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Abstract

Boolean Satisfiability (SAT) is a well-known NP-
complete problem that lies at the core of many
applications in formal verification, planning, and
artificial intelligence. While classical SAT solvers
have achieved impressive results on both synthetic
and industrial benchmarks, they solve each in-
stance independently without leveraging prior ex-
perience. Graph Neural Network (GNN)-based
SAT solvers offer a learning-driven approach with
the potential to transfer knowledge across prob-
lem instances and achieve better generalization
performance. However, most existing work in
this area focuses heavily on model architecture
designs, with limited attention paid to data aug-
mentation techniques that could improve out-of-
domain generalization. In this work, we explore
two simple data augmentation strategies applied
during training and analyze their impact on both
in-domain accuracy and out-of-domain general-
ization. Our findings suggest new directions for
enhancing the performance and generalization
ability of GNN-based SAT solvers.

1. Introduction

The Boolean Satisfiability (SAT) problem (Biere et al., 2009)
is a core problem of computer science research. Theoret-
ically, it has advanced the understanding of computation
and the strategies required to tackle challenging NP hard
problems. Practically, SAT has found applications in a wide
range of real-world domains, including logistics planning
(Kautz & Selman, 1999), software verification (Ivancic et al.,
2008), and product configuration (Sinz et al., 2003).

Given the critical importance of the SAT problem, mod-
ern SAT solvers, particularly conflict-driven clause learning
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(CDCL) solvers (Marques-Silva et al., 2021), have been
carefully designed to efficiently handle large-scale indus-
trial instances. Despite their strong performance, the devel-
opment of effective heuristics for traditional SAT solvers
remains a challenging and time-consuming task, often re-
quiring substantial domain expertise and extensive empir-
ical tuning. Moreover, these solvers typically approach
each problem independently and are tailored for specific
instance types, limiting their ability to transfer knowledge
across problem domains (Alyahya et al., 2023). Given these
challenges, graph neural networks offer a complementary,
data-driven paradigm for SAT solving. By learning patterns
from previously solved instances, GNN-based approaches
can potentially generalize and accelerate the solving pro-
cess for new problems, which opens up new possibilities for
building adaptable solvers across diverse SAT domains.

Despite growing interest and rapid progress in GNN-based
SAT solving, developing effective models in this area re-
mains a complex challenge and involves navigating a broad
design space. These include choices around model architec-
ture (e.g., GCN (Angne et al., 2021) and GAT (Chang et al.,
2022a)), SAT domain selection (e.g., random, industrial,
and pseudo-industrial (Alyahya et al., 2023)), task formu-
lation (e.g., satisfiability prediction (Cameron et al., 2020),
solution prediction (Selsam et al., 2019) and variable pre-
diction (Wang et al., 2024)), and graph representation (e.g.,
unipartite (Mull et al., 2016), bipartite (Li et al., 2024) and
tripartite (Zhang et al., 2024)). While each of these aspects
poses its own challenges, most existing GNN-SAT work has
concentrated on model architectural innovations only, with
relatively limited attention given to dataset construction and
domain selection (Zhang et al., 2022; Chang et al., 2022b;
Shi et al., 2022; Cameron et al., 2020; Hartford et al., 2018).
Since SAT problem domains differ significantly in their
structural properties, models trained on a single domain
may achieve strong in-domain performance but struggle to
generalize to other domains (Li et al., 2024). This gap limits
the broader applicability of GNN-based SAT solvers and
stands in contrast to one of the core motivations for using
GNNs in SAT solving: their potential to learn generalizable
patterns from structurally diverse instances.

To address this limitation, data augmentation is both benefi-
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cial and essential. Selecting structurally compatible train-
ing domains or incorporating more structural features can
provide critical contextual information that are otherwise
difficult for GNNs to learn from raw graph structure alone.
These strategies help the model better capture global graph
properties, ultimately improving its generalization to struc-
turally different SAT instances. Thus, building on two recent
works (Li et al., 2024; Fu et al., 2025), we investigate GNN
SAT solving from the perspective of data augmentation. In
particular, we explore how data preparation through the use
of diverse problem domains and the inclusion of structural
features can enhance both performance and generalization
in GNN-based SAT solvers.

