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ABSTRACT

Federated learning (FL) on mobile devices faces challenges from inherent com-
puting and communication heterogeneity across devices. Subnetwork FL train-
ing offers a promising solution by assigning each device the largest feasible sub-
network extracted from the global model for local training. However, existing
subnetwork training methods rely on static subnetwork assignments across time
and uniform extraction ratios across layers. They overlook (i) the dynamic re-
quirements of local contributions across FL training in temporal domain and (ii)
the varying importance of different layers within subnetworks in spatial domain,
both of which strongly affect the FL training performance. In this paper, we pro-
pose to accelerate FL training over heterogeneous mobile devices via spatial and
temporal aware reconfigured subnetworks (STARS-FL). Different from existing
approaches, STARS-FL leverages Fisher Information to identify critical learning
periods and enables mobile devices to adjust their subnetworks across the FL train-
ing process correspondingly. Further, from the spatial domain, STARS-FL intro-
duces a novel layer-wise subnetwork width adjustment mechanism, which enables
each device to reconfigure layer widths adaptively based on its layer-specific com-
putational and communication overheads, its real-time computing/communication
conditions and potential straggler effects. Compared with state-of-the-art subnet-
work methods, our experiments demonstrate that STARS-FL effectively speed up
FL training while maintaining competitive learning accuracy.

1 INTRODUCTION

Driven by rapid advances in mobile GPU hardware, federated Learning (FL) McMahan et al. (2017)
has shifted its focus from conventional data center environments to mobile devices Li et al. (2021a);
Lim et al. (2020). This shift, coupled with FL’s privacy-preserving nature, has enabled applications
such as keyboard predictions Hard et al. (2018), health event monitoring Xu et al. (2021), and so on.
In order to harness the immense potential of Federated Learning (FL) on mobile devices, researchers
must tackle the considerable challenges due to the inherent heterogeneity of real-world mobile de-
vices, which differ in computing power, network conditions, and local data distributions Lai et al.
(2021). Many existing FL studies assume a model-homogeneous setting, where global and local
models have identical model architectures across all clients. However, as devices are constrained
to train models within their own capabilities, developers must choose between excluding lower-tier
devices, which introduces training bias Bickel et al. (1975), or maintaining a low-complexity global
model to support all clients, reducing accuracy Cho et al. (2021); Ye et al. (2020). Such an issue
is intensified with the growing popularity of large models Liu et al. (2023); Kuang et al. (2024),
which makes training on mobile devices even more challenging. In addition, mobile devices have
relatively mediocre performances due to the constrained computing resources, along with their slow
and unstable wireless connections. When compared to GPU clusters with stable, high-speed In-
ternet connections, such inferior factors of mobile devices may lead to substantial latency in FL
training Chen et al. (2022) and can significantly harm the performance of related applications.
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To overcome the challenges of model-homogeneous federated learning (FL), recent research has fo-
cused on training models of varying sizes across diverse mobile devices and exploring methods for
aggregating these heterogeneous models during FL training. Subnetwork training, as demonstrated
by approaches such as width-based subnetwork generation in Federated Dropout Wen et al. (2021)
and HeteroFL Diao et al. (2021), and depth-based generation in DepthFL Kim et al. (2023), has
proven effective in enabling mobile devices to train smaller subnetworks derived from a large global
model. These methods also provide solutions for aggregating subnetworks across diverse devices.
By customizing subnetwork architectures to match each device’s capability, subnetwork training
improves adaptability to mobile devices with varying computational and communication resources.
However, existing static subnetwork approaches cannot capture the dynamic requirements of local
contributions across FL training in temporal domain and the varying importances of different lay-
ers within subnetworks in spatial domain, both of which may affect the FL training performance,
especially the training latency and learning accuracy.

From the temporal domain, fast global model convergence has dynamic requirements for local train-
ing contributions during FL training. Recent studies have highlighted the existence of critical learn-
ing periods (CLPs) Achille et al. (2018); Yan et al. (2022) during FL training, where the final test
accuracy is highly related to the performance in these CLPs. During CLPs, it will be good for
mobile devices to employ larger-sized subnetworks to provide more local training contributions.
Apart from CLPs, the required local contributions from FL clients may be less, so that smaller-sized
subnetworks can be adopted by mobile devices to reduce both computing and communication de-
lays. Thus, it is essential to characterize CLPs and dynamically reconfigure the subnetwork sizes for
mobile devices aware of the global model’s needs across time.

From the spatial domain, current subnetwork efforts typically use uniform extraction ratios across
all layers of the model, ignoring the distinct impacts of different layers on FL performance. As we
know, different layers in DNN models capture features at varying levels of the sample’s underlying
patterns while exhibiting different degrees of parameter redundancy. Uniform subnetwork extrac-
tion may allocate resources to parameter-heavy yet uncritical layers, increasing computational and
communication costs with very limited FL performance gains. That necessitates spatial-aware sub-
network reconfiguration, i.e., layer-wise subnetwork width adjustment, for FL over heterogeneous
mobile devices.

