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Abstract

In safety-critical applications, machine learning models should generalize well
under worst-case distribution shifts, that is, have a small robust risk. Invariance-
based algorithms can provably take advantage of structural assumptions on the
shifts when the training distributions are heterogeneous enough to identify the
robust risk. However, in practice, such identifiability conditions are rarely satisfied
– a scenario so far underexplored in the theoretical literature. In this paper, we aim
to fill the gap and propose to study the more general setting of partially identifiable
robustness. In particular, we define a new risk measure, the worst-case robust
risk, and its corresponding (population) minimax quantity that is an algorithm-
independent measure for the best achievable robustness under partial identifiability.
We introduce these concepts broadly, and then study them within the framework
of linear structural causal models for concreteness of the presentation. We use the
introduced minimax quantity to show how previous approaches provably achieve
suboptimal robustness in the partially identifiable case. We confirm our findings
through empirical simulations and real-world experiments and demonstrate how
the test error of existing robustness methods grows increasingly suboptimal as the
proportion of previously unseen test directions increases.

1 Introduction

The success of machine learning methods typically relies on the assumption that the training and
test data follow the same distribution. However, this assumption is often violated in practice. For
instance, this can happen if the test data are collected at a later time or using a different measuring
device. Without further assumptions on the test distribution, generalization under distribution shift is
impossible. However, practitioners often have partial information about the set of possible "shifts"
that may occur during test time, inducing a set of feasible test distributions that the model should
generalize to. We refer to the resulting set as the robustness set. When a probabilistic model for these
possible test distributions is available or estimable, one may aim for good performance on a ”typical”
held-out distribution using a probabilistic framework. When no extra information is available or
estimable, one possibility is to find a model β that has a small riskR(β;P) on the hardest feasible
test distribution. More formally, we aim to achieve a small robust risk defined by

Rrob(β) := sup
P∈Prob(θ⋆)

R(β;P), (1)
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Table 1: Comparison of various distributional robustness frameworks and what kind of assumptions
their analysis can account for (with an incomplete list of examples for each framework).

Framework accounts for bounded
shifts

partial identifiability of
model parameters

partial identifiability of
robustness set

DRO
[7, 15, 49, 32, 43] ✓ − ✗

Infinite robustness
[35, 17, 30, 39, 6, 2, 46, 54, 28, 1] ✗ ✗ ✗

Finite robustness
[41, 23, 14, 27, 45] ✓ ✓ ✗

Partially id. robustness
(this work) ✓ ✓ ✓

where Prob(θ
⋆) corresponds to the robustness set which depends on some true parameter θ⋆. In fact,

this worst-case robustness aligns with security and safety-critical applications, where a small robust
risk is necessary to confidently guarding against possible malicious attacks.

Causality-oriented robustness [11, 31, 45] on the other hand is based on the idea that some structural
parameters (like a graphical structure of the model) remain invariant across distributions, while others
may vary. For a given set of training distributions, certain sets of varying parameters induce robust
risks that are identifiable. Similarly, for a given set of varying parameters, heterogeneous enough
training distributions may identify the robust risk.

In practice, robustness methods aiming at minimizing a pre-defined robust risk often suffer from
ineffectiveness. For adversarial robustness for example, it is known that when the perturbations
during training and test time differ, the robust risks resulting from adversarial training and standard
training may be comparable (see, e.g. [52, 26]). Similarly, invariance-based methods are often
shown to be less robust than vanilla empirical risk minimization that ignores multi-environment
information. Theoretically, besides being effective only for very specific data-generating models [1],
invariance-based methods generally are bound to fail when the heterogeneity of the training data is
not enough for a given set of possible test shifts. Even though this issue of non-identifiability has been
pointed out previously [25, 40], prior work so far was primarily satisfied with such a binary statement
- whether identifiability is given or not. We believe that the non-identifiable scenario warrants a more
detailed discussion. In particular, we aim to formalize how to quantify the best possible robustness for
this partially identifiable setting. In particular, we extend the discussion of invariance-based methods
to include the partially identifiable setting, where not only the causal parameter, but the robust risk (1)
is not determinable using training data either1. Specifically, we aim to discuss the following question:

What is the optimal worst-case performance any model can have for given structural relationships
between test and training data and how do existing methods comparatively perform in such settings?

When the robust risk is not identifiable from training data, we obtain a whole set of possible objectives
that includes the true robust risk. In this case, we are interested in the best achievable robustness for
any algorithm that we capture in a quantity called the worst-case robust risk:

Rrob(β) := sup
possible

true model θ⋆

sup
P∈Prob(θ⋆)

R(β;P). (2)

Note that Rrob(β) is well-defined even when the standard robust risk is not identifiable – it takes the
supremum over the robust risks induced by all possible true model parameters θ⋆ that are consistent
with the given set of training data distributions. Furthermore, the minimal value of the identifiable
robust risk corresponds to the optimal worst-case performance in the partially identifiable setting.
Spiritually, this minimax population quantity is reminiscent of the algorithm-independent limits in
classical statistical learning theory [55].2 Even though our partial identifiability framework can be

1Here, we mean partial identifiability of the robust risk, which is reminiscent of outputting uncertainty sets
for a quantity of interest in the field of partial identification [50, 18].

2In particular, extending (2) to its finite-sample counterpart would introduce a more natural extension of the
classical minimax risk statistical learning theory. In this work, we focus on identifiability aspects instead of
statistical rates.
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evaluated for arbitrary modeling assumptions on the distribution shift (such as covariate/label shift,
DRO, etc.), we present it in a concrete linear setting for clarity of the exposition. Specifically, the
setting is motivated by structural causal models (SCMs) with unobserved confounding (cf. Section 2),
similar to the setting of IV (instrumental variables) and anchor regression [41, 42]. Concurrently
with our work, [24] proposed a framework for partial transportability which is conceptually related
to our notion of worst-case robust risk. However, their approach leverages graphical assumptions,
i.e., a priori knowledge about the structure of causal models, whereas our focus is a more agnostic
multi-environment setting. Additionally, we do not assume a causal data generation process.

The worst-case robust risk (2) not only represents a notion of algorithm-independent optimality
for any combination of training and test shifts. In the linear setting in Section 2, we also show
theoretically and empirically that the ranking and optimality of different robustness methods change
drastically in identifiable vs. partially identifiable settings. The same can be observed in experiments
on real-world data. Our experimental results strongly indicate that evaluation and benchmarking on
partially identifiable settings are important for determining the effectiveness of robustness methods.
Finally, while the worst-case robust predictor derived in the paper is only provably optimal for the
linear setting, experiments on real-world data in Section 4 suggest that our estimator may significantly
improve upon other invariance-based methods in more realistic scenarios.

2 Setting
In this section, we state the concrete distributional setting on which we introduce our partial iden-
tifiability framework. In particular, we consider a data generating process, motivated by structural
causal models (SCMs), that allows for hidden confounding, i.e., spurious correlations between the
covariates X and the target Y . We describe the structure of the distribution shifts occurring in the
training and test environments, which is reminiscent of interventions in causal models. Finally, we
introduce our framework for distributional robustness that allows for partial identifiability and define
the worst-case robust risk – for any given model, it corresponds to the maximum robust risk among
all possible robust risks induced by the training distributions.

2.1 Data distribution and a model of additive environmental shifts

Data generating process (DGP). We first describe the data-generating mechanism that underlies the
distributions of all environments e ∈ E that may occur during train or test time. For each environment
e ∈ E , we observe the random vector (Xe, Ye) ∼ PX,Y

e consisting of input covariates Xe ∈ Rd and
a target variable Ye ∈ R which satisfy the following data generating process:

Xe = Ae + η;

Ye = β⋆⊤Xe + ξ,
(3)

where Ae ∈ Rd, (η, ξ) ∈ Rd+1 are random vectors Ae ∼ PA
e , (η, ξ) ∼ Pη,ξ with finite first and

second moments and for which Ae ⊥⊥ (η, ξ) for all e ∈ E .

Invariant mechanism. Note how in this setting, apart from β⋆, the distribution Pη,ξ of the noise
vector (η, ξ) remains constant across environments. Without loss of generality, we assume that the
noise (η, ξ) has mean zero. Note how this linear setting is, in general, more challenging than the
standard linear regression setting where η ⊥⊥ ξ: due to possible dependencies between η and ξ
(induced by, e.g., hidden confounding/spurious features), classical estimators, such as the ordinary
least squares, are biased away from the true parameter β⋆. Denote by Σ⋆ := Cov((η, ξ)) the joint

covariance of the noise vector (η, ξ), which can be written in block form as Σ⋆ =

(
Σ⋆

η Σ⋆
η,ξ

Σ⋆
η,ξ

⊤ (σ⋆
ξ )

2

)
and which we assume to be full-rank. We then denote the concatenation of these two invariant
parameters by θ⋆ := (β⋆,Σ⋆) ∈ Θ ⊂ Rd × R(d+1)×(d+1) - the parameter that remains invariant
across all environments.

Structure of the distribution shifts. Note that in the DGP, the distribution shifts between PX,Y
e are

induced solely by changes in the distribution of the variable Ae, whose mean and covariance matrix
we denote by E [Ae] = µe and Cov[Ae] = Σe, respectively. In general, we allow for degenerate
shifts, i.e. the covariance Σe can be singular. We remark that although the additive shift structure
in Equation (3) allows the joint distribution PX,Y,A

e = PA
e × PX,Y |A to change solely via PA

e , our
distribution shift setting is more general than covariate shift: due to the noise variables η and ξ being
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potentially dependent, both the marginal PX
e and the conditional distribution PY |X

e can change across
environments.

Training and test-time environments. Throughout the paper, we assume that we are given the
collection of training distributions Pθ⋆,Etrain

= {PX,Y
θ⋆,e }e∈Etrain

, where Etrain denotes the index set of
training environments. We omit θ⋆ when it is clear from the context. Further, for ease of exposition,
we assume that Etrain contains a reference (unshifted) environment e = 0 with A0 = 0 a.s. In
Appendix B, we discuss how our results apply if this condition is not met. During test time, we expect
to observe a new, previously unseen distribution PX,Y

test which is induced by the DGP (3) and a shift
random variable Atest ∼ PA

test, with corresponding finite mean µtest and covariance Σtest.

Even though we do not have access to PX,Y
test during training, the practitioner might have some

information about the possible shift distributions PA
test that may occur during test time. As an

example, we may only have information about the maximum possible magnitude and direction of
the test-time mean shift E [Atest]. In this work, we assume that we are given an upper bound on the
second moment of the shift variable, represented by a positive semidefinite (PSD) matrix Mtest ⪰ 0
such that

E [AtestAtest
⊤] = Σtest + µtestµtest

⊤ ⪯Mtest. (4)

In practice, there may be different degrees of knowledge of the feasible set of shifts – when no
knowledge is available, one can always choose the most "conservative" bound Mtest with the range
equal to Rd×d and large eigenvalues. The more information is available, the smaller the feasible set of
test distributions would become. On the other hand, when the test distribution PX

test of X is available
during training (as in the domain adaptation setting [47]), one can directly compute the optimal
shift upper bound via Mtest = E [X testX test⊤]. In existing literature, Mtest is often proportional to
the pooled first or second moment of the training shifts, for instance Mtest = γ

∑
e∈Etrain

weµeµ
⊤
e

in discrete anchor regression [41] or Mtest = γ
∑

e∈Etrain
we(µeµ

⊤
e + Σe) in causality-oriented

robustness with invariant gradients [45]. Here, we are the weights representing the probability of a
datapoint being sampled from the environment e. As will become apparent in the next sections, our
population-level results are not impacted by the distribution of the environment variable, which we
thus omit in the following.

