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Abstract

In safety-critical applications, machine learning models should generalize well
under worst-case distribution shifts, that is, have a small robust risk. Invariance-
based algorithms can provably take advantage of structural assumptions on the
shifts when the training distributions are heterogeneous enough to identify the
robust risk. However, in practice, such identifiability conditions are rarely satisfied
– a scenario so far underexplored in the theoretical literature. In this paper, we aim
to fill the gap and propose to study the more general setting of partially identifiable
robustness. In particular, we define a new risk measure, the identifiable robust
risk, and its corresponding (population) minimax quantity that is an algorithm-
independent measure for the best achievable robustness under partial identifiability.
We introduce these concepts broadly, and then study them within the framework
of linear structural causal models for concreteness of the presentation. We use the
introduced minimax quantity to show how previous approaches provably achieve
suboptimal robustness in the partially identifiable case. We confirm our findings
through empirical simulations and real-world experiments and demonstrate how
the test error of existing robustness methods grows increasingly suboptimal as the
proportion of previously unseen test directions increases.

1 Introduction

The success of machine learning methods typically relies on the assumption that the training and
test data follow the same distribution. However, this assumption is often violated in practice. For
instance, this can happen if the test data are collected at a later time or using a different measuring
device. Without further assumptions on the test distribution, generalization under distribution shift is
impossible. However, practitioners often have partial information about the set of possible "shifts"
that may occur during test time, inducing a set of feasible test distributions that the model should
generalize to. We refer to the resulting set as the robustness set. WithR(β;P) denoting the population
risk of a model parameterized by β for distribution P, the robust risk can be written as

Rrob(β) := sup
P∈Prob(θ⋆)

R(β;P), (1)

where Prob(θ
⋆) corresponds to the robustness set that we assume to be fully characterized by some

true parameter θ⋆. In safety-critical applications, the goal is often to find a minimizer of the robust
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Table 1: Comparison of various distributional robustness frameworks and what kind of assumptions
their analysis can account for (with an incomplete list of examples for each framework).

Framework accounts for bounded
shifts

partial identifiability of
causal parameters

partial identifiability of
robustness set

DRO
[7, 16, 53, 35, 47] ✓ − ✗

Infinite robustness
[38, 18, 33, 42, 6, 2, 51, 57, 29, 1] ✗ ✗ ✗

Finite robustness
[45, 26, 14, 28, 49] ✓ ✓ ✗

Partially id. robustness
(this work) ✓ ✓ ✓

risk, i.e. a robust prediction model that shows the best performance on the worst-case distribution out
of the robustness set.

A number of subfields in machine learning and optimization have addressed this problem. For
example, in distributionally robust optimization (DRO) [7, 16], the parameter θ⋆ may be the training
distribution P and the robustness set the neighborhood of P in some probability distance metric [30,
35, 22, 15]. Relatedly, adversarial robustness [23, 32] studies the risk on worst-case transformations
of examples drawn from some distribution P and can be seen as equivalent to distribution shift
robustness [53]. DRO-type methods minimize the worst-case robustness against arbitrary distribution
shifts in the neighborhood without structural assumptions. Although being assumption-agnostic
can be viewed as a strength, it also has its caveat: even when available, prior knowledge about the
structure of expected test shifts cannot be incorporated. In such cases, the robust model’s prediction
might be overly conservative, resulting in suboptimal performance when the test shifts are in fact
more benign. [47].

In many practical scenarios, data from heterogeneous sources is available at training time – for
example, data from different geographic locations or time ranges. Due to the lack of modeling
assumptions, multiple environments in the DRO setting cannot, in general, be leveraged to achieve
better robustness in a given robustness set – in those contexts, the presence of multiple environments
is usually argued to enable robustness against a larger robustness set. Instead, domain experts can
anticipate which aspects of the joint probability distribution of (X,Y ) are more likely to shift. Such
prior structural information can, for example, be incorporated through the framework of structural
causal models (SCMs), via the approach of causality-oriented robustness [34, 11]. Importantly,
the literature in this area has so far focused on settings when the desired robust objective Rrob

is identifiable, i.e. computable from training data. Traditional causal learning and invariance-
based methods aim to fully identify some underlying causal parameter of the SCM for robustness
against all (potentially infinite) interventions [38, 42, 6, 29]. However, the training data is often not
heterogeneous enough to fully identify the causal parameter. Thus, another line of work [45, 50, 28]
focuses on the scenario when the causal parameter is not necessarily identifiable, but the test shifts
only occur in training directions, rendering the robust risk (1) identifiable. We provide an overview in
Table 1 and an additional discussion of related work in Appendix A.

In practice, causality- and invariance-based methods often result in wrong representations of the
data [27, 44] and end up performing similarly to empirical risk minimization (ERM) that ignores the
multi-environment information [3, 24, 43]. Many possible explanations for this observation have
been proposed in the literature. In our work, we focus on the non-identifiability failure scenario. In
particular, we extend the discussion of invariance-based methods to include the partially identifiable
setting, where not only the causal parameter, but the robust risk (1) is not determinable using training
data either1. Specifically, we aim to discuss the following question:

What is the optimal worst-case performance any model can have for given structural relationships
between test and training data and how do existing methods comparatively perform in such settings?

1Here, we mean partial identifiability of the robust risk, which is reminiscent of outputting uncertainty sets
for a quantity of interest in the field of partial identification [54, 19].
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When the robust risk is not identifiable from training data, we obtain a whole set of possible objectives
that includes the true robust risk. In this case, we are interested in the best achievable robustness for
any algorithm that we capture in a quantity called the identifiable robust risk:

Rrob,ID(β) := sup
possible

true model θ⋆

sup
P∈Prob(θ⋆)

R(β;P). (2)

Note that Rrob,ID(β) is well-defined even when the standard robust risk is not identifiable – it
takes the supremum over the robust risks induced by all possible true model parameters θ⋆ that are
consistent with the given set of training data distributions. Furthermore, the minimal value of the
identifiable robust risk corresponds to the optimal worst-case performance in the partially identifiable
setting. Spiritually, this minimax population quantity is reminiscent of the algorithm-independent
limits in classical statistical learning theory [58].2 Even though our partial identifiability framework
can be evaluated for arbitrary modeling assumptions on the distribution shift (such as covariate/label
shift, DRO, etc.), we present it in a concrete setting for clarity of the exposition. Specifically, we
discuss linear structural causal models (SCMs) with unobserved confounding (cf. Section 2), similar
to the setting of IV (instrumental variables) and anchor regression [45, 46].

The identifiable robust risk (2) not only represents a notion of algorithm-independent optimality
for any combination of training and test shifts. In the linear SCM setting in Section 2, we also
show theoretically and empirically that the ranking and optimality of different robustness methods
change drastically in identifiable vs. partially identifiable settings. The same can be observed in
experiments on real-world data. Our experimental results strongly indicate that evaluation and
benchmarking on partially identifiable settings are important for determining the effectiveness of
robustness methods. Finally, while the identifiable robust predictor is only provably optimal for the
linear SCM, experiments on real-world data in Section 3.3 suggest that our estimator may significantly
improve upon other invariance-based methods in more realistic scenarios.

2 Setting

In this section, we first introduce the linear causal model setting and describe our structural assump-
tions on the training and test distributions. Then, we introduce our framework for distributional
robustness that allows for partial identifiability and define the identifiable robust risk, the worst-case
robust risk among the possible robust risks induced by the training distributions.

2.1 Data distribution and a model of additive environmental shifts

Data distribution. We are given multiple training environments indexed by e ∈ Etrain, where
Etrain is a countable environment index set. For each training environment e, we observe data
(Xe, Ye) ∼ PX,Y

e consisting of input covariates Xe ∈ Rd and the target variable Ye ∈ R, which
are generated by the linear structural causal model (SCM) (3) and its corresponding causal graph,
depicted in Figure 1. Throughout the paper, we assume that we observe the collection of training
distributions Pθ⋆,Etrain = {PX,Y

θ⋆,e }e∈Etrain , omitting θ⋆ when it is clear from the context. We discuss
the corresponding finite sample setting in Appendix D.

We assume that the true unobserved parameters θ⋆ := (β⋆,Σ⋆) ∈ Θ, where Θ ⊂ Rd+(d+1)(d+1), are
invariant across environments. The joint covariance Σ⋆ of the noise (η, ξ) can be written in block

form as Σ⋆ =

(
Σ⋆

η Σ⋆
η,ξ

Σ⋆
η,ξ

⊤ (σ⋆
ξ )

2

)
. We allow the presence of latent confounders between Xe and Ye,

and hence the case where Σ⋆
η,ξ ̸= 0. Note that the confounded noise setting is, in general, more

challenging than the independent noise setting, since, given any number of environments, common
estimators such as the linear regression estimator are biased away from the causal parameter β⋆.

Additive distribution shift. The distribution shift between environments is modeled by the (ran-
dom) additive shift Ae ∈ Rd with mean E [Ae] = µe and covariance matrix Cov[Ae] = Σe. In

2In particular, extending (2) to its finite-sample counterpart would introduce a more natural extension of the
classical minimax risk statistical learning theory. In this work, we focus on identifiability aspects instead of
statistical rates.
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Xe

Ae H

Ye

Ae ∼ PA
e ;

(η, ξ) ∼ N (0,Σ⋆);

Xe = Ae + η;

Ye = β⋆⊤Xe + ξ.

(3)

Figure 1: (Left) Causal graph corresponding to the SCM in Equation (3). Observed variables
(Xe, Ye) are indicated by solid circles while unobserved variables, namely the additive shift Ae and
confounders H , are shown in dashed circles. Note that here, bidirectional edges indicate that the
relationship between two nodes can be in either direction.

general, the environment shifts Ae can be degenerate, i.e. the covariances Σe are not assumed
to be full rank. For simplicity of presentation, we further assume that Etrain contains a reference
environment e = 0 satisfying µ0 = 0 and Σ0 = 0. In Appendix B, we discuss how our results
apply if this condition is not met. Our additive shift structure implies that the joint distribution
PX,Y,A
e = PA

e × PX,Y |A changes in each environment. However, we do not allow for direct inter-
ventions on Y or the latent confounders, that is PX,Y |A remains invariant. Note that our distribution
shift setting is more general than covariate shift: due to unobserved confounding, the conditional
distribution PY |X

e also varies across environments.

In summary, our model (3) describes a multi-environment setting where different training distribu-
tions vary by changing the distribution PA

e of the random additive shifts Ae, but the causal model
parameters θ⋆ remain invariant across all training and test environments. It can model a variety
of multi-environment settings in the related literature. For instance, choosing |Etrain| = 1 and
A ∼ N (0,MΣAM

⊤), where M ∈ Rd×q,ΣA ∈ Rq×q, yields the setup of continuous anchor
regression [45]3. Discrete anchor regression [45] corresponds to a discrete environment index set
Etrain = [m],m ∈ N, and deterministic mean shifts Ae = µe ∈ Rd. The more general additive shift
setting in [49] corresponds to Etrain = [m] and Ae ∼ N (µe,Σe). Note that in the above works, the
environment index is modeled as a random variable E ∼ PE through which one assigns weights to
different training environments. The results in this paper only depend on the support of PE , that is,
whether an environment was seen or not. Thus, the population-level guarantees – the focus of this
paper – are the same for any distributions with the same support on PE .

