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ABSTRACT

Classical clustering methods do not provide users with direct control of the clus-
tering results, and the clustering results may not be consistent with the relevant
criterion that a user has in mind. In this work, we present a new methodology for
performing image clustering based on user-specified text criteria by leveraging
modern vision-language models and large language models. We call our method
Image Clustering Conditioned on Text Criteria (IC|TC), and it represents a differ-
ent paradigm of image clustering. IC|TC requires a minimal and practical degree
of human intervention and grants the user significant control over the clustering
results in return. Our experiments show that IC|TC can effectively cluster im-
ages with various criteria, such as human action, physical location, or the person’s
mood, while significantly outperforming baselines.2

1 INTRODUCTION

Image clustering has been studied as a prototypical unsupervised learning task, and it has been
used to organize large volumes of visual data (Platt et al., 2003), to reduce the cost of labeling an
unlabeled image dataset (Russell et al., 2008; Schmarje et al., 2022), and to enhance image retrieval
systems (Wu et al., 2000; Jégou and Chum, 2012). Modern deep image clustering methods are often
evaluated against pre-defined class labels of datasets viewed as the ground truth.

In practice, however, a user may have a criterion in mind for how to cluster or organize a set of
images. The user may even want multiple clustering results of the same dataset based on differ-
ent criteria. (See Figure 1.) But, classical clustering methods offer no direct mechanism for the
user to control the clustering criterion; the clustering criteria for existing methods are likely deter-
mined by the inductive biases of the neural networks and the loss function, data augmentations, and
feature extractors used within the method. This necessitates a new paradigm in image clustering,
enabling diverse outcomes from a single dataset based on user-specified criteria and revolutionizing
the conventional, implicitly dictated clustering processes.

Recently, foundation models have received significant recent interest due to their ability to under-
stand and follow human instructions at an unprecedented level. Large language models (LLMs)
(Brown et al., 2020; Chowdhery et al., 2022; Touvron et al., 2023a;b; Chiang et al., 2023; OpenAI,
2023; Adams et al., 2023) perform remarkably well on a wide range of natural language tasks such
as understanding, summarizing, and reasoning in zero- or few-shot settings. Vision-language mod-
els (VLMs) (Alayrac et al., 2022; Liu et al., 2023; Awadalla et al., 2023; Dai et al., 2023; Li et al.,
2023a; Zhu et al., 2023; Gong et al., 2023) interpret natural language instructions in visual contexts
and produce responses that seemingly exhibit in-depth image analyses and complex reasoning.

In this work, we present a new methodology based on foundation models for performing image
clustering based on user-specified criteria provided in natural language text. We call our method
Image Clustering Conditioned on Text Criteria (IC|TC), and it represents a different paradigm of
image clustering: the user directs the method with the relevant clustering criterion, the same dataset
can be clustered with multiple different criteria, and if the clustering results are not satisfactory, the
user can edit the text criterion to iteratively refine the clustering results. IC|TC requires a minimal
and practical degree of human intervention and grants the user significant control over the clustering
results in return, and we argue that this makes IC|TC more practical and powerful compared to the
classical purely unsupervised clustering methods.

1 Work done at KRAFTON. 2 Our code is available at https://github.com/sehyunkwon/ICTC.
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(a) Sample images from the clustering results on the Stanford 40 Action dataset. Each result is obtained using
a different text criterion: Action, Location, and Mood.
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(b) Sample images from the clustering results on the PPMI dataset using the text criterion Instrument with
different cluster numbers K = 2 and 7.

Figure 1: Sample images from clustering results of IC|TC. The method finds clusters consistent
with the user-specified text criterion. Furthermore, IC|TC provides cluster names (texts above each
image cluster) along with the clusters, enhancing the interpretability of clustering results.
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1.1 CONTRIBUTION

Our main contributions are the proposal of the novel task of image clustering conditioned on text
criteria and our method IC|TC for solving this task. The task is interesting because the setup where
the user is willing and able to provide a textual description of the clustering criterion is practical,
arguably more practical than the classical purely unsupervised clustering setup. The method IC|TC
is interesting because it leverages modern multi-modal foundation models and solves the task well;
our experiments demonstrate that IC|TC can indeed produce satisfactory clustering results consistent
with the user-specified criteria.

2 TASK DEFINITION: IMAGE CLUSTERING CONDITIONED ON ITERATIVELY
REFINED TEXT CRITERIA

The main task we consider in this work is defined as follows: Given a set of images, a number of
clusters K, and a user-specified criterion expressed in natural language, partition the set of images
into K clusters such that the semantic meanings of the clusters are distinguished in a manner that is
consistent with the specified user criterion.

Recent image clustering methods (Van Gansbeke et al., 2020; Park et al., 2021; Niu and Wang, 2021)
find clusters that agree with pre-defined class labels for datasets such as CIFAR-10 (∼90% accu-
racy). The semantic meanings of the clusters tend to correspond to the category of the foreground
object, and the inductive biases of the neural networks and the loss function, data augmentations,
and feature extractors used within the method are likely the cause of the clusters being chosen in this
manner. In a given setup, however, the clusters returned by such classical clustering methods may
not be consistent with the relevant criterion that a user has in mind.

Iterative refinement of text criteria. Under our main task, the text criterion is chosen through
a process of iterative refinement: The user specifies a text criterion, performs clustering, examines
the clustering results, and, if not satisfied, edits the text criterion to iteratively refine the clustering
results. Sometimes, a user-defined text criterion immediately leads to a clustering result that is
sufficiently consistent with what the user has in mind, but if not, this iterative prompt engineering
procedure provides a practical means for converging to desired results. In practice, hyperparameters
of classical clustering algorithms are chosen through an iterative process where the user inspects the
clustering output and adjusts the parameters accordingly. In this work, we explicitly acknowledge
the process of iteratively determining the text criterion and consider it to be part of the main task.

Comparison with classical clustering. Our task differs from classical clustering in that the user
provides information characterizing the relevant criterion by which the images should be clustered.
In contrast, classical clustering methods are purely unsupervised and use no such information.

Deep clustering methods are often evaluated against a pre-defined set of labels of a dataset, and such
labels tend to focus on the type of object in the foreground. However, the question of how clustering
algorithms could (or cannot) perform clustering with arbitrary criteria has been raised and studied
in several prior works (Wolpert and Macready, 1997; Kleinberg, 2002; Caruana et al., 2006; Cui
et al., 2007; von Luxburg et al., 2012; Caruana, 2013; McCarthy et al., 2020; Viswanathan et al.,
2023). The use of user-defined text criteria makes our task not an instance of (classical) unsupervised
clustering, but providing a text criterion is a necessary and practical intervention from the user if the
goal is to perform clustering with arbitrary criteria.

Comparison with zero-shot classification. Our task differs from zero-shot classification in that
zero-shot classification requires a pre-defined set of classes, and the goal is merely to assign images
to these classes. In contrast, our task requires both finding the clusters and assigning images to the
clusters. In fact, zero-shot classification can be considered an instance of our task when the user
explicitly and precisely describes all K clusters in the clustering criterion.

3



Published as a conference paper at ICLR 2024

Figure 2: The IC|TC method. (Step 1) Vision-language model (VLM) extracts detailed relevant
textual descriptions of images. (Step 2) Large language model (LLM) identifies the names of the
clusters. (Step 3) LLM conducts clustering by assigning each description to the appropriate cluster.
The entire procedure is guided by a user-specified text criterion (TC). (Optional TC Refinement).
The user can update the text criterion if the clustering results are unsatisfactory. See Appendix B.4
for an unabridged sample output.

3 IC|TC: IMAGE CLUSTERING CONDITIONED ON TEXT CRITERIA

Our main method consists of 3 stages with an optional iterative outer loop. The user-specified text
criterion TC is incorporated into 3 stages via text prompts roughly of the following form.
Pstep1(TC) = "Characterize the image using a well-detailed description"+TC

Pstep2a(TC) = "Given a description of an image, label the image"+TC

Pstep2b(TC, N,K) = "Given a list of {N} labels, cluster them into {K} words"+TC

Pstep3(TC) = "Based on the image description,

determine the most appropriate cluster"+TC

The precise prompt for each experimental setup in this work is specified in Appendix B.3.1.

3.1 STEP 1: EXTRACT SALIENT FEATURES FROM THE IMAGE

In Step 1, the vision-language model (VLM) extracts salient features from the image in the form of
text descriptions.

Step 1 Vision-language model (VLM) extracts salient features
Input: Image Dataset Dimg, Text Criteria TC, Descriptions Ddes ←[]
Output: Ddes

1: for img in Dimg do
2: Ddes.append( VLM(img, Pstep1(TC) ) //append image description to Ddes

3: end for

The user’s criterion TC determines the relevant features the VLM should focus on. For example,
the user may wish to cluster with respect to the mood of a person in the image or the overall mood
(atmosphere) of the scene. In such cases, the TC may slightly vary:

Criterion 1: Focus on the mood of the person in the center.
Criterion 2: Describe the general mood by inspecting the background.
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3.2 STEP 2: OBTAINING CLUSTER NAMES

In Step 2, the large language model (LLM) discovers the cluster names in two sub-steps. In Step
2a, the LLM outputs raw initial labels of the images. Since the number of distinct initial labels is
usually larger than K, in Step 2b, the LLM aggregates the raw initial labels into appropriate names
of K clusters. (Combining Steps 2a and 2b and asking the LLM to discover K cluster names from
N image descriptions is infeasible due to the limited token lengths of the LLMs.)