We now provide an example based on structural causal models (SCM) that falls under the aforemen-
tioned distrubtion shift setting.
Example 1. Consider the structural causal model and its induced graph in Figure 1. In this model,
the variable Z is a soft intervention on the covariates X . Additionally, the exogenous noise vector
(εX , εY , εH) and the intervention variable Z are mutually independent. This model is the basis of
multiple causality-oriented robustness works, e.g. [41, 45]. Let β⋆ := B⊤

Y X and ξ := BY HH + εY .
Then, from (5), we obtain Y = BY XX + (BY HH + εY ) = X⊤β⋆ + ξ. Suppose that I − B
is invertible and let C := (I − B)−1with entries CXX , CXY , etc. Define A := CXXZ and
η := CXXεX + CXY εY + CXHεH . Then, we can write X = A + η. Since shifts in distribution
of Z induce shifts in the distribution of A, a collection of interventions {Ze}e∈Etrain

translates into
a collection of additive shifts {Ae}e∈Etrain

and gives rise to training distributions varying with the
environment e. In summary, our DGP Equation (3) includes the classical setting of causality-oriented
robustness as depicted in Figure 1.(

X
Y
H

)
=

(
BXX BXY BXH

BY X 0 BY H

0 0 0

)
︸ ︷︷ ︸

B

(
X
Y
H

)
+

(
Z + εX

εY
εH

)
(5)

X

Z H

Y

Figure 1: (Left) SCM with hidden confounding and (Right) induced graph. The model allows for an arbitrary
causal structure of the observed variables (X,Y ), as long as I −B is invertible, i.e. the underlying graph is
acyclic. The shifts across different distributions are captured via shift interventions on X , however, the model
does not allow for interventions on the target variable or hidden confounders.

2.2 The robust risk

Our goal is to find an estimator using the training data that has a small risk, in this paper exclusively
the expected square lossR(β;P) := E P[(Y − β⊤X)2], over the robustness set. In our setting, given
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a test shift upper bound Mtest defined in Equation (4), the robustness set corresponds to

Pθ⋆(Mtest) := {PX,Y
θ⋆,test : E [AtestAtest

⊤] ⪯Mtest}, (6)

yielding the corresponding robust risk that reads

Rrob(β; θ
⋆,Mtest) := sup

P∈Pθ⋆ (Mtest)

R(β;P). (7)

We call the minimizer of the robust risk βrob
θ⋆ := argminβ∈Rd Rrob(β; θ

⋆,Mtest) the robust predictor.
For the squared loss and linear model, the robust risk can be computed in closed form and solely
depends on Mtest and the invariant parameters θ⋆ = (β⋆,Σ⋆), and not on other properties of the
distributions:

Rrob(β, θ
⋆,Mtest) = (β⋆ − β)⊤(Σ⋆

η +Mtest)(β
⋆ − β) + 2(β⋆ − β)⊤Σ⋆

η,ξ + (σ⋆
ξ )

2
. (8)

This observation motivates us to define an equivalence relation between two data-generating processes
that holds whenever they induce the same robust risk for any model β and shift upper bound Mtest.
Specifically, observe that DGP1 and DGP2 induce the same robust risks for all Mtest and β iff
β⋆
1 = β⋆

2 and Pη,ξ
1
∼= Pη,ξ

2 , where∼= denotes the equivalence of distributions based on equality of their
first and second moments. Thus, in the following, we treat our data-generating process as uniquely
defined by θ⋆ up to this equivalence relation.

In practice, the model parameters θ⋆ typically cannot be identified from the training distributions,
and the robust riskRrob can only be computed for specific combinations of training and test shifts,
studied, e.g., in [41, 45]. In the next section, we describe concepts that allow us to reason about
robustness in the case when the robust risk is only partially identifiable.

2.3 Partially identifiable robustness framework

We start by formally introducing the general notion of partial identifiability for the robust risk. The
following notion of observational equivalence of parameters is reminiscent of the corresponding
notion in the econometrics literature [16]:
Definition 1 (Observational equivalence). Two model parameter vectors θ1 = (β1,Σ1) and θ2 =
(β2,Σ2) are observationally equivalent with respect to a set of shift distributions {PA

e : e ∈ Etrain}3

if they induce the same set Pθ,Etrain
of training distributions over the observed variables (Xe, Ye) as

described in Section 2.1, i.e.

PX,Y
θ1,e
∼= PX,Y

θ2,e
for all e ∈ Etrain.

By observing Pθ⋆,Etrain
, we can identify the model parameters θ⋆ up to the observationally equivalent

set defined as

Θeq := {θ = (β,Σ) ∈ Θ : Pθ,Etrain
∼= Pθ⋆,Etrain}.

In general, observationally equivalent set is not a singleton, that is, θ⋆ is not identifiable from the
collection of training environments Pθ⋆,Etrain

. However, prior work has exclusively considered test
shifts Mtest that still allow identifiability of the robust risk nonetheless, depicted in Figure 2a and
discussed again in Section 3.2. In this work we argue for analyzing the more general partially
identifiable setting, where set-identifiability of the invariant parameter θ⋆ only allows us to compute a
superset of the robustness set

PΘeq
(Mtest) :=

⋃
θ∈Θeq

Pθ(Mtest) ⊃ Pθ⋆(Mtest)

and correspondingly, a set of robust risks {Rrob(β; θ,Mtest) : θ ∈ Θeq}. In this case, we would still
like to achieve the “best-possible” robustness, that is the test shift robustness for the “hardest-possible”
parameters that could have induced the observed training distributions.

3The distributions PA
e are to be understood up to the equivalence relation ∼=. In general, the distributions PA

e

are unknown, since the shift variables Ae are unobserved. However, in our setting, PA
e can be identified up to

the second moment because of the reference environment.
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model parameter space Θ space of robust risks of 𝛽

𝜃 ℛ𝑟𝑜𝑏(𝒫𝜃 𝛾, ℳ𝑛𝑒𝑤 , 𝛽)

𝜃⋆

𝛩𝑒𝑞 id. set

model parameter space Θ set of robust risks of 𝛽

𝜃⋆

𝛩𝑒𝑞

robust risk

model parameter space Θ set of robust risks of 𝛽

set of

robust risks

𝜃

𝜃⋆

𝛩𝑒𝑞

𝜃

𝑅𝑟𝑜𝑏(𝛽; 𝜃⋆, 𝑀𝑠𝑒𝑒𝑛)

𝑅𝑟𝑜𝑏(𝛽; 𝜃, 𝛾𝑀𝑠𝑒𝑒𝑛)

𝑅𝑟𝑜𝑏(𝛽; 𝜃⋆, 𝑀𝑢𝑛𝑠𝑒𝑒𝑛)

(a) Identifiable robust risk

model parameter space Θ space of robust risks of 𝛽

𝜃 ℛ𝑟𝑜𝑏(𝒫𝜃 𝛾, ℳ𝑛𝑒𝑤 , 𝛽)

𝜃⋆

𝛩𝑒𝑞 id. set

model parameter space Θ set of robust risks of 𝛽

𝜃⋆

𝛩𝑒𝑞

robust risk

model parameter space Θ set of robust risks of 𝛽

set of

robust risks

𝜃

𝜃⋆

𝛩𝑒𝑞

𝜃

𝑅𝑟𝑜𝑏(𝛽; 𝜃⋆, 𝑀𝑠𝑒𝑒𝑛)

𝑅𝑟𝑜𝑏(𝛽; 𝜃, 𝛾𝑀𝑠𝑒𝑒𝑛)

𝑅𝑟𝑜𝑏(𝛽; 𝜃⋆, 𝑀𝑢𝑛𝑠𝑒𝑒𝑛)

(b) Partially identifiable robust risk

Figure 2: Relationship between identifiability of the model parameters and identifiability of the robust risk. (a)
The classical scenario where the test shift upper bound Mtest = Mseen is contained in the span of training shifts
so that the robust risk is point-identified. (b) The more general scenario of this paper, where Mtest = Munseen
contains new shift directions and where only a set can be identified in which the robust risk lies.

Definition 2 (Worst-case robust risk and the minimax quantity). For the data model in Equation (3),
the worst-case robust risk is defined as

Rrob(β; Θeq,Mtest) := sup
θ∈Θeq

Rrob(β; θ,Mtest). (9)

The optimal robustness on test shifts bounded by Mtest given training data Pθ⋆,Etrain
is described by

the minimax quantity

M(Θeq,Mtest) = inf
β∈Rd

Rrob(β; Θeq,Mtest). (10)

When the minimizer of Equation (10) exists, we call it the worst-case robust predictor defined by

βrob
Θeq

= argmin
β

Rrob(β; Θeq,Mtest) (11)

In the next sections, we explicitly compute these quantities for the linear setting of Section 2. This
will allow us to compare the best achievable robustness in the partially identified case with the
guarantees of prior methods in this setting.

3 Theoretical results for the linear setting
We now compute the worst-case robust risk (9) and derive a lower bound for the minimax quantity
(10) in the linear additive shift setting of Section 2. We then compare the worst-case robust risk
of some existing robustness methods and ordinary least squares (OLS) with the minimizer of the
worst-case robust risk both theoretically and empirically.

3.1 Minimax robustness results for the linear setting

The degree to which the model parameters θ⋆ in the linear additive shift setting (3) can be identified
depends on the number of environments and the total rank of the moments of the additive shifts. For
structural causal models, this is well-studied, for instance, in the instrumental variable (IV) regression
literature [4, 9]. As we show in Proposition 1, the true parameter β⋆ can only be identified along
the directions of the training-time mean and variance shifts µe and Σe. Therefore, if not enough
shift directions are observed, β⋆ is merely set-identifiable, leading to set-identifiability of the robust
prediction model (8). More formally, we denote by S the subspace consisting of all additive shift
directions seen during training:

S := range

[ ∑
e∈Etrain

(
Σe + µeµ

⊤
e

)]
, (12)

and by S⊥ its orthogonal complement. The definition of the space S induces an orthogonal decompo-
sition of the true parameter β⋆ = βS + βS⊥

. The identifiable part βS then uniquely defines a set of
identified model parameters that reads

θS := (βS ,ΣS
η ,Σ

S
η,ξ, (σ

S
ξ )

2) = (βS ,Σ⋆
η,Σ

⋆
η,ξ +Σ⋆

ηβ
S , (σ⋆

ξ )
2
+ 2⟨Σ⋆

η,ξ, β
S⟩+ ⟨βS ,Σ⋆

ηβ
S⟩)

that can be computed from the training distributions. For the following results, we assume a similar
decomposition of the test shift upper bound Mtest which is essentially a decomposition into "seen"
and "unseen" directions.
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Assumption 3.1 (Structure of Mtest). We assume that Mtest = γMseen + γ′RR⊤, where γ, γ′ ≥ 0,
Mseen is a PSD matrix satisfying range Mseen ⊂ S and R is a semi-orthogonal matrix satisfying
range R ⊂ S⊥.

In the next proposition, we show that the model parameters and robust predictor can be identified up
to a neighborhood around θS .

Proposition 1 (Identifiability of model parameters and robust predictor). Suppose that the set of
training and test distributions is generated according to Section 2.1 and Assumption 3.1 holds. Then,

(a) the model parameters generating the training distribution (3) can be identified up to the following
observationally equivalent set :

Θeq = Θ ∩ {βS + α,Σ⋆
η,Σ

S
η,ξ − Σ⋆

ηα, (σ
S
ξ )

2 − 2α⊤ΣS
η,ξ + α⊤Σηα : α ∈ S⊥} ∋ θ⋆; (13)

(b) the robust predictor βrob
θ as defined in Equation (8) is identified up to the set

BrobΘeq
∩ {βS + (Mtest +Σ⋆

η)
−1ΣS

η,ξ + (Mtest +Σ⋆
η)

−1α : α ∈ range R} ∋ βrob
θ , (14)

where BrobΘeq
= {βrob

θ : θ ∈ Θeq}.

