based distilla- 045

tion (Sachan et al., 2021; Shi et al., 2024; Lin et al., 046

2024; Izacard et al., 2023; Glass et al., 2022) have 047

yielded notable performance gains. However, these 048

methods still exhibit critical limitations. First, al- 049

though these methods claim to be end-to-end opti- 050

mized, they focus on LLM-supervised losses like 051

KL divergence (Izacard et al., 2023; Glass et al., 052

2022) or marginalization (Sachan et al., 2021; Shi 053

et al., 2024; Lin et al., 2024), which do not directly 054

minimize the RAG system’s final generation loss, 055

leading to potential misalignment between training 056

and evaluation objectives. Additionally, attention- 057

based distillation suffers from the distraction prob- 058

lem, where accumulated attention scores do not 059

always reflect document relevance (Ke et al., 2024; 060

Li et al., 2024). While perplexity-based distilla- 061

tion methods evaluate each candidate document in 062

isolation, neglecting the interdependencies among 063

retrieved documents. This oversight is particularly 064

detrimental in multi-hop reasoning tasks requir- 065

ing coherent logical relationships between docu- 066

ments (Trivedi et al., 2022; Ho et al., 2020). 067

In this work, we propose a novel end-to-end 068

strategy for training rerankers in RAG systems. We 069

reformulate the reranking task through the lens of 070

attention masks, where selecting the top-k subset 071

from the retrieved candidate documents is viewed 072

as the application of a document-wise top-k at- 073

tention mask during attention computation. This 074

perspective leads to a shift in the problem formu- 075

lation: instead of directly learning a more effec- 076

tive reranker, we focus on learning the optimal 077

document-wise top-k attention mask. 078

However, since the hard attention mask is dis- 079

crete, it can not be directly optimized via gradient 080

descent. To overcome this challenge, we introduce 081
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Figure 1: Vanilla reranker training methods for RAG systems typically rely on supervised learning of query-
document pairs, which is limited by the scarcity of labeled data. To address this issue, existing methods leverage
various LLM-supervised losses. However, this can lead to potential gaps between training and inference. In contrast,
G-Rerank frames reranker training as learning a stochastic, document-wise top-k attention mask. This enables
end-to-end optimization by minimizing language loss, ensuring better alignment between training and inference.

a solution based on the Gumbel Trick (Jang et al.,082

2017) and Relaxed Top-k techniques (Chen et al.,083

2018). This enables us to design a stochastic, top-k084

attention mask that is fully differentiable, allowing085

for end-to-end optimization. We note this approach086

as Differentiable Masked Attention (DMA).087

With DMA in place, we reformulate the rerank-088

ing problem as learning the optimal sampling089

weight for the corresponding attention mask. This090

leads to our end-to-end training framework, which091

we refer to as Gumbel Reranking (G-Rerank). Un-092

like previous methods that rely on LLM-supervised093

losses, G-Rerank directly optimizes the reranker by094

minimizing the overall language modeling loss of095

the RAG system, thereby ensuring that the training096

objective closely aligns with the inference process.097

Additionally, G-Rerank accounts for interdepen-098

dencies between retrieved candidate documents,099

making it suitable for multi-hop QA tasks.100

We evaluate our training approach across various101

architectures. Specifically, we conduct experiments102

using two language models—FiD (Izacard and103

Grave, 2021b) and CEPE-Llama2-7B (Yen et al.,104

2024)—as well as two rerankers—BGE-Reranker-105

Base (Xiao and Liu, 2023) and RankT5 (Zhuang106

et al., 2023). Our method is tested on five bench- 107

mark datasets, covering both single-hop and multi- 108

hop QA tasks. To comprehensively assess the effec- 109

tiveness of our approach, we consider three differ- 110

ent evaluation settings: mining, reranking, and gen- 111

eration. Our proposed training strategy achieves 112

consistent improvements across all these settings. 113

Furthermore, compared to distillation-based meth- 114

ods, our training approach significantly improves 115

the reranker’s ability to distinguish indirectly rele- 116

vant documents, leading to a 10.4% improvement 117

in the Recall@5 metric on HotpotQA. Finally, we 118

analyze the necessity of the Gumbel trick and the 119

impact of prior knowledge in rerankers. 120

2 Related Works 121

Training the Reranking Module in RAG Sys- 122

tems The effectiveness of RAG systems relies 123

heavily on the quality of retrieval and reranking 124

(Glass et al., 2022; Dong et al., 2024). Traditional 125

retrieval methods are based on lexical similarity 126

(Robertson and Zaragoza, 2009), while recent ad- 127

vances leverage dense vectors and transformer ar- 128

chitectures (Karpukhin et al., 2020; Khattab and 129

Zaharia, 2020). However, retrieval modules fine- 130
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tuned on public datasets often require additional131

adaptation for specific downstream tasks (Izacard132

et al., 2023; Salemi and Zamani, 2024).133

To bridge this gap, recent works explore fine-134

tuning retrieval and reranking modules for tasks135

such as open-domain question answering (ODQA).136

One common strategy distills knowledge from137

LLMs into retrievers by ranking candidate doc-138

uments based on generated answer perplexity (Shi139

et al., 2024; Glass et al., 2022; Lin et al., 2024).140

However, such methods overlook inter-document141

dependencies, crucial for multi-hop reasoning142

tasks (Trivedi et al., 2022; Ho et al., 2020). Al-143

ternative approaches use attention scores (Izacard144

and Grave, 2021a) or leave-one-out methods (Izac-145

ard et al., 2023; Asai et al., 2022), but these are not146

end-to-end optimized for generation quality, lead-147

ing to a retriever-generation gap (Ke et al., 2024).148

Stochastic k-Subset Selection and Masked At-149

tention Top-k relaxation has been widely studied150

for differentiable subset sampling, extending the151

Gumbel-Softmax trick (Jang et al., 2017; Xie and152

Ermon, 2019; Xie et al., 2020), with important ap-153

plications in semi-structured pruning (Fang et al.,154

2024), model interpretability (Chen et al., 2018)155

and point clouds analysis (Yang et al., 2019).156

The reranking process can also be modeled as157

a subset sampling problem. However, since re-158

trieved documents influence LLM outputs through159

attention, a key challenge lies in introducing spar-160

sity into the attention computation. Existing ap-161

proaches employ soft attention masks to model162

discrete selections (Fan et al., 2021; Yang et al.,163

2019). Inspired by these methods, we model RAG164

reranking as a subset sampling process with soft165

masks, facilitating end-to-end optimization.166

3 Methodology167

3.1 Problem Setting168

For common downstream tasks, such as Open-169

Domain QA (Zhu et al., 2021), the training data170

typically consists of an input query q and the cor-171

responding ground-truth answer a. During the172

retrieval process, a set of candidate documents173

d1, . . . ,dn is retrieved based on q. The reranker R174

is then applied to these candidate documents, gen-175

erating a set of candidate scores. We retain only the176

top-k scored documents for further computation:177

wi = R(Concatenate(q,di)), ∀i ∈ [n]