Step 2 Large Language Model (LLM) obtains K cluster names
Input: Descriptions Ddes, Text Criteria TC, Dataset size N , Number of clusters K, Lraw ←[]
Output: List of cluster names Cname

1: for description in Ddes do
2: Lraw.append( LLM(description + Pstep2a(TC)) ) //append raw label to Lraw

3: end for
4: Cname = LLM(Lraw+Pstep2b(TC, N,K)) //Step 2b can be further optimized

The simplest instance of Step 2b, described above, directly provides Lraw, the full list of raw labels.
However, we find that it is more efficient to convert Lraw to a dictionary with labels being the keys
and numbers of occurrences of the labels being the values. When the same raw label occurs many
times, this optimization significantly reduces the token length of the input to the LLM of Step 2b.

Careful prompt engineering of Pstep2b(TC, N,K) allows the user to refine the clusters to be consis-
tent with the user’s criteria. For example, the user may append additional text prompts such as:

When categorizing the classes, consider the following criteria:
1. Merge similar clusters. For example, [sparrow, eagle, falcon,

owl, hawk] should be combined into ’birds of prey.’
2. Clusters should be differentiated based on the animal’s habitat.

3.3 STEP 3: CLUSTERING BY ASSIGNING IMAGES

In Step 3, images are assigned to one of the final K clusters. The text criterion TC, text description
of the images from Step 1, and the K cluster names from Step 2 are provided to the LLM.

Step 3 Large Language Model (LLM) assigns clusters to images
Input: Descriptions Ddes, Text Criteria TC, List of cluster names Cname, RESULT←[]
Output: RESULT

1: for description in Ddes do
2: RESULT.append( LLM(description+Pstep3(TC)) ) //append assigned cluster
3: end for

3.4 ITERATIVELY EDITING THE ALGORITHM THROUGH TEXT PROMPT ENGINEERING

Main method IC|TC
Input: Dataset Dimg, Text Criteria TC, ADJUST← True

1: while ADJUST do
2: RESULT← do Steps 1–3 conditioned on TC
3: if User determines RESULT satisfactory then
4: ADJUST← False
5: else
6: TC← Update TC //user writes updated TC
7: end if
8: end while

Our main method IC|TC is described above. Upon performing the clustering once, if the clusters are
not sufficiently consistent with the specified text criterion TC or if the TC turns out to not precisely
specify what the user had in mind, the user can update the TC. This iterative process may continue
until the clustering result is satisfactory, as judged by the user.
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Table 1: Clustering with varying text criteria. Accuracies
labeled with * are evaluated by having a human provide
ground truth labels for 1000 randomly sampled images. In
this experiment, we used LLaVA for VLM and GPT-4 for
LLM.

Dataset Criterion SCAN Ours

Stanford 40 Action
Action 0.397 0.774
Location 0.359* 0.822*
Mood 0.250* 0.793*

PPMI
M.I. (K=7) 0.632 0.964
M.I. (K=2) 0.850 0.977
Location (K=2) 0.512 0.914

CIFAR-10-Gen Object 0.989 0.987
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Figure 3: Effect of LLM selection.

3.5 PRODUCING CLUSTER LABELS

Classically, the unsupervised clustering task does not require the method to produce labels or de-
scriptions of the output clusters. Notably, however, IC|TC produces names describing the clusters.
This is a significant advantage of IC|TC as it makes the clustering results more directly and imme-
diately interpretable.

4 EXPERIMENTS

We now present experimental results demonstrating the effectiveness of IC|TC. In this section, we
partially describe the settings and results while deferring much of the details to the appendix. In
particular, the precise text prompts used can be found in Appendix B.3.1.

IC|TC crucially relies on the use of foundation models, specifically a vision-language model (VLM)
and a large language model (LLM) that have undergone instruction tuning. In our experiments,
we mainly use LLaVA (Liu et al., 2023) for the VLM and GPT-4 (OpenAI, 2023) for the LLM,
but Section 4.5 and Appendix B.2 presents ablation studies investigating how the performance is
affected when other foundation models are used.

4.1 CLUSTERING WITH VARYING TEXT CRITERIA

In this experiment, we show that varying the text criterion TC indeed leads to varying clustering
results of a single image dataset. The results demonstrate that IC|TC is highly flexible and can
accommodate a variety of text criteria.

We use the Stanford 40 Action Dataset (Yao et al., 2011), which contains 9,532 images of hu-
mans performing various actions. The dataset comes with image labels describing a subject’s action
among 40 classes, such as reading, phoning, blowing bubbles, playing violin, etc. We additionally
define two different collections of labels. The first collection contains 10 classes describing the
location, such as restaurant, store, sports facility, etc. The second collection contains 4 classes
describing the mood of the scene, specifically joyful, adventurous, relaxed, and focused.

We utilize three text criteria, Action, Location, and Mood, to obtain three distinct clustering
results. We evaluate the results based on how accurately the methods recover the three collections
of labels described previously. This degree of control would be difficult or impossible for classical
deep clustering methods. We compare our results against the prior deep clustering method SCAN
(Van Gansbeke et al., 2020) and present the results in Table 1. Image samples are in Figure 1a.

(Note that we do not have the 9,532 ground truth labels for the Location and Mood criteria.
Therefore, we evaluate accuracy by having a human provide ground truth labels on 1000 randomly
sampled images.)
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Figure 4: Sample images from the clustering results on the PPMI dataset using text criterion
Location and cluster number K = 2.

4.2 CLUSTERING WITH VARYING GRANULARITY

In this experiment, we show that IC|TC can automatically control the granularity of clustering results
by adjusting K, the number of clusters. We find that the cluster descriptions returned by IC|TC are
highly interpretable and that the images are assigned to the clusters well for various values of K.

We use the People Playing Musical Instrument (PPMI) dataset (Wang et al., 2010; Yao and Fei-Fei,
2010), which contains 1,200 images of humans interacting with 12 different musical instruments.
We select 700 images across 7 classes from the original dataset to reduce the size and difficulty of
the task.

We use the text criterion Musical Instrument with number of clusters K = 2 and K = 7.
With K = 7, images are indeed grouped into clusters such as violin, guitar, and other specific
instruments, and 96.4% accuracy against the ground truth label of PPMI is achieved. With K = 2,
images are divided into 2 clusters of brass instrument and string instrument and achieve a 97.7%
accuracy. To clarify, we did not specifically instruct IC|TC to group the 7 instruments into brass and
string instruments; the hierarchical grouping was discovered by IC|TC.

As an additional experiment, we also cluster the same set of images with the text criterion
Location and K = 2. In this case, the images are divided into 2 clusters of indoor and out-
door, and achieve a 91.4% accuracy. We again compare our results against SCAN (Van Gansbeke
et al., 2020) and present the results in Table 1. Image samples are provided in Figure 4.

4.3 COMPARISON WITH CLASSICAL CLUSTERING METHODS

In this experiment, we compare IC|TC against several classical clustering algorithms on CIFAR-
10, STL-10, and CIFAR-100. The three datasets have 10, 10, and 20 classes and 10,000, 8,000,
and 10,000 images, respectively. We use the text criterion Object with the number of clusters
equal to the number of classes in the dataset. The results in Table 2 show that IC|TC significantly
outperforms classical clustering methods on CIFAR-10, STL-10 and CIFAR-100. Clustered sample
images are provided in Appendix B.6.

This comparison is arguably unfair against the classical clustering methods as they do not utilize
foundation models or any pre-trained weights. Nevertheless, our results demonstrate that IC|TC is
competitive when the goal is to cluster images based on the foreground object type.

4.4 FAIR CLUSTERING THROUGH TEXT CRITERION REFINEMENT

Existing clustering methods sometimes exhibit biased results, and measures to mitigate such biases
have been studied (Li et al., 2020; Zeng et al., 2023). Since foundation models are known to learn
biases in their training data (Bommasani et al., 2022), IC|TC has the risk of propagating such biases
into the clustering results. In this experiment, we show that by simply adding a prompt along the
line of "Do not consider gender" to the text criterion, we can effectively mitigate biases
in the clustering results.

FACET (Gustafson et al., 2023) is a benchmark dataset for evaluating the robustness and algorithmic
fairness of AI and machine-learning vision models. It comprises 32,000 diverse images labeled with
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Table 2: Comparison with classical clustering methods using criterion Object. IC|TC outperforms
state-of-the-art methods on CIFAR-10, STL-10 and CIFAR-100.