The proof of Proposition 1 is provided in Appendix F.1. Proposition 1 implies two well-known
settings: If we observe a rich enough set PEtrain

of training environments such that S = Rd, the
model parameters are uniquely identified, corresponding to the setting of full-rank instruments [4].
From a dual perspective, for a given set of training environments, the robust predictor is identifiable
whenever the test shifts are in the same direction as the training shifts, i.e. range Mtest ⊂ S and
R = 0 – this holds even when the invariant parameters are not identifiable and S ̸= Rd. This is the
setting considered e.g. in anchor regression [41] and discussed again in Section 3.2 and Appendix C.

So far, we have described how the identifiability of the robust prediction model depends on the
structure of both the training environments (via the space S) and the test environments (via Mtest).
We now aim to compute the smallest achievable robust loss for the general partially identifiable setting,
which allows for R ̸= 0. In particular, we provide a lower bound on the best-possible achievable
distributional robustness formalized by the minimax quantity (10). First observe that without further
assumptions on the parameter space Θ, the observationally equivalent set is unbounded, and the
worst-case robust risk (9) can be infinite. The following boundedness assumption allows us to provide
a fine-grained analysis of robustness in a partially identified setting.

Assumption 3.2 (Boundedness of the causal parameter). There exists a constant C > 0 such that
any parameter β in the DGP (3) is norm-bounded by C, i.e. ∥β∥2 ≤ C.

Furthermore, we define Cker =
√

C2 − ∥βS∥2, the maximum norm of the non-identified part of
the linear parameter β⋆. Finally, recall that the reference distribution PX,Y

θ⋆,0 is observed and hence
identifiable.

Theorem 3.1. Assume that the training and test data follow the data-generating mechanism in
Section 2.1 and Mtest satisfies Assumption 3.1 for some Mseen, R with rangeMseen ⊂ S , rangeR ⊂
S⊥. Further, let Assumption 3.2 hold with parameter C. The worst-case robust risk (9) is then given
by

Rrob(β; Θeq,Mtest) = γ′(Cker + ∥R⊤β∥2)2 + γ(βS − β)⊤Mseen(β
S − β) +R(β;PX,Y

θ⋆,0 ), (15)

The minimax quantity in Equation (10) is lower bounded as follows:

M(Θeq,Mtest)

{
= γ′C2

ker +minR⊤β=0Rrob(β; θ
S , γMseen), if γ′ ≥ γ′

th;

≥ γ′C2
ker +minβ∈Rd Rrob(β; θ

S , γMseen), else,
(16)

where γ′
th =

(κ(Σ⋆
η)+1)∥RR⊤ΣS

η,ξ∥
Cker

4. Moreover, for small unseen shifts

lim
γ′→0

M(Θeq,Mtest)

γ′ = (Cker + ∥RR⊤Σ⋆
η
−1ΣS

η,ξ∥)2. (17)

4κ denotes the conditional number of the covariance matrix Σ⋆
η .
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We prove Theorem 3.1 in Appendix F.2. First, in the case of no new test shifts where γ′ = 0 (as
it appears in prior work [41, 45]) we can plug in the robust risk Equation (7) into Equation (16) to
observe the following: as the strength γ of the shift grows, the optimal robust risk saturates. On
the other hand, if γ′ ̸= 0, i.e., the test shift contains new directions w.r.t. to the training data, the
best achievable robustness M(Θeq,Mtest) grows linearly with γ′. Further note that for γ′ ≥ γ′

th, we
have a tight expression for the minimax quantity and the worst-case robust predictor βrob

Θeq
can be

explicitly computed (cf. Appendix F.2) and is orthogonal to the space range R of non-identifiable
test shift directions. In other words, for large shifts in non-identified directions, the optimal robust
model would "abstain" from prediction in those directions. For smaller γ′, βrob

Θeq
gradually utilizes

less information in the non-identified directions, thus interpolating between maximum predictive
power (OLS) and robustness w.r.t. new directions (abstaining). The model βrob

Θeq
is a population

quantity that is identifiable from the collection of training distributions. When only finite samples
are available, we discuss in Appendix D how we can compute the worst-case robust estimator by
minimizing an empirical loss function that can be computed from multi-environment data.

3.2 Theoretical analysis of existing finite robustness methods

We now evaluate existing finite robustness methods in our partial identifiability framework and
characterize their (sub)optimality in different scenarios. A spiritually similar systematic comparison
of domain adaptation methods is presented in [12], however, in our setting, the robust risk is not
identifiable from data. Concretely, we compare discrete anchor regression [41] and pooled OLS
estimators 5 with the minimax quantity in Theorem 3.1. We consider the same scenario as in
discrete anchor regression, which is a the specific case of the setting in Equation (3), where for each
environment e, Ae is just a mean shift with variance 0. In addition, discrete anchor regression assumes
that the environment variable E ∈ Etrain follows a probability distribution with P[E = e] = we. The
discrete anchor setting then corresponds to setting a test shift upper bound Mtest = γManchor for
some γ > 0 (cf. Equation (4)) with Manchor =

∑
e∈Etrain

weµeµ
⊤
e . The (oracle) discrete anchor

regression estimator minimizes the robust risk and reads

βanchor = argmin
β∈Rd

Rrob(β; θ
⋆, γManchor), (18)

The pooled ordinary least squares (OLS) estimator βOLS corresponds to βanchor with γ = 1. We
observe that the test shifts bounded by γManchor are fully contained in the space of identified
directions S, since S = range ∪e∈Etrain

µeµ
⊤
e = rangeManchor. Thus, according to Proposition 1,

the robust risk and robust predictor βanchor are identifiable for all γ > 0. In the next corollary, we
compute worst-case robust risk of both βanchor and βOLS with respect to the more general shifts
bounded by Mtest := γManchor + γ′RR⊤, thus possibly including unseen shifts consisting of
additional unseen shifts range R ⊂ S⊥.

Corollary 3.2 (Worst-case robust risk of the anchor regression estimator). Assume that the test shift
upper bound is given by Mtest := γManchor + γ′RR⊤. Let PX,Y

train =
∑

e wePX,Y
e be the pooled

training distribution. Then the general worst-case robust risk is given by

Rrob(β; Θeq,Mtest) = γ′(Cker + ∥R⊤β∥2)2 + (γ − 1)(βS − β)⊤Manchor(β − βS) +R(β,PX,Y
train).

Furthermore, the the anchor and OLS predictor, respectively, it holds that there exists constants
c1, c2, c3 independent of γ, γ′ such that

Rrob(βanchor; Θeq,Mtest) = (Cker + ∥RR⊤(Σ⋆
η + γManchor)

−1ΣS
η,ξ∥)2γ′ + c1;

Rrob(βOLS; Θeq,Mtest) = (Cker + ∥RR⊤(Σ⋆
η +Manchor)

−1ΣS
η,ξ∥)2γ′ + c2.

In contrast, the best achievable robustness reads

M(Θeq,Mtest) = C2
kerγ

′ + c3, if γ′ ≥ γ′
th;

lim
γ′→0

M(Θeq,Mtest)/γ
′ = (Cker + ∥RR⊤(Σ⋆

η + γManchor)
−1ΣS

η,ξ∥)2.

5In Appendix C we show that analogous results hold for continuous anchor regression and the method of
distributionally robust invariant gradients (DRIG) [45].

8



Observe that the worst-case robust risk in the extended anchor regression setting is equal to the anchor
regression risk with an additional non-identifiability penalty term γ′(Cker + ∥R⊤β∥2)2. The anchor
regression estimator is optimal in the limit of vanishing unseen shifts but (for any γ) significantly
deviates6 from the best achievable robustness for larger unseen shifts γ′ ≥ γ′

th. Moreover, in case
of completely new shifts (γ = 0), pooled OLS and the anchor estimator achieve the same rate in γ′,
showcasing how finite robustness methods can perform similarly to empirical risk minimization if the
assumptions on the robustness set are not met. We provide additional performance comparisons for
the more general shift in Appendix C and the proof of the corollary in Appendix F.3.

4 Experimental results
In this section, we provide empirical evidence of our theoretical conclusions in Sections 3.1 and 3.2.
In particular, we compare the prediction performance of multiple existing robustness methods to the
(estimated) minimax robustness in identifiable and partially identifiable settings. We observe that
both on synthetic and real-world data, in the partially identified setting, empirical risk minimization
and invariance-based robustness methods not only have significantly sub-optimal test loss, but also
perform more similarly, thereby aligning with our theoretical results in Section 3.2. This stands in
contrast to the identifiable setting, where the anchor predictor is optimal up to finite-sample effects.
Furthermore, we observe that even though the minimizer of the worst-case robust risk is optimal
only for the linear causal setting in Section 2.1, it surprisingly outperforms existing methods in a
real-world experiment.

Experiments on synthetic Gaussian data We simulate Gaussian covariates according to Equa-
tion (3) with multiple environments differing by linearly independent randomly selected mean shifts.
For a randomly sampled collection of mean shifts, we evaluate a proxy for the worst-case robust risk
by picking the most adversarial (β⋆,Σ⋆

η) for the shifts, and then computing its robust risk (7). We
describe the full details of the data generation and loss evaluation in Appendix E.1. We consider
two shift scenarios: in the identifiable case in (see Figure 2a), the test environment is only perturbed
by bounded shifts in training directions with increasing strength γ, as considered in prior work
[41, 45]. In the non-identifiable case (see Figure 2b), the test environment is perturbed by a mixture
of training shifts and shifts in previously unobserved directions, where γ is fixed and γ′ varies
(cf. Assumption 3.1). We compute the empirical minimizers β̂OLS, β̂anchor and β̂rob

Θeq
of the OLS,

anchor regression and worst-case robust losses, respectively, and compare their worst-case robust
risk (mean squared error) in Figure 3. In the identifiable setting – Figure 3 (left) – the robust risk
is asymptotically constant across γ for both robust methods, while the error for the OLS, or vanilla
ERM, estimator increases linearly. In contrast, in the second, partially identified, setting – Figure 3
(right) – all estimators exhibit linearly increasing test errors; however the slopes of the anchor and
OLS estimator are much steeper and lead to larger errors than the empirical minimizer of (15) that
closely matches the analytic theoretical lower bound.

Identifiable case (γ′ = 0)
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5
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Worst-case Rob.

Anchor
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Lower bound

Figure 3: Worst-case robust risk of the baseline estimators βOLS, βanchor (using the "correct" γ), the worst-case
robust predictor in (mean-shifted) multi-environment finite-sample experiments and theoretical population lower
bound in the classical identified setting with varying shift strength γ (left) and the partially identifiable setting
with fixed γ but varying γ′ (right). The details of the experimental setting can be found in Appendix E.

Real-world data experiments We evaluate the performance of OOD methods using single-cell
gene expression data from [38], consisting of d = 622 genes across observational and interventional
environments. As in [44], we focus on 28 genes active in the observational environment. For each
gene j = 1, . . . , 28, we define the target variable Y := Xj and select the three genes most strongly

6Notice that the term ∥RR⊤(Σ⋆
η + γManchor)

−1ΣS
η,ξ∥ generally only goes to zero as γ → ∞ (yielding the

minimax risk) if Manchor is full-rank, otherwise, it can be strictly bounded from below as Σ⋆
η is full-rank.
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correlated with Y as covariates. This yields 28 prediction problems indexed by j, each consisting
of data from an observational environment O and three interventional environments Ij1, Ij2, Ij3
representing the gene knockout on a single covariate. For each prediction problem, we consider three
training datasets Dj1, Dj2, Dj3, obtained by combining data from O with a single interventional
environment Ij1, Ij2, Ij3, respectively. For each training dataset Djk, k = 1, 2, 3, we evaluate the
mean-squared error (MSE) at test time using four datasets consisting of varying proportions of unseen
shifts (e.g., “33% unseen directions” in Figure 4 represents a test dataset with 67% observations
sampled from Ijk and 33% from Ijℓ with ℓ ̸= k). Hence, for each prediction problem predicting a
gene j, we evaluate on 12 configurations (three training and four test datasets).7 Figure 4 illustrates
the test MSE of the worst-case robust estimator (Worst-case Rob.) alongside anchor regression,
invariant causal prediction (ICP), DRIG, and OLS, as a function of perturbation strength s. 8 For a
given proportion of unseen shifts, s controls the distance of the test data points from the observational
mean, acting as a proxy for shift strengths γ and γ′. 9 We observe that the performance ranking
of the robustness methods significantly varies with the proportion of new test shift directions. As
expected, when no new shift directions are present at test time (0%), anchor regression and DRIG are
optimal, since they protect against shifts observed at training time. However, as soon as some unseen
directions are present, their performance becomes inferior to OLS/ERM and the gap to the worst-case
robust predictor (in the linear setting described in Section 2) grows with the proportion of unseen
shifts. Further, while the MSE of the previous invariant methods increases significantly with the
strength of the test shift s, the test loss of the worst-case robust predictor remains relatively stable.

