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Abstract

We consider explainability in equivariant graph
neural networks for 3D geometric graphs. While
many XAI methods have been developed for ana-
lyzing graph neural networks, they predominantly
target 2D graph structures. The complex nature
of 3D data and the sophisticated architectures of
equivariant GNNs present unique challenges. Cur-
rent XAI techniques either struggle to adapt to
equivariant GNNs or fail to effectively handle
positional data and evaluate the significance of
geometric features adequately. To address these
challenges, we introduce a novel method, known
as EquiGX, which uses the Deep Taylor decom-
position framework to extend the layer-wise rel-
evance propagation rules tailored for spherical
equivariant GNNs. Our approach decomposes
prediction scores and back-propagates the rel-
evance scores through each layer to the input
space. Our decomposition rules provide a de-
tailed explanation of each layer’s contribution to
the network’s predictions, thereby enhancing our
understanding of how geometric and positional
data influence the model’s outputs. Through
experiments on both synthetic and real-world
datasets, our method demonstrates its capabil-
ity to identify critical geometric structures and
outperform alternative baselines. These results
indicate that our method provides significantly en-
hanced explanations for equivariant GNNs. Our
code has been released as part of the AIRS library
(https://github.com/divelab/AIRS/).
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1. Introduction
Equivariant graph neural networks have shown significant
promise in addressing complex problems across quantum
physics, molecular science, materials science, and protein
research (Thomas et al., 2018; Fuchs et al., 2020; Liao &
Smidt, 2022; Liao et al., 2023; Batzner et al., 2022; Passaro
& Zitnick, 2023; Zhang et al., 2023; Yu et al., 2023; Du et al.,
2024; Wang et al., 2023; 2022). Despite their potential, a
critical challenge in assessing the scientific plausibility of
these models’ outcomes is their interpretability. Most equiv-
ariant GNNs are treated as black boxes, which undermines
their reliability and limits their applicability in scientific
domains. Therefore, developing explainable artificial intel-
ligence (XAI) techniques tailored for equivariant GNNs is
highly desirable. These techniques can provide insights into
how equivariant GNNs make predictions, thereby increasing
the trustworthiness of their outcomes. Moreover, XAI tech-
niques can not only diagnose and improve existing models
but also facilitate further scientific knowledge discovery.

While many XAI methods have been proposed to study
GNNs, they primarily focus on 2D graphs (Yuan et al.,
2023; 2020; Zheng et al., 2023; Chen et al., 2024; Wang
et al., 2021). The high dimensionality of 3D geometric data
and the complexity of equivariant GNN models pose unique
challenges and opportunities in this domain. Current XAI
techniques either struggle to adapt to equivariant GNNs or
fail to effectively handle positional data and evaluate the
significance of geometric features adequately. Specifically,
many XAI methods (Huang et al., 2022; Zhang et al., 2021;
Vu & Thai, 2020) overlook the complex behavior of equiv-
ariant models, thus requiring additional effort before they
can be applied to equivariant GNNs. On the other hand,
some XAI methods, known for their simplicity and adapt-
ability, such as SA (Baldassarre & Azizpour, 2019), are
insufficient to provide a comprehensive explanation for the
importance of geometric features.

To bridge this gap, we introduce a novel XAI method, known
as EquiGX, which captures the importance of input compo-
nents by decomposing the model predictions. The primary
challenge in decomposing the predictions of spherical equiv-
ariant GNNs lies in attributing the tensor product-based
message-passing operations that are central to these net-
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works. Our approach uses the Deep Taylor decomposition
framework to extend layer-wise relevance propagation rules
specifically for spherical equivariant GNNs. By explicitly
considering the tensor product (TP) operations, we derive
new relevance propagation rules based on Taylor decompo-
sition. These rules enable us to back-propagate relevance
scores layer by layer until the input space, providing a de-
tailed explanation of each layer’s contribution to the net-
work’s predictions. Consequently, EquiGX can enhance
our understanding of how geometric and positional data
influence the model’s outputs.

2. Background and Related Work
We denote a geometric graph with n nodes as G =
{X,A,C}. Here, X = [X1, · · · ,Xn]

T ∈ Rn×d

is the node feature matrix, where each Xi ∈ Rd is
the d-dimensional feature vector of node i. C =
[C1, · · · ,Cn]

T ∈ Rn×3 is the node coordinate matrix,
where Ci is the coordinate of i-th node. Nodes are generally
connected by edges using a predetermined radial cutoff dis-
tance c ∈ R+, so that the adjacency matrix A ∈ {0, 1}n×n

is defined as Aij = 1 if and only if ∥Ci −Cj∥2 ≤ c. We
use N (i) to denote the set of neighboring nodes of node i.

2.1. Equivariant Graph Networks

Equivariant graph neural networks are critical in the do-
main of AI for science, particularly for modeling geomet-
ric graphs derived from three-dimensional atomic systems.
These networks are specifically designed to capitalize the
physical symmetries and integrate these symmetries into the
model architecture to ensure that the learned hidden repre-
sentations are equivariant to any symmetry transformations
applied to the input. Specifically, if the input geometric
graph is transformed under any operation in SE(3), which
stands for the special Euclidean group in 3D space, the
corresponding hidden representations at each layer are trans-
formed correspondingly. Formally, a function f : Rn×3 →
R2ℓ+1 mapping between 3D coordinates to a (2ℓ + 1)-
dimensional vector is SE(3) equivariant, if for any input
coordinates C, we have f(RCT+t) = Dℓ(R)f(C), where
t ∈ R3 is a translation vector, R is a rotation matrix satisfy-
ing RTR = I and |R| = 1, and Dℓ(R) ∈ R(2ℓ+1)×(2ℓ+1)

represents the Wigner-D matrix of R (Gilmore, 2008). Here,
function f is invariant to translation, exemplifying a specific
type of translation equivariance.