Structural assumptions on test distribution shift. During test time, we expect to observe data that
follows a new, previously unseen distribution PX,Y

test . The test data are generated by the same SCM (3),
but with a new additive shift Atest ∼ PA

test with corresponding finite mean µtest and covariance Σtest.
Even though we do not observe PX,Y

test during training, we do assume partial knowledge about the
directions and sizes of possible distributions of the shift variable PA

test, that is

E [AtestAtest
⊤] = Σtest + µtestµtest

⊤ ⪯Mtest; (4)

where Mtest ⪰ 0. If the test distribution of X is given (as in the domain adaptation setting), one can
directly estimate the shift of the test environment and set Mtest := E [AtestAtest

⊤]4. In the following,
we consider the distributional robustness setting in which partial knowledge about test shifts is given
in form of their maximum strength γ and general directionM ⊆ Rd. We can then formalize this
partial knowledge by setting Mtest = γΠM, where γ > 0 and ΠM is an orthogonal projection onto
the subspaceM.5

2.2 Classical distributional robustness

Given the test shift directionsM and strength γ, our goal is to find an estimator using the training
data that has a small risk over the entire set of shifted test distributions, called the robustness set, that

3Note that in the anchor regression setup, the environment shift A, called anchor, is also observed, thus the
training data consist of (A,X, Y ).

4Even though we do not observe Atest, the structural assumptions on Atest correspond to assumptions on
E [X testX test⊤]− E [X0X

⊤
0 ].

5When more refined information on the test shifts is given by a general PSD matrix Mtest ∈ Rd×d, we can
replace it by the upper bound Mtest ⪯ λmax(Mtest)Πrange(Mtest) and apply our results on the upper bound.
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we define as

Pθ⋆(γΠM) := {PX,Y
θ⋆,test : E [AtestAtest

⊤] ⪯ γΠM}. (5)

For a given robustness set Pθ⋆(γΠM), we define the robust risk

Rrob(β; θ
⋆, γΠM) := sup

P∈Pθ⋆ (γΠM)

R(β;P), (6)

and the corresponding robust predictor βrob := argminβ∈Rd Rrob(β; θ
⋆, γΠM), whereR(β;P) :=

E P[(Y − β⊤X)2] denotes the risk w.r.t. to the squared loss. The robust risk and the robust predictor
can be explicitly computed as a function of the true model parameters θ⋆ = (β⋆,Σ⋆) and the test
shift bound γΠM:

βrob
θ⋆ = argmin

β∈Rd

sup
P∈Pθ⋆ (γΠM)

E P[(Y − β⊤X)2] = β⋆ + (γΠM +Σ⋆
η)

−1Σ⋆
η,ξ. (7)

In practice, neither the model parameters θ⋆ nor the robust risk Rrob itself can generally be fully
identified. Instead, in the next sections we show that the robust prediction model can usually only be
set-identified, except for specific combinations of the training and test shifts.

2.3 Partially identifiable robustness framework

In this section, we formally introduce the identifiable robust risk and related notions that allow us to
characterize model robustness in the case when the robust predictor cannot be identified. We start
with the notion of observational equivalence [17]:
Definition 1 (Observational equivalence). We call model parameters θ1 = (β1,Σ1) and θ2 =
(β2,Σ2) observationally equivalent with respect to a set of shift distributions {PA

e : e ∈ Etrain}6 if
they induce the same set Pθ,Etrain of training distributions over the observed variables (Xe, Ye) as
described in Section 2.1, i.e.

For all e ∈ Etrain : PX,Y
θ1,e

= PX,Y
θ2,e

.

By observing Pθ⋆,Etrain , we can identify the model parameters up to the observationally equivalent
set defined as

Θeq := {θ = (β,Σ) ∈ Θ : Pθ,Etrain
= Pθ⋆,Etrain

}.

When the observationally equivalent set is not a singleton, prior work only considers scenarios
where the robustness set (5) and hence also the robust prediction model are still identifiable (see
Equation (7)). This scenario is shown in Figure 2a and discussed again in Section 3.2. In general,
however, the observation of multiple training environments Pθ⋆,Etrain neither identifies the model
parameters nor the robustness set or robust risk, which is the partially identified setting that we focus
on. Instead, we can only compute a superset of the robustness set

PΘeq
(γΠM) :=

⋃
θ∈Θeq

Pθ(γΠM) ⊃ Pθ⋆(γΠM)

and correspondingly, a set of robust risks {Rrob(β; θ, γΠM) : θ ∈ Θeq} and robust predictors
BrobΘeq

:= {βrob
θ : θ ∈ Θeq}. In this case, we would still like to achieve the “best-possible” robustness,

which is intuitively test shift robustness for the “hardest-possible” parameters that could have induced
the observed training distributions.
Definition 2 (Identifiable robust risk and the minimax quantity). Consider the data model (3). The
identifiable robust risk is defined as

Rrob,ID(β; Θeq, γΠM) := sup
θ∈Θeq

Rrob(β; θ, γΠM). (8)

We will denote its minimizer as βrob,ID and refer to it as the identifiable robust predictor. The optimal
robustness on test shifts bounded by γΠM given training data Pθ⋆,Etrain

is described by the minimax
quantity

M(Θeq, γΠM) = inf
β∈Rd

Rrob,ID(β; Θeq, γΠM). (9)
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Figure 2: Relationship between identifiability of the model parameters and identifiability of the robust risk.
(a) The classical scenario where the test shift directions Mseen are contained in the span of training shifts so
that the robust risk and thus its minimizer are point-identified. (b) The more general scenario of this paper,
where the shift directions during test time Mgen can contain new shift directions and the robust risk can only be
set-identified.

The definition of the identifiable robust risk reflects the absence of knowledge of the model pa-
rameters in test shift directions that were not observed during training. In words, the most robust
parameter choice βrob,ID is the one that minimizes the worst-case robust risk for parameters in the
observationally equivalent set . In the next sections, we compute these quantities explicitly for the
setting of Section 2. This will allow us to compare the best achievable robustness in the partially
identified case with the guarantees of prior methods in this setting.

3 Main results for partially identified robustness
We now compute the identifiable robust risk (8) and derive a lower bound for the minimax quantity
(9) in the additive shift setting. We then compare the identifiable robust risk of existing robustness
methods and ordinary least squares (OLS) with the minimizer of the identifiable robust risk both
theoretically and empirically.

3.1 Minimax robustness results for the SCM

The degree to which the model parameters θ⋆ in the linear SCM setting (3) can be identified depends
on the number of environments and the total rank of the additive shifts. This is well-studied, for
instance, in the instrumental variable (IV) regression literature [4, 9]. In particular, in the setting of
Section 2.1, the causal parameter β⋆ can only be identified along the mean and variance shifts of
the covariates across the training data. Therefore, if not enough shift directions are observed, it is
merely set-identifiable. In the following, we show how set-identifiability of the model parameters
translates into set-identifiability of the robust prediction model (7). More formally, we denote by S
the subspace consisting of all additive shift directions seen during training:

S := range

[ ∑
e∈Etrain

(
Σe + µeµ

⊤
e

)]
. (10)

The definition of the space S induces the following orthogonal decompositions of the causal parameter
and test shift directionsM:

β⋆ = βS + βS⊥
, and ΠM ⪯ SS⊤ +RR⊤, (11)

where S and R are matrices with orthonormal columns such that range S ⊂ S, range R ⊂ S⊥ and
range S, range R are the smallest subspaces satisfying Equation (11)7. The matrix S corresponds
to test shift directions along the model can be identified. Conversely, R corresponds to test shift
directions, along which the model is non-identified. The vector βS is the identifiable part of the
causal parameter. It uniquely defines a set of identified model parameters that reads

θS := (βS ,ΣS
η ,Σ

S
η,ξ, (σ

S
ξ )

2) = (βS ,Σ⋆
η,Σ

⋆
η,ξ +Σ⋆

ηβ
S⊥

, (σ⋆
ξ )

2
+ 2⟨Σ⋆

η,ξ, β
S⊥
⟩+ ⟨βS⊥

,Σ⋆
ηβ

S⊥
⟩)

6In general, the distribution of Ae is unknown, since Ae is unobserved. In our setting, PA
e can be identified

because of the reference environment. Otherwise, one proceeds with relative shifts as described in Appendix B.
7The choice of S and R is not unique, but the subspaces range S, range R, which matter for our results, are.
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and can be computed from the training distributions. In the next proposition, we show that the model
parameters and robust predictor can be identified up to a set around θS , which can be interpreted as
the set’s geometric center. From the characterization of this set, it directly follows that the robust
predictor is only identifiable if the test shifts are in the direction of the training shifts, i.e.M⊂ S.
Proposition 1 (Identifiability of model parameters and robust predictor). Suppose that the set of
training and test distributions is generated according to Section 2.1, with some model parameter
θ ∈ Θ. Then, it holds that

(a) the model parameters generating the training distribution (3) can be identified up to the following
observationally equivalent set :

Θeq = Θ ∩ {βS + α,Σ⋆
η,Σ

S
η,ξ − Σ⋆

ηα, (σ
S
ξ )

2 − 2α⊤ΣS
η,ξ + α⊤Σηα : α ∈ S⊥} ∋ θ⋆; (12)

(b) the robust predictor βrob as defined in Equation (7) is identified up to the set

BrobΘ ∩ {βS + (γΠM +Σ⋆
η)

−1ΣS
η,ξ + (γΠM +Σ⋆

η)
−1α : α ∈ range R} ∋ βrob. (13)

The proof of Proposition 1 is provided in Appendix F.1. Proposition 1 implies two well-known
settings: If we observe a rich enough set PEtrain of training environments such that S = Rd, the
model parameters are uniquely identified, corresponding to the setting of full-rank instruments [4].
However, even in the under-identified case S ≠ Rd, if the test shift directionsM are contained in the
space S of training-time shifts, i.e. R = 0, the robust prediction model is identifiable from training
data regardless of the identifiability of the model parameters. This is the setting considered e.g. in
anchor regression [45] and discussed again in Section 3.2 and Appendix C.

So far, we have described how the identifiability of the robust prediction model depends on the
structure of both the training environments (via the space S) and the test environments (viaM). We
now aim to compute the smallest achievable robust loss for the general partially identifiable setting,
which allows for R ̸= 0. In particular, we provide a lower bound on the best-possible achievable
distributional robustness formalized by the minimax quantity (9). First observe that without further
assumptions on the parameter space Θ, the observationally equivalent set is unbounded, and the
identifiable robust risk (8) can be infinite. The following assumption allows us to provide a fine-
grained analysis of robustness in a partially identified setting.
Assumption 3.1 (Boundedness of the causal parameter). There exists a constant C > 0 such that
any causal parameter β generating the SCM (3) is norm-bounded by C, i.e. ∥β∥2 ≤ C and hence
Θ = Bd(C)× R(d+1)×(d+1).