To address those challenges above, in this paper, we propose STARS-FL, a spatial and temporal
aware subnetwork reconfiguration approach to accelerate FL training over heterogeneous mobile
devices. STARS-FL enhances conventional subnetwork extraction strategies (based solely on device
capabilities) through holistic consideration of both training dynamics and system efficiency. By dy-
namically reconfiguring subnetwork sizes according to CLPs in the temporal domain and adjusting
layer-wise subnetwork widths in the spatial domain, STARS-FL achieves accelerated convergence
while maintaining model accuracy. Our major contributions are summarized as follows.

• We define a global CLP evaluation criterion for FL based on Fisher Information to guide
the dynamic scaling of subnetwork sizes in the temporal domain.

• We propose a layer-wise width adjustment policy that accounts for layer-specific compu-
tational and communication overheads, allowing mobile devices to locally reconfigure the
trainable parameters of each layer in the spatial domain.

• We unify temporal and spatial subnetwork adjustments into a single reconfiguration func-
tion that incorporates mobile devices’ real-time transmission and computational rates,
which helps mitigate straggler-induced delays in FL convergence.

• We develop a STARS-FL prototype and evaluate its performance with extensive experi-
ments. The experimental results validate that our design can remarkably reduce the latency
for FL training over heterogeneous mobile devices without sacrificing learning accuracy.

2 PRELIMINARIES

2.1 SUBNETWORK-BASED FL

Given a wireless network consisting of I mobile devices that collaboratively train a deep neural
network (DNN) using FL, the local model parameters are denoted as W1, · · · ,Wi, · · · ,WI . Sub-
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Table 1: Comparison among different subnetwork configuration methods. (ResNet18@CIFAR10)

Method Full
Model

Fixed-ratio
Subnetwork

Spatial-aware
Subnetwork

Parameters 42.6M 10.7M 3.4M
FLOPS 330.2M 83.3M 78.1M

Accuracy 88.4 83.2 82.8

network training Diao et al. (2021) is an approach to deal with system heterogeneity in FL train-
ing, which allows each device to extract subnetworks of varying sizes from the global model and
perform local training. Let WP = W 1,W 2, . . . ,W p, . . . ,WP represent a set of candidate subnet-
works available for selection by mobile devices, where P denotes the number of complexity levels.
A higher level p corresponds to a smaller subnetwork, satisfying WP ⊂ WP−1 ⊂ · · · ⊂ W 1.
Subnetworks are extracted from the global model by reducing the width of hidden channels using
predefined shrinkage ratios, which are selected to align with the respective computing capabilities
of the mobile devices. Let s ∈ (0, 1] denote the hidden channel shrinkage ratio; then the relationship
between subnetwork sizes is given by |W p|/|Wg| = s2(p−1). In each FL training round, the server
aggregates the updates from these heterogeneous subnetworks using the following rule:

Wg = WP
g ∪ (WP−1

g \WP
g ) ∪ · · · ∪ (W 1

g \W 2
g ), (1)

where W p
g is the global subnetwork of the level p. For each subnetwork level, the parameters are av-

eraged across the devices assigned to that particular subnetwork size. This aggregation ensures that
each parameter is averaged using contributions from devices whose assigned subnetwork includes
that parameter, which enables global aggregation and FL training across subnetworks of varying
sizes.

2.2 CRITICAL LEARNING PERIODS IN FL

Critical learning periods in FL refer to specific phases during training when the neural network un-
dergoes significant changes in how it learns and organizes information. Notably, the information in
the weights does not increase monotonically during training; instead, it experiences a rapid growth
phase followed by a reduction. Accordingly, the adjustment of subnetwork sizes in FL is reason-
able to align with such training dynamics, which can be characterized using fisher information as
revealed in recent findings Achille et al. (2018). Fisher information essentially provides a second-
order approximation of the Hessian of the loss function Amari & Nagaoka (2000); Martens (2014),
which offers insights into the curvature of the loss landscape around the current weights. Specifi-
cally, we adopt the Federated Fisher Information Matrix (FedFIM) from Yan et al. (2022). In round
r, FedFIM can be formally calculated by:

FIri = Exi∼XiEŷ∼pW (ŷi|xi)[▽(xi, ŷi)▽ (xi, ŷi)
T]. (2)

Here, xi represents the input data, and yi denotes the corresponding output label for device i. The
model parameters are denoted by W , while pW (ŷi|xi) represents the approximate posterior distri-
bution. The empirical distribution of the i-th device’s local data is represented by Xi. The gradient
of the loss function for a data point (x, y) is denoted as ∇(x, y) = ∂