Among the various types of equivariant GNNs (Jing et al.,
2020; Schütt et al., 2021; Satorras et al., 2021), spheri-
cal equivariant GNNs (Thomas et al., 2018; Fuchs et al.,
2020; Liao & Smidt, 2022) are particularly prominent. In
these approaches, spherical harmonics functions are used
to first encode 3D geometric information into higher di-
mensional SE(3) equivariant features. We denote the

order-ℓ1 SE(3) equivariant hidden features of node i as
Hℓ1

i ∈ R2ℓ1+1. These features are used in a tensor product
operation to compute an equivariant message from node i
to node j, denoted as Mj→i, and the aggregated message
Mi =

∑
j∈N (i) Mj→i is used to update the equivariant

hidden features. Mj→i consists of many features with mul-
tiple rotation orders as Mj→i =

⊕ℓmax

ℓ=0 M ℓ
j→i, where

⊕
is

direct sum. For an order-ℓ3 message M ℓ3
j→i, it can be com-

puted by using the order-ℓ2 spherical harmonics function
as

M ℓ3
j→i =

∑
ℓ1,ℓ2

F(ℓ1,ℓ2,ℓ3)(dij)Yℓ2 (r⃗ij)⊗Hℓ1
j . (1)

Here, F(·) is a learnable function usually implemented by
a multi-layer perceptron (MLP) model, dij = ∥Ci −Cj∥2
and r⃗ij =

Ci−Cj

dij
are the distance and direction between

nodes i and j, respectively. Yℓ2(·) : R3 → R2ℓ2+1 is
the spherical harmonics function, which maps an input 3D
vector to a (2ℓ2 + 1)-dimensional vector representing the
coefficients of order-ℓ2 spherical harmonics bases. ⊗ is the
tensor product operation, which takes a order-ℓ1 equivari-
ant feature u and a order-ℓ2 equivariant feature v as input,
yielding order-ℓ3 equivariant feature as

(uℓ1 ⊗ vℓ2)ℓ3m3
=
∑ℓ1

m1=−ℓ1

∑ℓ2
m2=−ℓ2

C(ℓ3,m3)
(ℓ1,m1),(ℓ2,m2)

uℓ1
m1

vℓ2
m2

,

where C is Clebsch-Gordan (CG) coefficients (Griffiths &
Schroeter, 2018) and m denotes the m-th element in the
equivariant feature. See more discussions about equivariant
graph neural networks in Section 5.

2.2. Explainability in Graph Neural Networks

Explainability in neural networks is vital for validating the
trustworthiness and reliability of their predictions, especially
when applying these models to scientific domains. Current
XAI methods predominantly focus on GNNs designed for
2D graphs. These approaches can be mainly categorized
into four classes, namely, gradients/feature-based methods,
perturbation-based methods, decomposition methods, and
surrogate methods. Gradients/Feature-based methods, such
as SA (Baldassarre & Azizpour, 2019) and CAM (Pope
et al., 2019), use gradient values to assess the importance
of input components. Their popularity stems from their
simplicity and direct approach. Perturbation-based meth-
ods (Ying et al., 2019; Yuan et al., 2021; Luo et al., 2020)
evaluate changes in predictions by perturbing different input
features to identify the most impactful ones. Surrogate-
based methods (Huang et al., 2022; Zhang et al., 2021;
Vu & Thai, 2020) involve fitting a simpler, interpretable
model, such as a decision tree, to mimic the behavior of
the original model. The surrogate model’s explanations
are then used to understand the original predictions. De-
composition methods (Schnake et al., 2021; Xiong et al.,
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2023; Feng et al., 2023) decompose prediction scores and
back-propagate them layer-by-layer to the input space to
compute importance scores and provide deeper insights into
each network layer. Despite significant advances in XAI
for 2D GNNs, these methods primarily focus on evaluat-
ing the importance of edges, nodes, and subgraphs, strug-
gling to incorporate positional information effectively and
fully evaluate the importance of geometric features. Conse-
quently, the application of these techniques to 3D geometric
graphs, especially within equivariant graph neural networks,
poses significant challenges. Recently, Miao et al. (2023)
introduces a learnable interpreter model that applies ran-
dom noise to each 3D point to generate importance scores.
However, this method relies solely on input-output behavior
without requiring access to the model’s internal parameters
or gradients and overlooks the equivariance of the model. It
also requires training the interpreter alongside the prediction
model. To sum up, the challenge of explaining equivariant
neural networks highlights a significant gap in the current
landscape of XAI, underscoring the need for innovative ap-
proaches that consider the complex behaviors of equivariant
neural networks.

3. Methodology
Previous XAI methods on 2D graphs encounter limitations
when adapting them on geometric graphs, particularly in
effectively incorporating positional information and evalu-
ating geometric features. To address these challenges, we
introduce a novel method, EquiGX, which recursively de-
composes network predictions back to the input elements.
Our approach use the Deep Taylor decomposition frame-
work (Montavon et al., 2017), adapted to extend the layer-
wise relevance propagation rules specifically for TP based
message passing process. This adaptation allows for a de-
tailed explanation of each layer’s contribution to the net-
work’s predictions, thus enhancing our understanding of
how geometric and positional data influence the model’s
outputs.

