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Abstract

Diffusion models have gained attention for image editing
vielding impressive results in text-to-image tasks. On the
downside, one might notice that generated images of sta-
ble diffusion models suffer from deteriorated details. This
pitfall impacts image editing tasks that require informa-
tion preservation e.g., scene text editing. As a desired re-
sult, the model must show the capability to replace the
text on the source image to the target text while preserv-
ing the details e.g., colorn, font size, and background. To
leverage the potential of diffusion models, in this work, we
introduce Diffusion-BasEd Scene Text manipulation Net-
work so-called DBEST. Specifically, we design two adapta-
tion strategies, namely one-shot style adaptation and text-
recognition guidance. In experiments, we thoroughly assess
and compare our proposed method against state-of-the-arts
on various scene text datasets, then provide extensive ab-
lation studies for each granularity to analyze our perfor-
mance gain. Also, we demonstrate the effectiveness of our
proposed method to synthesize scene text indicated by com-
petitive Optical Character Recognition (OCR) accuracy.
Our method achieves 94.15% and 98.12% on COCO-text
and ICDAR2013 datasets for character-level evaluation.

1. Introduction

Scene text manipulation has gained significant attention
in computer vision due to its practical applications. The
promising application of scene text manipulation is real-
time sign translation allowing for instant translation of signs
in various languages [0]. Additionally, scene text manipu-
lation can be used to protect privacy by obscuring sensitive
information on images [42].

In deep learning, synthetic scene texts can be used to
augment data for various training purposes e.g., text classi-
fication and detection. For instance, Tang et al. [35] used a
synthesized dataset yielding an improved model capability
for detecting and erasing text in the wild. Though the syn-
thetic data can be collected from image editors using editing
software, this labor task is costly and requires expertise to
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Figure 1. Top: Comparison between state-of-the-art methods and
our method from given input image and target text on scene text
manipulation. Bottom: Comparison between baseline text-to-
image Latent Diffusion Model (LDM) [27] represented with blue
box and our method represented with red box on scene text domain
from given random noise and text condition as an input.

generate consistent results. Thus, automatic tools for scene
text are highly desirable. However, developing such tools
is not easy, especially to ensure the edited text compatible
for further processing e.g., preserving the details to avoid
performance degradation on Optical Character Recognition
(OCR) models.

The automatic way for scene text editing can be achieved
using deep generative models [3, 32, 37, 39, 40, 42].  As
Generative Adversarial Networks (GANs) [8] progress-
ing, earlier studies have addressed scene text manipula-
tion [32,37,39] exploiting the generator and discriminator
scheme. Wu et al. [37] demonstrated the ability of GANs



by formulating the problem as an image style transfer task,
where the models employ the target text while imposing the
styles from the original text. Shimoda et al. [32] propose
to train a text vectorization model and parse text compo-
nents (e.g. style, background, and color) for editing. While
effective, the performance of these prior methods to edit
the scene text is still unsatisfactory in challenging cases, as
shown in Fig. 1. In inference, these prior techniques de-
pend heavily on additional modules e.g. character recogni-
tion models and synthetic text generators. Moreover, the un-
derlying generative models of these prior works (i.e. GANs)
have limited capacity to manipulate text with a high degree
of variability and complexity.

In this paper, we exploit the diffusion models [11,27,34],
which have shown impressive results for text-to-image
tasks, an alternative competing method for synthesizing
scene texts. Also, compared to GAN solutions, diffusion
models do not suffer from training instability and mode-
collapse [11]. Especially, the recent advances in diffu-
sion models allow for incorporating multi-modal condi-
tional inputs e.g., generating an image using a text con-
dition known as text-to-image models [21, 26, 27]. These
works, especially Latent Diffusion Model (LDM) [27], pro-
vide off-the-shelf pretrained-models for generating images
from text prompts. Several works (e.g., Imagic [15] and
Null-Inversion [20]) have explored the possibility of using
the pretrained models for image editing while preserving
parts of interests. Even though these prior methods have
shown remarkable results for general image editing, imple-
menting this to scene text editing is not straightforward. For
example, Fig. 1 (top) shows that the text scene cannot be
manipulated using Imagic [15]. Instead of generating scene
texts, the prior methods tend to generate scenes with some
objects related to the text prompt, as illustrated in Fig. 1
(bottom). In contrast to the aforementioned image editing
models, our work focuses on editing scene texts while pre-
serving fine details of text information.