Ik = {i | wi ∈ top-k ({wi}ni=1)}
(1)178

where [n] ≜ {1, 2, . . . , n}. The top-k documents, 179

Dk = {di | i ∈ Ik}, are selected as input to 180

the LLM, which then computes the corresponding 181

logits and language loss LLM . In this work, we 182

focus on training the reranker in the RAG system. 183

A key challenge is that the candidate documents 184

d1, . . . ,dn lack relevance annotations, making it 185

infeasible to directly fine-tune the reranker. Addi- 186

tionally, although we have access to the language 187

loss LLM , the top-k operation in Equation 1 is non- 188

differentiable, preventing gradient propagation to 189

the reranker and thus hindering end-to-end training. 190

3.2 Viewing Reranker as Attention Mask 191

We reinterpret the reranking process from the per- 192

spective of attention masks. Let Ki,t and Vi,t de- 193

note the key and value embeddings of the t-th token 194

in the i-th candidate document, respectively. And 195

let Qm denote the query embedding for the m-th 196

token in the decoding phase of LLM, the standard 197

attention computation is defined as: 198

A(Qm,Ki,t) =

exp

(
QmKT

i,t√
dk

)
∑

i′
∑

t′ exp

(
QmKT

i′,t′√
dk

) (2) 199

where A(Qm,Ki,t) represents the attention score 200

of the m-th token in the decoding process to the 201

t-th token in the i-th candidate document. 202

The reranker retains only the top-k documents 203

for attention computation, and these top-k docu- 204

ments, as a set, are used as part of the prompt. The 205

order of these documents is no longer important. 206

Therefore, we can use a corresponding hard atten- 207

tion mask MR to simulate the reranking process. 208

MR
i =

{
1, if i ∈ Ik
0, otherwise

(3) 209

MA(Qm,Ki,t) =

MR
i exp

(
QmKT

i,t√
dk

)
∑

i′ MR
i′
∑

t′ exp

(
QmKT

i′,t′√
dk

)
(4) 210

This formulation of masked attention is mathe- 211

matically equivalent to reranking. If document i is 212

not selected by the reranker, i.e., MR
i = 0, then 213

all tokens within document i receive an attention 214

score of zero, i.e., MA(Qm,Ki,t) = 0, ∀t. 215
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Algorithm 1 Gumbel Reranking: Training Reranker via Differentiable Masked Attention
1: procedure STOCHASTICSUBSETMASK(reranker R, documents d1, . . . ,dn, query q, temperature τ ,

scale factor κ, subset size k)
2: wi = R(Concatenate(q,di)) ∀i ∈ [n] ≜ {1, 2, . . . , n} ▷ Apply Reranker
3: for j = 1 to k do ▷ Stochastic Top-k Sampling
4: w̃i = − log(− log(ui)) + κ · wi, ui ∼ U(0, 1) ∀i ∈ [n]
5: M̂R,j = softmax

(
w̃
τ

)
, w̃ = (w̃1, w̃2, . . . , w̃n)

6: end for
7: return max(M̂R,1, . . . ,M̂R,k) ▷ Return Relaxed Top-k Mask
8: end procedure
9:

10: for each (query q, answer a) in training data do ▷ Training Loop
11: Retrieve n documents d1, . . . ,dn using q
12: M̂R = StochasticSubsetMask(R,d1, . . . ,dn,q, τ, κ, k)
13: Apply DMA(M̂R) to obtain logits and language loss LLM ▷ subsection 3.3
14: Update reranker R with ∇RLLM ▷ Reranker Optimization
15: end for

Independence Requirements in Pre-Filling To216

effectively simulate reranking via MA, it is cru-217

cial to ensure the independence of candidate docu-218

ments. First, all candidate documents should use219

the same positional encoding to eliminate position220

bias. Second, each document should be encoded221

independently during pre-filling to prevent infor-222

mation leakage across documents. To enforce these223

constraints, we adopt the parallel pre-filling archi-224

tecture, as seen in models like FiD (Izacard and225

Grave, 2021b), CEPE (Yen et al., 2024), and Paral-226

lel Windows (Ratner et al., 2023), where retrieved227

documents are encoded separately with indepen-228

dent position encodings during the pre-filling stage.229

3.3 Differentiable Masked Attention230

The problem of learning a more effective reranker231

is thus reformulated as learning a better attention232

mask MR. However, the hard attention mask MR233

defined in Equation 3 remains non-differentiable,234

preventing end-to-end optimization based on the235

final language loss. To solve this problem, we lever-236

age the Gumbel-Softmax technique (Jang et al.,237

2017) to convert discrete sampling into a differ-238

entiable process. Specifically, we transform the239

reranker’s output w1, w2, . . . , wn into a probability240

distribution for sampling an attention mask:241

Gi = − log
(
− log(ui)

)
, ui ∼ U(0, 1),

M̂R =
exp

(
w̃i
τ

)
∑n

j=1 exp
(
w̃j

τ

) , w̃i = Gi + κ · wi

(5)242

where M̂R
i represents the probability of selecting 243

the i-th document. τ and κ are hyperparameters 244

in the Gumbel training process. We discuss their 245

effects in detail in Appendix A. To approximate 246

Top-k reranking, we perform independent sampling 247

k times and compute the element-wise maximum: 248

M̂R = max
(
M̂R,1, . . . ,M̂R,k

)
(6) 249

This results in a soft attention mask represent- 250

ing the sampled subset, leading to Differentiable 251

Masked Attention: 252

DMA(Qm,Ki,t) =

M̂R
i exp

(
QmKT

i,t√
dk

)
∑

i′ M̂R
i′
∑

t′ exp

(
QmKT

i′,t′√
dk

)
(7) 253

This formulation allows end-to-end optimization 254

of the reranker R based on final language model 255

loss, improving overall RAG system performance. 256

3.4 Gumbel Reranking Pipeline 257

In this section, we introduce Gumbel Reranking, an 258

end-to-end reranker optimization framework lever- 259

aging the previously introduced DMA. The over- 260

all pipeline is outlined in Algorithm 1. 261

Training Process Given a query q and a set of 262

candidate documents d1, . . . ,dn, the reranker first 263

computes a relevance score for each document. The 264

Stochastic Subset Mask algorithm then generates a 265

Top-k attention mask M̂R,k, which represents the 266

probability of selecting each candidate document. 267
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parameters fixed. However, given sufficient computational resources, joint fine-tuning of both the LLM and the
reranker is feasible. In the Pre-Filling phase, it is essential to maintain the independence of candidate documents.