Method
CIFAR-10 STL-10 CIFAR-100

ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑
IIC (Ji et al. (2019)) 0.617 0.511 0.411 0.596 N/A N/A 0.257 N/A N/A

SCAN (Van Gansbeke et al. (2020)) 0.883 0.797 0.772 0.809 0.698 0.646 0.507 0.468 0.301
SPICE (Niu and Wang (2021)) 0.926 0.865 0.852 0.938 0.872 0.870 0.584 0.583 0.422

RUC (Park et al. (2021)) 0.903 N/A N/A 0.867 N/A N/A 0.543 N/A N/A
TCL (Yunfan et al. (2022)) 0.887 0.819 0.780 0.868 0.799 0.757 0.531 0.529 0.357

LLaVA only 0.647 0.455 0.442 0.774 0.587 0.589 0.097 0.022 0.014
Ours (LLaVA + Llama 2) 0.884 0.789 0.759 0.974 0.939 0.944 0.526 0.554 0.374
Ours (BLIP-2 + GPT-4) 0.975 0.941 0.947 0.993 0.982 0.985 0.584 0.690 0.429
Ours (LLaVA + GPT-4) 0.910 0.823 0.815 0.986 0.966 0.970 0.589 0.642 0.422

Actual Craftsman
Prediction Laborer

Samples

(a) Biased results

Craftsman Laborer Dancer Gardener Craftsman Laborer Dancer Gardener
0

50

Base prompt Fair prompt

Male Ratio (%)
Female Ratio (%)

(b) Gender ratio

Figure 5: (a) Biased results showing that male ‘Craftsman’ tend to be misclassified as ‘Laborer’.
(b) Gender ratio of each cluster. When the ratio between males and females differs by more than
10%, the bar is colored red. Bias is mitigated by refining the text criterion into a ‘Fair prompt’.

several attributes, including 52 occupation classes. For this experiment, we sampled 20 images
each for men and women from the craftsman, laborer, dancer, and gardener occupation classes, 160
images in total.

For this experiment, we define fairness to be achieved when each cluster maintains an equal pro-
portion of genders. When we use the text criterion Occupation, IC|TC exhibited a gender bias.
To mitigate this bias, we introduced a simple negative prompt, instructing IC|TC to not take gen-
der into consideration and instead to focus on the activity. When the clustering was repeated, the
results were promising: the gender ratio disparities in the craftsman and laborer clusters improved
by 27.2% → 4.4% and 11.6% → 3.2%, respectively. Furthermore, the Dancer and Gardener clus-
ters also experienced marginal reductions in disparities by 2.8% → 2.6% and 10.6% → 9.0%,
respectively. The results are shown in Figure 5.

4.5 FURTHER ANALYSES

Ablation studies of LLMs and VLMs. We conduct an ablation study to evaluate whether LLMs
actually serve a significant role in our methodology since one may wonder whether the vision-
language model (VLMs) alone is sufficient. When we perform a ‘LLaVA only’ experiment that
does not utilize an LLM, the performance is considerably lower. However, when we use LLMs of
varying sizes, the performance is not affected significantly. The results and details are provided in
Figure 3 and Appendix A.2. The results lead us to conclude that the LLM serves a crucial role (the
VLM by itself is not sufficient), but the size of the LLM does not seem to be very important.

We also fix the LLM to GPT-4 and perform an ablation study on the choice of vision-language model
(VLM). As an image captioning model, ClipCap (Mokady et al., 2021) cannot perform text condi-
tioning, and this leads to poor performance. Blip-2 (Li et al., 2023b) and LLaVA (Liu et al., 2023)
can extract information relevant to the text criteria, and they exhibit strong strong performance. The
results and details are provided in Appendix A.1.
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Data Contamination. When evaluating research using foundation models, the potential of data
contamination is a significant concern (Wei et al., 2022; Du et al., 2022). The datasets we use to
measure accuracy, namely CIFAR10, STL-10, CIFAR-100, and Stanford 40 Action, may have been
used in the training of LLaVA. If so, the validity of the accuracy measurements comes into question.

To address this concern, we conducted an experiment with synthetically generated images. Specifi-
cally, we use Stable Diffusion XL (Rombach et al., 2022) and the CIFAR-10 labels to generate 1000
CIFAR-10-like images, and we call this dataset CIFAR-10-Gen. See Appendix B for further details.
On this synthetic data, IC|TC achieves 98.7% accuracy. The fact that the accuracy on CIFAR-10-
Gen is no worse than the accuracy on the actual CIFAR-10 dataset gives us confidence that the strong
performance of IC|TC is likely not due to data contamination.

(Strictly speaking, the training data for Stable Diffusion may contain the CIFAR-10 images, and if
so, we are not completely free from the risk of data contamination. However, the CIFAR-10-Gen
dataset does not seem to contain exact copies of CIFAR-10 images, and we argue that the synthetic
generation significantly mitigates the risk of data contamination.)

5 RELATED WORK

Image clustering. Modern deep clustering methods (Van Gansbeke et al., 2020; Park et al., 2021;
Niu and Wang, 2021; Yunfan et al., 2022) adopt a multi-stage training approach. They begin with
representation learning, which finds a representation that maps similar images to similar features,
and then perform unsupervised clustering based on these feature representations. Additionally, to
obtain more meaningful semantics, Zhong et al. (2021); Shen et al. (2021) proposed contrastive
learning at not only the instance level but also at the cluster level. Misra and Maaten (2020); Cho
et al. (2021); Kwon et al. (2023); Long et al. (2023); Metaxas et al. (2023) proposed specially de-
signed representation learning for certain clustering criteria. The concurrent work Li et al. (2023c)
is particularly relevant to our work as it presents Text-Aided Clustering (TAC), which leverages
text as external knowledge to enhance image clustering performance. Specifically, Li et al. (2023c)
enhanced feature discriminability by selecting specific WordNet nouns of images and mutually dis-
tilled the neighborhood information between the text and image modalities.

Foundation models. In recent years, foundation models have been improving at a remarkable
pace, and combined with instruction tuning (Sanh et al., 2022; Ouyang et al., 2022; Wei et al.,
2022), these foundation models can be applied more flexibly to downstream tasks. Vision-Language
Models (VLMs) (Alayrac et al., 2022; Liu et al., 2023; Awadalla et al., 2023; Dai et al., 2023; Li
et al., 2023a; Zhu et al., 2023; Gong et al., 2023) can provide users with appropriate descriptions of
given images according to the requirements of the input prompt. Large language models (LLMs)
(Chowdhery et al., 2022; Touvron et al., 2023a;b; OpenAI, 2023) exhibit remarkable abilities in
a wide range of natural language processing tasks such as text summarization. Recently, Radford
et al. (2021); Jia et al. (2021); Li et al. (2022); Dinh et al. (2022); Geng et al. (2023); Menon and
Vondrick (2023); Zhang et al. (2022); Cai et al. (2023); Ren et al. (2023) have shown computer
vision problems with no direct connection to language can be successfully addressed using large
language models.

Image retrieval. Image retrieval aims to find images from a database that are relevant to a given
query. This crucially differs from clustering in that clustering requires both finding the clusters and
assigning the images to them; image retrieval techniques are very relevant to the sub-task of clus-
ter assignment but not to the sub-task of finding the clusters. The fundamental approach in image
retrieval is to assess the similarity among image features. Current approaches focus on two kinds
of image representations: global features and local features. For global representations, Babenko
et al. (2014); Tolias et al. (2015); Gordo et al. (2016); Cao et al. (2020); Lee et al. (2023) extracts
activations from deep CNNs and aggregates them for obtaining global features. For local represen-
tations, Yi et al. (2016); Noh et al. (2017); Vassileios Balntas and Mikolajczyk (2016); DeTone et al.
(2018); He et al. (2018); Dusmanu et al. (2019); Revaud et al. (2019) proposed well-embedded rep-
resentations for all regions of interest. Recent state-of-the-art methods (Noh et al., 2017; Simeoni
et al., 2019; Cao et al., 2020; Zhang et al., 2023; Wu et al., 2023) typically followed a two-stage
paradigm: initially, candidates are retrieved using global features, and then they are re-ranked with
local features. Recently, Vo et al. (2019); Liu et al. (2021); Baldrati et al. (2022); Tian et al. (2023)
proposed to condition retrieval on user-specified language.
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foundation models we use, the vision-language model LLaVA (Liu et al., 2023) is fully open-source.
However, the large language model GPT-4 (OpenAI, 2023) is a proprietary model, and we accessed
it through the API offered by OpenAI. The API cost to conduct the experiments presented in this
work was less than $3,000 (USD), so we argue that the proprietary API cost does not pose a signifi-
cant barrier in terms of reproducibility. However, if OpenAI were to discontinue access to the GPT-4
version that we used, namely api-version=2023-03-15-preview, or if OpenAI discontin-
ues access to GPT-4 altogether, then our experiments will no longer be exactly reproducible.

To address this concern, we carry out an ablation study that uses the open-source large language
model Llama 2 (Touvron et al., 2023b) and observe that a similar, albeit slight worse, performance
is attained. See Figure 3 and Appendix A.2. Therefore, even if GPT-4 becomes unavailable in the
future, the results of this work will be similarly reproducible by using Llama 2 or any other large
language model of power comparable to or stronger than Llama 2 and GPT-4.
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A ABLATION STUDIES

A.1 ABLATION STUDY OF VISION-LANGUAGE MODELS

We fix the LLM to GPT-4 and perform an ablation study on the choice of vision-language model
(VLM), specifically ClipCap (Mokady et al., 2021), Blip-2 (Li et al., 2023b), and LLaVA (Liu et al.,
2023), during Step 1. ClipCap is unable to take in a text prompt and therefore the text criterion is
not reflected in the resulting caption. Blip-2 and LLaVA can perform instructed zero-shot image-to-
text generation and demonstrate the ability to interpret natural language instructions within visual
contexts, producing responses that suggest thorough image analyses in our setting. This capability
allows them to be used effectively within IC|TC, and we expect that any recent VLMs can likewise
be utilized. Results are presented in Tables 3, 4, and 5.

Table 3: Ablation study of VLMs in CIFAR-10, STL-10 and CIFAR-100 datasets when using clus-
tering criterion as Object.