In this work, to manipulate text in the wild, we propose
a Diffusion-BasEd Scene Text manipulation Network so-
called DBEST. Our design uses text prompts; thus, we have
the benefit of leveraging the large language model as a con-
dition for image editing. In summary, we list our contribu-
tions below:

* We identify the limitation of existing diffusion-based
image editing models and introduce a diffusion model
akin to the text-inversion technique that performs
scene text manipulation. For image generation, our
model has no modification over the original LDM,
thus allowing easy integration into other text-related
pipelines.

We present a synthetic dataset as a part of our training
strategy, omitting the cost to collect the scene text data.
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* We introduce the concept of one-shot style adaptation
for scene text manipulation, which aims to maintain
the source style on the edited image.

We devise the classifier guidance approach using a text
recognition model, yielding a significant improvement
in terms of quality and quantity. To highlight, the
OCR word accuracy of our proposed network achieves
84.83% on the SynText dataset leading to 13% im-
provements over the state-of-the-art performance.

2. Related works

Scene text manipulation. The manipulation of scene text
can be divided into three sub-fields: text effect transfer,
text removal, and text manipulation. Text effect transfer in-
volves transferring a style effect from a source style effect
image to a target scene text. Text removal involves remov-
ing text from a scene while maintaining the scene’s appear-
ance. Finally, text manipulation entails editing a source text
image with desired text while preserving the text style and
background from the source image.

Specific to text manipulation, STEFFAN [29] introduces
a character-level editing text where the input image is first
converted into a per-character mask. SRNet [37] introduces
a GAN-Based approach for word-level editing where the
desired text is first converted to image level. Then, the tar-
get text image can be edited through three sequence steps:
word geometry transformation, background retrieval, and
fusion network. SwapText [39] is the extension of SRNet,
where the word geometry transformation is replaced by per-
character geometry transformation. De-Render [32] intro-
duces a new approach where the input image is first fed to
the rendering parameters prediction model. Then, the re-
construction model uses the predicted parameters to recon-
struct the text scene image. Finally, the text can be edited
by updating rendered parameter.

Our method shares similarities with SRNet, but while
SRNet struggles with editing images using the style transfer
concept, we aim to explore techniques such as conditional
GAN [22]. Unlike converting the target text to the image
level, our method operates at the text level for more efficient
editing.

Diffusion model for image manipulation. Diffusion
model has shown its capability to beat GAN on image gen-
eration. From the given image, several works show impres-
sive work for image-to-image translation [ 1,27,34]. In fur-
ther research, It is also possible to control the generated im-
age from the given condition as proven by [1, 15,16, 18,20,

]. In brief, using the pre-trained language-vision model
such as CLIP [4, 23], Kim et al. [16] shows the excellent
result in manipulating a whole image by using CLIP as a
loss function. Avrahami et al. [1] introduces local editing



guided CLIP loss where the local mask is necessary as the
additional input.

Alternatively, Kawar et al. [15] and Ron et al. [20]
utilize the pre-trained model from Latent diffusion model
(LDM) [27] and introduce the fine-tune approach. First,
Ron et al. fine-tuned the unconditional embedding produced
by LDM to maintain the style of the input image. Then,
the editing process can be done using Prompt-to-prompt
(p2p) [10]. Kawar et al. proposed two steps: conditional
embedding optimization and diffusion model fine-tuning
with the optimized embedding. Then, the edited image is
generated by interpolating the original and optimized em-
bedding during sampling.

However, we investigate that the success of the meth-
ods above relies on language-vision models such as CLIP
or LDM. While those methods perform well on the text-to-
image, they still fail on the text to scene text domain, as
shown in Fig. 1. Therefore, our approach utilizes LDM pre-
trained model on text-to-image as our base model. Then, we
train the model with a text-oriented image dataset to shift
the domain to text-to-scene-text as shown in Fig. 1.

3. Preliminaries

Inspired by the success of the diffusion models [11,27,

] in generating high-quality images from a given prompt
(text to image), our method employs the concept of diffu-
sion process to generate a sample by multiple denoising
steps. Specifically, our model is built on memory-efficient
diffusion models i.e. the Latent Diffusion Model (LDM),
and focuses on performing diffusion for text to scene text
generation in the latent space. In this section, we briefly
overview the fundamental principles of LDM.

Diffusion models. Diffusion probabilistic models [11,33]
mainly consist of two processes: 1) forward steps and 2) re-
verse steps. Starting from the distribution of an input image
q(xo), where ¢y € R3*H>*W in the RGB space, the for-
ward steps g(x1.7|xo) are a sequence of the Markov chain
that outputs a series of noisy image xy, - - -, x7. The Gaus-
sian noise € is gradually added to the input image x( based
on a variance schedule {31, - - -, fr}. The forward process
is defined as:

q(@ilei—1) = N(xe; /1 — Brace1, Be, I).