3.1. Layer-wise Relevance Propagation

The objective of Layer-wise Relevance Propagation (LRP)
is to attribute a relevance score to each input element based
on its contribution to the predicted class. This scoring offers
insights into how individual input elements contribute to the
model’s final decision. One way to compute such relevance
is to the whole neural network as a mathematical function
and use the first-order term from the Taylor series expansion.
Consider a function f : X → Y that maps an input to its
output label. The Taylor decomposition of f at a root point
x̂ ∈ Rd is given by

f(x) = f(x̂)+
∑
i

∂f

∂xi

∣∣∣∣
x=x̂

(xi−x̂i)+O(|x− x̂|2), (2)

where O is Big-O notation, and xi and x̂i is the i-th dimen-
sion of x and x̂, respectively. Assuming f is a locally linear
function and carefully selecting x̂ such that higher-order
and zero-order terms are negligible, the first-order terms
can provide the relevance scores for the input elements as
R(xi) = ∂f

∂xi

∣∣∣
x=x̂

(xi − x̂i). Deep neural networks are
inherently complex and non-linear, making it impractical
to apply a straightforward Taylor decomposition across all
layers. On the other hand, Deep neural networks, composed
of multiple layers, necessitate decomposing the network
into a series of simpler subfunctions, each representing a
single layer. This approach, known as Deep Taylor De-
composition, allows for applying different relevance score
computation rules tailored to specific types of layers. For
instance, when considering linear layer with Relu activation
functions, distinct rules, such as LRP-γ (Montavon et al.,
2019), LRP-αβ (Bach et al., 2015) can be used due to choos-
ing different root points and approximation methods. By
using these specifically designed local propagation rules for
every layer, the initial relevance value, i.e. the prediction of
the model, is successively distributed layer-by-layer to the
input space. The decomposition characteristic of LRP gives
rise to the conservation property, which ensures that the sum
of relevance scores across neurons in two adjacent layers
remains constant. Let H and H ′ be the representations of
two adjacent layers, the conservation property can be for-
mally described as

∑
i R(H) =

∑
j R(H ′), where R(H)

and R(H ′) are the relevance scores of H and H ′, respec-
tively. We use the Deep Taylor decomposition to study the
complex behavior of equivariant GNNs and provide detailed
relevance propagation rules for each layer in the following
subsections.

3.2. Attributing the TP-based Message Passing

As mentioned in Section 2.1, the key of spherical equivariant
GNNs is the TP based message passing process. Equivari-
ant messages Mj→i are computed from node j to node i
using TP, and then aggregated to form the message Mi. The
aggregation operation Mj→i =

∑
j∈N (i) Mj→i inherently

provides a decomposition. Specifically, we assign a rele-
vance score R(Mj→i) to each message proportional to its
contribution to the aggregated message. Since messages of
different orders are summed separately, each order is also
considered individually when backpropagating the relevance
score. Formally, this process can be described as

R(M ℓ3
j→i) =

M ℓ3
j→i∑

j∈N (i) M
ℓ3
j→i

R(M ℓ3
i ).

For the equivariant message shown in Eq. 1, we can apply
a Taylor series expansion to derive a decomposition rule.
Specifically, the first order Taylor series expansion of an
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order-ℓ3 message M ℓ3
j→i at a root point Ĥℓ1

j is given by

M ℓ3
j→i = M̂ ℓ3

j→i +
∑
ℓ1,ℓ2

∂M ℓ3
j→i

∂Hℓ1
j

∣∣∣∣∣
H

ℓ1
j =Ĥ

ℓ1
j

(Hℓ1
j − Ĥℓ1

j ),

where
∂M

ℓ3
j→i

∂H
ℓ1
j

∈ R(2ℓ3+1)×(2ℓ1+1) is a Jacobian matrix.

Each element of this matrix is defined as(
∂M ℓ3

j→i

∂Hℓ1
j

)
m3,m1

=
∑
ℓ2

ℓ2∑
m2=−ℓ2

F(ℓ1,ℓ2,ℓ3)(dij)

C(ℓ3,m3)
(ℓ1,m1),(ℓ2,m2)

Yℓ2 (r⃗ij) .

The bilinearity of the tensor product indicates that it is linear
with respect to each input. This property implies that the

Jacobian matrix
∂M

ℓ3
j→i

∂H
ℓ1
j

is independent of the choice of root

point Ĥℓ1
j . Additionally, the absence of quadratic or higher-

degree terms in the Taylor expansion suggests that when a
root point is chosen such that the zero-order term equals to
zero, the Taylor expansion serves as a decomposition of the
message. Given that Hℓ1

j contributes to messages of various
nodes and different orders, it is necessary to aggregate these
contributions. Formally, this relevance propagation rule can
be described as

R(Hℓ1
j ) =

∑
ℓ3,i

(
R(M ℓ3

j→i)⊘M ℓ3
j→i

)T
〈
∂M ℓ3

j→i

∂Hℓ1
j

, Hℓ1
j

〉 (3)

where ⊘ is Hadamard division.

However, this decomposition overlooks the contribution of
relative positional information between node i and node j.
As shown in Eq. 1, spherical equivariant GNNs split the
relative position vector of node i and node j into a distance
part dij and a directional part r⃗ij . The directional part r⃗ij
is encoded into an SE(3) equivariant feature vector using
spherical harmonics functions, which then serves as one
input to the tensor product. The distance part dij is encoded
into embeddings via radial basis functions (RBF), which
in turn are used to determine the weight of each tensor
product path (ℓ1, ℓ2 → ℓ3). Thus, an alternative and highly
desirable solution is to decompose the relevance score of
each message Mj→i to all three components, namely the
hidden features, directional part, and distance part. Notably,
the message is a trilinear function, meaning it remains linear
with respect to one component when the others are held
constant. Following Achtibat et al. (2024), it is reasonable to
assign equal relevance values to each component. Formally,

we have the relevance propagation rules as

R(Hℓ1
j ) =

∑
ℓ3,i

(
R(M ℓ3

j→i)

3
⊘M ℓ3

j→i

)T

〈
∂M ℓ3

j→i

∂Hℓ1
j

, Hℓ1
j

〉
,

R
(

F(ℓ1,ℓ2,ℓ3)(dij)
)
=

(
R(M ℓ3

j→i)

3
⊘M ℓ3

j→i

)T

〈
∂M ℓ3

j→i

∂F(ℓ1,ℓ2,ℓ3)(dij)
,F(ℓ1,ℓ2,ℓ3)(dij)

〉
,

R
(
Yℓ2(r⃗ij)

)
=
∑
ℓ3

(
R(M ℓ3

j→i)

3
⊘M ℓ3

j→i

)T

〈
∂M ℓ3

j→i

∂Yℓ2(r⃗ij)
,Yℓ2(r⃗ij)

〉
.