The selected documents are subsequently used in268

the generation process, where the attention mech-269

anism follows Equation 7 to compute logits and270

the language modeling loss. Finally, the reranker is271

optimized by minimizing the language loss LLM .272

Since our proposed framework primarily focuses273

on enhancing the reranking module, we fix the pa-274

rameters of the LLM in our experimental setup,275

as shown in Figure 2. This also facilitates a fairer276

comparison of different reranker training strategies.277

Key Advantages This framework facilitates end-278

to-end optimization of the reranker via backprop-279

agation, offering two primary advantages. First,280

by modeling reranking as applying a document-281

wise attention mask, it mitigates the discrepancy be-282

tween training and inference, guiding the reranker283

to prioritize documents that minimize the final gen-284

eration loss. Second, our approach leverages gum-285

bel subset sampling, enabling the model to iden-286

tify the complete evidence subset during training,287

rather than analyzing each candidate document in-288

dependently. This advantage makes our method289

well-suited for multi-hop QA scenarios and sets290

it apart from existing perplexity-based distillation291

techniques, as discussed in Appendix D.292

4 Experiments293

In subsection 4.2, we first validate the effectiveness294

of our approach under three different experimental295

settings. Then, in subsection 4.3, we focus on296

whether the reranker can learn to prioritize indirect297

evidence in multi-hop question answering. Next,298

in subsection 4.4, we conduct an ablation study299

on the Gumbel trick and demonstrate its necessity. 300

Finally, in subsection 4.5, we remove the reranker 301

and assign each document a learnable weight to 302

further verify the efficacy of our training objective 303

in capturing the relative importance of documents. 304

4.1 Experimental Setup 305

Language Models We experiment with two dif- 306

ferent language models as the generation module in 307

our RAG system: Fusion-in-Decoder (FiD) (Izac- 308

ard and Grave, 2021b) and CEPE-Llama2-7B (Yen 309

et al., 2024). FiD (Raffel et al., 2020), built upon 310

the T5 architecture, is specifically designed for 311

knowledge-intensive QA and is fine-tuned for each 312

task. CEPE-Llama2-7B segments long documents 313

with a lightweight encoder and employs cross- 314

attention for effective context utilization, operating 315

in a zero-shot manner. 316

Reranker We experiment with RankT5- 317

Base (Zhuang et al., 2023) and BGE-Base- 318

Reranker (Xiao and Liu, 2023) as the reranking 319

module in the RAG system. RankT5-Base is 320

fine-tuned in an encoder-decoder setup to perform 321

reranking, while BGE-Base-Reranker is an 322

encoder-only model based on BERT. 323

Datasets We evaluate on five QA datasets: multi- 324

hop (2WikiHop (Ho et al., 2020), HotpotQA (Yang 325

et al., 2018), Musique (Trivedi et al., 2022)) 326

and single-hop (NQ (Kwiatkowski et al., 2019), 327

TQA (Kim et al., 2019)). Details are in subsec- 328

tion C.3. For NQ and TQA, we retrieve 20 candi- 329

date documents per query using DPR (Karpukhin 330

et al., 2020). For multi-hop datasets, we apply 331
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Mining Setting Reranker Setting Generator Setting

Training Methods Recall@5 NDCG@5 Recall@5 NDCG@5 MRR EM SubEM F1

Dataset: Hotpotqa
Reranker: RankT5
- EMDR (Lin et al., 2024) 78.0 80.5 78.7 80.6 95.9 60.8 66.1 75.8
- PDist (Glass et al., 2022) 76.8 79.5 78.1 80.0 95.7 60.8 66.0 75.8
- LOOP (Izacard et al., 2023) 71.7 74.7 72.5 74.9 93.0 60.0 65.1 75.0
- ADist (Izacard and Grave, 2021a) 71.3 72.1 71.3 71.9 88.4 57.0 61.9 71.5
- G-Rerank 83.3 84.7 84.4 84.9 95.9 61.1 66.5 76.3
Reranker: BGE-Base
- EMDR (Lin et al., 2024) 81.1 83.2 81.8 83.1 96.3 60.8 66.0 75.8
- PDist (Glass et al., 2022) 79.1 81.6 81.2 82.6 96.2 60.9 66.1 75.7
- LOOP (Izacard et al., 2023) 79.1 81.1 80.4 81.7 95.3 60.3 65.4 75.2
- ADist (Izacard and Grave, 2021a) 77.7 79.5 78.1 79.5 93.7 59.8 65.0 74.7
- G-Rerank 81.6 83.3 81.1 82.9 95.8 60.9 66.1 75.7

Dataset: Musique
Reranker: RankT5
- EMDR (Lin et al., 2024) 56.6 65.8 55.0 58.1 82.0 39.6 42.1 48.6
- PDist (Glass et al., 2022) 57.3 65.3 52.7 55.0 79.5 39.6 42.2 48.3
- LOOP (Izacard et al., 2023) 56.3 64.9 53.3 55.6 79.6 39.2 41.7 48.0
- ADist (Izacard and Grave, 2021a) 53.8 55.3 47.7 47.3 66.4 35.4 37.9 44.1
- G-Rerank 60.7 67.8 57.9 59.7 81.5 40.0 42.4 49.1
Reranker: BGE-Base
- EMDR (Lin et al., 2024) 56.6 65.7 53.6 57.1 81.5 39.7 42.4 48.8
- PDist (Glass et al., 2022) 60.3 66.1 58.2 59.6 80.5 39.4 42.3 48.6
- LOOP (Izacard et al., 2023) 58.7 65.6 57.2 59.3 81.8 39.7 42.2 48.8
- ADist (Izacard and Grave, 2021a) 57.9 64.5 46.0 45.3 64.7 34.8 37.3 43.4
- G-Rerank 60.9 66.6 57.6 59.7 81.5 39.9 42.7 49.1

Dataset: 2wikihop
Reranker: RankT5
- EMDR (Lin et al., 2024) 58.6 63.4 62.9 68.7 88.7 67.2 69.9 72.5
- PDist (Glass et al., 2022) 72.6 76.5 77.2 81.9 94.1 70.2 73.0 75.5
- LOOP (Izacard et al., 2023) 80.4 87.1 79.2 85.4 97.5 71.6 74.4 76.9
- ADist (Izacard and Grave, 2021a) 74.7 79.2 72.4 76.6 90.1 64.1 66.5 69.6
- G-Rerank 80.8 86.9 82.7 88.4 97.8 71.8 74.7 77.2
Reranker: BGE-Base
- EMDR (Lin et al., 2024) 61.8 67.3 71.0 77.1 93.8 68.9 71.8 74.3
- PDist (Glass et al., 2022) 74.0 76.8 76.6 82.2 94.5 69.1 71.9 74.4
- LOOP (Izacard et al., 2023) 77.3 85.0 76.0 83.3 98.5 71.2 73.9 76.3
- ADist (Izacard and Grave, 2021a) 81.4 87.7 80.5 86.4 97.1 70.7 73.5 76.1
- G-Rerank 79.6 86.4 81.4 86.5 97.5 70.9 73.7 76.2

Table 1: Experiments on 2WikiHop, Musique, and HotpotQA using FiD-Large as reader. We consider the settings
illustrated in Figure 3. The best performance is highlighted in bold, while the second-best performance is underlined.