As the noisy image &7 must be reconstructed to xg, we
need to learn a model using the reverse process estimating
the joint distribution pg(xo.7) yielding:

ey

=

po(xo.r) = p(T) | | Po(Tt—1]281),

©))

t=1
po(Ti—1|z) = N(1—1; po(xe, t), Lo (e, t)).
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Alternatively, the noised image x; can be sampled directly
from z¢. With oy := 1 — B3 and o7 := HST:() as, q(x|20)
can be formulated as:

q(xt|xo) = N (245 /0, (1 — ap)T). 3)
Ho et al. [11] introduces the approximation noise model
eg(x¢, t) to predict pg (x4, t):

1 1-—
po (e, t) = o (wt — \/1_762569(%,150 )

Diffusion in the latent space. LDM has two modules:
perceptual compression and denoising U-Net. The percep-
tual compression is able to encode the given « into a latent
space z = £(x) and is able to reconstruct back from la-
tent to image space * = D(E(x)). The diffusion model
eo(zt,t) generates the predicted noise of the noisy latent
image z; at time t. The loss function can be formulated as
Lrpm = E, conr(o,0).elle — €o(2t, t)l5- )]

If the condition (e.g. text, image, or label) y exists, then the
loss function is presented as

Liom =Bz ycononlle = €o(ze t, 7 ()3, (6)
where 7, is a conditional model, e.g., BERT [5] or
CLIP [25], that takes y as an input and generates an em-
bedding feature e € Rk*4_ Here, k denotes the number of
tokens in y, and d represents the feature dimension. This
embedding feature then is combined with the latent vector
z using a cross attention mechanism in the denoising model
€9. Note that we use the identical conditioning mechanisms
in LDM [27] with the cross-attention mechanism of multi-
modalities in the intermediate layers of the U-Net [28].

4. Proposed method

Our proposed method is implemented based on the con-
ditional LDM, which uses a pre-trained model from the
large-scale text-to-image LAION dataset [31]. However,
generating scene texts remains challenging, as indicated in
Fig. 1. In this work, our training process comprises two
stages. First, as a pre-requisite, we need to train (a.k.a fine-
tune) the model on the text and edited-text pairs. To this
end, we use a synthetic text generator (i.e., SynText [9]) to
produce scene text pairs. Through this strategy, the model
can learn from ground-truth edited scenes in training. We
only update the diffusion model €y on the SynText dataset
while the condition model 7, remains unchanged. Second,
in order to manipulate scene text, we have two optimization
processes, namely one-shot style adaptation and text recog-
nition guidance as illustrated in Fig. 2.
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Figure 2. The pipeline of our proposed method. The process is divided into 2 steps. One-shot style adaptation for fine-tuning the diffusion
model and text recognition guidance for optimizing the target embedding.

4.1. One-shot style adaptation

To manipulate a scene text, our model receives a source
image « and a text prompt y which are mapped to the la-
tent space z and e, respectively. Our goal is to modify the
source word to a target word while preserving the style of
the source image. To this end, the model has to encode
the characteristics of fonts, backgrounds, and colors. In the
perspective of the text-to-image generation approach, this
requires additional prompts from humans that might be dif-
ficult to find exact prompts. A sensible approach to address
this problem is to invert the text from a source image [7,20].
However, we have observed that [15, 20] approaches are
suboptimal to maintain the original text style. For this rea-
son, we propose a one-shot style adaptation strategy that
directly optimizes the model’s weights # to achieve detail-
preserved results :

min |l — eq (21,1, eue) |2 (7)
Where z; is the source scene text in latent space. For each
source image, we reset the parameters to initial €y and op-
timize the model using Eq. 7 yielding €y. In each iteration,
we randomly sample the noise € in Eq. 7.

There are significant differences with prior works for
style adaptation or personalization. Our style adaptation
mechanism differs from DreamBooth [30] as it does not in-
volve adding a unique identifier to the input text or gener-
ating extra images for class-specific prior preservation loss.
Another strategy for personalization, known as textual in-
version [7], may offer more efficient adaptation but often
results in a loss of details. Furthermore, both strategies
typically require more samples to learn the style. In con-
trast, our one-shot style adaptation only requires a single
image for style adaptation and seamlessly incorporates in-
put details. Imagic [15] requires optimizing the text embed-
ding before fine-tuning the diffusion model, meaning that
each edited prompt necessitates both embedding optimiza-
tion and fine-tuning. In contrast, our method only requires
training the diffusion model once. Even with an edited
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prompt, we only need to optimize the embedding without
retraining the diffusion model.