(4)

Since one edge distance dij contributes to multiple TP
paths, we sum up relevance scores to get the contribution of
edge’s distance as R(dij) =

∑
ℓ1,ℓ2,ℓ3

R(F(ℓ1,ℓ2,ℓ3)(dij)).
Similarly, the direction of each edge is encoded into mul-
tiple orders of equivariant features using spherical har-
monics functions, thus we sum up relevance scores to at-
tribute the contribution of an edge’s direction as R(r⃗ij) =∑

ℓ2
R(Yℓ2(r⃗ij))).

Note that the relevance propagation rule discussed here is to
attribute a single TP-based message passing layer. To apply
relevance propagation across the entire network recursively,
only the relevance score of hidden feature R(H) continues
to backpropagate towards the input. In contrast, R(dij)
and R(r⃗ij) do not continue to backpropagate beyond their
respective layer. These scores indicate the contributions
of the edge distance and edge direction, respectively, to
the final prediction within that specific message passing
layer. Thus, the relevance scores R(dij) and R(r⃗ij) at each
message passing layer are summed to derive the cumulative
relevance score for edge distances and directions.

3.3. Attributing the Linear Operation

The tensor product provides a mechanism for interactions be-
tween equivariant features of different orders, while the lin-
ear layer is designed to mix equivariant features of the same
order. Specifically, this layer linearly combines each group
of order-ℓ equivariant features to produce new features, with
each group having its own set of learnable parameters. Con-
sider the input to the linear layer as p order-ℓ1 features of
node i, denoted by Hℓ1

i ∈ Rp×(2ℓ+1). The output of the
linear layer is q order-ℓ1 features of node i, represented
as H ′ℓ1

i ∈ Rq×(2ℓ+1). Formally, the transformation in the
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linear layer can be described as

H ′ℓ1
i = wℓ1Hℓ1

i , (5)

where wℓ1 ∈ Rq×p are the learnable parameters used for
mixing order-ℓ1 features. Since each new feature is a
weighted sum of the input features, we follow the funda-
mental LRP-ϵ (Bach et al., 2015) to derive the propagation
rule for this linear layer. Let (Hℓ1

i )m1
and (H ′ℓ1

i )m2
de-

note the m1-th and m2-th order-ℓ1 features of node i for the
input and output, respectively, and let wℓ1

m2,m1
denote the

element at the m2-th row and m1-th column of wℓ1 . The
propagation rule for the linear layer is defined as

R
(
(Hℓ1

i )m1

)
=
∑
m2

(
wℓ1

m2,m1
(Hℓ1

i )m1

)
⊘
(
(H ′ℓ1

i )m2
+ ϵ1

)
R
(
(H ′ℓ1

i )m2

)
,

where ϵ ∈ R is a stabilizing factor with a small value, and
1 ∈ R2ℓ1+1 is a all-ones vector, which broadcasts ϵ into a
vector. It is worth noting that while the above relevance prop-
agation rule is specifically for order-ℓ1 features of node i, in
practice, the input contains groups of equivariant features
of various orders across all nodes. Thus, the propagation
rule is applied separately for every node and rotation order
to compute the relevance score for all input features.

3.4. Attributing the Non-linear Functions

In this work, we assume that norm-based non-linear func-
tion is used in the model architecture, such as TFN (Thomas
et al., 2018) and SE(3)-Transformer (Fuchs et al., 2020).
The norm-based non-linearity acts as a scalar transformation
on each equivariant feature based on its norm. Specifically,
for an order-ℓ1 equivariant feature of node i, denoted as
Hℓ1

i ∈ R(2ℓ+1), a scalar value is computed using an activa-
tion function like the sigmoid function. The output of this
norm-based non-linearity, denoted as H ′ℓ1

i ∈ R(2ℓ+1), is
computed by multiplying the input equivariant feature by
the scalar output of the activation function. Formally, this
process can be described as

H ′ℓ1
i = σ(∥Hℓ1

i ∥)Hℓ1
i , (6)

where σ(·) is the sigmoid function. Since each equivariant
feature is transformed by a scalar, reversing the transforma-
tion results in a way to attribute relevance values. However,
directly reversing the scalar transformation does not pre-
serve the sum of relevance scores between input and output,
thereby breaking the conservation property. To address this,
we normalize the relevance scores to ensure the conserva-
tion property is maintained. The relevance propagation rule
for the norm-based non-linear function is given by

R(Hℓ1
i ) = λ

R(H ′ℓ1
i )

σ(∥Hi∥)
, (7)

where λ ∈ R is a normalization factor defined as

λ =

∑
ℓ1,i

R(H ′ℓ1
i )∑

ℓ1,i
R(H ′ℓ1

i )/σ(∥Hi∥)
.