the distraction setting to ensure ground-truth docu-332

ments are included, adding 10 random candidates333

in Musique to maintain 20 candidates per query.334

Baselines We compare against four LLM-335

supervised reranker training methods:336

EMDR (Sachan et al., 2021; Shi et al., 2024; Lin337

et al., 2024), PDist (Izacard et al., 2023; Glass338

et al., 2022), LOOP (Izacard et al., 2023), and339

ADist (Izacard and Grave, 2021a), which employ340

different LLM-supervised losses. Details about341

these baselines can be found in Appendix B.342

4.2 Main Experiments 343

Task Definition We consider the QA task where 344

the model is trained on question-answer pairs along 345

with retrieved documents, but at test time, it only 346

receives the question and the retrieved documents. 347

We define three evaluation settings, with their re- 348

spective distinctions illustrated in Figure 3: 349

1. Mining Setting: During training, given a 350

question-answer pair, can the reranker effec- 351

tively identify relevant documents? 352
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Reranker Setting Mining Setting

FiD-Base FiD-Large FiD-Base FiD-Large

Training Methods Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG

- EMDR (Lin et al., 2024) 63.0 45.6 45.2 61.8 45.2 44.4 60.3 42.9 42.3 59.0 42.7 41.6
- PDist (Glass et al., 2022) 50.5 39.8 36.2 60.2 44.4 43.4 47.6 37.5 33.5 56.3 41.3 39.7
- LOOP (Izacard et al., 2023) 53.1 40.7 38.1 52.5 40.2 37.3 49.6 38.2 34.9 49.8 37.6 34.5
- ADist (Izacard and Grave, 2021a) 55.2 43.4 40.8 56.3 44.5 41.9 52.8 41.5 38.5 54.2 42.3 39.5
- G-Rerank 69.3 48.2 49.6 72.2 49.5 51.5 65.5 45.0 45.8 68.4 46.4 47.8

Table 2: Results on HotpotQA using FiD as reader for identifying indirectly relevant documents, which are part of
the evidence chain but do not directly contain the answer. Details can be found in Appendix E.

RankT5 BGE-Base

Training Methods NQ TQA NQ TQA

- EMDR (Lin et al., 2024) 33.4 62.4 33.7 62.5
- PDist (Glass et al., 2022) 32.9 61.8 33.9 61.7
- LOOP (Izacard et al., 2023) 33.7 62.1 33.5 62.2
- ADist (Izacard and Grave, 2021a) 33.1 61.6 33.2 62.0
- G-Rerank 34.3 62.8 34.5 63.1

Table 3: Experimental results on NQ and TQA datasets
using CEPE-Llama2-7B as the reader. We employ
SubEM as the evaluation metric.

2. Reranker Setting: At test time, given a ques-353

tion, can the reranker effectively identify rele-354

vant documents?355

3. Generator Setting: At test time, given a ques-356

tion, can the model generate correct answers?357

Experimental Results Table 1 presents the ex-358

perimental results using FiD-Large as the generator359

model. Our method, G-Rerank, achieves the best360

or second-best performance across most datasets.361

In the Mining Setting, G-Rerank significantly im-362

proves the ability to identify relevant documents363

during training, given question-answer pairs. For364

instance, it achieves a 5.3% improvement on the365

HotpotQA when using RankT5. In the Reranker366

Setting, G-Rerank demonstrates a notable improve-367

ment over other LLM-supervised loss-based train-368

ing methods, with a 5.7% Recall improvement on369

HotpotQA when using RankT5. Furthermore, in the370

Generator Setting, G-Rerank shows consistent per-371

formance gains in generation quality, as G-Rerank372

directly takes the minimization of the final genera-373

tion loss as the training objective.374

Table 3 presents the SubEM results using CEPE-375

Llama2-7B as the generator model. We do not376

fine-tune CEPE-Llama2-7B on the downstream377

datasets; instead, we leverage its zero-shot capabil-378

ities. On both NQ and TQA, the G-Rerank training379

strategy leads to the best generation performance.380

Notably, these improvements are achieved solely381

by fine-tuning the retrieval module while keeping382

the language model parameters fixed.383

4.3 Identifying Indirectly Relevant 384

Documents 385

In multi-hop question answering, a RAG system 386

is required to retrieve a complete evidence chain 387

comprising multiple documents to support its fi- 388

nal answer. In such scenarios, the reranker should 389

be able to identify indirectly relevant documents, 390

which are relevant to the query but do not directly 391

contain the final answer. The challenge, however, 392

lies in the fact that these documents often serve 393

as ‘partial’ evidence, and their relevance is not im- 394

mediately apparent without being combined with 395

other documents. Existing perplexity-based train- 396

ing methods commonly used in the literature distill 397

independent relevance scores for each document, 398

which fail to capture the inter-document depen- 399

dencies that are essential for identifying indirectly 400

relevant documents, as discussed in Appendix D. 401

We evaluate various reranker training methods 402

on HotpotQA to assess their ability to identify in- 403

directly relevant documents. To obtain the data, 404

we employ a straightforward rule-based method to 405

extract such documents: any document labeled as 406

relevant in the dataset but not directly containing 407

the final answer is considered an indirectly relevant 408

document. Further discussion about this rule can 409

be found in Appendix E. 410

The experimental results are summarized in Ta- 411

ble 2. Our method, G-Rerank, demonstrates a sig- 412

nificant improvement in identifying indirectly rele- 413

vant documents. Specifically, when FiD-Large is 414

used as the generator model, G-Rerank achieves a 415

recall improvement of 10.4%. These results sug- 416

gest that our approach, which views reranking as 417

a subset sampling problem, allows the model to 418

better capture inter-document relationships and ef- 419

fectively recognize complete evidence chains. 420

4.4 Necessity of Gumbel Trick 421

We leverage the Gumbel trick to transform the out- 422

put weights of the reranker into an approximately 423
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Figure 4: Comparison of Max Sampling
Weight (indicating the reranker’s ability to dis-
tinguish between candidate documents) with
and without Gumbel noise on the NQ dataset.
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Figure 5: Performance comparison of different scalar metrics for
assessing candidate document relevance in the Mining Setting.
Our method is illustrated in Figure 8 and Algorithm 2, while
other baseline methods are described in detail in Appendix F.