4.2. Text recognition guidance

Algorithm 1 Text Recognition Guidance

1: Input : Input latent image 2o, target embedding e ,
and target text T

2: Output : Optimized embedding €

3: for number of optimization iterations do

4: Get t from Uniform(1,---,7T)

5: Generate € from A (0, I)

6: Generate z; = \/a;zg + /1 — a€)
7: Obtain é = €g(z¢, 1, €4gt)

8: Compute &4+ from Eq. 8

9: Update ey from Eq. 10

10: end for

In addition to the style adaptation strategy, we aim to
preserve the readability and performance on OCR. To this
end, we introduce text recognition guidance integrated with
the diffusion model. We use the style-adapted diffusion
model € as a starting point. In this stage, we start from the
embedding of the target text ey and the text recognizer to
guide the model to generate precise texts as shown in Fig. 2
(right). Firstly, as the diffusion process is performed in the
latent space, we need to reconstruct to the image level as
followed:

®)

where 2 is obtained by a denoising process for each t €
{1,---,T} as followed:

2zt — V1 — oy €921, 1, €4gy)

2y = .

Vou
The reconstructed scene text &.4;; is fed into the text recog-
nition model f, with the cross entropy loss Lcg. At this
step, we keep the diffusion model unchanged as it has been
adapted to the source style. Thus, we arrive at the textual

ZTeait = D(20),

&)
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Figure 3. Qualitative comparison on COCO-Text [36] and ICDAR2013 [14] datasets. DBEST (ours) achieves superior qualitative results
compared to SRNet [37], STEFFAN [29], SDEdit [ 18], Imagic [ 5], Null-Inv [20]+p2p [10], Text2Img LDM [27], Text2Live [2].

inversion by employing iterative optimization on the target
embedding e as:

étgt = €tgt — VetgtECE(f@ Ledits 'ﬁgc), (10)
where Tigy is the target text. In our implementation, we set
the minimum value of ¢ > 500 to ensure the input image is
mainly covered by €. The step-by-step of text recognition

guidance is presented in Algorithm 1.

5. Experiments

This section presents a comparison of our method with
existing approaches for scene text manipulation, including
those with and without a diffusion model. Also, we include
ablation studies to understand each component of our pro-
posed approach. To begin, we introduce the datasets, SOTA
methods, and provide experimental details.

Datasets. We employ two types of datasets for our evalua-
tion: synthesized and in-the-wild datasets. We generate the
synthesized text scene dataset. The background and the text
variation are obtained from SynText [9]. Then, we follow
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the step-by-step procedures mentioned in SRNet and pro-
duce 100k training images. For evaluation data, the back-
grounds are gathered from publicly available images from
the internet, and various fonts are used to produce 600 im-
ages. The in-the-wild datasets we use are COCO-Text [36]
and ICDAR2013 [14], which are frequently used for quanti-
tative comparison. We randomly select 100 images for each
dataset and choose the corresponding target text. For addi-
tional qualitative results, we apply our method to YouTube
videos and the HierText dataset [17] presented in the sup-
plementary material.

Baselines. We compared our proposed method with both
non-diffusion model methods, including Pix2pix [12],
SRNet [37], STEFANN [29], Text2Live [2], and De-
Render [32], and diffusion model-based methods, includ-
ing Imagic [15], text-to-image (Text2Img) LDM [27], Null-
text [20] + prompt-to-prompt (p2p) [ 0], and SDEdit [18].

Evaluation Measurements. We evaluate the perfor-
mance of the baselines using various measurements. Ini-
tially, we use the standard evaluation metrics for image ma-
nipulation, including PSNR, SSIM, and LPIPS [41] scores
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Figure 4. Result of text scene manipulation on row 1: ICDAR2015 [13], row 2: IIIT5K [19], and row 3: SVT [24]. The input image is

represented by green box and the edited version by red box.