To compute the final importance score for each input node,
we aggregate the relevance score of the node itself along
with the scores of its connected edges. First, we sum the
directional and distance-based relevance across all layers
to capture the cumulative contributions of edge directions
and edge distances. The final node importance score is then
calculated as the sum of the node’s own relevance and half
the relevance of each neighboring edge.

4. Experiments
In this section, we evaluate the proposed method on both
synthetic and real-world datasets. For each dataset, we first
train a TFN and then use baselines and our method to gen-
erate the explanations. Experimental results show that our
method outperforms many baselines on both visualization
results and quantitative studies. See more implementation
details in Appendix A.

4.1. Datasets and Experimental Settings

Synthetic Datasets. We create two kinds of geometric
graph classification datasets, namely Shapes and Spiral
Noise. For the Shapes dataset, we begin by randomly select-
ing a 3D motif shape from two options, including a cube
or an icosahedron, the latter being a polyhedron with 20
triangular faces. Subsequently, we choose a 3D base shape,
either a pyramid or a star. A random translation and rotation
are performed on the base shape. The classification task is
to predict whether the motif shape in the geometric graph
is a cube or not. In the Spiral Noise dataset, we randomly
select a 3D motif shape, either a tetrahedron, a polyhedron
with four triangular faces, or a triangular prism. We then
introduce a variable number of noise points to create a spiral
pattern in 3D space. The classification task is to determine
whether the motif shape is a tetrahedron or not.

Real-world Datasets. In addition to synthetic datasets
containing perfect 3D geometric shapes, we evaluate our
method on three real-world datasets, including the Structural
Classification of Proteins (SCOP), BioLiP, and Actstrack.
The SCOP database (Murzin et al., 1995; Andreeva et al.,
2007; Chandonia et al., 2019) is a predominantly manually
curated classification of protein structural domains, orga-
nized based on similarities in their structures and amino acid
sequences. While using the same training and validation
datasets as Hou et al. (2018); Hermosilla et al. (2020), our
focus is on the fold classification task, which is to predict the
broad types of protein tertiary structure topologies. Hence,
we only use the Fold test set. There are seven categories in
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Figure 1. Explanation results on the Shapes dataset with a cube
motif shape. The red color indicates a high importance score,
while the blue color indicates a low importance score. Ideally, the
nodes of the cube should be red, indicating their high significance,
while the other areas should be blue, indicating lower significance.
The ground truth is shown in the upper-left corner, and the nodes
forming the cube motif are highlighted in red. Better alignment
with the ground truth reflects a more accurate explanation. Our
EquiGX aligns best with the ground truth.

total, such as all-alpha and all-beta proteins. Protein labels,
provided by human experts, are based on the secondary
structure, which reflects the local spatial conformation of
proteins. Specifically, labeling for all-alpha and all-beta
proteins is determined by the presence of α-helices and β-
sheets within their structures, respectively. BioLiP (Yang
et al., 2012; Zhang et al., 2024) is a semi-manually curated
database dedicated to high-quality ligand-protein binding
interactions. The 3D structural data primarily sourced from
the Protein Data Bank are complemented with biological
information, such as binding affinity scores, from literature
and other databases. The task is to predict whether there
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Figure 2. Explanation results on the Spiral Noise dataset with a
tetrahedron motif shape. The red color indicates a high importance
score, while the blue color indicates a low importance score. Ide-
ally, the nodes of the tetrahedron should be red, indicating their
high significance, while the other areas should be blue, indicating
lower significance. The ground truth is shown in the upper-left cor-
ner, and the nodes forming the tetrahedron motif are highlighted in
red. Better alignment with the ground truth reflects a more accurate
explanation. Our EquiGX aligns best with the ground truth.

is a tight binding between a protein-ligand pair. Like pre-
vious methods (Somnath et al., 2021; Öztürk et al., 2018;
Townshend et al., 2020), we do not differentiate between
the inhibition constant (Ki) and dissociation constant (Kd),
instead predicting whether a protein-ligand pair is of affin-
ity of Kd/Ki ≤ 1 nM. ActsTrack (Miao et al., 2023) is a
particle tracking simulation dataset in high-energy physics.
The task is to predict whether a collision event contains a
z → µµ decay based on a point cloud of detector hits. Each
point in the point cloud corresponds to a particle interaction
with the detector. Positive samples include hits from both
the z → µµ decay and background interactions, thus the
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EquiGX Grad

Grad-CAM LRI-Bern

LRI-Gaussian GNN-Explainer

Figure 3. Explanation results on the SCOP dataset of all-beta pro-
teins. Since the sample is an all-beta protein, ideally the β-sheets
should have high importance scores, i.e. be red in the figure. Beta
sheets typically appear as flat, arrow-shaped ribbons pointing in
a specific direction, often aligned side-by-side to form sheet-like
structures.

particle hits left by the two muons (µs) are labeled as the
ground truth for model explanations.

Baselines. We compare our method with the following
baseline methods, including (1) Grad (Baldassarre & Az-
izpour, 2019), which uses the norm of the gradient of the
predictions with respect to the 3D coordinates to evaluate
node importance; (2) Grad-CAM (Pope et al., 2019), a
gradient-based method combining with activations from hid-
den node representations; (3) GNN-Explainer (Ying et al.,
2019), a perturbation-based method identifying important
edges through optimization of soft masks; (4) LRI-Bern
(Miao et al., 2023), which learns a model to inject Bernoulli
noise to evaluate the significance of point existence; (5)
LRI-Gaussian (Miao et al., 2023), which learns a model to

EquiGX GNN-Explainer

Figure 4. Explanation results on the BioLip dataset. The ligand is
highlighted with a green border.

inject Gaussian noise to evaluate the significance of point
positions; (6) PG-Explainer (Luo et al., 2020), which gen-
erate explanations by learning parameterized masks that
highlight the most relevant subgraphs. For methods that
assign importance scores to edges, we distribute the score
to the connecting nodes to evaluate node-level explanations.