The main contributions of this paper are as follows.

* We introduce two simple yet effective data augmen-
tation strategies for GNN-based SAT solving: (a) a
novel GNN component that integrates global structural
features of SAT instances, and (b) a training scheme
that leverages two domains to enhance generalization.

* We conduct extensive experiments across multiple
GNN models to demonstrate the effectiveness of these
strategies in improving both in-domain performance
and out-of-domain generalization; and

* We conclude with a discussion of future research direc-
tions, highlighting opportunities to further enhance the
performance of GNN-SAT solvers.

2. Related Work

GNN SAT Solving. GNNs have been applied to SAT solv-
ing mainly as problem solvers, including standalone solvers,
which are models trained to classify satisfiability directly
(Selsam et al., 2019; Zhang et al., 2022; Chang et al., 2022b;
Cameron et al., 2020; Hartford et al., 2018; Duan et al.,
2022; Ozolins et al., 2022), and hybrid solvers, which use
GNNs to guide traditional solvers by replacing specific
heuristics with predictions from learned tasks. These tasks
include UNSAT core prediction (Selsam & Bjgrner, 2019),
glue clause detection (Han, 2020) and backbone variable
detection (Wang et al., 2024).

SAT structural properties. It is widely believed that dif-
ferent SAT domains have distinct underlying structures
(Alyahya et al., 2023), since traditional solvers perform
differently on random, crafted, and industrial problems.
These structures include both graph-based or problem-based
properties (e.g., phase transitions (Cheeseman et al., 1991),
backdoors and backbones (Kilby et al., 2005), scale-free
(Ansétegui et al., 2009), community structure (Ansétegui
et al., 2019)) and solver-based properties such as mergeabil-
ity and resolvability (Zulkoski et al., 2018). These properties
have been widely used in improving traditional solvers (Au-

demard & Simon, 2009), improving portfolio approaches,
which select the best solver to be run on a SAT problem
(Xu et al., 2007), classifying benchmarks (Ansétegui et al.,
2017), defining problem hardness (Newsham et al., 2014),
and generating instances, especially instances similar to in-
dustrial problems (Girdldez-Cru & Levy, 2017). However,
most existing work focuses on individual properties and is
only evaluated using traditional SAT solvers (Li et al., 2021;
Zulkoski et al., 2018) rather than GNN-based SAT solvers.
Furthermore, graph based properties are often calculated on
representations like VIG and CVIG (Ansétegui et al., 2019;
Xu et al., 2007), which differ from the LCG graph represen-
tation commonly used in GNN-SAT solvers. There has been
some exploration of structural properties in GNN-based
SAT research, such as SAT solver selection (Zhang et al.,
2024). However, these works do not focus on improving the
performance of GNN-SAT solvers themselves.

Data Preparation in GNN-SAT. While most GNN-based
SAT solvers are trained and evaluated on the same data
domain without any data-level modifications, several re-
cent works have proposed approaches that involve mod-
ifying or augmenting the input data or graph representa-
tion. (Cameron et al., 2020) encode CNF formulas into
permutation-invariant sparse matrices to better capture log-
ical structure. (Duan et al., 2022) introduce six label-
preserving augmentations (LPA) on LCG instances, includ-
ing techniques such as unit propagation (UP), adding unit
literals (AU), and variable elimination (VE). (Fu et al., 2025)
investigate the generalization ability of GNNs across 11
problem domains by analyzing model performance with
respect to the structural properties of the input formulas.