Method
CIFAR-10 STL-10 CIFAR-100

ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑
ClipCap 0.636 0.605 0.524 0.722 0.729 0.647 0.365 0.396 0.214
BLIP-2 0.975 0.941 0.947 0.993 0.982 0.985 0.584 0.690 0.429
LLaVA 0.910 0.823 0.815 0.986 0.966 0.970 0.589 0.642 0.422

Table 4: Ablation study of VLMs with Stanford 40 Actions dataset and clustering criteria Action,
Location and Mood. N/W (Not Working) means: In Step 3, LLM responds that there is no
appropriate label to assign the description obtained in Step 1. Accuracies labeled * are evaluated by
having a human provide ground truth labels on 1000 randomly sampled images.

Method
Action Location Mood

ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑
ClipCap 0.250 0.374 0.086 0.293* 0.282* 0.167* 0.377* 0.098* 0.057*
BLIP-2 0.427 0.621 0.335 0.483* 0.415* 0.319* 0.286* 0.009* 0.005*
LLaVA 0.774 0.848 0.718 0.822* 0.695* 0.669* 0.793* 0.512* 0.525*

Table 5: Ablation study of VLMs in People Playing Musical Instrument (PPMI) dataset with using
clustering criteria as Instrument and varying granularity.

Method
Instrument, K=7 Instrument, K=2

ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑
ClipCap 0.318 0.164 0.114 0.642 0.049 0.078
BLIP-2 0.840 0.908 0.816 1.000 1.000 1.000
LLaVA 0.964 0.928 0.920 0.977 0.910 0.841

A.2 ABLATION STUDY OF LARGE LANGUAGE MODELS

On CIFAR-10, STL-10, and CIFAR-100, we fix the vision-language model (VLM) to LLaVA and
perform an ablation study on the choice of large language model (LLM). We use GPT-4 in step 2a
for stable results and Llama-2 of various sizes (Touvron et al., 2023b) in all other steps to test the
downstream task performance.3 For ablation purposes, we have kept the text prompts for all three
steps the same as those used for experiments utilizing GPT-3.5 and GPT-4 (OpenAI, 2023). The
performance tended to improve as the number of parameters increased, though the gain was not
significant (Figure 3).
3 After the initial submission of the manuscript, we found a setting that achieves comparable performance
while using only Llama-2, including in step 2a. We provide the detailed setting and results in our GitHub
repository.
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For GPT-3.5 and GPT-4, which had the best performances, we conducted additional comparisons
across all datasets (Table 6). To clarify, LLaVA + GPT-3.5 indicates the usage of GPT-3.5 for Steps 1
and 3. In particular, for the Stanford 40 actions dataset, the raw labels tend to be lengthy descriptions
of human actions and hence Step 2 cannot be performed using GPT-3.5 due to its token limits. The
performance gap between LLaVA + GPT-3.5 and LLaVA + GPT-4 is marginal for datasets with
relatively small number of classes. However, the gap widens for a more complex dataset, such as
CIFAR-100 and Stanford 40 Action.

Table 6: Experiment Results comparing the performance of IC|TC using GPT-3.5 and GPT-4.
Method

CIFAR-10 STL-10 CIFAR-100 Stanford 40 Action PPMI 7 classes PPMI 2 classes

ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑
LLaVA + GPT-3.5 0.914 0.820 0.820 0.977 0.947 0.950 0.513 0.611 0.385 0.714 0.756 0.636 0.963 0.926 0.918 0.937 0.713 0.764
LLaVA + GPT-4 0.910 00.823 0.815 0.986 0.966 0.970 0.589 0.642 0.422 0.774 0.848 0.718 0.964 0.928 0.921 0.977 0.842 0.911

A.3 THE NECESSITY OF STEP 2 AND STEP 3

IC|TC uses the vision-language model (VLM) to extract salient features from images needed for
clustering. Based on this information, large language model (LLM) carries out the clustering. There-
fore, all the information needed for conducting clustering theoretically exists in the VLM. Then, is
the LLM truly necessary? And do we really need Steps 2 and 3? We answer this question and
experimentally show that the LLM and Steps 2 and 3 are essential components of our method.

A.3.1 K-MEANS CLUSTERING ON THE EMBEDDING SPACE OF LLAVA

We conduct K-means clustering on the embedding space of the vision-language model (VLM). In
this experiment, we employ LLaVA for the VLM. To clarify, an LLM is not used in this approach.
The VLM tokenizes both the input image and text using the pre-trained encoder and producing a
sequence of tokens. These tokens are subsequently processed by a language model decoder (within
the VLM). As they traverse each transformer layer within the decoder, hidden states are generated.
We use the final hidden states from this process. There are two primary options for utilizing these
last hidden states: 1. (Mean) We obtain the embedding vector by using the mean-pooling of the
final hidden states of all input tokens. This offers a representation of the entire input sequence. 2.
(Final) We obtain the embedding vector by using the hidden state vector of the final token. It often
encapsulates a cumulative representation of the entire input sequence, making it useful for tasks such
as next-token prediction. In both cases, the performance of K-means clustering on the embedding
space of LLaVA was notably worse compared to IC|TC.

Table 7: K-means clustering on the embedding space of Stanford 40 Actions dataset using LLaVA.
Accuracies labeled * are evaluated by having a human provide ground truth labels on 1000 randomly
sampled images.

Method
Action Location Mood

ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑
LLaVA (Final) 0.256 0.356 0.140 0.338* 0.319* 0.178* 0.418* 0.385* 0.241*
LLaVA (Mean) 0.498 0.588 0.356 0.405* 0.377* 0.230* 0.486* 0.409* 0.292*

SCAN 0.397 0.467 0.272 0.359* 0.353* 0.206* 0.250* - -

IC|TC 0.774 0.848 0.718 0.822* 0.695* 0.669* 0.793* 0.512* 0.525*

A.3.2 LLAVA ONLY

With LLaVA’s remarkable image-to-language instruction-following capability, we can also prompt
LLaVA to directly predict the label of the provided image, along with the TC provided by the
user. The text prompt we used is presented in Table 8. Using the predicted labels for each image,
we can evaluate the clustering performance with the Adjusted Rand Index (ARI) and Normalized
Mutual Information (NMI). Note that even if the number of distinct predicted labels differs from the
ground truth labels, both ARI and NMI remain applicable. In the Stanford 40 Actions dataset, where
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the clustering criterion was Action, the number of distinct predicted labels was overwhelmingly
greater than that of the ground truth, rendering the performance evaluation meaningless. For both
the CIFAR-10 and STL-10 datasets, when the clustering criterion was set to Object, we achieved
reasonable performance. This was not the case for CIFAR-100. Nonetheless, the performance was
still lower than that achieved with the full pipeline of IC|TC. Results are presented in Table 2.

Table 8: Prompts used for LLaVA only experiments; clustering based on Object.
Dataset Step Text Prompts

CIFAR-10, STL-10
CIFAR-100

Step 1 Provide a one-word label of the main object in this image. Answer
in the following format: "Answer: {answer”}

A.4 CAN WE SKIP STEP 2A?

Our method discovers the clusters’ names in Step 2a and Step 2b. However, one might question the
necessity of Step 2a, which involves obtaining the raw initial label. In this section, we conducted
an experiment in which we tasked the Vision Language Model (VLM) with direct labeling. So, the
pipeline for this experiment is Step 1 → Step 2b → Step 3. We utilized LLaVA and the Stanford
40 Actions dataset with Action as the clustering criterion and GPT-4 for Large Language Model
(LLM). Both Step 2b and Step 3 utilized the same text prompt as described in Table 12.

The specific prompt provided to the VLM for skipping Step 2a was:

Pstep1 = "What is the main action of the person? Answer in words."

However, the output from LLaVA varied greatly and often contained excessive information. Because
the variety of the labels was so great, the number of tokens exceeded the maximum limit of 32k for
GPT-4. We therefore concluded that Step 2a was essential.

A.5 DO WE REALLY NEED CLUSTERING CRITERION IN STEP 2 AND STEP 3?

To determine whether the criterion is truly beneficial for Step 2 and Step 3, we kept Step 1 unchanged
and removed the text criterion TC from Steps 2 and 3. We used the Stanford 40 Actions dataset and
employed Action as the clustering criterion. The specific prompt provided to this experiment is:

Table 9: Removing criterion from Step 2 & Step 3

Method Action

ACC ↑ NMI ↑ ARI ↑
Removing criterion
from Step 2 & Step
3 (Appendix A.5)

0.152 0.181 0.063

Full pipeline 0.774 0.848 0.718

The results revealed that most of the cluster names discovered in step 2 had little to no relevance
to Action. It was challenging to identify any consistent criteria among these cluster names. Con-
sequently, the clustering executed in Step 3 deviated significantly from the ground truth defined by
Action, resulting in diminished performance as shown in Table 9.

A.6 DO WE REALLY NEED THE FULL DESCRIPTION AS INPUT IN STEP 3?

Step 3 involves the Large Language Model (LLM) assigning the image’s text representation to the
appropriate cluster. We use the image description generated by the Vision Language Model (VLM)
in Step 1, but one may wonder whether the shorter raw label output by Step 2a can be used instead
to reduce the computation cost.

We find that the alternative of providing the output of Step 2a as the input to Step 3 has poor
performance, and we illustrate why this is the case through the example presented in Figure 6.
In this image, there is a girl waving her hand in a playground, and we use the text criterion Action.
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Description The image features a young girl sitting on a green
chair, which is part of a playground. The girl is
smiling and waving, indicating that she is happy
and enjoying her time at the playground. The
playground is filled with various green structures,
including a slide and a swing, which provide a
fun and engaging environment for children to
play and interact with one another. The girl’s at-
tire consists of a white dress, which adds a touch
of innocence and charm.