4.2. Qualitative Evaluation

In this section, we present the visualization of explanations
for our methods and other baselines across all four datasets.
Since the importance scores of different methods vary in
range, we normalize each method to have the same score
range to enable fair comparison. The explanation results
for the Shapes dataset are visualized in Figure 1. In this
dataset, the cube shape is the motif shape, so the nodes
forming the cube are used as the ground truth for expla-
nations. Therefore, the cube nodes should be marked as
important, while the other nodes should not be. As shown
in Figure 1, LRI incorrectly marks some nodes of the base
shape as important. In contrast, our method provides better
visual explanations, accurately identifying the cube nodes
as the important ones. For the Spiral Noise dataset, the
tetrahedron shape is the motif shape, so the nodes forming
the tetrahedron are used as the ground truth for explanations.
Consequently, the tetrahedron nodes should be highlighted
as important, while the other nodes should not be. As seen
in Figure 2, GNN-Explainer struggles to identify the four
important nodes forming the tetrahedron. In contrast, our
method successfully recognizes the tetrahedron. We also
show the explanation results of the SCOP dataset in Figure 3.
As mentioned in section 4.1, protein fold classes are labeled
by human experts based on the secondary structures of pro-
teins. We investigate whether the explanations provided
by different methods can accurately reflect the secondary
structures of proteins. An all-beta protein is shown in Fig-
ure 3. Ideally, the β-sheets should have a high importance
score (i.e., be red in the figure), while the remaining parts
should have a low importance score (i.e., be blue in the fig-
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Table 1. Comparisons between our method and baselines. The best results are shown in bold.

Dataset
Shapes Spiral Noise SCOP ActsTrack

AUROC ↑ AP ↑ AUROC ↑ AP ↑ AUROC ↑ AP ↑ AUROC ↑ AP ↑
Random 50 65.70 50 49.01 50 53.67 50 20.9
Grad 68.44 ± 12.44 83.81 ± 6.40 49.94 ± 0.13 49.16 ± 0.09 56.45 ± 4.93 59.75 ± 3.68 55.84 ± 0.05 31.87 ± 0.54
Grad-CAM 64.77 ± 8.84 78.95 ± 4.82 66.93± 6.89 71.88 ± 6.45 59.57 ± 4.38 61.26 ± 1.99 62.11 ± 1.93 44.95 ± 1.40
GNN-Explainer 80.85 ± 5.38 89.97 ± 2.27 79.69 ± 2.30 82.37 ± 1.90 77.26 ± 0.19 72.37 ± 0.26 65.18 ± 0.59 35.54 ± 0.76
LRI-Bern 67.84 ± 17.32 83.25 ± 9.04 79.06 ± 5.69 81.85 ± 4.85 56.09 ± 2.92 58.45 ± 3.12 62.63 ± 1.43 39.39 ± 0.88
LRI-Gaussian 68.46 ± 10.71 81.65 ± 7.24 58.75 ± 10.96 63.89 ± 8.53 65.99 ± 5.05 64.35 ± 5.41 57.54 ± 6.21 32.43 ± 1.02
PG-Explainer 82.83 ± 11.7 90.86 ± 5.66 69.09 ± 1.71 74.53 ± 1.58 76.92 ± 0.23 72.63 ± 0.13 52.16 ± 4.24 29.43 ± 2.91
EquiGX 84.31 ± 8.89 91.00 ± 5.32 83.57 ± 10.07 86.82 ± 8.30 81.51 ± 4.61 82.69 ± 3.49 76.96 ± 1.69 60.47 ± 1.71

ure). While baseline methods either fail to identify β-sheets
or incorrectly assign high importance to most parts of the
protein, our method accurately distinguishes β-sheets from
other parts, including an α-helix. For the BioLip dataset, we
present the explanation results in Figure 4. Since binding
affinity does not have a definitive answer, there is no ground
truth for explanations. It is known that binding is closely re-
lated to the protein pocket and especially the ligand itself. In
the example, both our method and GNN-Explainer indicate
that the model relies on the ligand to make predictions. To
further evaluate explanation methods on the BioLip dataset,
we conduct experiments using Fidelity and Sparsity scores
in Section 4.3.

4.3. Quantitative Evaluation

In two synthetic datasets, the relationships between geomet-
ric graphs and labels are explicitly defined. This allows us
to evaluate the explanations of baseline methods and our
approach by comparing them with the ground truth. Specif-
ically, in the Shapes dataset, the explanation ground truth
for class 0 is the nodes that form a cube, and for class 1,
the nodes that form an icosahedron. Similarly, in the Spiral
Noise dataset, the explanation ground truth for class 0 is
the nodes that form a tetrahedron, while for class 1, it is
the nodes that form a triangular prism. For both synthetic
datasets, we use AUROC and average precision as evalua-
tion metrics. As shown in Table 1, our proposed method
outperforms the baselines in terms of both AUROC and
average precision. In the SCOP dataset, the classification of
proteins is determined based on the secondary structures of
proteins. In this paper, we explain two classes, including all-
alpha and all-beta proteins. Since the reason for labeling for
all-alpha and all-beta proteins is the presence of α-helices
and β-sheets within their structures, respectively, we use the
atoms that form α-helices and β-sheets as the explanation
ground truth. We also use AUROC and average precision
as evaluation metrics. As shown in Table 1, our proposed
method has better explanations than the baselines in terms
of both AUROC and average precision.
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Figure 5. The quantitative studies for different explanation meth-
ods on the BioLip dataset.