0% unseen directions 33% unseen directions 67% unseen directions 100% unseen directions

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

0.1

0.2

0.3

0.4

0.5

Perturbation strength s

T
es

t M
S

E

Methods: Worst-case Rob. Anchor DRIG ICP OLS

Figure 4: The figures show the performance of the worst-case robust predictor (Worst-case Rob.) compared to
other methods as a function of perturbation strength s. Different panels correspond to the proportion of unseen
shift directions at test time. For each panel and perturbation strength s, each point represents an average over the
28 target genes and three experiments (i.e., training environments).

5 Conclusion and future directions
This paper introduces the worst-case robust risk – a quantity that is well-defined even in settings
where the usual robust risk is not computable from training distributions, and in identifiable scenarios
[41, 45] reduces to the conventional robust risk. We instantiate our general framework for linear
models with additive distribution shifts and compute tight lower bounds for this setting. Further,
we demonstrate how i) the benefits of invariance-based robustness methods strongly decrease in
the partially identifiable setting; and ii) this suboptimality increases with perturbation strength and
proportion of previously unobserved test shifts.

The main limitation of our paper is its reliance on a linear setting to explicitly compute the worst-case
robust risk and estimate the minimax quantity. However, we expect that the results and intuition
developed in this paper can be extended to linear shifts in a lower-dimensional latent space via a
suitable parametric or non-linear map [51, 10]. Important future directions include extending our
results to more general shift models, non-linear functional relationships and the classification setting.
Further, a potential use of our work is in the field of active intervention selection (e.g, [57, 20]). By
computing the most adversarial model parameter for a given estimator, e.g., OLS, we can obtain an
intervention which minimizes the worst-case robust risk of the estimator on the next unseen shift.

7An illustration of the training and test setups can be found in Figure 5.
8Details on the tuning parameter for each method are in Appendix E.2.
9More details on the shift strength can be found in Appendix E.2.
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The following sections provide deferred discussions, proofs and experimental details.
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A Extended related work

To put our work into context, first, we discuss relevant distributional robustness literature organized
according to structural assumptions on the desired robustness set. Second, we summarize existing
views on partial identifiability in the causality and econometrics literature and how our findings
connect to their perspective.

No structural assumptions on the shift. DRO: Distributionally robust optimization (DRO) tackles
the problem of domain generalization when the robustness set is a ball around the training distribution
w.r.t. some probability distance measure, e.g., Wasserstein distance [49, 32] or f -divergences [7, 15].
Considering all test distributions in a discrepancy ball can lead to overly conservative predictions, and
therefore, alternatives have been proposed in, e.g., the Group DRO literature [43, 19, 29]. However,
these methods cannot protect against perturbations larger than the ones seen during training time and
do not provide a clear interpretation of the perturbations class [45].

Structural assumptions on the shift. Robustness from the lens of causality takes a step further, by
assuming a structural causal model [34] generating the observed data (X,Y ). Infinite robustness
methods: The motivation of causal methods for robustness is that the causal function is worst-case
optimal to predict the response under interventions of arbitrary direction and strength on the covariates
[31, 11]. For this reason, causal models achieve what we call infinite robustness. Depending on the
assumptions of the SCM, there are different ways to achieve infinite robustness. When there are
no latent confounders, several works [35, 17, 30, 39, 2, 6, 46, 54, 28, 1] aim to identify the causal
parents and achieve infinite robustness by exploiting the heterogeneity across training environments.
In the presence of latent confounders, it is possible to achieve infinite robustness by identifying the
causal function with, e.g., the instrumental variable method [5, 22, 48, 8, 33]. There are different
limitations to infinitely robust methods. First, the identifiability conditions of the causal parents
and/or causal function are often challenging to verify in practice. Second, ERM can outperform these
methods when the interventions (read shifts) at test time are not arbitrarily strong or act directly on
the response or latent variable [3, 21]. Finite robustness methods: In real data, shifts of arbitrary
direction and strength in the covariates are unrealistic. Thus, different methods [41, 23, 27, 45, 14]
trade off robustness against predictive power to achieve what we call finite robustness. The main idea
of finite robustness methods is to learn a function that is as predictive as possible while protecting
against shifts up to some strength in the directions that are observed during training time. These
methods, however, only provide robustness guarantees that depend on the heterogeneity of the training
data and do not offer insights into the limits of algorithm-independent robustness under shifts in new
directions.

Partial identifiability: The problem of identification is at the center of the causal and econometric
literature [36, 4]. It studies the conditions under which the (population) training distribution uniquely
determines the causal parameters of the underlying SCM. Often, the training distribution only offers
partial information about the causal parameters and, therefore, determines a set of observational
equivalent parameters. This setting is known as partial or set identification and is used in causality
and econometrics to learn intervals within which the true causal parameter lies [50]. In this work, we
borrow the notion of partial identification to study the problem of distributional robustness when the
robustness set itself is only partially identified.

B Extension to the general additive shift setting

We discuss how our setting changes when we relax the assumptions on the existence of the reference
environment. We consider the data-generating process in Equation (3), where Etrain = [m], m ∈ N.
If no environment e exists with µe = 0 and Σe = 0, we first pick an arbitrary distribution PX,Y

ref as
the reference environment10 . We denote Σ′

η := Σ⋆
η +Σref .

First, we show we can express the space S of training additive shift directions defined in Equation (12)
in the general case. We center all distributions by µref to obtain centered distributions P̃r that

10In practice, it is useful to pick a distribution with the smallest covariance, i.e. trCov(Xref) ≤ trCov(Xe)
for all e.
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EX∼P̃e
[X] = 0. With respect to the arbitrary reference environment, we now define

S̃ := range
⋃

e∈Etrain

(
Σe − Σref + (µe − µref)(µe − µref)

⊤) ⊂ Rd.

We now consider test shifts with respect to the environment PX,Y
ref

11. We define the test shift upper
bound Mtest = γMseen + γ′RR⊤, where range Mseen ⊂ S and range R ⊂ S⊥. Again, we can
decompose the parameter β⋆ as β⋆ = βS + βS⊥

. The projection βS of the causal parameter onto the
relative training shifts induces the following observationally equivalent parameters corresponding to
the reference distribution:
θS := (βS ,Σ′

η,Σ
S
η,ξ, (σ

S
ξ )

2) = (βS ,Σ′
η,Σ

⋆
η,ξ +Σ′

ηβ
S⊥

, (σ⋆
ξ )

2
+ 2⟨Σ⋆

η,ξ, β
S⊥
⟩+ ⟨βS⊥

,Σ′
ηβ

S⊥
⟩).

Again, θS can be identified from the training distributions and is referred to as the identified model
parameters. The following adapted version of Proposition 1 shows that assuming shifts on PX,Y

ref , the
robust prediction model is only identifiable if the test shifts are in the direction of the relative training
shifts:
Proposition 2 (Identifiability of reference distribution parameters and robust prediction model).
Suppose that the set of training and test distributions is generated according to Equations (3) and (4).
Then, θS is observationally equivalent to θ⋆ and computable from training distributions. Furthermore,
it holds that

(a) the model parameters generating the reference distribution can be identified up to the following
observationally equivalent set :

Θeq = {βS + α,Σ′
η,Σ

S
η,ξ − Σ′

ηα, (σ
S
ξ )

2 − 2α⊤ΣS
η,ξ + α⊤Σ′

ηα : α ∈ S⊥} ∋ θ⋆

(b) the robust prediction model βrob as defined in Equation (8) is identified up to the set

βS + (γΠM +Σ′
η)

−1ΣS
η,ξ + {(γΠM +Σ′

η)
−1α : α ∈ range R} ∋ βrob

The proof is analogous to Appendix F.1. A version of Theorem 3.1 for perturbations on the reference
environment follows accordingly.

C Comparison to finite robustness methods continued

C.1 The setting of continuous anchor regression [41]

In this section, we evaluate the worst-case robust risk of the continuous anchor regression estimator.
In the continuous anchor regression setting, during training we observe the distribution according to
the process X = MA+ η; Y = β⋆⊤X + ξ, where A is an observed q-dimensional anchor variable
with mean 0 and covariance ΣA and M ∈ Rd×q is a known matrix. Note that in this setting, we do
not have a reference environment, but, since the anchor variable is observed, the distribution of the
additive shift MA is known. The test shifts are assumed to be bounded by Mtest = γMΣAM

⊤.
Since range Mtest ⊂ S = range M , no new directions are observed during test time, in other
words, R = 0. Thus, both the corresponding robust loss and the anchor regression estimator can be
determined from training data. It holds that

βanchor = argmin
β∈Rd

Rrob(β; θ
⋆, γMΣAM

⊤).

Again, the pooled OLS estimator corresponds to βanchor with γ = 1. Similar to the discrete anchor
case, in case the test shifts are given by Mnew = γMΣAM

⊤ + γ′RR⊤, the worst-case robust risk
(9) is given by

Rrob(β; Θeq,Mnew) = γ′(Cker + ∥R⊤β∥2)2 +Rrob(β; θ
⋆, γMΣAM

⊤)

and for the best worst-case robustness of the anchor estimator it holds
Rrob(βanchor,Θeq;Mtest) = (Cker + ∥RR⊤(Σ⋆

η + γMΣAM
⊤)−1ΣS

η,ξ∥)2γ′ + const;

lim
γ′→0

Rrob(βanchor,Θeq;Mnew)/γ
′ = lim

γ′→0
M(Θeq,Mnew)/γ

′.

The above results follow by analogy with Appendix F.3.
11In other words, we require that the test distribution is a shifted version of the (arbitrarily) chosen reference

distribution.
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C.2 Distributionally robust invariant gradients (DRIG) [45]

DRIG [45] introduce a more general additive shift framework, where a collection of additive shifts
Ae is given with moments (µe,Σe). For each environment e, we observe data (Xe, Ye) distributed
according to the equations Xe = Ae + η; Ye = β⋆⊤Xe + ξ, where the noise is distributed like in
Equation (3). This DGP arises from the structural causal model assumption as described in Figure 1.
DRIG consider more a more general intervention setting, additionally allowing additive shifts of Y
and hidden confounders H . However, their identifiability results can only be shown for the case of
interventions on X , and since identifiability of the causal parameter is a crucial part of our analysis,
we only consider shifts on the covariates. DRIG assumes existence of a reference environment e = 0
with µ0 = 0 and for which it is required that the second moment of the reference environment is
dominated by the second moment of the training mixture:

Σ0 ⪯
∑
e∈[m]

we(Σe + µeµ
⊤
e ).

This assumption allows [45] to derive the DRIG estimator which is robust against test shifts upper
bounded by MDRIG := γ

∑
e∈[m] we(Σe − Σ0 + µeµ

⊤
e ). The following lemma allows us to make

further statements about MDRIG:
Lemma C.1. Let A and B be positive semidefinite matrices such that B ⪯ A. Then it holds that
range B ⊂ range A.