Raw label Playing at a playground

Ground truth Waving hands

Assigned cluster Waving

Figure 6: Example illustrating why the cluster assignment of Step 3 requires the full description of
the image.

As shown in Figure 6, the output of Step 1 contains all information related to “playing” and “wav-
ing,” which is expected due to the verbose nature of VLMs. However, the output of Step 2a, the
raw label, only captures “‘playing.” Now, suppose that after Step 2b, where the cluster names are
obtained from the raw labels, there is a cluster name relating to ‘waving’ but none directly related to
‘playing’. Then, it is necessary for the LLM to be provided with the full textual description, not just
the raw label, to properly assign the image to the cluster ‘waving’.
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B EXPERIMENTAL DETAILS AND SAMPLES

B.1 DATASETS DETAILS

In table 22, we listed the information of the datasets we used for all experiments.

CIFAR-10-Gen. We used Stable Diffusion XL (Rombach et al., 2022) to generate all images. We
used the following text prompt: "A photo of a(n) [class name]", without any negative
prompt. We used default parameters for Stable Diffusion. We generated the images in 1024 × 1024
resolution, and resized them to 32 × 32 before use.

Table 10: Datasets overview
Dataset Criterion # of data Classes Names of classes

Standford 40 Action

Action 9,532 40 blowing bubbles, reading, phoning, playing violin, brushing teeth, drinking,
running, playing guitar, riding a horse, taking photos of people taking photo,
jumping, looking through a microscope, shooting an arrow, watching TV,
playing basketball, waving hands, texting message, throwing frisby, using a
computer, cooking, shaving beard, cutting trees or firewood, pushing a cart,
hugging, smoking, playing harp, directing traffic, looking at photos, walking
the dog, playing cello, applying cream, writing on a book or paper, holding an
umbrella, feeding a horse, fishing, riding a bike, gardening, fixing a bike or
car, cleaning the floor, doing laundry

Location 9,532 10 residential Area, public event or gathering, sports facility, natural environ-
ment, educational institution, urban area or city street, restaurant, workplace,
transportation hub, store or market

Mood 9,532 4 joyful, focused, adventurous, relaxed

PPMI
Musical Instrument 700 7 saxophone, guitar, trumpet, violin, cello, flute, harp

Musical Instrument 700 2 brass instruments, string instruments

CIFAR-10 Object 10,000 10 airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck

STL-10 Object 8,000 10 airplane, bird, car, cat, deer, dog, horse, monkey, ship, truck

CIFAR-100 Object 10,000 20∗ aquatic mammals, fish, flowers, food containers, fruit and vegetables, house-
hold electrical devices, household, furniture, insects, large carnivores, large
man-made outdoor things, large natural, outdoor scenes, large omnivores and
herbivores, medium-sized mammals, non-insect invertebrates, people, rep-
tiles, small mammals, trees, vehicles 1, vehicles 2

CIFAR-10-Gen Object 1,000 10 airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck

B.2 MODEL DETAILS

IC|TC crucially relies on the usage of VLMs and LLMs that follow human instructions. Although
using foundation models naı̈vely suffices for simple criteria, the performance diminishes rapidly
for more complex tasks. Hence it is crucial that both the VLM and the LLM adhere to the human
instruction, including TC in our case.

The instruction following abilities of GPT-3.5 and GPT-4 models are well established. Furthermore,
LLaVA has been trained extensively on language-image instruction following dataset. Finally, we
adhere to the Llama-2 models that have been tuned with instruction datasets. We include the full
model versions of the VLMs and LLMs we have used in our experiments.

Table 11: Model versions for the VLMs and LLMs
Model Version

Blip-2 blip2-flan-t5-xxl
LLaVA llava-v1-0719-336px-lora-merge-vicuna-13b-v1.3
GPT-3.5-16k-turbo api-version=2023-03-15-preview
GPT-4, GPT-4-32k api-version=2023-03-15-preview
Llama-2-7b meta-llama/Llama-2-7b-chat-hf
Llama-2-13b meta-llama/Llama-2-13b-chat-hf
Llama-2-70b meta-llama/Llama-2-70b-chat-hf

∗ Remark. The CIFAR-100 dataset has 100 classes, but also has 20-superclass labels (and hence is sometimes
referred to as CIFAR-100-20). Since the usage of CIFAR-100-20 dataset is more common in the clustering
literature, we also use the 20-superclass labels for our experiments.
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B.3 PROMPT DETAILS

B.3.1 GUIDELINES FOR TEXT PROMPTS

Text Criteria (TC) for all three steps. We emphasize here that it is important to provide the user-
specified text criteria throughout all three stages. For example in the Stanford 40 Actions dataset, it
is crucial in Step 1 to obtain descriptive answers, from the VLM model, that analyze the main action
of the person in the image. Utilizing a general prompt such as "Describe the image" results
in the LLaVA model producing text descriptions that only roughly describes various aspects of the
image, hence failing to capture the details of the human action required for clustering such granular
dataset. A well-expressed set of text criteria is required to retrieve meaningful class labels and to be
able to classify the images into such granular classes.

Steps 1 and 3. For Step 1, we followed the LLaVA instructions to retrieve detailed image de-
scriptions as described in Appendix A of Liu et al. (2023)S. For low-resolution datasets such
as CIFAR-10 and CIFAR-100, prepending the prompt "Provide a brief description
..." or using instructions for brief image descriptions were, although marginal, helpful. Fine-
tuning the text prompt used in Step 3 can be helpful when the output from Step 2 is unsatisfac-
tory or noisy. In such cases, it was beneficial to append specific prompts. For example, if the
clustered classes had two or more classes that were strict superclasses/subclasses of each other,
we appended: "Be as specific as possible to choose the closest object
from the given list". Generally speaking, we found Steps 1 or 3 less sensitive to the spe-
cific text prompts, while for Step 2, it was much more important to finetune the text prompt carefully.

Step 2. When evaluating the clustering results with metrics such as ACC, NMI and ARI was
possible (i.e., when the dataset has ground truth labels), we discovered that the outputs from Step 2
have the most influence on the final evaluation.

Here are the two major cases where the user may wish to tune their text prompts (and text criteria
TC) for Step 2:

1. The user wishes to enforce certain levels of granularity in the clustered classes

2. The clustered classes are not optimal: i.e., includes duplicates, super/subclasses, classes
that are too broad such as “object”, etc.

For the first case, it is crucial to provide text prompts instructing the LLM to split or merge classes
at a certain level in the hierarchy. For example, the user may wish to split the class “animals” but
such a broad class can be split up according to multiple criteria, such as habitat, feed, species, etc.
Hence it is crucial to provide an appropriate TC. Alternatively, the user may wish to merge certain
classes together, such as in our PPMI experiment with K = 2 and criterion based on Musical
Instruments. Compared to the case when K = 7, by enforcing K = 2, we expect the algorithm
to discover superclasses that can encompass the original classes. While the full prompt can be found
in Table 15, in short, the addition of the following prompt was important:

When categorizing classes, consider the following criteria:

1. Each cluster should have roughly the same number of images.
2. Merge clusters with similar meanings with a superclass.

Finally, after turning the raw labels into a dictionary, we tried filtering out less frequent raw labels,
where the threshold value was considered as a hyperparameter. Since the evaluation is expensive
(it requires running the entire Step 3 again), we did not measure the final classification results.
However, after inspecting the clustered classes (checking for duplicates, super/subclasses, etc.), we
concluded that using threshold values such as 5 or 10 was helpful in getting a better set of clustered
classes.

Providing raw labels: dictionary vs. full list. Step 2-2 requires feeding the entire list of raw
labels to the LLM. While our algorithm converts the list of raw labels into a dictionary, we also tried
feeding the entire list of labels to the LLM.
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In order to instruct the LLMs to perform clustering tasks, we need to provide the set of raw labels
and their number of occurrences. Empirically, we found out that feeding the entire list of raw labels
yielded higher metrics, which could mean that the LLM understands the those information better
when provided with the full list. However, this approach quickly goes out of scale with a larger
dataset, due to the token limits of the LLMs. Hence, we have used dictionaries throughout our
experiment.

When the raw labels were noisy (i.e., long-tail of labels with few occurrences), or the class labels
were lengthy (e.g. in Stanford 40 actions dataset), we have empirically found out that the LLM
sometimes failed to understand the dictionary or hallucinates. In such cases, we have empirically
found out that providing an additional explanation prompt of the dictionary was helpful.
For example, if the input is given as "{’a’: 15, ’b’: 25, ’c’: 17}",
it means that the label ’a’, ’b’, and ’c’ appeared 15, 25, 17 times
in the data, respectively.

B.3.2 TEXT PROMPT EXAMPLES

Below are tables of the text prompts that yielded the best results in our experiments, for every
experiment we conducted. We have used the exact same prompt after replacing the placeholders
such as [ LEN ], [ NUM CLASSES CLUSTER ] and [ CLASSES ] appropriately. In
particular, [ CLASSES ] refers to the list of K clusters that our algorithm discovers (output of
Step 2).

B.4 SAMPLE OUTPUTS

Here we display some sample images from Stanford 40 Action and CIFAR-100 dataset, and include
the outputs for each stage where the clustering criteria were action and object, respectively.

B.4.1 STANFORD 40 ACTION

Sample Images and Outputs for all stages.