For the BioLip dataset, like many other scientific properties,
the rationale behind the binding affinity scores remains a
topic of research itself, with no definitive answers available.
Therefore, we use Fidelity and Sparsity metrics to evalu-
ate the explanations (Pope et al., 2019; Yuan et al., 2021).
The Fidelity metric assesses whether the explanations are
faithfully important for the predictions by removing the
identified important parts from the input geometric graphs
and comparing the prediction differences. The Sparsity
metric quantifies the proportion of important structures iden-
tified by the explanation methods. Note that higher Sparsity
scores, which indicate that smaller structures are identified
as important, can influence Fidelity scores. This is because
smaller structures tend to be less crucial. The detailed defi-
nitions of Fidelity and Sparsity scores is shown as follows.
Given an input geometric graph G, XAI methods compute
an importance score for each node. Based on these scores,
we compute a hard node mask that contains only binary val-
ues. Using this mask, we can generate a masked graph G′,
where important nodes are masked out. Let f denote a well-
trained equivariant GNN. The Fidelity score is computed

8



On Explaining Equivariant Graph Networks via Improved Relevance Propagation

as
Fidelity = f(G)y − f(G′)y, (8)

where f(G)y and f(G′)y means the predicted probability
of class y of graph G and G′, respectively. Intuitively, Fi-
delity measures the change in predictions when important
input elements are removed. In addition, we use Sparsity to
measure the fraction of important nodes in the explanations
as

Sparsity = 1− |G′|
|G|

, (9)

where |G′| and |G′| denote the number of nodes in G′ and
G′, respectively. The final Fidelity and Sparsity scores are
averaged over the test dataset. Note that good explanations
should exhibit high Sparsity along with high Fidelity.

The results are shown in Figure 5 where we plot the curves
of Fidelity scores with respect to the Sparsity scores. No-
tably, the model appears not to use the binding site infor-
mation for its predictions. This conclusion is supported by
the low fidelity score, which remains around 0.02 when the
binding sites are masked.

5. Discussions on Equivariant Graph
Networks

As mentioned in (Duval et al., 2023a), equivariant networks
can be categorized into four main types: Invariant GNNs:
These networks, such as SchNet (Schütt et al., 2017), Dim-
Net (Gasteiger et al., 2020), SphereNet (Liu et al., 2022),
and GemNet (Gasteiger et al., 2021), encode the invariant
geometric information like distances and directions directly
into their model design to consider the 3D structures. Carte-
sian equivariant GNNs: Networks like GVP-GNN (Jing
et al., 2020), PaiNN (Schütt et al., 2021), and E(n)GNN
(Satorras et al., 2021) further consider direction vector as in-
put and use scalar-vector operations to consider their interac-
tions within the architectures. Spherical Equivariant GNNs:
These networks such as TFN (Thomas et al., 2018), SEGNN
(Brandstetter et al., 2021), NequIP (Batzner et al., 2022),
Equiformer (Liao & Smidt, 2022), Allegro (Musaelian et al.,
2023), MACE (Batatia et al., 2022), usually use the spheri-
cal harmonics of the directions as the input spherical tensors.
Then they combine spherical tensors using equivariant oper-
ations like Tensor Product (TP) and convert them into irre-
ducible representations. These networks have more complex
interactions between equivariant irreducible representations,
demonstrating superior performance and widespread appli-
cation in property prediction (Ramakrishnan et al., 2014),
force field prediction (Chmiela et al., 2017), and Hamilto-
nian matrix prediction (Schütt et al., 2019; Yu et al., 2024).
Given the widespread use of the powerful spherical equivari-
ant GNNs, understanding their key components, especially
Tensor Product (TP), is one of the most essential problems
in studying the explainability of equivariant GNNs. While

the previous three types of networks explicitly encode the
invariant or equivariant symmetry within their networks, the
networks in unconstrained GNNs (Hu et al., 2021) are not
necessarily rotational invariant or equivariant for efficient
training and inference. Furthermore, FAENet (Duval et al.,
2023b) makes use of frame averaging techniques to make
sure the overall framework maintains rotational invariant
and equivariant.

6. Conclusions and Future Work
In this work, we propose a method, known as EquiGX, to
explain equivariant graph neural networks for geometric
graphs. Our method recursively decomposes network pre-
dictions back to the input elements. We adapt the Deep
Taylor decomposition framework to TP based message pass-
ing process, leading to specifically designed layer-wise rele-
vance propagation rules. The relevance score generated by
EquiGX provides deeper insights into how equivariant fea-
tures with different rotation orders contribute to final predic-
tions, making EquiGX a transparent solution for equivariant
GNNs. Experimental results demonstrate the capability of
EquiGX to identify critical geometric structures and provide
significantly enhanced explanations for equivariant GNNs.
Our proposed EquiGX has the potential to generalize to
other types of equivariant models. For invariant models
such as SchNet, SphereNet, and ComENet, the core mes-
sage passing mechanisms can be viewed as special cases
of tensor products. Therefore, these models can be reim-
plemented based on tensor products. Furthermore, other
operations, such as MLPs and aggregation functions, have
well-defined LRP rules. By combining these with EquiGX,
we can provide explanations for invariant models as well.
For scalarization-based models like EGNN, which learn hid-
den node features up to rotation order one, their operations
can also be interpreted as a special case of tensor products
with rotation order up to one. Hence, EquiGX can generate
relevance scores for these models as well. For spherical
models such as EquiformerV2, MACE, and PACE, where
the tensor product operations are central, our EquiGX can
be adapted by combining with existing LRP methods for
attention mechanisms. In the case of spherical-scalarization
models like HEGNN, which apply scalarization to reduce
rotation orders, their operations can be implemented using
e3nn tensor products. Extending EquiGX to these models
requires a new LRP rule for inner product operations, which
remains an open problem for future work.
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Table 2. Statistics and properties of four datasets.
Dataset Shapes Sprial Noise SCOP BioLip
#graphs 1000 1000 13738 26934
#classes 2 2 2 7
#avg nodes 14.92 10.45 498.49 320.33
#avg edges 160.94 89.94 6133.25 1427.3

Table 3. Prediction task performance of TFN models.
Dataset Shapes Sprial Noise SCOP BioLip
ACC 100 100 84.35 ± 0.26 83.66 ± 0.89
AUROC 100 100 N/A 83.36 ± 0.85

A. Datasets and Experimental Settings
In this section, we provide more details of our experiments. We use NVIDIA RTX A6000 GPUs for all our experiments.