Proof. It suffices to show that kerA ⊂ kerB. (kerA ⊂ kerB implies that range A = (kerA)⊥ ⊂
(kerB)⊥ = range B.) Consider x ∈ kerA, x ̸= 0. Then it holds that x⊤(A − B)x = x⊤Ax −
x⊤Bx = 0− x⊤Bx ≥ 0, from which it follows that x⊤Bx = 0 and thus x ∈ kerB.

Because of the assumption Σ0 ⪯
∑

e∈[m] we(Σe+µeµ
⊤
e ), by Lemma C.1 it follows that range Σ0 ⊂

∪e≥1range (Σe + µeµ
⊤
e ) and thus

range MDRIG ⊆ range

∑
e≥1

we(Σe + µeµ
⊤
e )

 .

Hence, the robustness directions achievable by DRIG in the "dominated reference environment"
setting are the same as the ones under the assumption Σ0 = 0.
Again, we observe that the test shifts bounded by γMDRIG are fully contained in the space of
identified directions S. If the test shifts are instead bounded by Mnew := γMDRIG + γ′RR⊤,
including some unseen directions range R ⊂ S⊥, the robust risk in the DRIG setting is only partially
identified. The worst-case robust risk (9) is given by

Rrob(β; Θeq,Mnew) = γ′(Cker + ∥R⊤β∥2)2 +Rrob(β; θ
⋆, γMDRIG),

and again, the DRIG estimator is optimal for infinitesimal shifts γ′ and suboptimal for larger γ′:
Rrob(βDRIG; Θeq,Mnew) = (Cker + ∥RR⊤(Σ⋆

η + γMDRIG)
−1ΣS

η,ξ∥)2γ′ + const;

whereas
M(Θeq,Mnew)

γ′ = C2
ker, if γ′ ≥ γ′

th;

lim
γ′→0

M(Θeq,Mnew)

γ′ = (Cker + ∥RR⊤(Σ⋆
η + γMDRIG)

−1ΣS
η,ξ∥)2.

The above results follow by plugging Mnew with M := MDRIG into the proof of Corollary 3.2 in
Appendix F.3..

D Empirical estimation of the worst-case robust predictor

In this section, we discuss how to compute the worst-case robust loss and its minimizer from finite-
sample multi-environment training data. We first describe the finite-sample setting and provide a
high-level algorithm. We then discuss some parts of the algorithm in more detail. Finally, we show
that the empirical worst-case robust loss is consistent under certain assumptions. For simplicity, in
this section, we assume that Mtest = γSS⊤ + γ′RR⊤, where γ, γ′ ≥ 0, SS⊤ is a semi-orthogonal
matrix satisfying range SS⊤ ⊂ S and R is a semi-orthogonal matrix satisfying range R ⊂ S⊥.
However, the results and strategies in this section can be easily applied to more general Mtest.
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D.1 Computing the worst-case robust loss

Algorithm 1 Computation of the worst-case robust loss

1: Input: Multi-environment data D := ∪e∈Etrain
De, test shift strength γ > 0, test shift directions

M ∈ Rd×d, causal parameter upper bound C > 0.
2: Step 1: Estimate the training shift directions Ŝ(D), its orthogonal complement Ŝ⊥(D), and the

identified causal parameter β̂S .
3: Step 2: Estimate the identified and non-identified test shift directions Ŝ, R̂ and their projections

ŜŜ⊤ and R̂R̂⊤.
4: Step 3: Estimate the norm Ĉker of the non-identified causal parameter.
5: Step 4: Compute the worst-case robust loss function

Ln(β; β̂
S , ŜŜ⊤, R̂R̂⊤)← Lref(β;D0)︸ ︷︷ ︸

reference loss

+Linv(β; β̂
S , ŜŜ⊤, γ)︸ ︷︷ ︸

invariance penalty term

+Lid(β; Ĉker, R̂R̂⊤, γ)︸ ︷︷ ︸
non-identifiability penalty term

.

6: Return: worst-case robust predictor and the estimated minimax "hardness" of the problem:

β̂rob
Θeq
← argmin

β∈Rd

Ln(β; β̂
S , ŜŜ⊤, R̂R̂⊤);

M̂(D, γ,M)← min
β∈Rd

Ln(β; β̂
S , ŜŜ⊤, R̂R̂⊤).

Training data. We observe data from m + 1 training environments indexed by E ∈ Etrain =
{0, ...,m}, where E = 0 represents the reference environment. We impose a discrete probability
distribution PE on the training environment E ∈ Etrain, resulting in the joint distribution (X,Y,E) ∼
PX,Y |E × PE . For each environment E = e, we observe the samples De := {(Xe,i, Ye,i)}ne

i=1,
where (Xe,i, Ye,i) are independent copies of (Xe, Ye) ∼ PX,Y |E=e. Then, the resulting dataset is
D := ∪e∈Etrain

De with n := n0 + · · ·+ nm. Furthermore, for each environment E = e, we define
the weights we := ne/n.

Computation of the worst-case robust loss. In Algorithm 1, we present a high-level scheme for
computing the worst-case robust loss from multi-environment data, which consists of multiple steps.
First, nuisance parameters related to the training and test shift directions are estimated, which we
describe in more detail below. Afterwards, the three terms of the loss are computed: the (squared)
loss Lref(β;D0) on the reference environment is computed as

Lref(β;D0) =

n0∑
i=1

(Y0,i − β⊤X0,i)
2.

The invariance penalty term Linv(β; β̂
S , ŜŜ⊤, γ) (which increasingly aligns any estimator β in the

direction of the estimated invariant causal predictor β̂S as γ →∞) can be computed as following in
the linear SCM setting:

Linv(β; β̂
S , ŜŜ⊤, γ) = γ∥ŜŜ⊤(β − βS)∥22.

Finally, the non-identifiability penalty term Lid(β; Ĉker, R̂R̂⊤, γ) can be computed as follows:

Lid(β; Ĉker, R̂R̂⊤, γ)← γ(Cker + ∥R̂R̂⊤β∥2)2.

The non-identifiability term, with increasing γ, penalizes any predictor β towards zero on the subspace
R of non-identified test shift directions. In total, the worst-case robust loss (in the linear SCM setting)
equals

Ln(β; β̂
S , ŜŜ⊤, R̂R̂⊤) =

n0∑
i=1

(Y0,i − β⊤X0,i)
2 + γ∥ŜŜ⊤(β − βS)∥22 + γ(Cker + ∥R̂R̂⊤β∥2)2,

where we suppress dependence on C and γ and only leave the dependence on the nuisance parameters.
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Choice/Estimation of nuisance parameters. We now provide more details on the empirical
estimation of the nuisance parameters Ŝ, Ŝ, R̂, and β̂S .

• The constant C corresponds to the upper bound on the norm of the true causal parameter
β⋆. Thus, the practitioner chooses C in advance to ensure that (with high probability)
∥β⋆∥2 ≤ C.

• The training shift directions Ŝ can be computed via

Ŝ(D) = range

m∑
e=1

(Cov(Xe)− Cov(X0) + µeµ
⊤
e − µ0µ

⊤
0 ), (19)

where for e ∈ Etrain, the matrix Cov(Xe) is the empirical covariance matrix estimated
within the training environment E = e, and µe ∈ Rd is the empirical mean of the covari-
ates within the training environment E = e. Additionally, we compute the orthogonal
complement Ŝ⊥(D) of the space Ŝ(D)12.

• The decomposition of the test shift directions M into identified and non-identified shift
directions (and their corresponding projection matrices) can be computed as follows. Let
ΠŜ and ΠŜ⊥ denote the projection matrices on Ŝ(D) and Ŝ⊥(D), respectively. Consider
the singular value decompositions ΠŜM = UŜΣŜV

⊤
Ŝ and ΠŜ⊥M = UŜ⊥ΣŜ⊥V ⊤

Ŝ⊥ Then,
define

Ŝ = UŜ , R̂ = UŜ⊥ .

The subspaces range (ΠŜM) and range (ΠŜ⊥M) are minimal subspaces contained in
Ŝ and Ŝ⊥, respectively, such that range (M) ⊂ range (ΠŜM) ⊕ range (ΠŜ⊥M). The
matrices ŜŜ⊤ and R̂R̂⊤ are their corresponding projection matrices.

• The identified causal parameter β̂S (approximately) equals the true causal parameter
β⋆ on the space of training shift directions Ŝ. As conjectured in the anchor regression
literature [41, 45, 23] (see, for example, the discussion right after Theorem 3.4 in [23] and
Appendix H.3 therein) for γ →∞, the estimators βγ

anchor and βγ
DRIG converge to the causal

parameter β⋆ on S. Thus, the identified causal parameter can be estimated as

β̂S := ΠŜβ
∞
anchor or β̂S := ΠŜβ

∞
DRIG

for the setting of mean or mean+variance shifts, respectively.

D.2 Consistency of the worst-case robust predictor

For any estimator β ∈ Rd and given the estimated nuisance parameters φ̂ := (ŜŜ⊤, R̂R̂⊤, β̂S), we
define the sample worst-case robust risk as

Ln(β, φ̂) :=
1

n0

∑
i∈D0

(
Y0,i − β⊤X0,i

)2
+ γ∥ŜŜ⊤(β̂S − β)∥22 + γ

(√
C − ∥β̂S∥22 + ∥R̂R̂⊤β∥2

)2

.

(20)

Correspondingly, we define the estimator of the worst-case robust predictor by

β̂rob
Θeq

:= argmin
β∈B

Ln(β, φ̂), (21)

where B ⊆ Rd is some compact set whose interior contains the true parameter βrob
Θeq

.

To show the consistency of (21), we first require consistency of the nuisance parameter estimators,
which we state as an assumption.

12In general, S(D) is a proper subspace of Rd and the RHS of (19) corresponds to a sum of low-rank second
moments. This can be consistently estimated if, for instance, the rank of each shift is known (e.g. in the mean
shift setting), or the covariances have a spiked structure, allowing to cut off small eigenvalues.
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Assumption D.1. The estimated nuisance parameters φ̂ := (ŜŜ⊤, R̂R̂⊤, β̂S) are consistent, that is,
for n→∞,

∥ŜŜ⊤ − SS⊤∥F
P→ 0, ∥R̂R̂⊤ −RR⊤∥F

P→ 0, β̂S P→ βS := ΠSβ
⋆,

where for any matrix A ∈ Rm×q, ∥A∥F =
√
tr (A⊤A) denotes the Frobenius norm, and SS⊤,

RR⊤ are the corresponding population projection matrices onto ΠSM, ΠS⊥M respectively.

Depending on the assumptions of the data-generating process, Assumption D.1 can be shown to hold.
For example, in the anchor regression setting [41], the consistency of the projection matrices ŜŜ⊤,
R̂R̂⊤, and ΠŜ holds if the dimension of S is known (due to the mean shift structure). The proof
relies on the Davis–Kahan theorem (see, for example, [56]) and the consistency of the covariance
matrix estimator. Moreover, in the anchor regression setting, it is conjectured that the estimator
β∞
anchor converges to its population counterpart (as discussed right after Theorem 3.4 in [23] and

Appendix H.3 therein) which implies that β̂S := ΠŜβ
∞
anchor consistently estimates βS = ΠSβ

⋆.

Under the assumption of the consistency of the nuisance parameter estimators, we can now show
that (21) is a consistent estimator of the worst-case robust predictor.

Proposition 3. Consider the estimator β̂rob
Θeq

of the worst-case robust predictor defined in (21).
Suppose the optimization problem is over a compact set B ⊆ Rd whose interior contains the true
minimizer βrob

Θeq
. Moreover, suppose Assumption D.1 holds. Finally, assume that the covariance

matrix E [X0X
⊤
0 ] ≻ 0 with bounded eigenvalues and E [Y 2

0 ] <∞. Then, β̂rob
Θeq

is consistent, i.e., as
n, n0 →∞ it holds that

β̂rob
Θeq

P→ βrob
Θeq

.