discrete attention mask, where values tend to con-424

verge to either 0 or 1. A natural question arises:425

Is the introduction of Gumbel noise essential? We426

conduct an ablation study by removing the Gumbel427

noise and directly utilizing the reranker’s output428

weights as the attention mask while maintaining429

the same end-to-end optimization process.430

Our experiments reveal a substantial drop in per-431

formance when Gumbel noise is omitted. Specif-432

ically, the EM metric on the NQ dataset decreases433

drastically from 46.2 (with Gumbel) to 12.7 (with-434

out Gumbel). To gain further insight, we visualize435

the reranker’s output weights during training.436

Figure 4 presents the average maximum normal-437

ized document weight assigned by the reranker.438

With the Gumbel noise applied, we observe a clear439

upward trend in the maximum document weight,440

indicating that the reranker progressively enhances441

the differentiation between candidate documents,442

which ultimately leads to convergence. In contrast,443

when Gumbel noise is removed, the maximum doc-444

ument weight decreases over time, eventually sta-445

bilizing at 0.05, signaling a diminished ability to446

distinguish between candidates. This degradation447

occurs because, in the absence of the discretiza-448

tion constraint introduced by the Gumbel trick, the449

model tends to preserve the original attention dis-450

tribution, thus treating the removal of the attention451

mask as its objective. Consequently, the reranker452

learns to assign uniform soft mask across all candi-453

dates, i.e., M̂R
i,w/o Gumbel =

1
N = 0.05,∀i, thereby454

reverting the masked attention mechanism Equa-455

tion 7 to its original form as defined in Equation 2.456

These findings underscore the importance of the457

discretization constraint imposed by the Gumbel458

trick for learning an effective attention mask.459

4.5 Learnable Sampling Weights 460

The presence of the reranker can be viewed as in- 461

corporating text-based prior knowledge into the 462

document relevance learning process. However, 463

even in the absence of text-based priors, our train- 464

ing methodology can still effectively identify the 465

relevant documents. To verify this, we focus on the 466

Mining Setting and investigate whether the model 467

is capable of learning meaningful document rele- 468

vance scores without the use of a reranker. 469

Our method is illustrated in Figure 8 and Algo- 470

rithm 2, while the experimental setup and baseline 471

methods are explained in Appendix F. Specifically, 472

we remove the reranker component and instead as- 473

sign each candidate document a learnable sampling 474

weight, initializing all weights to zero. The results, 475

presented in Figure 5, show that even without the 476

reranker (i.e., without prior knowledge of the text), 477

our approach is still able to learn reliable relevance 478

scores for each document. Moreover, it signifi- 479

cantly outperforms other scalar metrics based on 480

perplexity or attention scores, further confirming 481

the effectiveness of our training objective. 482

5 Conclusion 483

In this work, we introduce G-Rerank, an end-to- 484

end optimization framework for training rerankers 485

in RAG systems. By reinterpreting the reranking 486

process as masked attention, we leverage the Gum- 487

bel Trick and Relaxed Top-k to enable direct op- 488

timization of the document-wise attention mask. 489

Our method effectively captures document inter- 490

dependencies and aligns retrieval and generation 491

objectives. Experiments across different settings 492

show that G-Rerank notably improves reranker per- 493

formance, especially in multi-hop QA tasks. 494
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6 Limitations495

Our method imposes certain constraints on its ap-496

plicability to existing decoder-only large language497

models (LLMs) due to its reliance on parallel en-498

coding/decoding capabilities during the pre-filling499

stage. This requirement limits its direct adoption500

in conventional autoregressive LLMs. However,501

it is worth noting that many high-performance502

language models with parallel encoding/decod-503

ing capabilities have already become standard504

choices in various Retrieval-Augmented Gener-505

ation (RAG) systems, such as FiD (Izacard and506

Grave, 2021b), CEPE (Yen et al., 2024), and Par-507

allel Windows (Ratner et al., 2023). Furthermore,508

our approach requires such models only during the509

reranker training phase; once trained, the reranker510

itself is independent of any specific LLM and can511

be flexibly adapted to other decoder-only models.512

Therefore, our method primarily serves as a general513

training framework rather than imposing architec-514

tural constraints on the final inference model. Ad-515

ditionally, our approach introduces extra hyperpa-516

rameters in the Gumbel-Softmax process, including517

the temperature parameter τ and the scaling factor518

κ, which require tuning to achieve optimal perfor-519

mance. However, through empirical studies, we520

find that τ = 0.5 and κ = 1.0 provide robust and521

stable performance across different model architec-522

tures and datasets. We provide a further discussion523

on the effect of τ and κ in Appendix A.524

7 Ethical Considerations525

While our method aims to improve the accuracy of526

the RAG system, it does not eliminate the inherent527

risks of biased data or model outputs, as the per-528

formance of RAG systems still heavily depends on529

the quality of training data and underlying models.530

The potential for bias in the training data, particu-531

larly for domain-specific queries, can lead to the532

amplification of these biases in the retrieved results,533

which can impact downstream applications.534
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A Effect of hyper-parameters on the897

Training Process898

The temperature parameter τ controls the sharp-899

ness of the softmax distribution used in the selec-900

tion process of documents. We conduct sampling901

weight learning for 20 candidate documents based902

on RankT5 on the NQ dataset, and tested the im-903

pact of different τ values on the sampling weights904

during the training process. The experimental re-905

sults are shown in Figure 6. Specifically, as τ ap-906

proaches zero, the softmax distribution becomes907

increasingly sharp, leading to a hard selection pro-908

cess where the model heavily favors the document909

with the highest score. This results in a determin-910

istic decision-making process, where the model’s911

focus is on exploitation, quickly converging to a912

particular document. On the other hand, when τ in-913

creases, the distribution becomes smoother, allow-914

ing for a more stochastic sampling process. This915

introduces more exploration, as the model is less916

likely to fixate on a single document, encouraging917

the exploration of other potential candidates. A918

larger τ thus promotes diversity in the selection919

process, which can be beneficial for avoiding lo-920

cal optima and improving generalization during921

training.922

The scaling factor κ plays a critical role in con-923

trolling the relative influence of the Reranker scores924

on the overall document selection process. We test925

the impact of different κ values on the sampling926

weights during the training process. The experi-927

mental results are shown in Figure 7. Specifically,928

κ modulates the contribution of the Reranker score929

wi to the final selection probability. When κ is930

small, the contribution of the original Gumbel noise931

term Gi dominates the selection process. This in-932

troduces significant randomness, increasing the ex-933

ploration rate during training. A small κ value934

results in noisy selection, encouraging the model to935

explore various documents and learn more diverse936

representations. Conversely, when κ is large, the937

Reranker score wi has a stronger influence, and the938

model’s selection becomes more deterministic. In939

this case, the Reranker score dominates the sam-940

pling process, leading to faster convergence as the941

model focuses on selecting the most highly scored942

documents. However, an overly large κ may limit943

the exploration of alternative options, potentially944

leading to overfitting and reduced generalization.945

B LLM-Supervised Baselines 946

Baselines. We compare our approach against four 947

LLM-supervised reranker training methods that 948

leverage generative language model signals to su- 949

pervise retriever learning without requiring addi- 950

tional document annotations. In particular, we con- 951

sider the following methods: 952

Attention Distillation (ADist) (Izacard 953

and Grave, 2021a): This method utilizes 954

the cross-attention scores from the language 955

model—augmented by the norms of the corre- 956

sponding value vectors—to compute a target 957

relevance distribution over retrieved documents. 958

The reranker R is trained by minimizing the 959

KL-divergence between its own distribution over 960

the top-k documents and the attention-based target 961

distribution. The target distribution for the reranker 962

is defined as: 963

pATTN(pk) =
exp(αk∥vk∥2)∑K
i=1 exp(αi∥vi∥2)