A.1. Datasets

The statistics and properties of the datasets are reported in Table 2. For the Shapes dataset, we randomly select a 3D motif
shape from two options, namely a cube or an icosahedron. The cube has a side length of 2, and the icosahedron has a
radius of

√
3. For the base shape, we choose either a pyramid or a star. The pyramid has a base length and height of 1,

while the star has an arm length of 1. A random vector is then used to translate the base shape, ensuring that it remains a
certain distance from the motif shape without overlapping. Additionally, the motif shape undergoes a random rotation. The
classification task is to predict whether the motif shape in the geometric graph is a cube or not. We use a radial cutoff of 5 to
construct the geometric graph.

In the Spiral Noise dataset, we randomly select a 3D motif shape, either a tetrahedron or a triangular prism. The tetrahedron
has a radius of 1, and the triangular prism has a length and height of 1. The chosen motif shape is transformed using a
randomly sampled translation vector and rotation matrix. Next, we randomly sample 4 to 8 noise points, which form a spiral
pattern with a radius of 1 in 3D space. The classification task is to determine whether the motif shape is a tetrahedron. We
use a radial cutoff of 2 to construct the geometric graph.

For the SCOP dataset, we extract the backbone atoms of the protein to construct the geometric graph. Specifically, for each
amino acid residue of the protein, the backbone atoms (i.e., nitrogen N, alpha carbon CA, and carbon C) are extracted and
used as the nodes of the geometric graph. The atom type and residue index are used as features for each atom. We apply a
radius cutoff of 5Å to create the geometric graph.

For the BioLip dataset, we extract the backbone atoms of the proteins and all atoms of the ligands to construct the geometric
graph. Specifically, we use the alpha carbon CA of each amino acid residue in the protein as the nodes of the geometric
graph. Additionally, every atom of the ligand is also used as a node in the graph. The atom type and residue type serve as
node features. A radius cutoff of 10 Å is applied to create the geometric graph.

A.2. TFN Model

We evaluate our methods and baselines using Tensor Field Network models. Each TP-based message passing layer is
followed by a linear layer and a norm-based non-linear function. We first use spherical harmonics functions to compute the
equivariant features of each edge up to order-lmax. These equivariant edge features are then aggregated and concatenated
with the node features to produce the first hidden equivariant features. Table 4 provides details on the number of layers,
the number of hidden equivariant features, and the highest order of equivariant feature lmax in the TFN. The accuracy and
AUROC of the TFN model is reported in Table 3.
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Table 4. Hyperparameters for TFN models.
Dataset Shapes Sprial Noise SCOP BioLip
#layers 2 2 4 3
#channels 16 16 8 16
lmax 3 3 3 2
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Figure 6. Explanation results on the Shapes dataset.

B. More Explanations
In this section, we show more visualizations of explanations. The explanations of the Shapes dataset are reported in Figure 6.
In addition, the explanations of the Spiral dataset are reported in Figure 7. As shown in these results, our proposed EquiGX
can identify the motif shapes. Furthermore, we also show explanation results of the SCOP dataset in Figure 8. An all-alpha
protein is shown in Figure 8. Ideally, the α-helices should have a high importance score (i.e., be red in the figure), while the
remaining parts should have a low importance score (i.e., be blue in the figure). Our method can distinguish α-sheets from
other parts, assigning a low importance score to the remaining part. In Figure 9, we also show more explanations of our
proposed EquiGX on the BioLip datasets. The results demonstrate that ligands typically exhibit high importance scores.
This observation aligns with existing knowledge, which suggests that different ligands have varying binding affinity scores
when interacting with the same protein.

C. Runtime Study
In this section, we conduct runtime experiments on different datasets, evaluating the runtime of each method for a single
data example. It is important to note that PGExplainer requires additional training time apart from inference time. The
results in the Table 5 indicate that our method has a comparable runtime to most baselines, whereas GNN-Explainer exhibits
a significantly high runtime and PGExplainer incurs an additional training time cost ranging from hours to days.
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Figure 7. Explanation results on the Spiral dataset.

Table 5. Runtime comparison between different methods.
Inference Time Shapes Sprial Noise SCOP BioLip
Grad 0.056s 0.066s 0.21s 0.11s
Grad-CAM 0.067s 0.068s 0.22s 0.12s
GNN-Explainer 0.07s 0.058s 0.23s 0.1s
LRI-Bern 0.13s 0.16s 0.35s 0.24s
LRI-Gaussian 0.15s 0.14s 0.33s 0.28s
EquiGX 0.2s 0.19s 0.36s 0.25s
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EquiGX Grad Grad-CAM

LRI-Bern LRI-Gaussian GNN-Explainer

Figure 8. Explanation results on the SCOP dataset of all-alpha proteins. Since the sample is an all-alpha protein, ideally the α-helices
should have high importance scores, i.e. be red in the figure.

Figure 9. Explanation results of EquiGX on the BioLip dataset. The ligand is highlighted with a green border.
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