D.3 Proof of Proposition 3

For ease of notation define β0 := βrob
Θeq

and β̂ := β̂rob
Θeq

. For any parameter of interest β ∈ B and
nuisance parameters φ = (PS , PR, b), define the function

(x, y) 7→ gβ,φ(x, y) := (y − β⊤x)2 + γ∥PS(b− β)∥22 + γ

(√
C − ∥b∥22 + ∥PRβ∥2

)2

. (22)

Using (22), the robust identifiable risk and its sample version defined in (20) can be written, respec-
tively as

L(β, φ) = E [gβ,φ(X0, Y0)], Ln(β, φ) =
1

n0

∑
i∈D0

gβ,φ(X0,i, Y0,i).

Our goal is to show that β̂ P→ β0. First, we show that the minimum of the loss is well-separated.
Lemma D.1. Suppose that E [X0X

⊤
0 ] ≻ 0. Then, for all δ > 0, it holds that

inf {L(β, φ0) : ∥β − β0∥2 > δ} > L(β0, φ0). (23)

Fix δ > 0. From the well-separation of the minimum from Lemma D.1, there exists ε > 0 such that{
∥β̂ − β0∥2 > δ

}
⊆
{
L(β̂, φ0)− L(β0, φ0) > ε

}
.

Therefore,

P
(
∥β̂ − β0∥2 > δ

)
≤ P

(
L(β̂, φ0)− L(β0, φ0) > ε

)
= P

(
L(β̂, φ0)− Ln(β̂, φ0) + Ln(β̂, φ0)− Ln(β̂, φ̂)

+Ln(β̂, φ̂)− Ln(β0, φ̂) + Ln(β0, φ̂)− L(β0, φ0) > ε
)

≤ P
(
L(β̂, φ0)− Ln(β̂, φ0) > ε/4

)
+ P

(
Ln(β̂, φ0)− Ln(β̂, φ̂) > ε/4

)
(24)

+ P
(
Ln(β̂, φ̂)− Ln(β0, φ̂) > ε/4

)
+ P (Ln(β0, φ̂)− L(β0, φ0) > ε/4) . (25)

We now want to prove convergence the four terms in (24) and (25). For this, we use the following
statements proved in Appendix D.4.
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Lemma D.2. Suppose B ⊆ Rd is a compact set. Moreover, assume that the covariance matrix
E [X0X

⊤
0 ] ≻ 0 with bounded eigenvalues and E [Y 2

0 ] <∞. Then, as n, n0 →∞ it holds that

sup
β∈B
|Ln(β, φ0)− L(β, φ0)|

P→ 0. (26)

Lemma D.3. As n→∞, it holds that

sup
β∈B
|Ln(β, φ̂)− Ln(β, φ0)|

P→ 0. (27)

The two terms in (24) converge to 0 by Lemma D.2 and Lemma D.3, respectively. The first term
in (25) equals 0 since β̂ minimizes β 7→ Ln(β, φ̂). Finally, we observe that

sup
β∈B
|Ln(β, φ̂)− L(β, φ0)|

P→ 0, (28)

since we have that

sup
β∈B
|Ln(β, φ̂)− L(β, φ0)| ≤ sup

β∈B
|Ln(β, φ̂)− Ln(β, φ0)|+ sup

β∈B
|Ln(β, φ0)− L(β, φ0)|,

where the first term converges in probability by Lemma D.3, and the second term converges in
probability by Lemma D.2. This implies that the second term in (25) converges to zero. Since δ > 0

was arbitrary, it follows that β̂ P→ β0.

D.4 Proof of auxiliary lemmas

D.4.1 Proof of Lemma D.1

By definition,

L(β, φ0) = E [(Y0 − β⊤X0)
2] + γ∥SS⊤(βS − β)∥22 + γ

(√
C − ∥βS∥22 + ∥RR⊤β∥2

)2

.

Since E [X0X
⊤
0 ] ≻ 0, the first term is strongly convex in β. Moreover, the second and third terms

are convex in β. Therefore, L(β, φ0) is strongly convex in β. Since L(β, φ0) is also continuous in β,
it follows that there exists a unique global minimum. Let β0 denote the global minimizer of L(β, φ0).
By the fact that L(β0, φ0) is a global minimum, and by definition of strong convexity, there exists a
positive constant m > 0 such that, for all β ∈ B,

L(β, φ0) ≥ L(β0, φ0) +
m

2
∥β − β0∥22. (29)

Fix δ > 0. Then, by (29), for all β ∈ B such that ∥β − β0∥2 > δ it holds that

L(β, φ0) ≥ L(β0, φ0) +
mδ2

2
> L(β0, φ0).

Since the inequality holds for all β ∈ B such that ∥β − β0∥2 > δ, we conclude that

inf{L(β, φ0) : ∥β − β0∥2 > δ} > L(β0, φ0).

Since δ > 0 was arbitrary, the claim follows.

D.4.2 Proof of Lemma D.2

Recall that for any β ∈ B

L(β, φ0) = E [gβ,φ0
(X0, Y0)], Ln(β, φ0) =

1

n0

∑
i∈D0

gβ,φ0
(X0,i, Y0,i).

To show the result, we must establish that the class of functions {gβ,φ0 : β ∈ B} is Glivenko–Cantelli.
From [53], a set of sufficient conditions for being a Glivenko–Cantelli class is that (i) B is compact,
(ii) β 7→ gβ,φ0

(x, y) is continuous for every (x, y), and (iii) β 7→ gβ,φ0
is dominated by an integrable

function. By assumption, (i) holds. Moreover, by (22), it follows that β 7→ gβ,φ0
is continuous
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for all (x, y) and thus (ii) holds. We now show that (iii) holds. Since B is compact we have that
supβ∈B∥β∥2 = C1 <∞. For fixed γ > 0, and all (x, y), we have that

gβ,φ0
(x, y) ≤ sup

β∈B
|gβ,φ0

(x, y)|

≤ sup
β∈B

(y − β⊤x)2 + 2γ∥SS⊤∥2F

(
∥βS∥22 + sup

β∈B
∥β∥22

)

+ γ

(√
C − ∥βS∥22 + ∥RR⊤∥F sup

β∈B
∥β∥2

)2

≤ 2y2 + 2C2
1∥x∥22 +K =: G(x, y),

(30)

where K <∞ is a finite constant not depending on (x, y). Furthermore, we have that

E [G(X0, Y0)] = 2E [Y 2
0 ] + 2C2

1 tr (E [X0X
⊤
0 ]) +K <∞, (31)

since E [Y 2] < ∞ and E [X0X
⊤
0 ] has bounded eigenvalues by assumption. From (30) and (31), it

follows that (iii) holds.

D.4.3 Proof of Lemma D.3

For fixed γ > 0, we have that
1

γ
sup
β∈B
|Ln(β, φ̂)− Ln(β, φ0)| ≤ sup

β∈B

∣∣∣∥ŜŜ⊤(β̂S − β)∥22 − ∥SS⊤(βS − β)∥22
∣∣∣ (32)

+ sup
β∈B

∣∣∣∣∣
(√

C − ∥β̂S∥22 + ∥R̂R̂⊤β∥2
)2

−
(√

C − ∥βS∥22 + ∥RR⊤β∥2
)2
∣∣∣∣∣ (33)

We can upper bound (32) as follows,

sup
β∈B

∣∣∣∥ŜŜ⊤(β̂S − β)∥22 − ∥SS⊤(βS − β)∥22
∣∣∣

= sup
β∈B

∣∣∣(β̂S − β)⊤ŜŜ⊤(β̂S − β)− (βS − β)⊤SS⊤(βS − β)
∣∣∣

= sup
β∈B

∣∣∣(β̂S − β)⊤ŜŜ⊤(β̂S − βS) + (β̂S − βS)⊤ŜŜ⊤(βS − β)

+(βS − β)⊤(ŜŜ⊤ − SS⊤)(βS − β)
∣∣∣

≤ 2 sup
β∈B
∥β̂S − β∥2 ∥ŜŜ⊤∥F ∥β̂S − βS∥2 + sup

β∈B
∥βS − β∥22 ∥ŜŜ⊤ − SS⊤∥F (34)

≤ C1∥β̂S − βS∥2 + C2∥ŜŜ⊤ − SS⊤∥F
P→ 0, (35)

where (34) follows from the Cauchy–Schwarz inequality and that ∥A∥2 ≤ ∥A∥F , the constants
C1, C2 <∞ in (35) follow from compactness of B, and the convergence in probability follows from
Assumption D.1. Furthermore, we can upper bound (33) as follows,

sup
β∈B

∣∣∣∣∣
(√

C − ∥β̂S∥22 + ∥R̂R̂⊤β∥2
)2

−
(√

C − ∥βS∥22 + ∥RR⊤β∥2
)2
∣∣∣∣∣

= sup
β∈B

∣∣∣∣C − ∥β̂S∥22 + ∥R̂R̂⊤β∥22 + 2

√
C − ∥β̂S∥22 ∥R̂R̂⊤β∥2

−C + ∥βS∥22 − ∥RR⊤β∥22 − 2
√

C − ∥βS∥22 ∥RR⊤β∥2
∣∣∣∣

≤ sup
β∈B

∣∣∣∥β̂S∥22 − ∥βS∥22
∣∣∣+ sup

β∈B

∣∣∣β⊤(R̂R̂⊤ −RR⊤)β
∣∣∣

+ 2 sup
β∈B

∣∣∣∣√C − ∥β̂S∥22 ∥R̂R̂⊤β∥2 −
√

C − ∥βS∥22 ∥RR⊤β∥2
∣∣∣∣

= (I) + (II) + (III).
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By Assumption D.1, (I) converges in probability to zero. Regarding (II), we have

sup
β∈B

∣∣∣β⊤(R̂R̂⊤ −RR⊤)β
∣∣∣ ≤ sup

β∈B
∥β∥22 ∥R̂R̂⊤ −RR⊤∥F

P→ 0,

where the inequality follows from Cauchy–Schwarz and that ∥A∥2 ≤ ∥A∥F , and the convergence
in probability follows from Assumption D.1 along with the compactness of B. It remains to upper
bound (III). We have that

(III)

2
≤ sup

β∈B

∣∣∣∣√C − ∥β̂S∥22 ∥R̂R̂⊤β∥2 −
√
C − ∥βS∥22 ∥R̂R̂⊤β∥2

∣∣∣∣
+ sup

β∈B

∣∣∣∣√C − ∥βS∥22 ∥R̂R̂⊤β∥2 −
√

C − ∥βS∥22 ∥RR⊤β∥2
∣∣∣∣

≤

(
sup
β∈B
∥β∥2 ∥R̂R̂⊤∥F

) ∣∣∣∣√C − ∥β̂S∥22 −
√
C − ∥βS∥22

∣∣∣∣
+ sup

β∈B

∣∣∣∣√β⊤R̂R̂⊤β −
√
β⊤RR⊤β

∣∣∣∣ (√C − ∥βS∥22
)

≤ C3

∣∣∣∥βS∥22 + ∥β̂S∥22
∣∣∣1/2 +√C sup

β∈B

∣∣∣β⊤(R̂R̂⊤ −RR⊤)β
∣∣∣1/2 (36)

≤ C3

∣∣∣∥βS∥22 + ∥β̂S∥22
∣∣∣1/2 +√C (sup

β∈B
∥β∥22 ∥R̂R̂⊤ −RR⊤∥F

)1/2

P→ 0. (37)

The inequality in (36) follows from the compactness of B, the fact that R̂R̂⊤ has bounded eigenvalues,
and that |

√
x − √y| ≤ |x − y|1/2 for all x, y ≥ 0. The inequality in (37) follows from Cauchy–

Schwarz and that ∥A∥2 ≤ ∥A∥F . The convergence in probability follows form Assumption D.1 and
the compactness of B.

E Details on finite-sample experiments

In this section, we provide more details of the data generation for our synthetic finite-sample
experiments as well as data processing for the real-world data experiments.