Furthermore, two key quantities that appear in the bounds are Stot = Rd − range R, the space of
directions which are either identified or unperturbed during test time, and Cker =

√
C2 − ∥βS∥2,

the maximum norm of the non-identified part of the causal parameter β⋆. Finally, recall that the
reference distribution PX,Y

θ⋆,0 is observed and hence identifiable.

Theorem 3.1. Assume that the training and test data follow the data-generating mechanism in
Section 2.1 with test time shifts decomposed as in Equation (11) for some semi-orthogonal matrices
S,R with range S ⊂ S, range R ⊂ S⊥. Further, let Assumption 3.1 hold with parameter C. The
identifiable robust risk (8) is then given by

Rrob,ID(β; Θeq, γΠM) = γIR ̸=0(Cker + ∥R⊤β∥2)2 + γ∥S⊤(βS − β)∥22 +R(β;P
X,Y
θ⋆,0 ), (14)

Further, we obtain the following lower bound for the minimax quantity as defined in Equation (9):

M(Θeq, γΠM)

{
= γIR ̸=0C

2
ker +minR⊤β=0Rrob(β; θ

S , γSS⊤), if γ ≥ γth;

≥ γIR ̸=0C
2
ker +minβ∈Rd Rrob(β; θ

S , γSS⊤), else,

where γth =
(κ(Σ⋆

η)+1)∥RR⊤ΣS
η,ξ∥

Cker
. Moreover, if R ̸= 0, for small shifts

lim
γ→0

M(Θeq, γΠM)

γ
= (Cker + ∥RR⊤Σ⋆

η
−1ΣS

η,ξ∥)2. (15)

We prove Theorem 3.1 in Appendix F.2. In the case of no new test shifts, i.e., R = 0, is discussed
in prior work [45, 49], as the strength γ of the shift grows, the identifiable robust risk saturates. On
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the other hand, if R ̸= 0, i.e., the test shift contains new directions w.r.t. to the training data, the
best achievable robustness M(Θeq, γΠM) grows linearly with γ, and thus no infinite robustness is
possible. We highlight that the minimax quantity is attained by the identifiable robust predictor

βrob,ID = argmin
β∈Rd

Rrob,ID(β; Θeq, γΠM),

and for γ ≥ γth, the lower bound corresponds to its identifiable robust risk and thus is tight. Moreover,
γ ≥ γth, βrob,ID can be explicitly computed from the training distributions (cf. Appendix F.2) and is
orthogonal to the space range R of non-identifiable test shift directions. In other words, for large
shifts γ in non-identified directions, the optimal robust model would "abstain" from prediction in
those directions. For smaller γ, βrob,ID gradually utilizes less information in the non-identified
directions, thus interpolating between maximum predictive power (OLS) and robustness w.r.t. new
directions (abstaining). Note that the model βrob,ID is a population quantity that is identifiable
from the collection of training distributions. When only finite samples are available, we discuss in
Appendix D how we can still estimate the minimax quantity by minimizing an empirical loss function
(17) that can be computed from multi-environment data. Additionally, in Appendix D, we provide
details on the computation of the empirical identifiable robust risk and the corresponding estimator.

3.2 Theoretical analysis of existing finite robustness methods

We now evaluate existing finite robustness methods in our partial identifiability framework and
discuss in which scenarios they are far from the best achievable robustness. A spiritually similar
systematic comparison of domain adaptation methods is presented in [12], however, in our setting,
the robust risk is not identifiable from data. We impose a probability distribution on the environment
variable E ∈ Etrain s.t. P[E = e] = we, which allows us to compare to the anchor regression
framework and similar, where the environment weights are required to obtain an estimate of Mtest.
In our discussion, we focus on discrete anchor regression [45] and pooled OLS estimators8. In
discrete anchor regression, for each environment e, we observe data (Xe, Ye) following the SCM
Xe = µe + η; Ye = β⋆⊤Xe + ξ, where µe ∈ Rd are mean shifts and the noise is distributed like in
Equation (3). The discrete anchor regression estimator minimizes the following robust risk:

βanchor = argmin
β∈Rd

Rrob(β; θ
⋆, γManchor),

where Manchor =
∑

e∈Etrain
weµeµ

⊤
e . The pooled ordinary least squares (OLS) estimator βOLS

corresponds to βanchor with γ = 1. We observe that the test shifts bounded by γManchor are fully
contained in the space of identified directions S , since S = range ∪e∈Etrain

µeµ
⊤
e = rangeManchor.

Thus, according to Proposition 1, the robust risk and robust predictor βanchor are identifiable for all
γ > 0. We now evaluate the robustness performance of βanchor and βOLS with respect to the more
general shifts bounded by Mnew := γManchor + γ′RR⊤, thus consisting of training-identified shifts
Manchor and a possibly smaller share of previously unseen shifts in range R ⊂ S⊥. With respect to
Mnew, the robust risk is only partially identified, and identifiable robust risk (8) given by

Rrob,ID(β; Θeq,Mnew) = γ′(Cker + ∥R⊤β∥2)2 +Rrob(β; θ
⋆, γManchor).

We evaluate how the identifiable robust risks (14) of both previous methods depend on the strength
γ′ of the previously unseen shift:

Rrob,ID(βanchor; Θeq,Mnew)/γ
′ = (Cker + ∥RR⊤(Σ⋆

η + γManchor)
−1ΣS

η,ξ∥)2 + o(γ′);

Rrob,ID(βOLS; Θeq,Mnew)/γ
′ = (Cker + ∥RR⊤(Σ⋆

η +Manchor)
−1ΣS

η,ξ∥)2 + o(γ′).

In contrast, for the best achievable robustness in the anchor setting9 it holds

M(Θeq,Mnew)

γ′ = C2
ker + o(γ′), if γ′ ≥ γth;

lim
γ′→0

M(Θeq,Mnew)

γ′ = (Cker + ∥RR⊤(Σ⋆
η + γManchor)

−1ΣS
η,ξ∥)2.

8In Appendix C, we show that analogous results hold for continuous anchor regression and the method of
distributionally robust invariant gradients (DRIG) [49].

9Here, we only vary γ′, whereas γ is fixed.
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Figure 3: Test error under a partially unidentified distribution shift Atest of the baseline estimators βOLS, βanchor

(using the "correct" γ) for finite robustness and the identifiable robust predictor in (mean-shifted) multi-
environment finite-sample experiments in the classical identified setting (left) and the partially identified
robustness setting (right). The details of the experimental setting can be found in Appendix E.

Thus, the anchor regression estimator is optimal in the limit of small unseen shifts but significantly
deviates from the best achievable robustness for smaller shifts. This is due to the fact that the term
∥RR⊤(Σ⋆

η +γManchor)
−1ΣS

η,ξ∥ only goes to zero as γ →∞ (yielding the minimax risk) if Manchor

is full-rank, otherwise, it is strictly bounded from below as Σ⋆
η is full-rank. Moreover, under some

conditions on the covariance matrix (e.g., if Σ⋆
η is block-diagonalizable w.r.t. S and S⊥), pooled

OLS and the anchor estimator achieve the same rate in γ′, showcasing how finite robustness methods
can perform similarly to empirical risk minimization if the assumptions on the robustness set are not
met. We provide additional comparisons in Appendix C.

3.3 Experimental results

In this section, we provide empirical evidence of our theoretical conclusions in Section 3.1 and
Section 3.2. In particular, we compare the prediction performance of multiple existing robustness
methods to the minimax lower bound, estimated by the identifiable robust predictor – including
partially idenfitiable settings in which the test data contains shifts in previously unseen directions.
We observe that both in a synthetic adversarial setting, empirical risk minimization and invariance-
based robustness methods have significantly sub-optimal test loss in the partially identified setting,
confirming our theoretical predictions in Section 3.2.Furthermore, we observe that even though the
minimizer of identifiable robust risk is optimal only for the linear causal setting in Section 2.1, it
surprisingly outperforms existing methods in a real-world experiment.

Experiments on synthetic Gaussian data We simulate Gaussian covariates according to Equa-
tion (3) with multiple environments differing by linearly independent randomly selected mean shifts.
Given a fixed confounding model represented by a noise covariance Σ and fixed directions S of
training mean shifts, we "evaluate" the identifiable robust risk by first picking the most adversarial
β⋆ for fixed Σ and S, and then computing its robust risk (6). We describe the full details of the
data generation and loss evaluation in Appendix E. We consider two shift scenarios: in the first
one, corresponding to the identifiable case in Figure 2a, the test environment is only perturbed by
bounded shifts in training directions, as considered in prior work [45, 49]. In the second scenario,
corresponding to the non-identifiable case Figure 2b, the test environment is perturbed by a mixture of
training shifts and shifts in previously unobserved directions. We compute the empirical minimizers
β̂OLS, β̂anchor and β̂rob,ID of the OLS, anchor regression and identifiable robust losses, respectively,
and compare their test MSE (mean squared error) in Figure 3. In the first (identifiable) setting –
Figure 3 (left) – the robust risk is asymptotically constant across γ for both robust methods, while the
error for the vanilla ERM or OLS estimator increases linearly. In contrast, in the second, partially
identified, setting – Figure 3 (right) – all estimators exhibit linearly increasing test errors; however the
slopes of the anchor and OLS estimator are much steeper and lead to larger errors than the empirical
minimizer of (14) that closely matches the analytic theoretical lower bound.

Real-world data experiments We consider the single-cell gene expression dataset from [41],
which consists of single-cell observations over d = 622 genes collected from both observational and
several interventional environments. Following [48], we only select the 28 genes that are active in the
observational environment. For each gene j = 1, . . . , 28, we generate a dataset Dj where Y := Xj

9



0% unseen directions 33% unseen directions 67% unseen directions 100% unseen directions

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

0.1

0.2

0.3

0.4

0.5

Perturbation strength

T
es

t M
S

E

Methods: Rob-ID Anchor DRIG ICP OLS

Figure 4: The figures show the performance of the identifiable robust predictor (Rob-ID) compared to other
methods as a function of perturbation strength s (which is obtained by selecting the s × 100 percent of data
points closest to the observational mean). Different panels correspond to the proportion of unseen shift directions
at test time. For each panel and perturbation strength s, each point represents an average over the 28 target genes
and three experiments (i.e., training environments).

is the target variable and the covariates are the three genes most strongly correlated with Y . For each
Dj , we perform three experiments – every experiment uses a different interventional environment
besides the observational data as training data (an illustration of the data structure can be found in
Figure 5). We then separately compute the mean-squared error on subsets of samples from all three
interventional environments (including held-out samples from the interventional environment used for
training). As a proxy for shift strength γ > 0, for each test environment, we pick the s×100% of data
points closest to the observational mean. More details on this process can be found in Appendix E.
We describe the computation of the identifiable robust estimator in Appendix D. In Figure 4, we
show the test MSE of various OOD methods and the identifiable robust estimator as a function of s,
presented in four different scenarios: no unseen shifts (left), some proportion of unseen shifts (middle
panels) and 100% unseen shift directions (right). We compare the performance of anchor regression
[45], invariant causal prediction (ICP) [38], Distributional Robustness via Invariant Gradients (DRIG)
[49], and OLS with our estimated lower bound Rob-ID. We observe that the performance ranking of
the robustness methods significantly varies with the proportion of new test shift directions. When
no new shift information is present, anchor regression and DRIG are optimal. However, as soon as
some unseen directions are present, their performance becomes inferior to OLS/ERM and the gap to
the minimizer of the identifiable robust risk (in the setting in Section 2) grows with the proportion
of unseen shifts. While the MSE of the previous invariant methods increases drastically with the
strength of the test shift, the test loss of the identifiable robust predictor remains relatively stable.