Output of Step 2a.

clapping hands: 14, taking a picture: 49, celebrating a goal: 9, posing for a photo: 28,

giving a speech: 31, celebrating: 17, applauding: 6, waving to the crowd: 6, waving to a

crowd: 7, waving hello: 10, clapping: 6, performing on stage: 9, giving a presentation:

11, dancing: 13, posing for a picture: 7, playing guitars: 7, taking a selfie: 41, having

a conversation: 8, smoking a cigarette: 207, waving: 27, playing a guitar: 226, posing

for a photograph: 9, throwing a frisbee: 62, blowing bubbles: 210, eating a lollipop: 12,

blowing a bubble: 17, brushing teeth: 92, brushing her teeth: 50, brushing his teeth: 22,

drinking coffee: 25, using a computer: 29, drinking from a cup: 15, cleaning the floor:

52, vacuuming the floor: 30, sweeping the floor: 87, mopping the floor: 6, cleaning the

kitchen: 13, climbing a rock wall: 97, rock climbing: 116, waving at the camera: 8, waving

his hand: 10, writing on a chalkboard: 38, teaching a lesson: 6, teaching: 7, writing on a

blackboard: 31, writing on a whiteboard: 13, writing: 13, studying or doing homework: 15,

writing on a piece of paper: 11, doing homework: 18, writing or drawing: 14, drawing or

writing: 6, writing or taking notes: 6, · · ·

Output of Step 2b.

[clapping, taking a picture, celebrating, giving a speech, waving, performing on stage,

playing guitar, taking a selfie, smoking a cigarette, throwing a frisbee, blowing bubbles,

brushing teeth, drinking coffee, using a computer, cleaning the floor, climbing, cooking,

preparing food, cutting down a tree, gardening, drinking beverage, reading a book, using cell

phone or laptop, interacting with horse, fishing, repairing bicycle, repairing car, walking in

∗ Only to be added when K = 2.
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rain with umbrella, jumping, examining under microscope, observing through telescope, talking

on phone, playing violin, pouring drink, pushing cart or stroller, riding bicycle or horse,

studying or teaching, running or jogging, practicing archery, washing dishes or cleaning sink]

B.4.2 CIFAR-100

Sample Images and Outputs for all stages.

Table 19: Sample outputs for CIFAR-100 data

Images

Step 1 Output The main object in the image is a
wooden table with a round top.

The main object in the image is
a large alligator laying on the
ground in a grassy area.

Step 2a Output Table Crocodile

Step 3 Output Furniture Reptile

Ground Truth Household furniture Reptiles

Output of Step 2a.

bear: 198, rock: 54, squirrel: 107, person: 61, beaver: 24, duck: 7, animal: 52, seal:

82, monkey: 47, cat: 85, rat: 15, fox: 80, gorilla: 25, rabbit: 99, dog: 188, bowl:

111, mouse: 97, shoes: 10, deer: 30, elephant: 97, paper: 7, apple: 88, face: 51, fish:

229, dolphin: 68, shark: 100, pole: 11, whale: 86, palm tree: 79, bird: 79, polar bear:

15, hand: 15, horse: 65, snake: 115, airplane: 12, dinosaur: 54, otter: 10, sculpture:

8, raccoon: 85, groundhog: 21, turtle: 87, foot: 6, cloud: 52, tree: 462, man: 107,

alligator: 26, boat: 28, kangaroo: 72, statue: 18, car: 31, chair: 146, rocket: 73,

rodent: 16, woman: 105, frog: 9, flower: 252, arrow: 6, caterpillar: 52, plate: 47,

ball: 25, stingray: 19, lighthouse: 6, cake: 6, cow: 91, train: 136, church: 9, road:

85, line: 7, bicycle: 96, sunset: 25, sun: 8, water: 14, trees: 12, forest: 8, grass:

20, beach: 12, ocean: 7, camel: 76, chimpanzee: 27, motorcycle: 94, triceratops: 7,

hedgehog: 7, toy: 18, opossum: 17, skunk: 32, hamster: 67, lobster: 13, spider web: 7,

baby: 85, child: 12, girl: 82, crocodile: 11, tank: 86, scooter: 8, bus: 81, van: 26,

bulldozer: 39, lawnmower: 39, lawn mower: 22, trolley: 33, streetcar: 9, excavator: 19,

· · ·

Output of Step 2b.

[animal, bird, fish, mammal, reptile, insect, plant, flower, fruit, vehicle, furniture,

building, electronic device, kitchen utensil, clothing item, toy, musical instrument, sports

equipment, natural landscape, human]
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B.5 CONFUSION MATRICES
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Figure 7: CIFAR-10, STL-10, PPMI confusion matrices.
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Figure 8: CIFAR-100 (Object) confusion matrix.
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Figure 9: Stanford 40 Actions (Action) confusion matrix.

B.6 CLUSTERING EXAMPLES

Figure 10: CIFAR-10; The number of clusters K = 10. Clustering based on Object.
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Figure 11: STL-10; The number of clusters K = 10. Clustering based on Object.

Figure 12: CIFAR-100; The number of clusters K = 20. Clustering based on Object.
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Table 12: Text Prompts for 40-class Action based clustering: Stanford 40 Action
Steps Prompt

Step 1 Characterize the image using a well-detailed description.
Describe the person’s main action in words.

Step 2a You will be given a description of an image of a person performing
an action. Your job is to determine the action the person is
performing in the image based on the provided description. Please
respond in the following format: "Answer: action". For example,
given the following description:

"""
In the image, two young women are riding camels in the desert.
They are sitting on the camels, which are carrying them across
the sandy terrain. The women are wearing shorts and sandals, and
they appear to be enjoying their ride. The camels are walking
in the desert, and the background features a sandy landscape with
some vegetation. This scene captures a moment of adventure and
exploration in the desert, as the women experience the unique and
exotic environment on the back of these animals.
"""

Then an exemplar answer would be "Answer: Riding a camel".

Step 2b You will be provided a list of [ LEN ] human actions and the
number of occurrences in a given dataset. Your job is to cluster
[ LEN ] words into [ NUM CLASSES CLUSTER ] actions. Provide
your answer as a list of [ NUM CLASSES CLUSTER ] words, each word
representing a human action.

For example, if the input is given as "{’a’: 15, ’b’: 25, ’c’:
17}", it means that the label ’a’, ’b’, and ’c’ appeared 15, 25,
17 times in the data, respectively.

When categorizing classes, consider the following criteria:

1. Each cluster should have roughly the same number of images.
2. Each cluster should not have multiple classes of different
actions.

Now you will be given a list of human actions and the number of
classes, and the list of classes you answered previously.

Please output a list of human actions of length
[ NUM CLASSES CLUSTER ], in the following format: "{index}:
{actions}". Make sure that you strictly follow the length
condition, which means that {index} must range from 1 to
[ NUM CLASSES CLUSTER ].

Step 3 Your job is to classify an action the person in an image is
performing. Based on the image description, determine the most
appropriate human action category that best classifies the main
action in the image. You must choose from the following options:
[ CLASSES ].

Give your answer in the following format: "Answer: {action}".
Be as specific as possible to choose the closest action from the
given list. If a situation arises where nothing is allocated,
please assign it to the action that has the closest resemblance.
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Table 13: Text Prompts for 4-class Mood based clustering: Stanford 40 Action
Steps Prompt

Step 1 Describe the mood of the image.

Step 2a You will be given a description of the mood. Your job is to
determine the mood based on the provided description. Please respond
in the following format: "Answer: {mood}". For example, given the
following description:

"""
In the image, two young women are riding camels in the desert. They
are sitting on the camels, which are carrying them across the sandy
terrain. The women are wearing shorts and sandals, and they appear
to be enjoying their ride. The camels are walking in the desert, and
the background features a sandy landscape with some vegetation. This
scene captures a moment of adventure and exploration in the desert,
as the women experience the unique and exotic environment on the back
of these animals.
"""

Then an exemplar answer would be "Answer: Enjoying"

Step 2b You will be provided a list of [ LEN ] moods and the number of
occurrences in a given dataset. Your job is to cluster [ LEN ] words
into [ NUM CLASSES CLUSTER ] categories. Provide your answer as a
list of [ NUM CLASSES CLUSTER ] words, each word representing the
mood.

For example, if the input is given as "{’a’: 15, ’b’: 25, ’c’:
17}", it means that the label ’a’, ’b’, and ’c’ appeared 15, 25, 17
times in the data, respectively.

When categorizing classes, consider the following criteria:

1. Each cluster should have roughly the same number of images.
2. Merge clusters with similar meanings.
3. Each cluster should not have multiple classes of different moods.
4. Each cluster represents a general mood and should not be too
specific.

Now you will be given a list of locations and the number of classes,
and the list of classes you answered previously.

Please output a list of musical instruments of length
[ NUM CLASSES CLUSTER ], in the following format: "{index}: {mood}".
Make sure that you strictly follow the length condition, which means
that {index} must range from 1 to [ NUM CLASSES CLUSTER ].

Step 3 Your job is to classify an object in the image. Based on the image
description, determine the most appropriate category that best
classifies the main object in the image. You must choose from the
following options: [ CLASSES ].

Give your answer in the following format: "Answer: {object}". If
a situation arises where nothing is allocated, please assign it to
the object that has the closest resemblance.
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Table 14: Text Prompts for 10/2-class Location based clustering: Stanford 40 Action, PPMI
Steps Prompt

Step 1 Describe where the person is located.