OCR Acc. (% 1)

Methods PSNR (1) SSIM (1) LPIPS (})

char word
Pix2pix [12] 28.39 0.47 0.52 40.83  9.50
SRNet [37] 29.21 0.49 0.53 88.70  71.16
De-Render* [32] 29.68 0.65 0.48 40.82  17.39
SDEdit [ 18] 29.35 0.45 0.44 4.91
LDM [27] 29.78 0.51 0.38 4433 1150
Imagic [15] 28.18 0.30 0.61 77.75  50.66
Imagic with SynText [15]  28.33 0.31 0.48 9433 82.33
DBEST (Ours) 30.09 0.54 0.29 94.58 84.83

Table 1. The average of PSNR, SSIM, LPIPS, and OCR scores on
SynText dataset. The notations ’-” and **’ denote a method with no
correct word and unfair comparison, respectively. The best score
is denoted by bold text.

on the SynText dataset. We compare the models based on
character recognition benchmarks. For this purpose, we uti-
lize a pre-trained weight of scene text recognition [38] to
determine if the generated sample is readable. We measure
the recognition performance at both the character level and
word level.

5.1. Evaluations

State-of-the-art comparison. We conduct comparisons
among state-of-the-art (SOTA) methods and found that SR-
Net is the best-performing method among them. In Ta-
ble 1, we compare our method with Pix2pix, SRNet, De-
Render, SDEdit, Imagic, and LDM as the SOTA methods
on SynText dataset. In Table 2, we compare our method
with SRNet, De-Render, Imagic, SDEdit, and Null-text +
P2P as the SOTA methods on in-the-wild datasets. Our ap-
proach achieved SOTA performance on image quality as-
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OCR Acc. (% 1)

Methods COCO-Text ICDAR2013
char word char word
Pix2pix [12] 20.00 - 17.60 -
SRNet [37] 56.58 21.00 51.79 2551
De-Render* [32] 24.63 2.00 18.54 -
Imagic [15] 20.00 1.00 14.70 -
SDEdit [ 18] 17.31 - 18.30 -
Null-Inv [20] +P2P [10]  18.78 - 17.37 -
DBEST (Ours) 94.15 83.00 98.12 92.00

Table 2. The average OCR accuracy on COCO-Text and IC-
DAR2013 dataset. The notations and ’*’ denote a method
with no correct word and unfair comparison, respectively. The
best score is denoted by bold text.

LI

sessments. Furthermore, in Table 1, we achieve 94% and
84% for character and word recognition accuracy, respec-
tively. Even when evaluating in-the-wild data (as shown in
Table 2), our method maintained consistent performance,
whereas SRNet’s performance significantly decreased as
well as Imagic’s performance. In Fig. 3, it is demon-
strated that SDEdit, Imagic, Null-text, Text2Img LDM, and
Text2live are unable to modify the source image. The main
reason is that language models, such as BERT or CLIP,
do not possess adequate knowledge of scene text. Mean-
while, STEFFAN heavily relies on per-character map es-
timation, and SRNet struggles with reconstruction due to
the diverse characteristics of in-the-wild datasets compared
to SynText. Our method, on the other hand, can manipu-
late the scene while preserving the source style. However,
when we applied De-Render to both evaluation tables, we
observed that several images were undetected. This is be-
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SynText Text PSNR (1) SSIM (1) LPIPS (})

OCR Acc. (% 1)

char word
X X 29.78 0.51 0.38 4433  11.50
X v 29.90 0.52 0.35 76.70  50.00
v X 30.09 0.54 0.30 84.25  60.16
v v 30.09 0.54 0.29 94.58 84.83

Table 3. Ablation studies on the SynText dataset. The best score
is denoted by bold text. The column ’SynText’ and "Text’ denote
a utilization of SynText dataset and text recognition guidance, re-
spectively.

cause this method is limited to digital documents.

Result on the in-the-wild dataset. Fig. 4 illustrates more
examples of scene text manipulation on ICDAR2015 [13],
IIT5K [19], and SVT [24] datasets. ICDAR2015 and SVT
datasets are particularly challenging due to the presence of
factors that can affect captured scene text, including geom-
etry distortion, noise effects, and motion blur. Even with
those conditions, our method is still able to manipulate the
scene text. In addition, our method’s ability to manipulate
text in a full image is demonstrated in Fig. 5. To accom-
plish this, we can utilize a scene text detection algorithm
like EAST [43] or a provided text bounding box to identify
each text instance within the image. Then, each identified
text area is extracted and provided to our method along with
the target text. Finally, the edited image is projected back
onto the original image to generate the desired output.

5.2. Ablation studies

Below, we investigate how our method behaves and the
impacts of each component in our work.