964

where αk is the attention score for document pk 965

and ∥vk∥2 is the L2 norm of the corresponding 966

value vector. The loss function minimizes the KL- 967

divergence between the reranker’s distribution pR 968

and the target distribution pATTN: 969

KL(pATTN ∥ pR) =
K∑
k=1

pATTN(pk) log
pATTN(pk)

pR(pk)
970

End-to-end Multi-Document Reader and 971

Reranker (EMDR2) (Sachan et al., 2021; Shi 972

et al., 2024; Lin et al., 2024): EMDR2 adopts an 973

expectation-maximization approach, treating the 974

retrieved documents as latent variables. Given a 975

query q and a corresponding answer a, along with 976

the top-k retrieved documents, the loss is designed 977

to maximize the log-likelihood of the output given 978

these documents. The objective function is: 979

LEMDR2 = log

[
K∑
k=1

pLM(a | q,pk)pR(pk | q)

]
980

where pLM(a | q,pk) is the language model’s prob- 981

ability of generating the answer a conditioned on 982

the query q and document pk, and pR(pk | q) 983

is the reranker’s distribution over the top-k docu- 984

ments. 985

Perplexity Distillation (PDist) (Izacard et al., 986

2023; Glass et al., 2022): In this approach, the 987

reranker is trained to predict the improvement in 988
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Figure 6: The impact of different τ values on the training process. We conduct with 20 candidate documents and
RankT5 on the NQ dataset. The solid line in the figure represents the moving average. The differences in sampling
weights indicate the Reranker’s ability to distinguish between candidate documents.

the language model’s perplexity when each docu-989

ment is used to condition the model’s output. The990

KL divergence is minimized between the reranker’s991

distribution over documents and the posterior dis-992

tribution derived from the language model, which993

provides a direct measure of how much a document994

contributes to the model’s performance. The target995

distribution for the reranker is computed as:996

pk =
exp(log pLM(a | pk,q))∑K
i=1 exp(log pLM(a | pi,q))

997

The reranker is trained to minimize the KL-998

divergence between its predicted distribution over 999

the documents and this target distribution: 1000

LPDist =
K∑
k=1

pR(pk | q) log pR(pk | q)
pk

1001

Here, pk is the distribution over documents that 1002

the language model would prefer, and the reranker 1003

is trained to match this distribution to improve the 1004

language model’s perplexity. The KL-divergence 1005

loss encourages the reranker to select documents 1006
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Figure 7: The impact of different κ values on the training process. We conduct with 20 candidate documents and
RankT5 on the NQ dataset. The solid line in the figure represents the moving average. The differences in sampling
weights indicate the Reranker’s ability to distinguish between candidate documents.

that enhance the model’s ability to generate the1007

correct answer.1008

The objective function in EMDR2 is based on1009

maximizing the log-likelihood of the correct an-1010

swer, given the query and documents. This method1011

treats the documents as latent variables and aims1012

to optimize the likelihood of generating the correct1013

answer based on the combination of the language1014

model and reranker’s distributions. On the other1015

hand, PDist focuses on optimizing the reranker’s1016

distribution by minimizing the KL-divergence be-1017

tween its predictions and the target distribution,1018

which is derived from the language model’s per- 1019

plexity. 1020

Leave-one-out Perplexity Distillation 1021

(LOOP) (Izacard et al., 2023): LOOP refines 1022

the PDist approach by considering the impact 1023

of each document in the context of all other 1024

documents in the top-k set. For each document, 1025

the log-likelihood of the output is computed by 1026

excluding the document from the retrieval set, and 1027

the negative of this value is used as a relevance 1028
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score. The target distribution is:1029

pLOOP(pk) =

exp(− log pLM(a | DK \ {pk},q))∑K
i=1 exp(− log pLM(a | DK \ {pi},q))