4 Conclusion and future directions

This paper introduces the identifiable robust risk that is well-defined even in settings where the robust
risk is not computable from training distributions. When the robustness set is identifiable (such as
anchor regression-related methods [45, 49]), the identifiable robust risk reduces to the conventional
robust risk. In this paper, we instantiate our general framework for linear structural causal models
with additive shifts. We compute tight lower bounds for this setting and show how existing invariance-
based methods are suboptimal. Further, we demonstrate how i) the benefits of invariance-based
methods strongly decrease in the partially identifiable setting; and ii) this suboptimality increases
with perturbation strength and proportion of previously unobserved test shifts.

The main limitation of our paper is its reliance on a linear causal setting to explicitly compute the
observationally equivalent set and estimate the minimax quantity. However, we expect that the results
and intuition developed in this paper can be extended to linear shifts in a lower-dimensional latent
space via a suitable parametric or non-linear map [55, 10]. Important future directions include
extending our results to more general causal graphs, non-linear relationships between covariates,
non-additive shifts and the classification setting. Further, a potential use of our work is in the field of
active intervention selection (e.g, [60, 21]). By computing the most adversarial model parameter for
a given estimator, e.g., OLS, we can obtain an intervention which minimizes the identifiable robust
risk of the estimator on the next unseen shift.
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A Extended related work

To put our work into context, first, we discuss relevant distributional robustness literature organized
according to structural assumptions on the desired robustness set. Second, we summarize existing
views on partial identifiability in the causality and econometrics literature and how our findings
connect to their perspective.

No structural assumptions on the shift. DRO: Distributionally robust optimization (DRO) tackles
the problem of domain generalization when the robustness set is a ball around the training distribution
w.r.t. some probability distance measure, e.g., Wasserstein distance [53, 35] or f -divergences [7, 16].
Considering all test distributions in a discrepancy ball can lead to overly conservative predictions, and
therefore, alternatives have been proposed in, e.g., the Group DRO literature [47, 20, 31]. However,
these methods cannot protect against perturbations larger than the ones seen during training time and
do not provide a clear interpretation of the perturbations class [49].

Structural assumptions on the shift. Robustness from the lens of causality takes a step further, by
assuming a structural causal model [37] generating the observed data (X,Y ). Infinite robustness
methods: The motivation of causal methods for robustness is that the causal function is worst-case
optimal to predict the response under interventions of arbitrary direction and strength on the covariates
[34, 11]. For this reason, causal models achieve what we call infinite robustness. Depending on the
assumptions of the SCM, there are different ways to achieve infinite robustness. When there are
no latent confounders, several works [38, 18, 33, 42, 2, 6, 51, 57, 29, 1] aim to identify the causal
parents and achieve infinite robustness by exploiting the heterogeneity across training environments.
In the presence of latent confounders, it is possible to achieve infinite robustness by identifying the
causal function with, e.g., the instrumental variable method [5, 25, 52, 8, 36]. There are different
limitations to infinitely robust methods. First, the identifiability conditions of the causal parents
and/or causal function are often challenging to verify in practice. Second, ERM can outperform these
methods when the interventions (read shifts) at test time are not arbitrarily strong or act directly on
the response or latent variable [3, 24]. Finite robustness methods: In real data, shifts of arbitrary
direction and strength in the covariates are unrealistic. Thus, different methods [45, 26, 28, 49, 14]
trade off robustness against predictive power to achieve what we call finite robustness. The main idea
of finite robustness methods is to learn a function that is as predictive as possible while protecting
against shifts up to some strength in the directions that are observed during training time. These
methods, however, only provide robustness guarantees that depend on the heterogeneity of the training
data and do not offer insights into the limits of algorithm-independent robustness under shifts in new
directions.

Partial identifiability: The problem of identification is at the center of the causal and econometric
literature [39, 4]. It studies the conditions under which the (population) training distribution uniquely
determines the causal parameters of the underlying SCM. Often, the training distribution only offers
partial information about the causal parameters and, therefore, determines a set of observational
equivalent parameters. This setting is known as partial or set identification and is used in causality
and econometrics to learn intervals within which the true causal parameter lies [54]. In this work, we
borrow the notion of partial identification to study the problem of distributional robustness when the
robustness set itself is only partially identified.

B Extension to the general additive shift setting

We discuss how our setting changes when we relax the assumptions on the existence of the reference
environment. We consider the data-generating process in Equation (3), where Etrain = [m], m ∈ N.
If no environment e exists with µe = 0 and Σe = 0, we first pick an arbitrary distribution PX,Y

ref as
the reference environment10 . We denote Σ′

η := Σ⋆
η +Σref .

First, we show we can express the space S of training additive shift directions defined in Equation (10)
in the general case. We center all distributions by µref , so that E [Xe] = µe − µref for all e ∈ Etrain.

10In practice, it is useful to pick a distribution with the smallest covariance, i.e. trCov(Xref) ≤ trCov(Xe)
for all e.
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With respect to the arbitrary reference environment, we now define

S̃ := range
⋃

e∈Etrain

(
Σe − Σref + (µe − µref)(µe − µref)

⊤) ⊂ Rd.

We now consider test shifts with respect to the environment PX,Y
ref

11. We define the test shift upper
bound γΠM. Again, we can decompose the upper bound as γΠM = γSS⊤ + γRR⊤, where
SS⊤ and RR⊤ are orthogonal projections onto S ∩ M and S⊥ ∩ M, respectively. Again, we
can decompose the causal parameter β⋆ as β⋆ = βS + βS⊥

. The projection βS of the causal
parameter onto the relative training shifts induces the following observationally equivalent parameters
corresponding to the reference distribution:

θS := (βS ,Σ′
η,Σ

S
η,ξ, (σ

S
ξ )

2) = (βS ,Σ′
η,Σ

⋆
η,ξ +Σ′

ηβ
S⊥

, (σ⋆
ξ )

2
+ 2⟨Σ⋆

η,ξ, β
S⊥
⟩+ ⟨βS⊥

,Σ′
ηβ

S⊥
⟩).

Again, θS can be identified from the training distributions and is referred to as the identified model
parameters. The following adapted version of Proposition 1 shows that assuming shifts on PX,Y

ref , the
robust prediction model is only identifiable if the test shifts are in the direction of the relative training
shifts:

Proposition 2 (Identifiability of reference distribution parameters and robust prediction model).
Suppose that the set of training and test distributions is generated according to Equations (3) and (4).
Then, θS is observationally equivalent to θ⋆ and computable from training distributions. Furthermore,
it holds that

(a) the model parameters generating the reference distribution can be identified up to the following
observationally equivalent set :

Θeq = {βS + α,Σ′
η,Σ

S
η,ξ − Σ′

ηα, (σ
S
ξ )

2 − 2α⊤ΣS
η,ξ + α⊤Σ′

ηα : α ∈ S⊥} ∋ θ⋆

(b) the robust prediction model βrob as defined in Equation (7) is identified up to the set

βS + (γΠM +Σ′
η)

−1ΣS
η,ξ + {(γΠM +Σ′

η)
−1α : α ∈ range R} ∋ βrob

The proof is analogous to Appendix F.1. A version of Theorem 3.1 for perturbations on the reference
environment follows accordingly.

C Comparison to finite robustness methods continued

C.1 Continuous anchor regression [45]

In the continuous anchor regression setting, during training we observe the distribution according
to the SCM X = MA + η; Y = β⋆⊤X + ξ, where A ∼ N (0,ΣA) is an observed q-dimensional
anchor variable and M ∈ Rd×q is a known matrix. Note that in this setting, we do not have a
reference environment, but, since the anchor variable is observed, the distribution of the additive
shift MA is known. The test shifts are assumed to be bounded by Mtest = γMΣAM

⊤. Since
rangeMtest ⊂ S = rangeM , no new directions are observed during test time, in other words, R = 0.
Thus, both the corresponding robust loss and the anchor regression estimator can be determined from
training data. It holds that

βanchor = argmin
β∈Rd

Rrob(β; θ
⋆, γMΣAM

⊤).

Again, the pooled OLS estimator corresponds to βanchor with γ = 1. Similar to the discrete anchor
case, in case the test shifts are given by Mnew = γMΣAM

⊤ + γ′RR⊤, the identifiable robust risk
(8) is given by

Rrob,ID(β; Θeq,Mnew) = γ′(Cker + ∥R⊤β∥2)2 +Rrob(β; θ
⋆, γMΣAM

⊤)

11In other words, we require that the test distribution is a shifted version of the (arbitrarily) chosen reference
distribution.
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and for the best achievable robustness of the anchor estimator it holds

Rrob,ID(βanchor,Θeq;Mnew)/γ
′ = (Cker + ∥RR⊤(Σ⋆

η + γMΣAM
⊤)−1ΣS

η,ξ∥)2 + o(γ′);

lim
γ′→0

Rrob,ID(βanchor,Θeq;Mnew)/γ
′ = lim

γ′→0

M(Θeq,Mnew)

γ′ .

The above results follow by plugging Mnew with M := Manchor into the proof of Theorem 3.1 in
Appendix F.2.

C.2 Distributionally robust invariant gradients (DRIG) [49]

DRIG [49] uses the framework of Gaussian additive shifts Ae ∼ N (µe,Σe). For each environment e,
we observe data (Xe, Ye) distributed according to the SCM Xe = Ae + η; Ye = β⋆⊤Xe + ξ, where
the noise is distributed like in Equation (3). DRIG consider more a more general intervention setting,
additionally allowing additive shifts of Y and hidden confounders H . However, their identifiability
results can only be shown for the case of interventions on X , and since identifiability of the causal
parameter is a crucial part of our analysis, we only consider shifts on the covariates. DRIG assumes
existence of a reference environment e = 0 with µ0 = 0 and for which it is required that the second
moment of the reference environment is dominated by the second moment of the training mixture:

Σ0 ⪯
∑
e∈[m]

we(Σe + µeµ
⊤
e ).

This assumption allows [49] to derive the DRIG estimator which is robust against test shifts upper
bounded by MDRIG := γ

∑
e∈[m] we(Σe − Σ0 + µeµ

⊤
e ). The following lemma allows us to make

further statements about MDRIG:
Lemma C.1. Let A and B be positive semidefinite matrices such that B ⪯ A. Then it holds that
range B ⊂ range A.

Proof. It suffices to show that kerA ⊂ kerB. (kerA ⊂ kerB implies that range A = (kerA)⊥ ⊂
(kerB)⊥ = range B.) Consider x ∈ kerA, x ̸= 0. Then it holds that x⊤(A − B)x = x⊤Ax −
x⊤Bx = 0− x⊤Bx ≥ 0, from which it follows that x⊤Bx = 0 and thus x ∈ kerB.