3. Methodology

3.1. Preliminary

The Boolean Satisfiability (SAT) problem involves deter-
mining whether there exists an assignment of values (i.e.,
true or false) to a set of propositional variables V' that makes
a given boolean formula satisfiable. A SAT problem is usu-
ally expressed in conjunctive normal form (CNF), which is
a conjunction of clauses c containing a disjunction of literals
l. A literal [ is either a variable v € V or its negation —v
(or v). A clause c is a disjunction of literals, expressed as
(l1 VI Vv ..l,). A formula f is a conjunction of clauses
(c1 A ca A ...cp,), where each clause must be true in order
for the problem to be satisfiable. For example, the formula

(’01 V V3 \Y 1}3) A (’Ul \Y ’Ug) AN (1}3)

is satisfiable, since the assignment v; = True,ve =
False, vs3 = True makes the entire formula evaluate to true.
Since every propositional formula can be transformed into
an equivalent formula in CNF, we mainly use this form in
this work to represent a SAT problem.
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Figure 1. Overview of the global attribute component added into standard GNN message passing. Each SR problem is first represented in
DIMACS CNF format, which is then converted into LCG representation. We compute global structural properties from the graph and
concatenate them with the final graph embedding at the last layer of the model, alongside the output of the message passing network.

SAT formulas can be represented as graphs using various
encoding schemes (Alyahya et al., 2023), including Variable
Incidence Graphs (VIG), Variable Clause Graphs (VCG),
Literal Incidence Graphs (LIG), and Literal Clause Graphs
(LCG). In this work, we adopt the LCG representation,
which is a bipartite graph with two node types: literals and
clauses. An edge connects a literal node to a clause node if
the literal appears in that clause. Additionally, each literal
is connected to its complementary literal (e.g., v to —w).
During each round of GNN message passing, the clause
nodes receive messages from their connected literals, and
the literal nodes receive messages from both their connected
clauses and their complementary literals (Li et al., 2024).

3.2. Data Domains Selection

There are various SAT problem domains, each exhibiting
distinct structural properties. To investigate our augmenta-
tion strategies effectively, we design experiments that focus
on a wide range of domain types.

SR(n) (Selsam et al., 2019) is a synthetic dataset with n
number of variables. It contains balanced pairs of satisfiable
and unsatisfiable problems, differing by only one literal in
a single clause. Each problem is generated by sampling
a clause size k (with mean slightly above 4), selecting k
variables uniformly at random, and negating each with 50%
probability. Clauses are incrementally added and checked
for satisfiability using MiniSAT (Sorensson & Een, 2005).
When an unsatisfiable instance u; is found, flipping a literal
in the final clause yields a satisfiable counterpart us, thus
forming a closely related problem pair.

For multi-domain training and testing, we evaluate across
several domain types:

¢ Random domains: Random 3-SAT (R3), where each

clause contains at most 3 number of literals. This do-
main is generated using CNFgen (Lauria et al., 2017).

¢ Combinatorial domains: We choose 3 combinato-
rial problem domains in this work, which includes k-
Clique (KCL), k-Dominating Set (KD), and k- Vertex
Cover (KV), which are generated using CNFgen. For
these problems, the goal is to find some combination of
elements in a solution space while respecting defined
constraints.

* Pseudo-industrial domains: Community Attachment
(CA) (Girédldez-Cru & Levy, 2015) is a domain that
mimics the community structure of industrial problems
in VIG graph. Popularity-Similarity (PS) (Giraldez-
Cru & Levy, 2017) measures both the community struc-
ture and the scale-free structure on a SAT instance’s
VCG graph.

3.3. Data Augmentation Strategies

To enhance the generalization capability of GNN-based SAT
solvers, we propose two simple yet effective data augmen-
tation strategies: incorporating global structural attributes
and training with multiple domains. An overview of our
approach is illustrated in Figures 1 and 2.

3.4. Global Attributes Component

Most GNN-SAT solvers convert CNF SAT formulas into
graph representations and use these graphs as the sole input
to the model. As a result, model performance relies entirely
on the GNN’s ability to learn patterns from the input graph
structure. However, a single SAT formula contains many
interpretable features that are not easily captured through
message passing alone. This reliance on learned graph
patterns can restrict a model’s generalization ability.
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Table 1. Descriptions of graph-level features used in our work.

Attribute | Symbol | Description

Number of clauses Ne Number of clauses in a formula.

Number of variables | n, Number of variables in a formula.