E.1 Synthetic experiments

For the synthetic experiments, we generate a random SCM which satisfies our assumptions. For d =
15, we randomly sample the joint covariance Σ⋆ of (η, ξ), fixing its total variance and the eigenvalues.
We consider 7 environments including the reference environment, and for each environment except
the reference, we randomly generate mean shifts µe of fixed norm 1. Since we have 6 non-zero
random Gaussian mean shifts, it holds a.s. that dimS = 6. We then randomly generate an "initial
guess" for β⋆ ∈ Rd of fixed norm C = 10. Now, with respect to the space S of the identifiable
directions induced by the mean shifts, we choose the most "adversarial" causal parameter β⋆

adv which
is equal to β⋆ on S, but on S⊥ has the opposite direction of the noise OLS estimator Σ⋆

η
−1Σ⋆

η,ξ.
We ensure that ∥β⋆

adv∥2 = C. Note that under the observed shifts, β⋆ and β⋆
adv are observationally

equivalent. We complete β⋆
adv to the set θadv of observationally equivalent model parameters and

generate the multi-environment training data according to θadv and the collection of mean shifts.

For Figure 3 (left), we define the test shift upper bound as Manchor = γ 1
7

∑
e µeµ

⊤
e . We vary γ from

0 to 10, and for each γ, we compute the oracle anchor regression estimator by minimizing the discrete
anchor regression loss with the correct γ. Additionally, we compute the pooled OLS estimator and
the worst-case robust predictor βrob

Θeq
as described in Appendix D. Finally, we generate test data with

a Gaussian additive shift Atest ∼ N (0,Manchor). We evaluate the loss of βOLS, βanchor and βrob
Θeq

on
this test environment and include the population lower bound.

For Figure 3 (right), we define the test shift upper bound as Mnew = γ 1
7

∑
e µeµ

⊤
e + γ′RR⊤, where

R is a 2-dimensional subspace of the space S⊥. We fix the magnitude γ of the ”seen” test shift
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directions at γ = 40 and set vary γ′ from 0 to 2 to showcase the effect of small unseen shifts
compared to large identified shifts. We compute the oracle anchor regression estimator by minimizing
the discrete anchor regression loss. Additionally, we compute the pooled OLS estimator and the
worst-case robust predictor βrob

Θeq
as described in Appendix D, for which we use the oracle γ′, given

Manchor and empirical estimates of the spaces S, S⊥, R.
Finally, we generate test data with a Gaussian additive shift Atest ∼ N (0,Mnew). We evaluate the
loss of βOLS, βanchor and βrob

Θeq
on this test environment, plot the resulting test losses for different

estimators and include the population lower bound.

E.2 Real-world data experiments
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Figure 5: The figures illustrate the structure of the (a) training-time shifts and (b-c) test-time shifts
for different perturbation strengths on the example of two covariates. Panel (a) shows the training
data containing two environments–observational (blue) and shifted (orange) corresponding to the
knockout of the gene ENSG00000089009. Panels (b) and (c) show the training data in grey and test
data from a previously unseen environment (green). Panel (b) depicts the top 10% test data points
closest to the training support (perturbation strength = 0.1). Panel (c) illustrates the full test data
(perturbation strength = 1.0).

We consider the K562 dataset from [38] and perform the preprocessing as done in [13]. The
resulting dataset consists of n = 162, 751 single-cell observations over d = 622 genes collected
from observational and several interventional environments. The interventional environments arise
by knocking down a single gene at a time using the CRISPR interference method [37]. Following
[44], we select only always-active genes in the observational setting, resulting in a smaller dataset of
28 genes. For each gene j = 1, . . . , 28, we set Y := Xj as the target variable and select the three
genes Xk1 , . . . , Xk3 most strongly correlated with Y (using Lasso), resulting in a prediction problem
over Y,Xk1 , . . . , Xk3 . Given this prediction problem, we construct the training and test datasets as
follows. Let O denote the 10,691 observations collected from the observational environment, and
let Ii denote the observations collected from the interventional environment where the gene ki was
knocked down. We will denote by Ii,s the s × 100 percent of datapoints in Ii that are closest to
the mean of gene ki in the observational environment O. For example, Ii,0.1 consists of the 10%
of datapoints in Ii closest to the observational mean of gene ki. Thus, the parameter s ∈ [0, 1] acts
as a proxy for the strength of the shift. Denote by I∗i,s a random sample of Ii,s of a certain size.
For each i ∈ {1, 2, 3}, we fit the methods on the training data Dtrain

i := O ∪ I∗i,1, with |I∗i,1| = 20.
Figure 5(a) illustrates an example of training data Dtrain

i . Having fitted the methods on Dtrain
i , we

evaluate them on test datasets constructed as follows. For each shift strength s ∈ {0.1, . . . , 0.9}
and proportion π ∈ {0, .33, .67, 1}, define the test dataset Dπ,s consisting of π observations from
∪ℓ ̸=iIℓ,s and 1−π (out-of-training) observations from Ii,s. An example of a test dataset for different
shift strengths s and previously unseen directions (i.e., π = 1) is shown in Figure 5(b-c). We compare
our method Worst-case Rob., defined as the minimizer of the empirical worst-case robust risk (20),
with anchor regression [41], invariant causal prediction (ICP) [35], Distributional Robustness via
Invariant Gradients (DRIG) [45], and OLS (corresponding to vanilla ERM). We use the following
parameters for Worst-case Rob.: γ = 50, Cker = 1.0, and M = Id. For anchor regression and DRIG,
we select γ = 50. For ICP, we set the significance level for the invariance tests to α = 0.05.
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These numerical experiments are computationally light and can be run in ≈ 5 minutes on a personal
laptop.13

F Proofs

F.1 Proof of Proposition 1

For every environment e ∈ Etrain, we observe the first moments E (Xe) and E (Ye), and second
moments E (XeX

⊤
e ), E (Y 2

e ) and E (XeYe). Since it holds by assumption that µ0 = 0 and Σ0 = 0,
we have that E (X0X

⊤
0 ) = Σ⋆

η , and so we can identify Σ⋆
η uniquely. Furthermore, it holds that

E (X0Y0) = Σ⋆
ηβ

⋆ +Σ⋆
η,ξ, (38)

E (XeYe) = (Σe + µeµ
⊤
e +Σ⋆

η)β
⋆ +Σ⋆

η,ξ. (39)

By taking the difference between Equation (39) and Equation (38), we can identify (Σe + µeµ
⊤
e )β

⋆.
Thus, the parameter β⋆ is identifiable on the subspace S defined in Equation (12) and is not identifiable
on its orthogonal complement S⊥. Thus, for any vector α ∈ S⊥ , the vector β = β⋆+α is consistent
with the data-generating process. It remains to compute the covariance parameters induced by an
arbitrary β̃ := β⋆ + α, for α ∈ S⊥. For every environment e ∈ Etrain, the second mixed moment
between Xe and Ye has to satisfy the following equality

E (XeYe) = (Σe + µeµ
⊤
e +Σ⋆

η)β
⋆ +Σ⋆

η,ξ = (Σe + µeµ
⊤
e +Σ⋆

η)β̃ + Σ̃η,ξ,

from which it follows that Σ̃η,ξ := Σ⋆
η,ξ − Σ⋆

ηα. By computing E (Y 2
e ) and inserting β̃ = β⋆ + α

and Σ̃η,ξ, we similarly obtain

σ̃2
ξ := (σ⋆

ξ )
2 − 2α⊤Σ⋆

η,ξ + α⊤Σ⋆
ηα.

Thus, we obtain the following set of observationally equivalent model parameters consistent with
Pθ⋆,Etrain :

Θeq = {β⋆ + α,Σ⋆
η,Σ

⋆
η,ξ − Σ⋆

ηα, (σ
⋆
ξ )

2 − 2α⊤Σ⋆
η,ξ + α⊤Σ⋆

ηα : α ∈ S⊥}.
Since the observationally equivalent set is identifiable from the training distribution, but model
parameters β⋆, Σ⋆

η,ξ , (σ⋆
ξ )

2 are not, it is helpful to re-express the observationally equivalent set through

identifiable quantities. For this, we note that the "identifiable linear predictor" βS = β⋆ − βS⊥

induces an observationally equivalent model given by

θS := (βS ,ΣS
η ,Σ

S
η,ξ, (σ

S
ξ )

2) = (βS ,Σ⋆
η,Σ

⋆
η,ξ +Σ⋆

ηβ
S⊥

, (σ⋆
ξ )

2
+ 2⟨Σ⋆

η,ξ, β
S⊥
⟩+ ⟨βS⊥

,Σ⋆
ηβ

S⊥
⟩).

From this reparameterization, we infer the final form of the observationally equivalent set :

Θeq = {βS + α,Σ′
η,Σ

S
η,ξ − Σ′

ηα, (σ
S
ξ )

2 − 2α⊤ΣS
η,ξ + α⊤Σ′

ηα : α ∈ S⊥} ∋ θ⋆

Therefore, Equation (13) follows. To find the robust predictor βrob, we write down the robust loss
with respect to Mtest and any θα from the observationally equivalent set :

Rrob(β; θα,Mtest) = (βS + α− β)⊤(Mtest +Σ⋆
η)(β

S + α− β)

+ 2(βS + α− β)⊤(Σ⋆
η,ξ − Σ⋆

ηα) + (σS
ξ )

2 − 2α⊤ΣS
η,ξ + α⊤Σ⋆

ηα.

inserting α ∈ S⊥ and rearranging, Equation (14) follows.

F.2 Proof of Theorem 3.1

We structure the proof as follows: first, we quantify the non-identifiability of the robust risk by
explicitly computing its supremum over the observationally equivalent set of the model parameters
(referred to as the worst-case robust risk). Second, we derive a lower bound for the worst-case robust
risk by considering two cases depending on how a predictor β interacts with the possible test shifts
Mtest.

13We use a 2020 13-inch MacBook Pro with a 1.4 GHz Quad-Core Intel Core i5 processor, 8 GB of RAM,
and Intel Iris Plus Graphics 645 with 1536 MB of graphics memory.

26



Computation of the worst-case robust risk. For any model-generating parameter θ = (β,Σ) it
holds that the robust risk of the model Equation (3) under test shifts Mtest ⪰ 0 is given by

Rrob(β; θ,Mtest) = (β − β)⊤(Mtest +Σ⋆
η)(β − β) + 2(β − β)⊤Ση,ξ + (σξ)

2.

We recall that the observationally equivalent set of model parameters after observing the multi-
environment training data Equation (3) is given by

Θeq = {βS + α,Σ⋆
η,Σ

S
η,ξ − Σ⋆

ηα, (σ
S
ξ )

2 − 2α⊤ΣS
η,ξ + α⊤Σηα : α ∈ S⊥}, (40)

where S is the span of identified directions defined in Equation (12). Moreover, we recall that by
Assumption 3.2, for any causal parameter β it should hold that ∥β∥2 = ∥βS + α∥2 ≤ C, which
translates into the following constraint for the parameter α:

∥α∥2 ≤
√
C2 − ∥βS∥22 =: Cker.

Inserting Equation (40) in Equation (9), we obtain

Rrob(β; Θeq,Mtest) = sup
α∈S⊥,

∥α∥2≤Cker

Rrob(β; θα,Mtest),

where θα is a short notation for (βS + α,Σ⋆
η,Σ

S
η,ξ − Σ⋆

ηα, (σ
S
ξ )

2 − 2α⊤ΣS
η,ξ + α⊤Σ⋆

ηα). We now
compute the supremum explicitly in case Mtest has the form Mtest = γMseen + γ′RR⊤, where
Mseen is a PSD matrix with range M ⊆ S and R is a semi-orthogonal matrix with range R ⊆ S⊥.
For any α ∈ S⊥, we write down the robust loss as

Rrob(β; θα,Mtest) = (βS − β)⊤(Mtest +Σ⋆
η)(β

S − β) + 2(βS − β)⊤ΣS
η,ξ + (σS

ξ )
2

+ α⊤Mtestα+ 2α⊤Mtest(β
S − β)

= Rrob(β; θ
S ,Mtest) + α⊤Mtestα+ 2α⊤Mtest(β

S − β).