Because of the assumption Σ0 ⪯
∑

e∈[m] we(Σe+µeµ
⊤
e ), by Lemma C.1 it follows that range Σ0 ⊂

∪e≥1range (Σe + µeµ
⊤
e ) and thus

rangeMDRIG ⊆ range

∑
e≥1

we(Σe + µeµ
⊤
e )

 .

Hence, the robustness directions achievable by DRIG in the "dominated reference environment"
setting are the same as the ones under the assumption Σ0 = 0.
Again, we observe that the test shifts bounded by γMDRIG are fully contained in the space of
identified directions S. If the test shifts are instead bounded by Mnew := γMDRIG + γ′RR⊤,
including some unseen directions range R ⊂ S⊥, the robust risk in the DRIG setting is only partially
identified. The identifiable robust risk (8) is given by

Rrob,ID(β; Θeq,Mnew) = γ′(Cker + ∥R⊤β∥2)2 +Rrob(β; θ
⋆, γMDRIG),

and again, the DRIG estimator is optimal for infinitesimal shifts γ′ and suboptimal for larger γ′:

Rrob,ID(βDRIG; Θeq,Mnew)/γ
′ = (Cker + ∥RR⊤(Σ⋆

η + γMDRIG)
−1ΣS

η,ξ∥)2 + o(γ′);

M(Θeq,Mnew)

γ′ = C2
ker, if γ′ ≥ γth;

lim
γ′→0

M(Θeq,Mnew)

γ′ = (Cker + ∥RR⊤(Σ⋆
η + γMDRIG)

−1ΣS
η,ξ∥)2.

The above results follow by plugging Mnew with M := MDRIG into the proof of Theorem 3.1 in
Appendix F.2.
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D Empirical estimation of the identifiable robust predictor

In this section, we discuss how to compute the identifiable robust loss and its minimizer from finite-
sample multi-environment training data. We first describe the finite-sample setting and provide a
high-level algorithm. We then discuss some parts of the algorithm in more detail. Finally, we show
that under certain assumptions, the empirical identifiable robust loss is consistent.

D.1 Computing the identifiable robust loss

Algorithm 1 Computation of the identifiable robust loss

1: Input: Multi-environment data D := ∪e∈Etrain
De, test shift strength γ > 0, test shift directions

M ∈ Rd×d, causal parameter upper bound C > 0.
2: Step 1: Estimate the training shift directions Ŝ(D), its orthogonal complement Ŝ⊥(D), and the

identified causal parameter β̂S .
3: Step 2: Estimate the identified and non-identified test shift directions Ŝ, R̂ and their projections

ŜŜ⊤ and R̂R̂⊤.
4: Step 3: Estimate the norm Ĉker of the non-identified causal parameter.
5: Step 4: Compute the identifiable robust loss function

Ln(β; β̂
S , ŜŜ⊤, R̂R̂⊤)← Lref(β;D0)︸ ︷︷ ︸

reference loss

+Linv(β; β̂
S , ŜŜ⊤, γ)︸ ︷︷ ︸

invariance penalty term

+Lid(β; Ĉker, R̂R̂⊤, γ)︸ ︷︷ ︸
non-identifiability penalty term

.

6: Return: identifiable robust predictor and the estimated minimax "hardness" of the problem:

β̂rob,ID ← argmin
β∈Rd

Ln(β; β̂
S , ŜŜ⊤, R̂R̂⊤);

M̂(D, γ,M)← min
β∈Rd

Ln(β; β̂
S , ŜŜ⊤, R̂R̂⊤).

Training data. We observe data from m + 1 training environments indexed by E ∈ Etrain =
{0, ...,m}, where E = 0 represents the reference environment. We impose a discrete probability
distribution PE on the training environment E ∈ Etrain, resulting in the joint distribution (X,Y,E) ∼
PX,Y |E × PE . For each environment E = e, we observe the samples De := {(Xe,i, Ye,i)}ne

i=1,
where (Xe,i, Ye,i) are independent copies of (Xe, Ye) ∼ PX,Y |E=e. Then, the resulting dataset is
D := ∪e∈EtrainDe with n := n0 + · · ·+ nm. Furthermore, for each environment E = e, we define
the weights we := ne/n.

Computation of the identifiable robust loss. In Algorithm 1, we present a high-level scheme for
computing the identifiable robust loss from multi-environment data, which consists of multiple steps.
First, nuisance parameters related to the training and test shift directions are estimated, which we
describe in more detail below. Afterwards, the three terms of the loss are computed: the (squared)
loss Lref(β;D0) on the reference environment is computed as

Lref(β;D0) =

n0∑
i=1

(Y0,i − β⊤X0,i)
2.

The invariance penalty term Linv(β; β̂
S , ŜŜ⊤, γ) (which increasingly aligns any estimator β in the

direction of the estimated invariant causal predictor β̂S as γ →∞) can be computed as following in
the linear SCM setting:

Linv(β; β̂
S , ŜŜ⊤, γ) = γ∥ŜŜ⊤(β − βS)∥22.

Finally, the non-identifiability penalty term Lid(β; Ĉker, R̂R̂⊤, γ) can be computed as follows:

Lid(β; Ĉker, R̂R̂⊤, γ)← γ(Cker + ∥R̂R̂⊤β∥2)2.
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The non-identifiability term, with increasing γ, penalizes any predictor β towards zero on the subspace
R of non-identified test shift directions. In total, the identifiable robust loss (in the linear SCM setting)
equals

Ln(β; β̂
S , ŜŜ⊤, R̂R̂⊤) =

n0∑
i=1

(Y0,i − β⊤X0,i)
2 + γ∥ŜŜ⊤(β − βS)∥22 + γ(Cker + ∥R̂R̂⊤β∥2)2,

where we suppress dependence on C and γ and only leave the dependence on the nuisance parameters.

Choice/Estimation of nuisance parameters. We now provide more details on the empirical
estimation of the nuisance parameters Ŝ, Ŝ, R̂, and β̂S .

• The constant C corresponds to the upper bound on the norm of the true causal parameter
β⋆. Thus, the practitioner chooses C in advance to ensure that (with high probability)
∥β⋆∥2 ≤ C.

• The training shift directions Ŝ can be computed via

Ŝ(D) = range

m∑
e=1

(Cov(Xe)− Cov(X0) + µeµ
⊤
e − µ0µ

⊤
0 ), (16)

where for e ∈ Etrain, the matrix Cov(Xe) is the empirical covariance matrix estimated
within the training environment E = e, and µe ∈ Rd is the empirical mean of the covari-
ates within the training environment E = e. Additionally, we compute the orthogonal
complement Ŝ⊥(D) of the space Ŝ(D)12.

• The decomposition of the test shift directions M into identified and non-identified shift
directions (and their corresponding projection matrices) can be computed as follows. Let
ΠŜ and ΠŜ⊥ denote the projection matrices on Ŝ(D) and Ŝ⊥(D), respectively. Consider
the singular value decompositions ΠŜM = UŜΣŜV

⊤
Ŝ and ΠŜ⊥M = UŜ⊥ΣŜ⊥V ⊤

Ŝ⊥ Then,
define

Ŝ = UŜ , R̂ = UŜ⊥ .

The subspaces range(ΠŜM) and range(ΠŜ⊥M) are minimal subspaces contained in Ŝ and
Ŝ⊥, respectively, such that range(M) ⊂ range(ΠŜM) ⊕ range(ΠŜ⊥M). The matrices
ŜŜ⊤ and R̂R̂⊤ are their corresponding projection matrices.

• The identified causal parameter β̂S (approximately) equals the true causal parameter
β⋆ on the space of training shift directions Ŝ. As conjectured in the anchor regression
literature [45, 49, 26] (see, for example, the discussion right after Theorem 3.4 in [26] and
Appendix H.3 therein) for γ →∞, the estimators βγ

anchor and βγ
DRIG converge to the causal

parameter β⋆ on S. Thus, the identified causal parameter can be estimated as

β̂S := ΠŜβ
∞
anchor or β̂S := ΠŜβ

∞
DRIG

for the setting of mean or mean+variance shifts, respectively.

D.2 Consistency of the identifiable robust predictor

For any estimator β ∈ Rd and given the estimated nuisance parameters φ̂ := (ŜŜ⊤, R̂R̂⊤, β̂S), we
define the sample identifiable robust risk as

Ln(β, φ̂) :=
1

n0

∑
i∈D0

(
Y0,i − β⊤X0,i

)2
+ γ∥ŜŜ⊤(β̂S − β)∥22 + γ

(√
C − ∥β̂S∥22 + ∥R̂R̂⊤β∥2

)2

.

(17)

12In general, S(D) is a proper subspace of Rd and the RHS of (16) corresponds to a sum of low-rank second
moments. This can be consistently estimated if, for instance, the rank of each shift is known (e.g. in the mean
shift setting), or the covariances have a spiked structure, allowing to cut off small eigenvalues.
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Correspondingly, we define the estimator of the identifiable robust predictor by

β̂rob,ID := argmin
β∈B

Ln(β, φ̂), (18)

where B ⊆ Rd is some compact set whose interior contains the true parameter βrob,ID.

To show the consistency of (18), we first require consistency of the nuisance parameter estimators,
which we state as an assumption.

Assumption D.1. The estimated nuisance parameters φ̂ := (ŜŜ⊤, R̂R̂⊤, β̂S) are consistent, that is,
for n→∞,

∥ŜŜ⊤ − SS⊤∥F
P→ 0, ∥R̂R̂⊤ −RR⊤∥F

P→ 0, β̂S P→ βS := ΠSβ
⋆,

where for any matrix A ∈ Rm×q, ∥A∥F =
√
tr (A⊤A) denotes the Frobenius norm, and SS⊤,

RR⊤ are the corresponding population projection matrices onto ΠSM, ΠS⊥M respectively.

Depending on the assumptions of the data-generating process, Assumption D.1 can be shown to hold.
For example, in the anchor regression setting [45], the consistency of the projection matrices ŜŜ⊤,
R̂R̂⊤, and ΠŜ holds if the dimension of S is known (due to the mean shift structure). The proof
relies on the Davis–Kahan theorem (see, for example, [59]) and the consistency of the covariance
matrix estimator. Moreover, in the anchor regression setting, it is conjectured that the estimator
β∞
anchor converges to its population counterpart (as discussed right after Theorem 3.4 in [26] and

Appendix H.3 therein) which implies that β̂S := ΠŜβ
∞
anchor consistently estimates βS = ΠSβ

⋆.

Under the assumption of the consistency of the nuisance parameter estimators, we can now show
that (18) is a consistent estimator of the identifiable robust predictor.

Proposition 3. Consider the estimator β̂rob,ID of the identifiable robust predictor defined in (18).
Suppose the optimization problem is over a compact set B ⊆ Rd whose interior contains the true
minimizer βrob,ID. Moreover, suppose Assumption D.1 holds. Finally, assume that the covariance
matrix E [X0X

⊤
0 ] ≻ 0 with bounded eigenvalues and E [Y 2

0 ] <∞. Then, β̂rob,ID is consistent, i.e.,
as n, n0 →∞ it holds that

β̂rob,ID P→ βrob,ID.