Why do we need pre-trained with SynText dataset? At
its core, our problem is the inability of text-to-image models
to handle the scene text domain, as depicted in the bottom
part of Fig. 1. By and large, we observe that the LAION
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Figure 6. Result from a single image with different target texts.
The input image is represented by green box, the edited image
without one-shot diffusion model is shown by blue box and the
final edited version by red box.

dataset [3 1] comprises general scenes. Therefore, a straight-
forward approach of using LDM for text-to-scene text fails.
In Table 3, we present significant improvement in terms of
OCR accuracy, where the first row represents the accuracy
of text-to-image LDM as a baseline.

Why do we need one-shot style adaptation? The one-
shot style adaptation for the diffusion model is crucial for
maintaining the source appearance and text geometry of the
edited text. As shown in Fig. 6, our approach can suc-
cessfully edit the text, but the edited result loses its source
appearance without the one-shot method. In other words,
without the one-shot diffusion model, our method may gen-
erate an image that does not resemble the original input.
The one-shot style adaptation reduces the distribution space
of the diffusion model, ensuring that the generated image
maintains the source appearance of the input image. Fur-
thermore, our method offers the advantage of allowing mul-
tiple text editing tasks to be performed with just a single
one-shot style adaptation. This means that users can easily
modify various pieces of text while maintaining the same
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Figure 7. Ablation result of our method on Syntext dataset. The
label *SynText’ and ’Text’ denote a utilization of SynText dataset
and text recognition guidance, respectively.

style without requiring additional style adaptation. The ef-
fectiveness of this can be observed in Fig. 6.

Why do we need text recognition guidance? Accord-
ing to Table. 3, when text recognition guidance is not used,
the character accuracy and word accuracy are 84.25 % and
60.16 %, respectively. This is further confirmed by Fig. 7,
where we can see that the manipulated scene text contains
some character errors. However, with the addition of text
recognition guidance, the diffusion model is guided to re-
vise the character errors, resulting in a significant improve-
ment in word accuracy, as shown in Table. 3. In essence,
the text recognition guidance helps to improve the accuracy
of the edited text scene by guiding the diffusion model to
revise the character errors. By incorporating this guidance,
our approach is able to generate more readable and accu-
rate edited text scenes, improving the overall quality of the
output.

What is the key difference with Imagic [15] ? We
emphasize that Imagic requires interpolating between the
source and target embeddings with an associated parame-
ter difficult to be finetuned. While, a simple Imagic model
trained on Syntext denoted as ’'Imagic with SynText’ failed
to edit scene texts effectively (e.g., inconsistent styles) as
depicted in Fig. 8 (col. 2) and low score on image quality
performance in Table 1. In contrast, our proposed method
can easily generate well-accepted results by only optimiz-
ing the target text embedding without an extra interpolation
parameter.

Length of characters. We analyze the effect of character
length on text manipulation performance by using an input
image with four different character lengths. As shown in
Fig. 9, the results indicate a significant decrease in perfor-
mance when manipulating text with more than five charac-
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Figure 8. ‘MAIN’, ‘STOP’ — ‘NIPS’, ICML’. The input image
is represented by green box, the result by *Imagic with SynText’ is
shown by blue box and ours by red box.
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Figure 9. Analyzing the edited result with various length of char-
acters on the in-the-wild dataset. The input image is constrained to
4 length of characters and the target text is varying from 3-7 char-
acters. Though the target text has more characters, our method is
still superior compared to SRNet in terms of accuracy in character
and word levels.

ters. We attribute this drop in performance to the model’s
inability to adjust the font size based on the given text and
the available space in the scene. Currently, our model lacks
the ability to adapt the font size based on the text length,
which limits its performance in manipulating longer texts.
This limitation is evident in Fig. 9, where the model strug-
gles to maintain accuracy when manipulating text with more
than five characters. Therefore, improving the model’s abil-
ity to adjust font size dynamically based on the text length
and available space in the scene could enhance its perfor-
mance in manipulating longer texts.

6. Conclusion

We propose a diffusion model for scene text manipu-
lation with one-shot style adaptation and text recognition
guidance. In our evaluation, we use synthesized and in-the-
wild datasets, which have different characteristics. As our
experimental evaluations indicate, our methods comfortably
outperform the existing methods in both datasets. Further-
more, the ablation studies we conducted indicate that each
process within our method has a distinct task and is crucial
to its overall performance.

Our method currently has two limitations. First, the in-
ference time is around 8 minutes per image, making it un-
suitable for real-time applications. Second, there is a con-
straint on the character length that can be manipulated. As
mentioned, adjusting the font size is another challenge we
aim to address in future work.

Acknowledgement. We would like to express our grati-
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