Ratio Ne /Mo Ratio of number of clauses to number of variables in a formula.

Self-similarity Dy Self-similarity is measured by the fractal dimension (D) (Ansétegui et al., 2014). A graph G is
considered self-similar if the minimum number of boxes of size s needed to cover it decreases
polynomially with Dy.

Scale-free ay Measures whether the node degrees follow a power-law distribution (Ansétegui et al., 2009),
which can be approximated by variable frequency (o).

Entropy H One-dimensional entropy (Zhang et al., 2021) measures uncertainty in graph structure, computed
based on the graph volume volg.

Community structure | Q Measured by modularity ) (Ansétegui et al., 2019), which compares within-community edges in
relation to another random graph that has an equal number of vertices and degree.

Treewidth T Indicates how tree-like a graph is (Mateescu, 2011), which can be calculated using the ‘treewidth-
min-degree* heuristic from NetworkX (Hagberg & Conway, 2020).

Centrality Be Measures node importance via betweenness centrality (Freeman, 1977), computed using Net-
workX (Hagberg & Conway, 2020).

One potential solution is to augment the graph structure
representation itself, for example by adding edges between
nodes that share certain high-level relationships (e.g., nodes
within the same community structure). While this can be
effective, it requires careful data design and significant pre-
processing time, and may not be applicable to all SAT prob-
lems. For instance, random SAT problems often lack clear
community structure (Ansétegui et al., 2012), making such
graph augmentation difficult or ineffective.

To incorporate global-level information in a simple and scal-
able way, we instead pre-compute a set of graph-based and
CNF-based structural features and append them as a global
structural input to the model. These features are scaler val-
ues, and they act as a form of high-level guidance to the
model. Following prior work in structure-aware GNN SAT
solving (Fu et al., 2025), we select eight structural proper-
ties that are computable across all problem domains and can
be obtained within a reasonable time frame. Selected prop-
erties include number of clauses, number of variables, ratio
of clause to variables, self-similarity, scale-free, entropy,
community structure, treewidth and centrality. A detailed
description of these attributes is provided in Table 1. We hy-
pothesize that these structural features help the GNNs learn
and generalize more effectively. Some features capture
global characteristics of problem instances (e.g., number of
variables), which could help generalize to all other domains,
while others align with specific domains (e.g., scale-free
and community structure could be particularly useful for
generalizing to the PS domain).

These global properties are passed to the model alongside
the original LCG graph representation. During training, we
concatenate one, two, or all eight selected global features
to the final layer of the model. In the case of two-feature
combinations, we explore two strategies: (1) randomly se-
lecting pairs of features (e.g., combining D rand Q) and (2)

selecting the well performed individual features from the
single-feature experiments and combining them (e.g., N
and n,,). The final graph-level representation is:

y=o (MLP ([MEAN ({n{",1 € £) || Proj(fyanu)] )
ey
(1)

where h," ’ is the final hidden representation of literal node
l, £ denotes the set of all literals in the input formula, and
Jfalobal Tepresents the pre-computed global structural features
(e.g., number of variables). The model first applies mean
pooling over all literal embeddings, then concatenates this
pooled vector with the projected global features. This com-
bined representation is passed through an MLP followed by
a sigmoid activation to predict the satisfiability of the input
SAT problem.

At test time, we evaluate the impact of different features
and combinations of features to assess their individual and
collective contributions to model performance and out-of-
distribution generalization. All global feature experiments
are trained on the SR domain, which has previously demon-
strated strong out-of-domain generalization (Li et al., 2024;
Fu et al., 2025).