D.3 Proof of Proposition 3

For ease of notation define β0 := βrob,ID and β̂ := β̂rob,ID. For any parameter of interest β ∈ B and
nuisance parameters φ = (PS , PR, b), define the function

(x, y) 7→ gβ,φ(x, y) := (y − β⊤x)2 + γ∥PS(b− β)∥22 + γ

(√
C − ∥b∥22 + ∥PRβ∥2

)2

. (19)

Using (19), the robust identifiable risk and its sample version defined in (17) can be written, respec-
tively as

L(β, φ) = E [gβ,φ(X0, Y0)], Ln(β, φ) =
1

n0

∑
i∈D0

gβ,φ(X0,i, Y0,i).

Our goal is to show that β̂ P→ β0. First, we show that the minimum of the loss is well-separated.

Lemma D.1. Suppose that E [X0X
⊤
0 ] ≻ 0. Then, for all δ > 0, it holds that

inf {L(β, φ0) : ∥β − β0∥2 > δ} > L(β0, φ0). (20)

Fix δ > 0. From the well-separation of the minimum from Lemma D.1, there exists ε > 0 such that{
∥β̂ − β0∥2 > δ

}
⊆
{
L(β̂, φ0)− L(β0, φ0) > ε

}
.
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Therefore,

P
(
∥β̂ − β0∥2 > δ

)
≤ P

(
L(β̂, φ0)− L(β0, φ0) > ε

)
= P

(
L(β̂, φ0)− Ln(β̂, φ0) + Ln(β̂, φ0)− Ln(β̂, φ̂)

+Ln(β̂, φ̂)− Ln(β0, φ̂) + Ln(β0, φ̂)− L(β0, φ0) > ε
)

≤ P
(
L(β̂, φ0)− Ln(β̂, φ0) > ε/4

)
+ P

(
Ln(β̂, φ0)− Ln(β̂, φ̂) > ε/4

)
(21)

+ P
(
Ln(β̂, φ̂)− Ln(β0, φ̂) > ε/4

)
+ P (Ln(β0, φ̂)− L(β0, φ0) > ε/4) . (22)

We now want to prove convergence the four terms in (21) and (22). For this, we use the following
statements proved in Appendix D.4.
Lemma D.2. Suppose B ⊆ Rd is a compact set. Moreover, assume that the covariance matrix
E [X0X

⊤
0 ] ≻ 0 with bounded eigenvalues and E [Y 2

0 ] <∞. Then, as n, n0 →∞ it holds that

sup
β∈B
|Ln(β, φ0)− L(β, φ0)|

P→ 0. (23)

Lemma D.3. As n→∞, it holds that

sup
β∈B
|Ln(β, φ̂)− Ln(β, φ0)|

P→ 0. (24)

The two terms in (21) converge to 0 by Lemma D.2 and Lemma D.3, respectively. The first term
in (22) equals 0 since β̂ minimizes β 7→ Ln(β, φ̂). Finally, we observe that

sup
β∈B
|Ln(β, φ̂)− L(β, φ0)|

P→ 0, (25)

since we have that

sup
β∈B
|Ln(β, φ̂)− L(β, φ0)| ≤ sup

β∈B
|Ln(β, φ̂)− Ln(β, φ0)|+ sup

β∈B
|Ln(β, φ0)− L(β, φ0)|,

where the first term converges in probability by Lemma D.3, and the second term converges in
probability by Lemma D.2. This implies that the second term in (22) converges to zero. Since δ > 0

was arbitrary, it follows that β̂ P→ β0.

D.4 Proof of auxiliary lemmas

D.4.1 Proof of Lemma D.1

By definition,

L(β, φ0) = E [(Y0 − β⊤X0)
2] + γ∥SS⊤(βS − β)∥22 + γ

(√
C − ∥βS∥22 + ∥RR⊤β∥2

)2

.

Since E [X0X
⊤
0 ] ≻ 0, the first term is strongly convex in β. Moreover, the second and third terms

are convex in β. Therefore, L(β, φ0) is strongly convex in β. Since L(β, φ0) is also continuous in β,
it follows that there exists a unique global minimum. Let β0 denote the global minimizer of L(β, φ0).
By the fact that L(β0, φ0) is a global minimum, and by definition of strong convexity, there exists a
positive constant m > 0 such that, for all β ∈ B,

L(β, φ0) ≥ L(β0, φ0) +
m

2
∥β − β0∥22. (26)

Fix δ > 0. Then, by (26), for all β ∈ B such that ∥β − β0∥2 > δ it holds that

L(β, φ0) ≥ L(β0, φ0) +
mδ2

2
> L(β0, φ0).

Since the inequality holds for all β ∈ B such that ∥β − β0∥2 > δ, we conclude that

inf{L(β, φ0) : ∥β − β0∥2 > δ} > L(β0, φ0).

Since δ > 0 was arbitrary, the claim follows.
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D.4.2 Proof of Lemma D.2

Recall that for any β ∈ B

L(β, φ0) = E [gβ,φ0(X0, Y0)], Ln(β, φ0) =
1

n0

∑
i∈D0

gβ,φ0(X0,i, Y0,i).

To show the result, we must establish that the class of functions {gβ,φ0
: β ∈ B} is Glivenko–Cantelli.

From [56], a set of sufficient conditions for being a Glivenko–Cantelli class is that (i) B is compact,
(ii) β 7→ gβ,φ0

(x, y) is continuous for every (x, y), and (iii) β 7→ gβ,φ0
is dominated by an integrable

function. By assumption, (i) holds. Moreover, by (19), it follows that β 7→ gβ,φ0 is continuous
for all (x, y) and thus (ii) holds. We now show that (iii) holds. Since B is compact we have that
supβ∈B∥β∥2 = C1 <∞. For fixed γ > 0, and all (x, y), we have that

gβ,φ0
(x, y) ≤ sup

β∈B
|gβ,φ0

(x, y)|

≤ sup
β∈B

(y − β⊤x)2 + 2γ∥SS⊤∥2F

(
∥βS∥22 + sup

β∈B
∥β∥22

)

+ γ

(√
C − ∥βS∥22 + ∥RR⊤∥F sup

β∈B
∥β∥2

)2

≤ 2y2 + 2C2
1∥x∥22 +K =: G(x, y),

(27)

where K <∞ is a finite constant not depending on (x, y). Furthermore, we have that

E [G(X0, Y0)] = 2E [Y 2
0 ] + 2C2

1 tr (E [X0X
⊤
0 ]) +K <∞, (28)

since E [Y 2] < ∞ and E [X0X
⊤
0 ] has bounded eigenvalues by assumption. From (27) and (28), it

follows that (iii) holds.

D.4.3 Proof of Lemma D.3

For fixed γ > 0, we have that

1

γ
sup
β∈B
|Ln(β, φ̂)− Ln(β, φ0)| ≤ sup

β∈B

∣∣∣∥ŜŜ⊤(β̂S − β)∥22 − ∥SS⊤(βS − β)∥22
∣∣∣ (29)

+ sup
β∈B

∣∣∣∣∣
(√

C − ∥β̂S∥22 + ∥R̂R̂⊤β∥2
)2

−
(√

C − ∥βS∥22 + ∥RR⊤β∥2
)2
∣∣∣∣∣ (30)

We can upper bound (29) as follows,

sup
β∈B

∣∣∣∥ŜŜ⊤(β̂S − β)∥22 − ∥SS⊤(βS − β)∥22
∣∣∣

= sup
β∈B

∣∣∣(β̂S − β)⊤ŜŜ⊤(β̂S − β)− (βS − β)⊤SS⊤(βS − β)
∣∣∣

= sup
β∈B

∣∣∣(β̂S − β)⊤ŜŜ⊤(β̂S − βS) + (β̂S − βS)⊤ŜŜ⊤(βS − β)

+(βS − β)⊤(ŜŜ⊤ − SS⊤)(βS − β)
∣∣∣

≤ 2 sup
β∈B
∥β̂S − β∥2 ∥ŜŜ⊤∥F ∥β̂S − βS∥2 + sup

β∈B
∥βS − β∥22 ∥ŜŜ⊤ − SS⊤∥F (31)

≤ C1∥β̂S − βS∥2 + C2∥ŜŜ⊤ − SS⊤∥F
P→ 0, (32)

where (31) follows from the Cauchy–Schwarz inequality and that ∥A∥2 ≤ ∥A∥F , the constants
C1, C2 <∞ in (32) follow from compactness of B, and the convergence in probability follows from
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Assumption D.1. Furthermore, we can upper bound (30) as follows,

sup
β∈B

∣∣∣∣∣
(√

C − ∥β̂S∥22 + ∥R̂R̂⊤β∥2
)2

−
(√

C − ∥βS∥22 + ∥RR⊤β∥2
)2
∣∣∣∣∣

= sup
β∈B

∣∣∣∣C − ∥β̂S∥22 + ∥R̂R̂⊤β∥22 + 2

√
C − ∥β̂S∥22 ∥R̂R̂⊤β∥2

−C + ∥βS∥22 − ∥RR⊤β∥22 − 2
√

C − ∥βS∥22 ∥RR⊤β∥2
∣∣∣∣

≤ sup
β∈B

∣∣∣∥β̂S∥22 − ∥βS∥22
∣∣∣+ sup

β∈B

∣∣∣β⊤(R̂R̂⊤ −RR⊤)β
∣∣∣

+ 2 sup
β∈B

∣∣∣∣√C − ∥β̂S∥22 ∥R̂R̂⊤β∥2 −
√

C − ∥βS∥22 ∥RR⊤β∥2
∣∣∣∣

= (I) + (II) + (III).

By Assumption D.1, (I) converges in probability to zero. Regarding (II), we have

sup
β∈B

∣∣∣β⊤(R̂R̂⊤ −RR⊤)β
∣∣∣ ≤ sup

β∈B
∥β∥22 ∥R̂R̂⊤ −RR⊤∥F

P→ 0,

where the inequality follows from Cauchy–Schwarz and that ∥A∥2 ≤ ∥A∥F , and the convergence
in probability follows from Assumption D.1 along with the compactness of B. It remains to upper
bound (III). We have that

(III)

2
≤ sup

β∈B

∣∣∣∣√C − ∥β̂S∥22 ∥R̂R̂⊤β∥2 −
√
C − ∥βS∥22 ∥R̂R̂⊤β∥2

∣∣∣∣
+ sup

β∈B

∣∣∣∣√C − ∥βS∥22 ∥R̂R̂⊤β∥2 −
√

C − ∥βS∥22 ∥RR⊤β∥2
∣∣∣∣

≤

(
sup
β∈B
∥β∥2 ∥R̂R̂⊤∥F

) ∣∣∣∣√C − ∥β̂S∥22 −
√
C − ∥βS∥22

∣∣∣∣
+ sup

β∈B

∣∣∣∣√β⊤R̂R̂⊤β −
√
β⊤RR⊤β

∣∣∣∣ (√C − ∥βS∥22
)

≤ C3

∣∣∣∥βS∥22 + ∥β̂S∥22
∣∣∣1/2 +√C sup

β∈B

∣∣∣β⊤(R̂R̂⊤ −RR⊤)β
∣∣∣1/2 (33)

≤ C3

∣∣∣∥βS∥22 + ∥β̂S∥22
∣∣∣1/2 +√C (sup

β∈B
∥β∥22 ∥R̂R̂⊤ −RR⊤∥F

)1/2

P→ 0. (34)

The inequality in (33) follows from the compactness of B, the fact that R̂R̂⊤ has bounded eigenvalues,
and that |

√
x − √y| ≤ |x − y|1/2 for all x, y ≥ 0. The inequality in (34) follows from Cauchy–

Schwarz and that ∥A∥2 ≤ ∥A∥F . The convergence in probability follows form Assumption D.1 and
the compactness of B.