Step 2a You will be given a description of the location. Your job is to
determine the location where the person exists based on the provided
description. Please respond in the following format: "Answer:
{location}". For example, given the following description:

"""
In the image, two young women are riding camels in the desert. They
are sitting on the camels, which are carrying them across the sandy
terrain. The women are wearing shorts and sandals, and they appear
to be enjoying their ride. The camels are walking in the desert, and
the background features a sandy landscape with some vegetation. This
scene captures a moment of adventure and exploration in the desert,
as the women experience the unique and exotic environment on the back
of these animals.
"""

Then an exemplar answer would be "Answer: Desert".

Step 2b You will be provided a list of [ LEN ] objects and the number of
occurrences in a given dataset. Your job is to cluster [ LEN ]
words into [ NUM CLASSES CLUSTER ] categories. Provide your answer
as a list of [ NUM CLASSES CLUSTER ] words, each word representing a
location.

For example, if the input is given as "{’a’: 15, ’b’: 25, ’c’:
17}", it means that the label ’a’, ’b’, and ’c’ appeared 15, 25, 17
times in the data, respectively.

When categorizing classes, consider the following criteria:

1. Each cluster should have roughly the same number of images.
2. Merge clusters with similar meanings.
3. Each cluster should not have multiple classes of different
locations.
4. Each cluster represents a general location and should not be too
specific.

Now you will be given a list of locations and the number of classes,
and the list of classes you answered previously.

Please output a list of musical instruments of length
[ NUM CLASSES CLUSTER ], in the following format: "{index}:
{instrument}". Make sure that you strictly follow the length
condition, which means that {index} must range from 1 to
[ NUM CLASSES CLUSTER ].

Step 3 Your job is to classify an object in the image. Based on the image
description, determine the most appropriate category that best
classifies the main object in the image. You must choose from the
following options: [ CLASSES ].

Give your answer in the following format: "Answer: {object}". If
a situation arises where nothing is allocated, please assign it to
the object that has the closest resemblance.
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Table 15: Text Prompts for 7/2-class Musical Instrument based clustering: PPMI
Steps Prompt

Step 1 Characterize the image using a well-detailed description. Which
musical instrument is the person playing?

Step 2a You will be given a description of an image of a person playing a
musical instrument. Your job is to determine the musical instrument
within the image based on the provided description. Please respond
in a single word, in the following format: "Answer: {instrument}".
For example, given the following description:

"""
The image features a young woman playing a grand piano, showcasing
her musical talent and skill. The grand piano is a large, elegant,
and sophisticated instrument, often used in classical music
performances and concerts. The woman is sitting at the piano,
her hands positioned on the keys, and she is likely in the process
of playing a piece of music. The scene captures the beauty and
artistry of music-making, as well as the dedication and passion of
the performer.
"""

Then an exemplar answer would be "Answer: Piano".

Step 2b You will be provided a list of [ LEN ] objects and the number of
occurrences in a given dataset. Your job is to cluster [ LEN ] words
into [ NUM CLASSES CLUSTER ] categories.

For example, if the input is given as "{’a’: 15, ’b’: 25, ’c’:
17}", it means that the label ’a’, ’b’, and ’c’ appeared 15, 25, 17
times in the data, respectively.

Your job is to cluster [ LEN ] words into [ NUM CLASSES CLUSTER ]
categories. Provide your answer as a list of [ NUM CLASSES CLUSTER ]
words, each word representing a musical instrument.

Now you will be given a list of musical instruments and the number
of classes, and the list of classes you answered previously.

∗When categorizing classes, consider the following criteria:
∗1. Each cluster should have roughly the same number of images.
∗2. Merge clusters with similar meanings with a superclass.

Please output a list of musical instruments of length
[ NUM CLASSES CLUSTER ], in the following format: "{index}:
{instrument}". Make sure that you strictly follow the length
condition, which means that {index} must range from 1 to
[ NUM CLASSES CLUSTER ].

Step 3 Your job is to classify a musical instrument the person is playing
in the image. Based on the image description, determine the
most appropriate instrument that best classifies the main musical
instrument in the image. You must choose from the following options:
[ CLASSES ].

Give your answer in the following format: "Answer: {instrument}".
Be as specific as possible to choose the closest instrument from the
given list. If a situation arises where nothing is allocated, please
assign it to the instrument that has the closest resemblance.
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Table 16: Text Prompts for 10-class Object based clustering: CIFAR-10, STL-10
Steps Prompt

Step 1 Provide a brief description of the object in the given image.

Step 2a You will be given a description of an image. Your job is to
determine the main object within the image based on the provided
description. Please respond in a single word. For example, given
the following description:

"""
The image features a large tree in the middle of a green field,
with its branches casting a shadow on the grass. The tree appears
to be a willow tree, and its branches are covered in green leaves.
The sun is shining, creating a beautiful, serene atmosphere in the
scene.
"""

An exemplar answer is "Answer: Tree".

Step 2b You will be provided a list of [ LEN ] objects and the number of
occurrences in a given dataset. Your job is to cluster [ LEN ]
words into [ NUM CLASSES CLUSTER ] categories. Provide your
answer as a list of [ NUM CLASSES CLUSTER ] words, each word
representing a category.

You must provide your answer in the following format "Answer
{index}: {object}", where {index} is the index of the category
and {object} is the object name representing the category. For
example, if you think the first category is "object", then you
should provide your answer as "Answer 1: object".

Also note that different species have to be in different
categories.

Also, please provide a reason you chose the word for each
category. You can provide your reason in the following format
"Reason {index}: {reason}", where {index} is the index of the
category and {reason} is the reason you chose the word for the
category.

Step 3 Your job is to classify an object in the image. Based on the
image description, determine the most appropriate category that
best classifies the main object in the image. You must choose
from the following options: [ CLASSES ].

Give your answer in the following format: "Answer: {object}".
If a situation arises where nothing is allocated, please assign it
to the object that has the closest resemblance.

31



Published as a conference paper at ICLR 2024

Table 17: Text Prompts for 20-class Object based clustering: CIFAR-100
Steps Prompt

Step 1 Provide a brief description of the main object in the given image.
Focus on the main object.

Step 2a You will be given a description of an image. Your job is to
determine the main object within the image based on the provided
description. Please respond in a single word. For example, given
the following description:

"""
The image shows a city skyline with several tall buildings,
including skyscrapers, in the background. The city appears to
be bustling with activity, as there are people walking around and
cars driving on the streets. The scene is set against a clear
blue sky, which adds to the overall vibrancy of the cityscape.
"""

An exemplar answer is "Answer: Building".

Step 2b You will be provided a list of [ LEN ] objects and the number of
occurrences in a given dataset. Your job is to cluster [ LEN ]
words into [ NUM CLASSES CLUSTER ] categories. Provide your
answer as a list of [ NUM CLASSES CLUSTER ] words, each word
representing a category.

You must provide your answer in the following format "Answer
{index}: {object}", where {index} is the index of the category and
{object} is the object representing the category. For example, if
you think the first category is "station", then you should provide
your answer as "Answer 1: station".

When categorizing classes, consider the following criteria:

1. The sizes of each cluster should be similar. For instance,
no cluster should have too many elements allocated, while certain
clusters should not have too few elements assigned.
2. Merge similar clusters. For example, [sparrow, eagle, falcon,
owl, hawk] should be combined into a single cluster called ’birds
of prey’.
3. The cluster should be differentiated based on where the
animals live.

Please output a list of objects of length [ NUM CLASSES CLUSTER ],
in the following format: "{index}: {object}". Make sure that
you strictly follow the length condition, which means that {index}
must range from 1 to [ NUM CLASSES CLUSTER ]

Step 3 Your job is to classify an image. Based on the image description,
determine the most appropriate category that best classifies the
main object in the image. You must choose from the following
options: [ CLASSES ].

Give your answer in the following format: "Answer: {object}".
Be as specific as possible to choose the closest object from the
given list. If a situation arises where nothing is allocated,
please assign it to the object that has the closest resemblance.
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Table 18: Sample outputs for Stanford 40 Action data

Images

Step 1 Output The image features a man standing
in a field, wearing a black
shirt, and reaching out to
pet a white horse. The man is
leaning over the fence, which
is made of wood, and appears to
be interacting with the horse in
a friendly manner. The man’s
main action is petting the
horse, which is a common way
to establish a bond and show
affection between humans and
animals.

The image features a young
woman in a yellow shirt, who
is kneeling down and working
on a pink bicycle. She is
actively engaged in the process
of cleaning the bicycle, which
is parked on the sidewalk next to
a building. The woman is using
a bucket and a hose to wash the
bike, ensuring that it is clean
and well-maintained.

Step 2a Output Petting a horse Cleaning a bicycle

Step 3 Output Interacting with horse Repairing bicycle

Ground Truth Feeding a horse Fixing a bike
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Figure 13: Stanford 40 Actions; The number of clusters K = 40. Clustering based on Action.
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Figure 14: Stanford 40 Actions; The number of clusters K = 10. Clustering based on Location.

Figure 15: Stanford 40 Actions; The number of clusters K = 4. Clustering based on Mood.

Figure 16: PPMI; The number of clusters K = 2. Clustering based on Musical instrument.

Figure 17: PPMI; The number of clusters K = 7. Clustering based on Musical instrument.
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B.7 FAIRNESS EXPERIMENT TEXT PROMPTS

Table 20: Original Prompts for Clustering based on Occupation on FACET dataset
Steps Prompt
Step 1 Given the image, can you provide a description focusing on the

occupation of the person depicted?