3.5. Multi-Domain Training

GNN-based SAT solvers are commonly trained and evalu-
ated on problems from a single domain. However, random,
combinatorial, and industrial SAT problems differ signifi-
cantly in their structural characteristics. As such, training
on multiple domains, especially those spanning different
domain types (e.g., random and combinatorial), has the po-
tential to improve the model’s ability to generalize beyond
its training distribution. To investigate into this hypothesis,
we adopt a multi-domain training strategy, which we treat
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Figure 2. Overview of the multi-domain training scheme. The training dataset consists of 50% SR problems and 50% problems from one
additional domain. These combined datasets are fed into the standard GNN message passing network to generate predictions for each

problem instance.

as a form of domain-level data augmentation. The goal is to
increase structural diversity in the training data and thereby
enhance out-of-domain generalization. Specifically, we use
the SR domain as a base and construct composite training
datasets by mixing SR with one additional domain in equal
proportion (50% SR, 50% other domain). The secondary
domains include Random 3-SAT, Community Attachment,
Popularity-Similarity, k-Clique, k-Dominating Set, and k-
Vertex Cover.

The intuition behind this approach is as follows: since SR
already demonstrates strong generalization capability, com-
bining it with a structurally distinct domain such as KCL
may help the model better capture the unique patterns of
that domain class (e.g., combinatorial structures). This, in
turn, could lead to improved generalization not only within
that domain family but also to unrelated domains such as
random or industrial SAT problems. By exposing the model
to a wider range of structural patterns during training, this
strategy encourages more robust representations.

4. Experiments

In this section, we present the results (reported as percentage
accuracy) of applying two data augmentation strategies to
GNN-based SAT solvers. Specifically, we investigate how
well GNN models generalize to out-of-distribution domains
when trained on the SR domain. We further examine how
performance changes when introducing additional training
domains, adding a single global feature, or incorporating
multiple global features, compared to the baseline trained
solely on SR.

4.1. Experimental Setup

We evaluate performance across several baseline GNN mod-
els: NeuroSAT (Selsam et al., 2019), GCN (Kipf & Welling,
2017) and GIN (Xu et al., 2019). All models follow the
implementation of LCG graph representation provided by
G4SATBench (Li et al., 2024). The learning task is satisfi-

ability prediction, which is a graph classification problem
where the model outputs a binary prediction for each input
SAT instance. All models are trained on a balanced dataset
consisting of 80k satisfiable and 80k unsatisfiable problems
(160k in total), with an additional 10k pairs of problems
used for validation. We evaluate each model on every do-
main separately, using 10k problem pairs per domain. This
setup is chosen because each SAT domain exhibits highly
distinct structural properties, and combining them during
testing would obscure domain-specific performance. For ex-
ample, although both pseudo-industrial domains CA and PS
are crafted to mimic industrial structures, they emphasize
different aspects. Thus, a model that performs well on PS
may not perform equally well on CA, and vice versa, and
testing on each individual domains rather than combining
them is essential. All experiments are repeated three times,
and we report the average accuracy across runs.

4.2. Multi-Domain Training

To evaluate whether training with multiple domains simul-
taneously affects performance and generalization, we train
multiple GNN models using two-domain combinations. The
base domain is SR(10-40), which is SR domain with 10-40
number of variables, and we construct additional training
datasets by combining SR with one other domain in a 50%-
50% split. Results are summarized in Table 2, where we
bold the values that either outperform or are within 1% of
the baseline trained on 100% SR.

As expected, the added domain usually improves test accu-
racy on that same domain, since it is included during train-
ing. In contrast, SR test performance tends to remain stable
or slightly decrease, with a few exceptions (e.g., SR+R3
slightly improves SR performance on NeuroSAT). Interest-
ingly, training on KCL+SR leads to a significant drop in
SR accuracy for GCN and GIN. We suspect this is due to
the sharp structural differences between the two domains:
KCL instances are built around dense cliques with highly
regular connectivity patterns while SR does not. When
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trained jointly, the model may overfit to the stronger, more
uniform structures from KCL, which could hinder its ability
to represent SR-specific features. Additionally, since the
loss is averaged over both domains, the model may optimize
more aggressively for KCL if it is easier to learn, further
compromising performance on SR.

Each GNN model also shows different generalization behav-
ior. NeuroSAT performs well across most domains when
trained with SR+KD or SR+CA, while SR+PS performs
well for GCN and GIN. We note that training with CA+SR
or PS+SR generally achieves higher accuracy across multi-
ple test domains on all three models, suggesting that pseudo-
industrial domains may help models capture more transfer-
able structures.