E Details on finite-sample experiments

In this section, we provide more details of the data generation for our synthetic finite-sample
experiments as well as data processing for the real-world data experiments.

E.1 Synthetic experiments

For the synthetic experiments, we generate a random SCM which satisfies our assumptions. For
d = 15, we randomly sample the joint covariance Σ⋆ of (X,Y ), fixing its total variance and
the eigenvalues. We consider 7 environments including the reference environment, and for each
environment except the reference, we randomly generate mean shifts of fixed norm. Since we have 6
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non-zero random Gaussian mean shifts, it holds a.s. that dimS = 6. We then randomly generate an
"initial guess" for β⋆ ∈ Rd of fixed norm C = 10. Now, with respect to the space S of the identifiable
directions induced by the mean shifts, we choose the most "adversarial" causal parameter β⋆

adv which
is equal to β⋆ on S, but on S⊥ has the opposite direction of the noise OLS estimator Σ⋆

η
−1Σ⋆

η,ξ.
We ensure that ∥β⋆

adv∥2 = C. Note that under the observed shifts, β⋆ and β⋆
adv are observationally

equivalent. We complete β⋆
adv to the set θadv of observationally equivalent model parameters and

generate the multi-environment training data according to θadv and the collection of mean shifts.

For Figure 3 (left), we define the test shift upper bound as Manchor = γSS⊤, where S is taken
to be a two-dimensional subspace of S. We vary γ from 0 to 10, and for each γ, we compute the
oracle anchor regression estimator by minimizing the discrete anchor regression loss. Additionally,
we compute the pooled OLS estimator and the identifiable robust predictor βrob,ID as described in
Appendix D. Finally, we generate test data with a Gaussian additive shift Atest ∼ N (0,Manchor). We
evaluate the loss of βOLS, βanchor and βrob,ID on this test environment and include the population
lower bound.

For Figure 3 (right), we define the test shift upper bound as Mnew = γSS⊤ + γ′RR⊤, where R is
a 2-dimensional subspace of the space S⊥ and we set γ′ = 0.05γ to showcase the effect of small
unseen shifts compared to large identified shifts. We vary γ from 0 to 40 and for each γ, compute the
oracle anchor regression estimator by minimizing the discrete anchor regression loss. Additionally,
we compute the pooled OLS estimator and the identifiable robust predictor βrob,ID as described in
Appendix D, for which we use knowledge of spaces S and R and prior knowledge of Mnew.
Finally, we generate test data with a Gaussian additive shift Atest ∼ N (0,Mnew). We evaluate the
loss of βOLS, βanchor and βrob,ID on this test environment, plot the resulting test losses for different
estimators and include the population lower bound.

E.2 Real-world data experiments
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Figure 5: The figures illustrate the structure of the (a) training-time shifts and (b-c) test-time shifts
for different perturbation strengths on the example of two covariates. Panel (a) shows the training
data containing two environments–observational (blue) and shifted (orange) corresponding to the
knockout of the gene ENSG00000089009. Panels (b) and (c) show the training data in grey and test
data from a previously unseen environment (green). Panel (b) depicts the top 10% test data points
closest to the training support (perturbation strength = 0.1). Panel (c) illustrates the full test data
(perturbation strength = 1.0).

We consider the K562 dataset from [41] and perform the preprocessing as done in [13]. The
resulting dataset consists of n = 162, 751 single-cell observations over d = 622 genes collected
from observational and several interventional environments. The interventional environments arise by
knocking down a single gene at a time using the CRISPR interference method [40]. Following [48],
we select only always-active genes in the observational setting, resulting in a smaller dataset of 28
genes. For each gene j = 1, . . . , 28, we set Y := Xj as the target variable and select the three genes
Xk1 , . . . , Xk3 most strongly correlated with Y (using Lasso), resulting in a dataset with columns
Y,Xk1

, . . . , Xk3
. Given this dataset, we construct the training and test environments as follows. Let

O denote the 10,691 observations collected from the observational environment, and let Ii denote
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the observations collected from the interventional environment where the gene ki was knocked down.
We will denote by Ii,s the s-th quantile of datapoints in Ii w.r.t. to the expression value of the gene
ki. These are the s× 100% of datapoints with the weakest shift compared to the observational mean
of the gene ki, and thus the parameter s ∈ [0, 1] is a proxy for the strength of the shift. Furthermore,
denote by I∗i,s a random sample of Ii,s of a certain size. For each i ∈ {1, 2, 3}, we train the methods
on Dtrain

i := O ∪ I∗i,1, with |I∗i,1| = 20. An illustration of the training data Dtrain
i is shown in panel (a)

of Figure 5. For each shift strength s ∈ {0.1, . . . , 1} we evaluate the models on the test samples from
the three interventional environments. An example of the test data for different shift strengths s and a
previously unseen direction is shown in Figure 5(b-c). Figure 4 shows the test MSE performance as
a function of perturbation strength. We compare our method Rob-ID, defined as the minimizer of
the empirical identifiable robust risk (17), with anchor regression [45], invariant causal prediction
(ICP) [38], Distributional Robustness via Invariant Gradients (DRIG) [49], and OLS (corresponding
to vanilla ERM). We use the following parameters for Rob-ID: γ = 50, Cker = 1.0, and M = Id.
For anchor regression and DRIG, we select γ = 50. For ICP, we set the significance level for the
invariance tests to α = 0.05.

These numerical experiments are computationally light and can be run in ≈ 5 minutes on a personal
laptop.13

F Proofs

F.1 Proof of Proposition 1

For every environment e ∈ Etrain, we observe the first moments E (Xe) and E (Ye), and second
moments E (XeX

⊤
e ), E (Y 2

e ) and E (XeYe). Since it holds by assumption that µ0 = 0 and Σ0 = 0,
we have that E (X0X

⊤
0 ) = Σ⋆

η , and so we can identify Σ⋆
η uniquely. Furthermore, it holds that

E (X0Y0) = Σ⋆
ηβ

⋆ +Σ⋆
η,ξ, (35)

E (XeYe) = (Σe + µeµ
⊤
e +Σ⋆

η)β
⋆ +Σ⋆

η,ξ. (36)

By taking the difference between Equation (36) and Equation (35), we can identify (Σe + µeµ
⊤
e )β

⋆.
Thus, the causal parameter β⋆ is identifiable on the subspace S defined in Equation (10) and is
not identifiable on its orthogonal complement S⊥. Thus, for any for vector α ∈ S⊥ , the vector
β = β⋆ + α is consistent with the data-generating process. It remains to compute the covariance
parameters induced by an arbitrary β̃ := β⋆ + α, for α ∈ S⊥. For every environment e ∈ Etrain, the
second mixed moment between Xe and Ye has to satisfy the following equality

E (XeYe) = (Σe + µeµ
⊤
e +Σ⋆

η)β
⋆ +Σ⋆

η,ξ = (Σe + µeµ
⊤
e +Σ⋆

η)β̃ + Σ̃η,ξ,

from which it follows that Σ̃η,ξ := Σ⋆
η,ξ − Σ⋆

ηα. By computing E (Y 2
e ) and inserting β̃ = β⋆ + α

and Σ̃η,ξ, we similarly obtain

σ̃2
ξ := (σ⋆

ξ )
2 − 2α⊤Σ⋆

η,ξ + α⊤Σ⋆
ηα.

Thus, we obtain the following set of observationally equivalent model parameters consistent with
Pθ⋆,Etrain :

Θeq = {β⋆ + α,Σ⋆
η,Σ

⋆
η,ξ − Σ⋆

ηα, (σ
⋆
ξ )

2 − 2α⊤Σ⋆
η,ξ + α⊤Σ⋆

ηα : α ∈ S⊥}.
Since the observationally equivalent set is identifiable from the training distribution, but model
parameters β⋆, Σ⋆

η,ξ , (σ⋆
ξ )

2 are not, it is helpful to re-express the observationally equivalent set through

identifiable quantities. For this, we note that the "identified causal predictor" βS = β⋆−βS⊥
induces

an observationally equivalent model given by

θS := (βS ,ΣS
η ,Σ

S
η,ξ, (σ

S
ξ )

2) = (βS ,Σ⋆
η,Σ

⋆
η,ξ +Σ⋆

ηβ
S⊥

, (σ⋆
ξ )

2
+ 2⟨Σ⋆

η,ξ, β
S⊥
⟩+ ⟨βS⊥

,Σ⋆
ηβ

S⊥
⟩).

From this reparameterization, we infer the final form of the observationally equivalent set :

Θeq = {βS + α,Σ′
η,Σ

S
η,ξ − Σ′

ηα, (σ
S
ξ )

2 − 2α⊤ΣS
η,ξ + α⊤Σ′

ηα : α ∈ S⊥} ∋ θ⋆

13We use a 2020 13-inch MacBook Pro with a 1.4 GHz Quad-Core Intel Core i5 processor, 8 GB of RAM,
and Intel Iris Plus Graphics 645 with 1536 MB of graphics memory.
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Therefore, Equation (12) follows. To find the robust predictor βrob, we write down the robust loss
with respect to Mtest and any θα from the observationally equivalent set :

Rrob(β; θα,Mtest) = (βS + α− β)⊤(Mtest +Σ⋆
η)(β

S + α− β)

+ 2(βS + α− β)⊤(Σ⋆
η,ξ − Σ⋆

ηα) + (σS
ξ )

2 − 2α⊤ΣS
η,ξ + α⊤Σ⋆

ηα.

inserting α ∈ S⊥ and rearranging, Equation (13) follows.

F.2 Proof of Theorem 3.1

We structure the proof as follows: first, we quantify the non-identifiability of the robust risk by
explicitly computing its supremum over the observationally equivalent set of the observationally
equivalent model parameters (referred to as the identifiable robust risk). Second, we derive a lower
bound for the identifiable robust risk by considering two cases depending on how a predictor β
interacts with the possible test shifts Mtest. In this proof, we use more general notation, with the test
shifts bounded by a PSD matrix Mtest ⪯ γM + γ′RR⊤, which rangeM ⊂ S and rangeR ⊂ S⊥.
The statement of the theorem follows by setting γ = γ′. However, we believe that the more refined
statement is useful, e.g., when one expects strong shifts in training directions and only weak "new"
shifts.