The first term is the robust risk of β under test shift Mtest and the identified model-generating
parameter θS , thus it does not depend on α. By the structure of Mtest, we obtain that

f(α) := α⊤Mtestα+ 2α⊤Mtest(β
S − β) = γ′α⊤RR⊤α− γ′α⊤RR⊤β.

If γ′ = 0, i.e., the test shifts consist only of the identified directions, we have f(α) = 0, independently
of α, and thus

Rrob(β; Θeq,Mtest) = Rrob(β; θ
S ,Mtest).

This implies the first statement of the theorem.

We now consider the case where R ̸= 0, i.e., RR⊤ is a non-degenerate projection. Our goal is to
maximize f(α) subject to constraints α ∈ S⊥, ∥α∥2 ≤ Cker. Let R̃ be an orthonormal extension of
R such that range (R|R̃) = S⊥. Then, we can parameterize α ∈ S⊥ as α = (R|R̃)(ww̃ ) and the
corresponding Lagrangian reads

L(α, λ) = γ′α⊤RR⊤α− γ′α⊤RR⊤β + λ(C2
ker − ∥α∥22)

= γ′∥w∥22 − γ′w⊤R⊤β + λ(C2
ker − ∥(w, w̃)∥22).

Differentiating with respect to w, w̃ yields

w =
γ′

γ′ − λ
R⊤β;

w̃ = 0.

After differentiating w.r.t. λ, we obtain γ′

γ′−λ = ± Cker

∥R⊤β∥2
. By inserting in the objective function and

comparing, we obtain the value of the worst-case robust risk:

Rrob(β; Θeq,Mtest) = γ′C2
ker + 2γ′∥R⊤β∥2 +Rrob(β; θ

S ,Mtest) (41)

= γ′C2
ker + 2γ′∥R⊤β∥2 + β

⊤
RR⊤β + γ(βS − β)⊤Mseen(β

S − β) +R0(β, θ
S).

(42)
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Putting together the two cases and simplifying, we obtain

Rrob(β; Θeq,Mtest) = γ′(Cker + ∥R⊤β∥2)2 +Rrob(β; θ
S ,Mseen)

= γ′(Cker + ∥R⊤β∥2)2 + γ(βS − β)⊤Mseen(β
S − β) +R0(β, θ

S),
(43)

where Rrob(β; θ
S , γMseen) is the robust risk of the estimator β w.r.t. the "identified" test shift

γM and the identified model parameter θS , whereas R0(β, θ
S) is the risk of β on the reference

environment e = 0.

Derivation of the lower bound for the worst-case robust risk. Now that we have explicitly
computed the worst-case robust risk, we devote ourselves to the computation of the lower bound for
its best possible value

inf
β∈Rd

Rrob(β; Θeq,Mtest).

In this part, we will only consider the case R ̸= 0, since the case R = 0 corresponds to the (discrete)
anchor regression-like setting, where both the robust risk and its minimizer are uniquely identifiable,
and computable from training data. We will distinguish between two cases.

Case 1: ∥R⊤β∥2 = 0. In this case, β is fully located in the orthogonal complement of R, which
consists of S and R̃ (the orthogonal complement or R in S⊥). We will denote (the basis of) this
subspace by Stot = S⊕ R̃. Thus, Stot is the "total" stable subspace consisting of identified directions
in S and non-identified, but unperturbed directions R̃. We will parameterize β as β = Stotw. Thus,
we are looking to solve the optimization problem

βrob
Θeq

= argmin
w

(βS − Stotw)
⊤(γM⊤

seen +Σ⋆
η)(β

S − Stotw) + 2(βS − Stotw)
⊤ΣS

η,ξ + (σS
ξ )

2.

Setting the gradient to zero yields the asymptotic worst-case robust estimator

βrob
Θeq

= βS + Stot[S
⊤
tot(γM

⊤
seen +Ση)Stot]

−1S⊤
totΣ

S
η,ξ, (44)

which corresponds to the loss value of

Rrob(β
rob
Θeq

; Θeq,Mtest) = γ′C2
ker + (σS

ξ )
2 − 2ΣS

η,ξ
⊤Stot[S

⊤
tot(γM

⊤
seen +Ση)Stot]

−1S⊤
totΣ

S
η,ξ.

As we observe, this quantity grows linearly in γ′. However, as γ →∞, the quantity saturates and is
upper-bounded by (σS

ξ )
2.

Case 2:∥R⊤β∥2 ̸= 0. Since for ∥R⊤β∥2 ̸= 0, the objective function is differentiable, we compute
its gradient to be

∇Rrob(β; Θeq,Mtest) = 2γ′RR⊤β/∥RR⊤β∥+ 2γ′RR⊤β +∇Rrob(β; θ
S , γMseen)

= 2γ′RR⊤β/∥RR⊤β∥+ 2γ′RR⊤β + 2(Σ⋆
η + γMseen)(β − βS)− 2ΣS

η,ξ.

This equation is, in general, not solvable w.r.t. β in closed form. Instead, we provide the limit of the
optimal value of the function when the strength of the unseen shifts is small, i.e. γ′ → 0. We know
that for γ′ = 0, the minimizer of the worst-case robust risk is given by the anchor estimator

βanchor = βS + (Σ⋆
η + γMseen)

−1ΣS
η,ξ.

Instead, we lower bound the non-differentiable term 2γ′Cker∥R⊤β∥ by the scalar product
2γ′Cker⟨R⊤β, R⊤βanchor⟩/∥βanchor∥ and expect it to be tight for small γ′. After inserting this
lower bound in Equation (41) we obtain the minimizer of the lower bound of form

βLB = βS + (Σ⋆
η + γM + γ′RR⊤)−1(ΣS

η,ξ − γ′CkerRR⊤(Σ⋆
η + γM)−1ΣS

η,ξ).

We can now lower bound ∥RR⊤βLB∥ as

∥RR⊤βLB∥ ≥ ∥RR⊤(Σ⋆
η + γM)−1Σ⋆

η,ξ∥ − γ′ · const. (45)

Thus, the γ′-rate of the worst-case robust risk of βLB is at least γ′(Cker + ∥RR⊤(Σ⋆
η +

γM)−1Σ⋆
η,ξ∥)2 + O(γ′2), from which the claim for small γ′ follows. For Section 3.2, the lower

bound directly implies optimality of the worst-case robust risk of the anchor estimator when the
strength of the unseen shifts γ′ is small. Additionally. if γ = 0, i.e. only unseen test shifts occur, we
conclude that the OLS and anchor estimators have the same rates.
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Lower bound γ′
th for γ′. Finally, we want to derive a lower bound on the shift strength γ′ such

that for all γ′ ≥ γ′
th Case 1 of our proof is valid, i.e. it holds that βrob

Θeq
is given by the closed form

"abstaining" estimator (44). For this, we find γ′
th such that for all γ′ ≥ γ′

th zero is contained in the
subdifferential ofRrob(β

rob
Θeq

; Θeq,Mtest) at βrob
Θeq

. Then the KKT conditions are met, and βrob
Θeq

is the
unique minimizer of the worst-case robust risk due to strong convexity of the objective. We compute
the subdifferential to be

S = γ′Cker{RR⊤β : ∥β∥2 ≤ 1}+∇Rrob(β
rob
Θeq

; θS , γM).

Since βrob
Θeq

is the minimizer ofRrob(β; θ
S , γMseen) under the constraint R⊤β = 0, the gradient is

zero in R⊥ and it remains to show that

∥RR⊤∇Rrob(β
rob
Θeq

; θS , γMseen)∥ ≤ γ′Cker,

or

γ′ ≥ ∥RR⊤∇Rrob(β
rob
Θeq

; θS , γMseen)∥/Cker.

Via an upper bound on the projected gradient, we derive the stricter condition

γ′ ≥
∥RR⊤ΣS

η,ξ∥(1 + κ(Σ⋆
η))

Cker
,

where κ(Σ⋆
η) is the condition number of the covariance matrix.

F.3 Proof of Corollary 3.2

To obtain a new formulation for the worst-case robust risk, we start with (46) and expand

Rrob(β; Θeq,Mtest) = γ′(Cker + ∥R⊤β∥2)2 + γ(βS − β)⊤Manchor(β
S − β) +R0(β, θ

S)

= γ′(Cker + ∥R⊤β∥2)2 + γ(βS − β)⊤Manchor(β
S − β)

+ (βS − β)⊤Σ⋆
η(β

S − β) + 2(βS − β)ΣS
η,ξ + (σS

ξ )
2

= γ′(Cker + ∥R⊤β∥2)2 + (γ − 1)(βS − β)⊤Manchor(β
S − β) +R(β,PX,Y

train),
(46)

where we have used that the pooled second moment of X equals to Σ⋆
η +

∑
e we(µeµ

⊤
e ) = Σ⋆

η +
γManchor − (γ − 1)Manchor. This reformulation shows that the worst-case robust risk is equal to
the anchor population loss (cf. [41]) with an additional non-identifiability penalty term γ′(Cker +
∥R⊤β∥2)2.

We now want to evaluate the rates of the anchor and OLS estimators in terms of the magnitude γ′ of
unseen shift directions. We observe that only the non-identifiability term depends on γ′, whereas
the second term only depends on γ. First, we compute the closed-form anchor regression estimator,
which reads

βanchor = argmin
β∈Rd

Rrob(β, θ
S , γManchor) = βS + (Σ⋆

η + γManchor)
−1ΣS

η,ξ. (47)

Since βOLS equals to the anchor estimator with γ = 1, we obtain

βOLS = βS + (Σ⋆
η +Manchor)

−1ΣS
η,ξ.

The claim of the corollary now follows by computing ∥RR⊤βanchor∥ and ∥RR⊤βOLS∥ and observing
that the rest of the terms is constant on γ′.

Comparing to the lower bound (45) for the minimax quantity for the case of γ′ → 0, we observe
that the anchor estimator is optimal (achieves the minimax rate) in the limit γ′ → 0. Additionally,
if γ = 0 (only new shifts occur during test time), anchor and OLS have identical rates in γ′ and, in
particular, OLS (corresponding to vanilla empirical risk minimization) is minimax-optimal in the
limit of small unseen shifts.
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paper’s contributions and scope?
Answer: [Yes]
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Guidelines:
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made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the abstract and in Section 1, we highlight the setting that we consider. We
explicitly describe the assumptions in Section 2 and summarize the limitations in Section 5.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the approach.
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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of the results.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Appendix E provides all the necessary information to reproduce the experi-
mental results presented in Section 3.2. We provide details on empirical estimation of the
proposed loss function in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: While we do not provide the code, the paper provides all necessary information
on reproducing the experiment in Appendices D and E.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all details to understand the experimental results in Section 3.2 and
Appendix E.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification:
In the numerical experiment, shown in Figure 3, we provide the average test MSE and its
5% and 95%-quantiles over 100 repetitions for each method.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The numerical experiment described in Section 3.2 is computationally very
light and can be run on a personal laptop in a few minutes. We describe this in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and confirm that our work conforms
to it in all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Even if our work addresses the theoretical limits of distributional robustness,
we mention in the abstract and in Section 1 that the topic of distributional robustness is
central to safety-critical applications.

33

https://neurips.cc/public/EthicsGuidelines


Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work develops a theoretical framework and considers synthetic experi-
ments. Therefore, explicit safeguards do not seem applicable at this stage.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In the numerical experiment in Section 4, we cite the existing work that we
compare to our framework and the dataset used. In running the numerical experiment, we
reimplemented all the methods (including existing ones) for ease of comparison.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: At this stage, the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments or research with human
subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
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