1030

The reranker is trained to minimize the KL-1031

divergence between this distribution and the one1032

obtained from the reranker.1033

C More Details1034

C.1 Variants of FiD1035

Recent advancements in Open-Domain Question1036

Answering have led to the development of several1037

enhanced Fusion-in-Decoder models. KG-FiD (Yu1038

et al., 2022) enhances the traditional FiD frame-1039

work by integrating knowledge graphs to establish1040

structural relationships among retrieved passages.1041

This integration employs graph neural networks to1042

re-rank passages, selecting the most pertinent ones1043

for answer generation, thereby improving both ef-1044

fectiveness and efficiency. FiDO (de Jong et al.,1045

2023) addresses memory bandwidth constraints in-1046

herent in the FiD architecture by reallocating com-1047

putational resources. This optimization results in a1048

significant increase in inference speed without com-1049

promising performance, making it more suitable for1050

real-time applications. FiD-Light (Hofstätter et al.,1051

2023) focuses on efficient retrieval-augmented text1052

generation by optimizing the balance between re-1053

trieval and generation components. This approach1054

reduces computational overhead while maintain-1055

ing answer accuracy, offering a more resource-1056

efficient alternative. RFiD (Wang et al., 2023)1057

introduces a multi-task learning approach to dis-1058

cern evidentiality, combining passage re-ranking1059

with sentence classification. This method enhances1060

the model’s ability to identify causal relationships1061

between questions and passages, leading to im-1062

proved answer accuracy. Multi-Granularity Guided1063

Fusion-in-Decoder (MG-FiD) (Choi et al., 2024)1064

further refines the FiD approach by aggregating1065

evidence across multiple levels of granularity. It1066

harmonizes passage re-ranking with sentence-level1067

classification, enhancing both accuracy and decod-1068

ing efficiency.1069

In our experiments, since we are mainly focusing1070

on reranker training strategies rather than reader,1071

we utilize the classical Fusion-in-Decoder model ar-1072

chitecture. Building upon this foundation, we com-1073

pare our approach with various LLM-supervised1074

reranker training strategies to assess their impact 1075

on ODQA performance. 1076

C.2 Multi-Hop Question Answering 1077

Multi-hop Question Answering (QA) systems typi- 1078

cally follow a two-phase process: first, retrieving 1079

relevant passages, and then using these passages to 1080

answer the question. 2WikiHop (Ho et al., 2020), 1081

HotpotQA (Yang et al., 2018), Musique (Trivedi 1082

et al., 2022), and MultiHop-RAG (Tang and Yang, 1083

2024) are widely used benchmarks for evaluating 1084

and improving RAG systems in handling complex 1085

multi-hop reasoning tasks. The retrieval strategies 1086

can differ depending on the QA setting, which may 1087

either be open-domain or reading comprehension. 1088

In open-domain QA, the focus is on retrieving 1089

relevant passages from a large corpus. Methods 1090

like MDR (Xiong et al., 2021) and BeamDR (Zhao 1091

et al., 2021) are commonly used in this context. In 1092

the case of reading comprehension, retrieval meth- 1093

ods are generally categorized into one-step and 1094

two-step approaches. One-step methods, such as 1095

SAE (Tu et al., 2020), rank passages by concate- 1096

nating the question with each candidate passage. 1097

Two-step methods, including S2G (Wu et al., 2021) 1098

and FE2H (Li et al., 2023), start by selecting an 1099

initial hop passage and then refine the search by 1100

pairing it with additional candidates. The R3 model 1101

(Yin et al., 2023) enhances this approach by select- 1102

ing multiple passages at the outset and combining 1103

them to find the correct answer. Beam Retrieval 1104

(Zhang et al., 2024) further extends the process by 1105

using a beam search, enabling it to handle more 1106

complex multi-hop retrieval tasks that go beyond 1107

just two hops. 1108

Our work focuses on a different scenario: we 1109

analyze the limitations of the LLM-Supervised 1110

Reranker Training strategy in widely used RAG 1111

systems for multi-hop question answering tasks (as 1112

detailed in Appendix D) and propose an end-to-end 1113

reranker training strategy based on Gumbel Sub- 1114

set Sampling, which is well-suited for multi-hop 1115

question answering tasks. 1116

C.3 Dataset Description 1117

The datasets in our study encompass a variety 1118

of challenges designed to assess different facets 1119

of question answering. HotpotQA (Yang et al., 1120

2018) is a multi-hop QA dataset that requires rea- 1121

soning over multiple Wikipedia articles to derive 1122

answers, emphasizing both factual retrieval and 1123

reasoning capabilities. Similarly, 2WikiHop (Ho 1124
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Mining Setting Reranker Setting Generator Setting

Recall@5 NDCG@5 Recall@5 NDCG@5 MRR EM SubEM F1

Dataset: Hotpotqa
Reranker: Rank-T5
- EMDR (Lin et al., 2024) 78.8 81.1 79.5 81.1 95.8 58.3 64.6 73.1
- PDist (Glass et al., 2022) 70.9 73.9 71.4 73.6 92.6 57.8 64.0 72.5
- LOOP (Izacard et al., 2023) 72.2 75.4 73.4 75.7 93.7 58.0 64.2 72.7
- ADist (Izacard and Grave, 2021a) 72.2 74.1 72.5 73.8 90.5 56.5 62.6 71.1
- G-Rerank 81.9 83.7 83.1 84.0 95.9 58.8 65.1 73.5

Reranker: BGE-Base
- EMDR (Lin et al., 2024) 78.4 81.1 78.8 80.7 95.9 58.6 64.8 73.4
- PDist (Glass et al., 2022) 76.7 79.8 78.5 80.7 96.1 58.7 64.9 73.4
- LOOP (Izacard et al., 2023) 76.0 79.0 77.1 79.2 95.3 58.3 64.5 73.0
- ADist (Izacard and Grave, 2021a) 78.5 80.7 79.3 80.9 95.1 58.2 64.4 73.0
- G-Rerank 81.6 83.3 82.6 83.3 95.8 58.8 65.0 73.5

Table 4: Experiments on HotpotQA using FiD-Base as reader. We consider the settings illustrated in Figure 3. The
best performance is highlighted in bold, while the second-best performance is underlined.

et al., 2020) extends the complexity of multi-hop1125

reasoning by introducing questions that necessi-1126

tate navigating a knowledge graph, enhancing the1127

evaluation of entity-based information retrieval.1128

Musique (Trivedi et al., 2022) is designed to assess1129

compositional reasoning by decomposing complex1130

questions into a sequence of simpler sub-questions,1131

providing a structured approach to multi-step rea-1132

soning evaluation. Meanwhile, Natural Questions1133

(NQ) (Kwiatkowski et al., 2019) presents real-1134

world search queries answered using long-form1135

documents, challenging models to extract and sum-1136

marize information from extensive contexts. Lastly,1137

TextbookQA (TQA) (Kim et al., 2019) focuses on1138

domain-specific comprehension, where questions1139

require understanding of textbook-style knowledge,1140

integrating both textual and diagrammatic content1141

for a holistic assessment of contextual understand-1142

ing and inferential capabilities.1143

C.4 Additional Results with FiD-Base1144

We present additional results on the HotpotQA1145

dataset using FiD-Base as the reader, as shown1146

in Table 4. Our method outperforms others across1147

most metrics, demonstrating its efficacy.1148

D Challenges in Handling Indirectly1149

Relevant Documents with EMDR/PDist1150

Both EMDR2 (Sachan et al., 2021; Shi et al., 2024;1151

Lin et al., 2024) and PDist (Izacard et al., 2023;1152

Glass et al., 2022) are based on the premise of dis-1153

tilling the importance of individual documents in1154

a multi-document retrieval and generation process.1155

While effective for ranking directly relevant doc-1156

uments, both methods encounter challenges when1157

dealing with indirectly relevant documents, which1158

provide context but do not directly contain the an- 1159

swer. 1160

In EMDR2, the objective is to maximize the log- 1161

likelihood of generating the answer given the query 1162

and individual documents. The loss function is 1163

given by: 1164

LEMDR2 = log

[
K∑
k=1

pLM(a | q,pk)pR(pk | q)

]
1165

where pLM(a | q,pk) represents the language 1166

model’s probability of generating the answer condi- 1167

tioned on the query and document, and pR(pk | q) 1168

is the reranker’s preference for the k-th document. 1169

However, this approach assumes the independence 1170

of documents when generating the answer. Indi- 1171

rectly relevant documents, while crucial in pro- 1172

viding context, do not appear to contribute mean- 1173

ingfully when evaluated independently. The impor- 1174

tance of such documents can only be assessed when 1175

they interact with other documents in the evidence 1176

chain, making their relevance difficult to capture in 1177

this formulation. 1178

Similarly, PDist minimizes the KL divergence 1179

between the reranker’s distribution pR(pk | q) 1180

and the distribution pk derived from the language 1181

model’s perplexity. pk represents the distribution 1182

over documents that the language model prefers 1183

based on its perplexity improvement: 1184

pk =
exp(log pLM(a | pk,q))∑K
i=1 exp(log pLM(a | pi,q))

1185

In both methods, the language model 1186

pLM(a | q,pk) computes the probability of 1187

generating the answer based on the query and 1188

a single document pk, treating the document 1189
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in isolation. This formulation assumes that1190