Computation of the identifiable robust risk. For any model-generating parameter θ = (β,Σ) it
holds that the robust risk of the model Equation (3) under test shifts Mtest ⪰ 0 is given by

Rrob(β; θ,Mtest) = (β − β)⊤(Mtest +Σ⋆
η)(β − β) + 2(β − β)⊤Ση,ξ + (σξ)

2.

We recall that the observationally equivalent set of model parameters after observing the multi-
environment training data Equation (3) is given by

Θeq = {βS + α,Σ⋆
η,Σ

S
η,ξ − Σ⋆

ηα, (σ
S
ξ )

2 − 2α⊤ΣS
η,ξ + α⊤Σηα : α ∈ S⊥}, (37)

where S is the span of identified directions defined in Equation (10). Moreover, we recall that by
Assumption 3.1, for any causal parameter β it should hold that ∥β∥2 = ∥βS + α∥2 ≤ C, which
translates into the following constraint for the parameter α:

∥α∥2 ≤
√
C2 − ∥βS∥22 =: Cker.

Inserting Equation (37) in Equation (8), we obtain

Rrob,ID(β; Θeq,Mtest) = sup
α∈S⊥,

∥α∥2≤Cker

Rrob(β; θα,Mtest),

where θα is a short notation for (βS + α,Σ⋆
η,Σ

S
η,ξ − Σ⋆

ηα, (σ
S
ξ )

2 − 2α⊤ΣS
η,ξ + α⊤Σ⋆

ηα). We now
compute the supremum explicitly in case Mtest has the form Mtest = γM + γ′RR⊤, where M is a
PSD matrix with range M ⊆ S and R is a semi-orthogonal matrix with range R ⊆ S⊥. Note that
this assumption includes both the setting of Theorem 3.1 and the setting of finite robustness methods
in Section 3.2. For any α ∈ S⊥, we write down the robust loss as

Rrob(β; θα,Mtest) = (βS − β)⊤(Mtest +Σ⋆
η)(β

S − β) + 2(βS − β)⊤ΣS
η,ξ + (σS

ξ )
2

+ α⊤Mtestα+ 2α⊤Mtest(β
S − β)

= Rrob(β; θ
S ,Mtest) + α⊤Mtestα+ 2α⊤Mtest(β

S − β).

The first term is the robust loss of β under test shift Mtest and the identified model-generating
parameter θS , thus it does not depend on α. By the structure of Mtest, we obtain that

f(α) := α⊤Mtestα+ 2α⊤Mtest(β
S − β) = γ′α⊤RR⊤α− α⊤RR⊤β.

If R = 0, i.e., the test shifts consist only of the identified directions, we have f(α) = 0, independently
of α, and thus

Rrob,ID(β; Θeq,Mtest) = Rrob(β; θ
S ,Mtest).
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This implies the first statement of the theorem.

We now consider the case where R ̸= 0, i.e., RR⊤ is a non-degenerate projection. Our goal is to
maximize f(α) subject to constraints α ∈ S⊥, ∥α∥2 ≤ Cker. Let R̃ be an orthonormal extension
of R such that range (R|R̃) = S⊥. Then, we can parameterize α ∈ S⊥ as α = (R|R̃)(ww̃ ) and the
corresponding Lagrangian reads

L(α, λ) = γ′α⊤RR⊤α− α⊤RR⊤β + λ(C2
ker − ∥α∥22)

= γ′∥w∥22 − w⊤R⊤β + λ(C2
ker − ∥(w, w̃)∥22).

Differentiating with respect to w, w̃ yields

w =
γ′

γ′ − λ
R⊤β;

w̃ = 0.

After differentiating w.r.t. λ, we obtain γ′

γ′−λ = ± Cker

∥R⊤β∥2
. By inserting in the objective function and

comparing, we obtain the value of the identifiable robust risk:

Rrob,ID(β; Θeq,Mtest) = γ′C2
ker + 2γ′∥R⊤β∥2 +Rrob(β; θ

S ,Mtest). (38)

Putting together the cases R = 0 and R ̸= 0, and plugging in Mtest = γSS⊤ + γ′RR⊤, we obtain

Rrob,ID(β; Θeq,Mtest) = γ′IR ̸=0(Cker + ∥R⊤β∥2)2 +Rrob(β; θ
S , γM)

= γ′IR ̸=0(Cker + ∥R⊤β∥2)2 + γ∥S⊤(βS − β)∥22 +R0(β
S , β),

whereRrob(β; θ
S , γM) is the robust risk of the estimator β w.r.t. the "identified" test shift γM and

the identified model parameter θS , whereasR0(θ
S , β) is the risk of β on the reference environment

e = 0.

Derivation of the lower bound for the identifiable robust risk. Now that we have explicitly
computed the identifiable robust risk, we devote ourselves to the computation of the lower bound for
its best possible value

inf
β∈Rd

Rrob,ID(β; Θeq,Mtest).

In this part, we will only consider the case R ̸= 0, since the case R = 0 corresponds to the (discrete)
anchor regression-like setting, where both the robust risk and its minimizer are uniquely identifiable,
and computable from training data. We will distinguish between two cases.

Case 1: ∥R⊤β∥2 = 0. In this case, β is fully located in the orthogonal complement of R, which
consists of S and R̃. We will denote (the basis of) this subspace by Stot = S ⊕ R̃. Thus, Stot is the
"total" stable subspace consisting of identified directions in S and non-identified, but unperturbed
directions R̃. We will parameterize β as β = Stotw. Thus, we are looking to solve the optimization
problem

βrob,ID = argmin
w

(βS − Stotw)
⊤(γSS⊤ +Σ⋆

η)(β
S − Stotw) + 2(βS − Stotw)

⊤ΣS
η,ξ + (σS

ξ )
2.

Setting the gradient to zero yields the asymptotic identifiable robust estimator

βrob,ID = βS + Stot[S
⊤
tot(γSS

⊤ +Ση)Stot]
−1S⊤

totΣ
S
η,ξ

= βS + Stot[γIdStot + S⊤
totΣηStot]

−1S⊤
totΣ

S
η,ξ,

(39)

which corresponds to the loss value of

Rrob,ID(β
rob,ID; Θeq,Mtest) = γ′C2

ker + (σS
ξ )

2 − 2ΣS
η,ξ

⊤Stot[S
⊤
tot(γSS

⊤ +Ση)Stot]
−1S⊤

totΣ
S
η,ξ.
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Case 2:∥R⊤β∥2 ̸= 0. Since for ∥R⊤β∥2 ̸= 0, the objective function is differentiable, we compute
its gradient to be

∇Rrob,ID(β; Θeq,Mtest) = 2γ′RR⊤β/∥RR⊤β∥+ 2γ′RR⊤β +∇Rrob(β; θ
S , γM)

= 2γ′RR⊤β/∥RR⊤β∥+ 2γ′RR⊤β + 2(Σ⋆
η + γM)(β − βS)− 2ΣS

η,ξ.

This equation is, in general, not solvable w.r.t. β in closed form. Instead, we provide the limit of the
optimal value of the function when the strength of the unseen shifts is small, i.e. γ′ → 0. We know
that for γ′ = 0, the minimizer of the identifiable robust risk is given by the anchor estimator

βanchor = βS + (Σ⋆
η + γM)−1ΣS

η,ξ.

Thus, we lower bound the term 2γ′Cker∥R⊤β∥ by the scalar product
2γ′Cker⟨R⊤β, R⊤βanchor⟩/∥βanchor∥ and expect it to be tight for small γ′. After inserting
this lower bound in Equation (38) we obtain the minimizer of the lower bound of form

βLB = βS + (Σ⋆
η + γM + γ′RR⊤)−1(ΣS

η,ξ − γ′CkerRR⊤(Σ⋆
η + γM)−1ΣS

η,ξ).

We can now lower bound ∥RR⊤βLB∥ as

∥RR⊤βLB∥ ≥ ∥RR⊤(Σ⋆
η + γM)−1Σ⋆

η,ξ∥ − o(γ′),

from which the rate for small γ′ follows. If we set γ = γ′ and M = SS⊤, the claim (15) of the
theorem follows. For Section 3.2, the lower bound directly implies optimality of the identifiable
robust risk of the anchor estimator when the strength of the unseen shifts γ′ is small. Additionally. if
γ = 0, i.e. only unseen test shifts occur, we conclude that the OLS and anchor estimators have the
same rates.

Lower bound γth for γ′. Finally, we want to derive a lower bound on the shift strength γ′ such
that for all γ′ ≥ γth Case 1 of our proof is valid, i.e. it holds that βrob,ID is given by the closed form
"abstaining" estimator (39). For this, we find γth such that for all γ′ ≥ γth zero is contained in the
subdifferential of Rrob,ID(β

rob,ID; Θeq,Mtest) at βrob,ID. Then the KKT conditions are met, and
βrob,ID is the unique minimizer of the identifiable robust risk due to strong convexity of the objective.
We compute the subdifferential to be

S = γ′Cker{RR⊤β : ∥β∥2 ≤ 1}+∇Rrob(β
rob,ID; θS , γM).

Since βrob,ID is the minimizer of Rrob(β; θ
S , γM) under the constraint R⊤β = 0, the gradient is

zero in R⊥ and it remains to show that

∥RR⊤∇Rrob(β
rob,ID; θS , γM)∥ ≤ γ′Cker,

or

γ′ ≥ ∥RR⊤∇Rrob(β
rob,ID; θS , γM)∥/Cker.

Via an upper bound on the projected gradient, we derive the stricter condition

γ′ ≥
∥RR⊤ΣS

η,ξ∥(1 + κ(Σ⋆
η))

Cker
,

where κ(Σ⋆
η) is the condition number of the covariance matrix.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We state our contributions relative to prior work in the abstract, in Section 1,
and in Appendix A.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the abstract and in Section 1, we highlight the setting that we consider. We
explicitly describe the assumptions in Section 2 and summarize the limitations in Section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Appendix F contains proofs of all results appearing in the main paper. Ap-
pendix B, Appendix C, and Appendix D are self-contained and contain derivations and proof
of the results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Appendix E provides all the necessary information to reproduce the experi-
mental results presented in Section 3.2. We provide details on empirical estimation of the
proposed loss function in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: While we do not provide the code, the paper provides all necessary information
on reproducing the experiment in Appendices D and E.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all details to understand the experimental results in Section 3.2 and
Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification:
In the numerical experiment, shown in Figure 3, we provide the average test MSE and its
5% and 95%-quantiles over 100 repetitions for each method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The numerical experiment described in Section 3.2 is computationally very
light and can be run on a personal laptop in a few minutes. We describe this in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and confirm that our work conforms
to it in all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Even if our work addresses the theoretical limits of distributional robustness,
we mention in the abstract and in Section 1 that the topic of distributional robustness is
central to safety-critical applications.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work develops a theoretical framework and considers synthetic experi-
ments. Therefore, explicit safeguards do not seem applicable at this stage.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In the numerical experiment in Section 3.3, we cite the existing work that we
compare to our framework and the dataset used. In running the numerical experiment, we
reimplemented all the methods (including existing ones) for ease of comparison.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: At this stage, the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments or research with human
subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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