Additionally, we find that feature effectiveness can also
be domain-dependent. From the results, testing domains
accuracies improve when trained with structurally similar
problems (e.g., KCL boosts when trained with KV and vice
versa). This structural similarity may be easier for GNN’s to
leverage during message passing.

Table 2. Overview of multi-domain training results

Train Domain ‘ Model Test Domains

\ | 3 KCL KD KV CA PS SR

SR NeuroSAT 90.9 50.8 57.1 55.1 88.0 94.4 94.4
SR + KCL NeuroSAT 90.3 97.0 50.5 80.4 81.2 84.9 93.2
SR + KV NeuroSAT 91.6 53.4 532 99.9 84.2 93.2 94.3
SR + KD NeuroSAT 92.1 53.1 99.4 75.2 74.3 94.1 94.7
SR +R3 NeuroSAT 95.5 50.0 50.0 50.0 89.3 95.2 96.1
SR +CA NeuroSAT 92.5 54.2 70.1 57.5 99.0 97.1 93.4
SR +PS NeuroSAT 93.8 51.2 73.8 58.4 79.5 98.2 95.8
SR GCN 83.8 50.1 50.2 49.7 59.1 94.8 93.3
SR + KCL GCN 54.7 97.3 55.0 57.7 46.3 61.0 533
SR + KV GCN 71.6 53.3 55.0 99.8 57.7 84.3 83.2
SR + KD GCN 77.2 52.7 99.0 56.6 61.8 80.0 80.2
SR +R3 GCN 92.1 50.8 47.7 45.6 51.4 94.7 92.1
SR + CA GCN 66.6 53.9 50.9 48.7 98.6 90.9 89.4
SR +PS GCN 83.0 53.7 41.6 44.8 69.6 96.6 91.0
SR GIN 92.8 519 583 58.6 84.6 95.6 95.5
SR + KCL GIN 61.5 94.0 517 72.0 62.4 517 62.1
SR + KV GIN 87.8 52.7 50.8 99.7 53.1 87.9 90.7
SR + KD GIN 872 50.4 99.3 74.8 584 90.2 91.1
SR +R3 GIN 94.8 50.4 51.2 51.7 66.1 94.4 95.0
SR + CA GIN 924 49.4 61.4 59.0 98.6 95.6 94.5
SR +PS GIN 92.7 49.5 78.4 69.2 69.6 97.9 94.8

4.3. Adding Single Global Feature

Table 3 shows the average testing result across different do-
mains after concatenating one global feature to each model
during training. We bold the values that outperform the
baseline trained on 100% SR problems without any global
structural component. As expected, no single global fea-
ture improves performance across all out-of-distribution
domains, which is reasonable since each model appears to
capture and rely on different aspects of graph structure.

However, some features lead to substantial improvements
across many domains. For example, adding n, to Neu-
roSAT, and «,, to both GCN and GIN, significantly boosts

accuracy on most out-of-distribution domains. This is likely
because the final graph embedding is computed via mean
pooling over all literal embeddings, and both n,, and «,, are
properties directly related to variable-level structure. These
features likely provide high-level structural information that
help the model interpret local embeddings more effectively.

The effectiveness of a feature still depends heavily on how
well a model integrates it. For instance, adding n,, to GCN
and o, to NeuroSAT results in lower performance on sev-
eral domains, possibly due to architectural mismatch or
interference with the model’s learned representations. In
contrast, GIN shows highly stable behavior: most features
either improve or maintain accuracy across domains, which
makes GIN the most robust model under global feature
augmentation.

We also observe that certain domains respond more posi-
tively to added structural features. PS and R3 consistently
benefit from most global feature components in both Neu-
roSAT and GCN, suggesting that these domains are struc-
turally aligned with the type of information captured by
the examined global attributes. In contrast, CA exhibits
high variance, particularly for GIN and GCN, where fea-
tures like n, and H result in sharp accuracy drops. This
may be due to the dense community structure of CA graphs,
which introduces complexity that conflicts with the provided
global features, leading to overfitting or disrupted message
passing.Interestingly, after appending (), a measure of com-
munity structure, into all three models, the performance on
CA drops as well. One possible reason is that the model was
trained on SR, a domain without clear community structure.
Thus when tested on CA, which contain strong community
structure, the added modularity value could mislead the
model or conflict with what it learned during training.