Step 2a You will receive a description of an image depicting an
individual. Based on the provided description, deduce the
person’s occupation and respond in just a few words. For
instance, if given the description:

"""
The image shows an individual in a white protective suit, gloves,
and a face mask, standing near a building. This attire indicates
the person’s profession is associated with healthcare, safety,
or environmental defense. Their attire, especially the use of
personal protective equipment (PPE), implies the nature of their
job necessitates protection. The building suggests an urban or
industrial context
"""

Your answer should simply be "Nurse".

Step 2b You have a list containing [ LEN ] unique expressions denoting
different occupations. Their frequency of occurrence is
represented as a dictionary. In this dictionary, each key
signifies an occupation, and its corresponding value indicates the
number of times that occupation appears in the list. Taking the
example of {’riding a bicycle’: 299, ’fishing’: 258}, this means
’riding a bicycle’ has been mentioned 299 times, while ’fishing’
was mentioned 258 times.

Your task is to organize these 160 expressions into 4 distinct
categories or clusters. Each of these clusters will correspond to
a broader category of occupation.

Submit your response in the format: ’Answer {index}:
{category}’, where {index} represents the category number, and
{category} is the descriptive term for that cluster. As an
illustration, if you categorize the first cluster as ’Activities’,
then your response should be ’Answer 1: Activities’.

Please write the answer in a single occupation. For example, do
not answer like ’A and B occupations’.
For creating these categories, adhere to the following guidelines:

1. Endeavor to keep the sizes of the clusters relatively uniform.
Meaning, avoid having one cluster that’s significantly larger or
smaller than the others.

2. Group occupations with similar implications or meanings
together.

3. The broader categories should be distinct from one another,
emphasizing different aspects or types of occupations.

Step 3 Based on the provided image description, classify the depicted
occupation into one of the following categories:[ CLASSES ]

If none of the categories seem like a perfect fit, choose the one
that most closely aligns with the description.

Please provide only the category as your answer without
justification.
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Table 21: Modified Prompts for Fair Clustering in FACET dataset based on Occupation
Steps Prompt

Step 3 - Fair Based on the provided image description, classify the depicted
occupation into one of the following categories:[ CLASSES ]

If none of the categories seem like a perfect fit, choose the one
that most closely aligns with the description.

If a man is doing a job that requires physical strength and
effort and is making artistic product, he must be classified as
an artistic occupation.

Please provide only the category as your answer without
justification.
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C LARGE-SCALE EXPERIMENT

Additionally, we carry out experiments with a larger dataset of size quarter-million to test the scala-
bility of IC|TC.

Dataset. For this experiment, we used the Places dataset (Zhou et al., 2014). The Places dataset
was originally proposed for scene recognition, and it contains more than 2.5 million images spanning
over 205 scene categories, with more than 5,000 images in each category. We randomly sampled 50
classes and 5,000 images per class to create a quarter-million dataset.

Table 22: Dataset overview
Dataset Criterion # of data Classes Names of classes

Places Place 250,000 50 utility room, construction site, car interior, ballroom, fountain, forest
broadleaf, stadium soccer, ocean, stadium baseball, art gallery, apartment
building outdoor, bus station indoor, heliport, cemetery, army base, kitchen,
natural history museum, beach, bridge, basketball court indoor, castle, mu-
sic studio, ball pit, barn, bamboo forest, library indoor, classroom, desert
sand, bookstore, hospital room, bowling alley, gas station, bathroom, canal
urban, boxing ring, attic, airfield, crosswalk, amusement park, dining room,
bedroom, banquet hall, auto showroom, glacier, cockpit, baseball field, swim-
ming pool outdoor, amusement arcade, closet, shoe shop

Details. We use the clustering criterion Place, and the precise text prompts are provided in Ta-
ble 24. To reduce the GPT API cost, we used LLaVA in step 1, Llama-2 7B in step 2a, GPT-4 in
step 2b, and GPT-3.5 Turbo in step 3. We used K = 50.

Results. IC|TC achieved an accuracy of 70.5%. As shown in the figure, it seems that the cre-
ation of empty clusters for five classes: ocean, art gallery, heliport, bamboo forest, and attic, had a
significant impact on the lower evaluation performance. This happened because IC|TC combined
the following two clusters into one: (ocean, beach), (art gallery, natural history museum), (heliport,
airfield), (bamboo forest, forest-broadleaf), and (attic, bedroom). Interestingly, we observed that the
images that should have belonged to these empty clusters were assigned to the other clusters with
similar semantics.

Table 23: Clustering performance of IC|TC on Places dataset.

Dataset ACC NMI ARI

Places 0.705 0.721 0.564
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Table 24: Text Prompts for Place based clustering: Places dataset.
Steps Prompt

Step 1 From what place is this photo taken? Provide a brief reason for
your choice.

Step 2a You will be given a description of the place where the photo
was taken. Your job is to label the place where the photo was
taken based on the provided description. Please respond in the
following format: "Answer: {place}". For example, given the
following description:

"""
This photo is taken from a viewpoint inside the covered area,
looking out towards the parking lot. The reason for this answer
is that the image shows the man standing next to the car in the
parking lot, and the perspective of the photo is from inside the
covered area, providing a clear view of the man and the car.
"""

An exemplar answer would be "Answer: Parking lot"

Step 2b You will be provided a list of [ LEN ] places where the
photo is taken and the number of occurences in a given
dataset. Your job is to cluster [ LEN ] words into
[ NUM CLASSES CLUSTER ] categories. Provide your answer as a
list of [ NUM CLASSES CLUSTER ] words, each word representing a
location.

For example, if the input is given as "’a’: 15, ’b’: 25, ’c’:
17", it means that the label ’a’, ’b’, and ’c’ appeared 15, 25, 17
times in the data, respectively.

When categorizing classes, consider the following criteria:
1. Each cluster should have roughly the same number of images.
2. Merge clusters with similar meanings.
3. Each cluster should not have multiple classes of different
places.
4. Each cluster represents a general place and should not be too
specific.

Now you will be given a list of places and the number of classes,
and the list of classes you answered previously.

Please output a list of places of length [ NUM CLASSES CLUSTER ],
in the following format: "index: place". Make sure that you
strictly follow the length condition, which means that index must
range from 1 to [ NUM CLASSES CLUSTER ].

Step 3 Your job is to recognize a place in the image. Based on the
image description, determine the most appropriate place that best
classifies the place where the photo is taken. You must choose
from the following options: [ CLASSES ].

Give your answer in the following format: "Answer: place". Be
as specific as possible to choose the closest place from the given
list. If a situation arises where nothing is allocated, please
assign it to the place that has the closest resemblance.

39



Published as a conference paper at ICLR 2024

cro
ssw

alkba
rn

for
es

t-b
roa

dle
af

uti
lity

_ro
om

ba
nq

ue
t_h

all

mus
ic_

stu
dio

ba
llro

om
gla

cie
r

ba
ske

tba
ll_c

ou
rt-

ind
oo

r

ap
art

men
t_b

uil
din

g-o
utd

oo
r

lib
rar

y-i
nd

oo
r

arm
y_b

as
e

sta
diu

m-so
cce

r
de

se
rt-

sa
nd

ca
stl

e
he

lip
ort

am
us

em
en

t_p
ark

au
to_

sh
ow

roo
m

kit
ch

en
cla

ssr
oo

m
be

ac
h

ba
thr

oo
m

ca
na

l-u
rba

n
ba

ll_p
it

ho
sp

ita
l_r

oo
m

air
fie

ld
ca

r_i
nte

rio
r

sta
diu

m-ba
se

ba
ll

ba
se

ba
ll_f

iel
d

art
_g

all
ery

bo
ok

sto
re

na
tur

al_
his

tor
y_m

us
eu

m
ce

mete
ry

ba
mbo

o_
for

es
t

oc
ea

n
bo

xin
g_

rin
g

att
ic

din
ing

_ro
om

am
us

em
en

t_a
rca

de
ga

s_s
tat

ion

co
ns

tru
cti

on
_si

te
be

dro
om

bu
s_s

tat
ion

-in
do

or
bri

dg
e

sw
im

ming
_p

oo
l-o

utd
oo

r
sh

oe
_sh

op

bo
wlin

g_
all

ey
co

ck
pit

clo
se

t
fou

nta
in

crosswalk
barn

forest-broadleaf
utility_room

banquet_hall
music_studio

ballroom
glacier

basketball_court-indoor
apartment_building-outdoor

library-indoor
army_base

stadium-soccer
desert-sand

castle
heliport

amusement_park
auto_showroom

kitchen
classroom

beach
bathroom

canal-urban
ball_pit

hospital_room
airfield

car_interior
stadium-baseball

baseball_field
art_gallery
bookstore

natural_history_museum
cemetery

bamboo_forest
ocean

boxing_ring
attic

dining_room
amusement_arcade

gas_station
construction_site

bedroom
bus_station-indoor

bridge
swimming_pool-outdoor

shoe_shop
bowling_alley

cockpit
closet

fountain

86
81

90
57

87
61

55
83

93
44

63
84

88
75

75
0

80
90

92
88

89
96

24
51

86
77

82
79

65
0

94
87

91
0

0
98

0
86

70
84

80
90

41
67

97
85

96
87

60
69

Figure 18: Places dataset (Place) confusion matrix.
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