each document, independently, provides enough1191

information to determine the relevance to the query1192

and the answer. However, in the case of indirectly1193

relevant documents, this assumption breaks down.1194

Indirectly relevant documents do not contain1195

the answer directly but instead contribute to the1196

reasoning process by supporting or contextualizing1197

other documents. When evaluated alone, these1198

documents may appear less relevant or even1199

irrelevant, which undermines the effectiveness of1200

both methods.1201

E Irrelevant Document Setting1202

Multi-hop question answering in HotpotQA in-1203

volves synthesizing information from multiple doc-1204

uments to resolve a single query. Although these1205

questions can be categorized into four major reason-1206

ing types—such as bridging intermediate informa-1207

tion, comparing entities, verifying multiple proper-1208

ties, or inferring properties through a bridge—they1209

all share the common requirement of gathering evi-1210

dence across several sources. In this setting, identi-1211

fying and assessing indirectly relevant documents1212

can be instrumental for measuring how effectively1213

a model captures the full chain of reasoning. Our1214

approach defines an indirectly relevant document1215

as any document labeled as relevant in the dataset1216

yet not explicitly containing the final answer. This1217

rule is rational in that it highlights the documents1218

that contribute background or bridging information.1219

However, this simple rule sometimes blurs the dis-1220

tinction between direct and indirect relevance. For1221

instance, when a document only partially contains1222

the answer, or when multiple sources each provide1223

different fragments of a single reasoning chain (es-1224

pecially in question types like comparing entities1225

or verifying multiple properties), all supporting1226

documents will be classified as indirectly relevant1227

by this rule. The concept of “partial” evidence is1228

inherently difficult to categorize as either direct1229

or indirect, and our rule consequently treats such1230

“partial” evidence as indirectly relevant documents.1231

After processing the dataset, we observe that in1232

the training set, the ratio of total queries to data en-1233

tries that do contain indirectly relevant documents1234

is 90,447 to 664,247. In the development set, this1235

ratio is 7,405 to 5,966. The relatively large num-1236

ber of data entries that do contain indirectly rele-1237

vant documents allows for a robust evaluation of1238

a model’s ability to retrieve and utilize such sup-1239

porting evidence. Thus, this formulation not only 1240

aligns well with the structure of HotpotQA but also 1241

provides a meaningful benchmark for analyzing 1242

the effectiveness of different methods in captur- 1243

ing multi-hop dependencies beyond direct answer 1244

retrieval. 1245

F Learnable Sampling Weights Setting 1246

F.1 Scalar Relevance Baselines 1247

In our thesis, we employ different scalar metrics 1248

to quantify the relevance of each candidate doc- 1249

ument in the RAG system. These metrics corre- 1250

spond to the different LLM-supervised reranker 1251

training methods, and they serve as proxies for the 1252

document’s contribution to generating the correct 1253

answer. In particular, we consider the following 1254

three metrics: 1255

Lowest Perplexity For methods such as EMDR2 1256

and Perplexity Distillation (PDist), each candidate 1257

document pk is evaluated by combining it with 1258

the query q and computing the language model’s 1259

negative log-likelihood of generating the ground- 1260

truth answer a. Formally, the scalar relevance score 1261

is defined as: 1262

sperplexity(pk) = − log pLM(a | q,pk). 1263

In this setting, a lower perplexity (i.e., a higher 1264

value of sperplexity) indicates that the document bet- 1265

ter facilitates the generation of the correct answer, 1266

and is therefore considered more relevant. 1267

Highest Attention Score The Attention Distilla- 1268

tion (ADist) method evaluates relevance by feeding 1269

all candidate documents to the language model si- 1270

multaneously and aggregating the cross-attention 1271

scores. For each document pk, the relevance score 1272

is computed by weighting the attention score αk 1273

with the L2 norm of its corresponding value vector 1274

vk: 1275

sattn(pk) = αk ∥vk∥2. 1276

Here, a higher attention score signifies that the lan- 1277

guage model assigns more importance to the docu- 1278

ment during answer generation, thereby indicating 1279

greater relevance. 1280

Highest Leave-one-out Perplexity The Leave- 1281

one-out Perplexity Distillation (LOOP) method as- 1282

sesses the impact of each candidate document by 1283

measuring the degradation in the language model’s 1284

performance when that document is excluded from 1285
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Algorithm 2 Learnable Sampling Weights Setting
1: procedure STOCHASTICSUBSETMASK(document weights w1, . . . , wn, temperature τ , scale factor

κ, subset size k)
2: for j = 1 to k do
3: w̃i = − log(− log(ui)) + κ · wi, ui ∼ U(0, 1) ∀i ∈ [n]

4: M̂j = max(M̂j−1, softmax
(
(w̃1,...,w̃n)

τ

)
) # M̂0 = [0, . . . , 0]

5: end for
6: return M̂k ▷ Return Relaxed top-k Mask
7: end procedure
8:

9: Given a query q, answer a, and n retrieved passages p1, . . . ,pn

10: Initialization: Initialize learnable document weights w1 = 0, w2 = 0, . . . , wn = 0
11: for each training step do
12: M̂ = StochasticSubsetMask(w1, . . . , wn, τ, κ, k)
13: Apply DMA(M̂) to obtain logits and language loss LLM ▷ subsection 3.3
14: Update document weights w1, . . . , wn with ∇w1,...,wnLLM ▷ Gradient-based update
15: end for
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Figure 8: Setting of Learnable Sampling Weight. Optimizing candidate document sampling weights directly without
leveraging reranker’s prior textual knowledge.

the candidate set. For each document pk, the rele-1286

vance score is defined as:1287

sloop(pk) = − log pLM

(
a | DK \ {pk},q

)
,1288

where DK denotes the set of top-k candidate docu-1289

ments. A higher leave-one-out score implies that1290

the removal of pk leads to a significant deteriora-1291

tion in the language model’s ability to generate the1292

answer, marking it as highly relevant.1293

F.2 Our method1294

In our proposed approach, we eliminate the de-1295

pendency on a dedicated reranker by replacing it1296

with a set of learnable scalar weights—one per1297

document—that are initialized at zero and updated 1298

directly via gradients from the language model- 1299

ing loss computed by the differentiable masked 1300

attention module. As detailed in Algorithm 2 1301

and Figure 8, the algorithm employs stochastic 1302

Gumbel noise to perform a relaxed top-k selection 1303

over these weights, ensuring that the entire process 1304

remains fully differentiable. This method itera- 1305

tively refines the document weights over multiple 1306

steps on a single query–answer pair and its corre- 1307

sponding documents, thereby enabling the model 1308

to learn which documents are most informative for 1309

the downstream language modeling task. 1310
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Dataset URL License

Multi-hop QA
2WikiMultiHopQA (Ho et al., 2020) https://github.com/Alab-NII/

2wikimultihop
Apache License 2.0:
https://github.com/
Alab-NII/2wikimultihop/
blob/master/LICENSE

HotpotQA (Yang et al., 2018) https://hotpotqa.github.io/ CC BY-SA 4.0: https://
hotpotqa.github.io/

MuSiQue (Trivedi et al., 2022) https://github.com/
stonybrooknlp/musique

CC BY 4.0: https://
github.com/stonybrooknlp/
musique/blob/main/LICENSE

Single-hop QA
Natural Questions (NQ) (Kwiatkowski
et al., 2019)

https://ai.google.com/research/
NaturalQuestions

CC BY-SA 3.0: https:
//ai.google.com/research/
NaturalQuestions/download

Textbook Question Answering
(TQA) (Kim et al., 2019)

https://prior.allenai.org/
projects/tqa

CC BY-NC 3.0: https:
//prior.allenai.org/
projects/tqa

Table 5: Summary of URLs and Licenses for Datasets

G URLs and Licenses1311

Table 5 provides license information for the1312

datasets we utilize in our experiments. We employ1313

all the above datasets solely for research purposes,1314

in accordance with their designated uses.1315
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