4.4. Adding Multiple Global Features

Table 4 shows the average accuracy obtained by adding more
than one global feature during training, evaluated across dif-
ferent domains. Interestingly, the performance varies across
the combination. Adding more features does not necessarily
lead to better or worse results. For example, combining
n. and n,, consistently improves accuracy across nearly all
domains and models. This aligns with earlier observations,
since clauses and variables are the fundamental nodes in
the graph, providing n. and n,, as global inputs likely en-
riches the model’s understanding of the overall structure. It
is worth noting that training with all eight features concate-
nated to the model improves accuracy across most domains,
especially on the combinatorial problems. This suggests
that even without careful feature selection, the combined
global attributes can still provide useful guidance to the
GNN models.

In contrast, combining features like () and Dy has little to
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Table 3. Overview of results across models and testing domains
with one global feature added.

Model | Feature | Testing Domains

\ | R3 KCL KD KV CA PSSR
NeuroSAT N/A 90.9 50.8 57.1 55.1 88.0 94.4 94.4
NeuroSAT Q 93.8 50.8 53.6 52.6 54.7 96.0 96.2
NeuroSAT Ne 93.6 50.2 54.1 60.9 80.9 94.7 95.9
NeuroSAT Ny 94.1 51.1 57.7 48.6 90.6 974 96.4
NeuroSAT Df 94.2 50.0 59.0 51.7 91.1 96.1 96.2
NeuroSAT gy 93.1 51.6 532 50.2 84.2 96.2 96.4
NeuroSAT Tw 94.2 50.0 49.7 50.1 88.1 96.5 96.4
NeuroSAT Be 93.0 50.3 50.0 50.0 90.8 96.4 95.7
NeuroSAT H 93.3 50.1 559 57.2 71.0 96.3 96.3
GCN N/A 83.8 50.1 50.2 49.7 59.1 94.8 93.3
GCN Q 85.2 49.5 50.1 49.7 522 95.0 92.5
GCN Ne 82.6 494 50.2 50.4 549 94.6 92.8
GCN Ny 83.6 50.1 49.0 47.8 60.0 95.1 92.8
GCN Dy 85.9 474 48.7 48.7 55.7 94.9 92.9
GCN ay 85.1 50.6 52.0 50.3 60.8 95.2 96.4
GCN Tw 84.3 49.6 51.4 51.6 60.0 94.7 93.1
GCN Be 86.2 49.0 52.8 49.7 58.8 94.8 95.7
GCN H 83.8 49.4 49.5 474 583 94.8 93.0
GIN N/A 92.8 51.9 58.3 58.6 84.6 95.6 95.5
GIN Q 92.8 50.1 59.7 58.2 64.8 94.1 95.7
GIN Ne 93.0 50.1 61.8 61.9 65.1 95.1 95.6
GIN Ny 92,9 50.8 58.0 62.1 53.1 93.8 95.5
GIN (7% 93.0 52.6 58.8 60.1 70.4 94.0 95.9
GIN Tw 92.5 52.5 56.4 56.7 61.6 92.7 96.0
GIN Be 93.2 50.1 532 57.6 73.7 96.2 96.0
GIN H 92.8 49.9 60.2 53.5 53.8 94.5 95.6

no impact on performance, likely because neither feature
individually contributed much to generalization, as shown
in Table 3. Moreover, these features do not offer sufficiently
diverse or informative signals for the GNNs to learn from.
This highlights that the effectiveness of multi-feature aug-
mentation depends not only on the individual usefulness of
each feature but also on how well they complement one an-
other. As a result, careful selection of feature combinations
is essential for this strategy to be effective.

Table 4. Overview of results across models and testing domains
with two or all global features added.

Model | Feature | Testing Domains

| | R3 KCL KD KV CA PS SR
NeuroSAT N/A 90.9 50.8 57.1 55.1 88.0 94.4 94.4
NeuroSAT Ne + Ny 92.8 50.8 58.3 58.2 85.6 95.8 96.0
NeuroSAT all features 92.8 48.8 62.8 69.8 86.4 95.0 95.1
GCN N/A 83.8 50.1 50.2 49.7 59.1 94.8 93.3
GCN Q+Dy 80.6 50.1 49.2 51.8 51.5 94.8 92.3
GCN Ne + Ny 83.8 495 50.5 53.7 61.2 95.3 932
GCN all features 82.3 48.1 51.7 52.8 50.0 94.9 93.0
GIN N/A 92.8 51.9 583 58.6 84.6 95.6 95.5
GIN Q+Dy 93.5 51.6 58.0 56.8 72.3 94.2 959
GIN Ne + Ny 93.3 52.6 55.6 62.8 68.8 95.1 95.7
GIN all features 92.8 54.0 59.4 65.7 52.7 94.0 95.7

5. Discussion and Future Direction

Based on the results presented in Section 4, this section
summarizes our key findings and outlines future research
directions.

Out-of-distribution generalization remains a core challenge
for GNN-based SAT solvers, largely due to the diverse struc-

tural properties exhibited by different SAT domains, whether
represented as CNF formulas or different graphs. Our re-
sults, in line with prior studies, confirm that no single model
or training domain consistently generalizes well across all
other domains. For scenarios requiring maximum accuracy,
training and testing within the same domain is still the most
reliable approach. However, we find that carefully designed
data augmentation strategies, thoughtful domain selection,
and the use of suitable or more generalizable model architec-
tures such as GIN can significantly improve generalization.

Multi-domain training, especially with two domains, can be
beneficial when the added domain shares structural similari-
ties with the target domain. For instance, pairing SR with a
combinatorial domain such as k-clique can improve perfor-
mance on related combinatorial tasks such as k-vercov. Our
results also suggest that including structurally rich domains
like CA or PS alongside SR tends to improve generaliza-
tion to more out-of-domain problems, which is likely due
to the expressive structural patterns of the pseudo-industry
problems.

Additionally, incorporating global features into the training
process presents another effective strategy for improving
generalization. When features are carefully selected, they
can offer valuable structural information to guide learning,
particularly those aligned with the GNN architecture de-
signs. For instance, we find that n,, and «,,consistently boost
performance across multiple domains and models. More-
over, combining multiple global features further enhances
generalization in many domains and models, suggesting that
feature complementarity can play an important role when
designing data augmentation for GNN-SAT solvers. Note
that in our experiments, we adopted a fixed 50%—-50% ratio
for multi-domain training. However, exploring alternative
training ratios may further improve performance and is left
for future work. Moreover, jointly applying global struc-
tural features and multi-domain training presents another
promising direction for future exploration.

Although current GNN-based SAT solvers do not yet surpass
traditional CDCL solvers in terms of accuracy, they show
promise in handling smaller SAT instances more efficiently.
Unlike traditional solvers, which are often bottlenecked by
problem complexity, GNNs offer a fast, structure-aware
alternative. Future work should continue to expand the
diversity of problem domains used during training, explore
more targeted forms of data augmentation, and refine GNN
architectures tailored to different SAT domains. These steps
will not only advance solver capabilities but also deepen our
understanding of structural learning in the context of SAT
solving.
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6. Conclusion

In this work, we presented and analyzed two simple data
augmentation strategies for GNN-based SAT solvers: train-
ing with mixed problem domains and adding pre-computed
global structural features into the model. Our results show
that, when chosen carefully, both strategies can improve
out-of-distribution generalization across a range of SAT do-
mains. However, not all combinations of domains and struc-
tures are effective, highlighting the importance of thoughtful
domain selection and feature design. We believe these find-
ings offer useful insights for future work, particularly in
scenarios where training data is limited to obtain, such as
industrial SAT problems.
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