∂W ℓ(x, y;W ). Notably, ŷi is
treated as a random variable rather than a true label, with its distribution governed by pW (ŷi|xi). To
simplify computation, we approximate the full FedFIM by using its trace, which can be efficiently
calculated as:

tr(FIri ) = Exi∼Xi
Eŷ∼pW (ŷi|xi)[|| ▽ (xi, ŷi)||2]. (3)

3 MOTIVATION

Ignoring spatial awareness in subnetwork extraction. Existing subnetwork training methods,
such as HeteroFL Diao et al. (2021), typically extract subnetworks by applying a uniform reduction
ratio across all layers. However, this approach overlooks the spatial characteristics of prevalent deep
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learning models, which have varying parameter redundancy across layers and the distinct computa-
tional/communication costs introduced by different layers. As a result, applying a uniform reduction
ratio can overemphasize the importance of some parameter-heavy layers while underestimating their
associated costs, leading to suboptimal resource utilization.

To illustrate this point, we conducted a preliminary study comparing full-model FL, fixed-ratio sub-
network FL, and spatial-aware subnetwork FL. Specifically, the fixed-ratio one extracts a subnet-
work with a reduction ratio of 0.5 across all layers, while the spatial-aware one applies a lower ratio
for deeper layers. Table 1 summarizes the results, which show that our spatial-aware subnetwork
structure achieves comparable test accuracy to the fixed-ratio one while significantly reducing pa-
rameters and FLOPs. These findings demonstrate the necessity of incorporating spatial awareness
into subnetwork extraction, which allows for layer-wise adjustments that align with both parameter
redundancy and resource constraints for a more time-efficient FL process.

Ignoring temporal awareness in subnetwork extraction. Existing subnetwork training methods
employ a fixed extraction ratio throughout the FL training process, overlooking the existence of
CLPs and their dynamic requirements on the subnetwork sizes. The presence of Critical Learning
Periods (CLPs) and their evolving requirements for subnetwork sizes. We find that information
in the weights experiences a phase of rapid growth followed by a reduction, even as test accuracy
continues to improve. This behavior has been consistently observed across various tasks and network
architecturesAchille et al. (2018); Yan et al. (2022). These findings underscore the significance of
the training contributions during CLPs, as insufficient learning during this period can irreversibly
impact the final accuracy of the FL process, regardless of additional training efforts.

At the start of the FL training process, contributions from all devices are valuable, making smaller
subnetworks preferable for faster computation and transmission of local updates. During the CLP,
where the network undergoes substantial learning and reorganization, the server requires more pre-
cise local model updates to drive convergence. Finally, as training nears convergence, the server
has already accumulated most of the critical contributions from the devices. Accordingly, large or
full-sized subnetworks are no longer necessary, as they may introduce significant latency while of-
fering limited benefits for further training. Thus, dynamically adjusting subnetwork sizes based on
temporal training phases is essential to balance efficiency and performance in FL.

4 STARS-FL DESIGN

4.1 STARS-FL OVERVIEW

STARS-FL features dynamic subnetwork reconfiguration to accelerate FL training over heteroge-
neous mobile devices. As reflected in the subsection titles, STARS consists of (i) global temporal-
aware (TA) subnetwork reconfiguration, (ii) local spatial-aware (SA) subnetwork reconfiguration,
(iii) integrated spatial-temporal aware (STA) subnetwork reconfiguration, and (iv) straggler-resilient
STA subnetwork updates.

STARS-FL generally follows the client-server architecture of traditional FedAvg protocol but mainly
differs in the subnetwork reconfiguration. As shown in Fig. 1, the outlined workflow is as follows:
➀ The server initializes and assigns a small-sized subnetwork to each device, tailored to its wireless
transmission rate and computing capacity, to ensure a target per-round duration. ➁ Mobile devices
locally train their assigned subnetworks and upload the updated gradients to the server. ➂ The server
aggregates the received updates. ➃ The server exploits global Fisher information to identify CLPs
and decide temporal-aware subnetwork size reconfiguration for the next FL round. ➄ Based on the
updated global model and temporal-aware subnetwork guidance, each device further applies spatial-
aware layer width adjustments to reconfigure its subnetwork and conducts the local training. Steps
➁–➄ are repeated until FL global model converges.

4.2 GLOBAL TA SUBNETWORK RECONFIGURATION

We propose to reconfigure the subnetwork sizes for mobile devices aligned with the evolving training
requirements of the global model across time. Specifically, the training dynamics of the FL global
model can be characterized using global Fisher information, which is expressed as follows.
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Figure 1: The sketch of the STARS-FL procedure.

TDr =
1

N

N∑
i

D−1∑
d=0

|Bi|
√

1

|Bi|
∑
k∈Bi

FIr−d
i (k)2, (4)

where N is the total number of mobile devices and Bi represents the sample batch for the i-th
device. Here, we average the FIM-based local training efficiency across all devices during train-
ing to estimate the global model training status, which provides a temporal understanding of the
global model convergence’s requirements. To measure local training dynamics for each individual
device, we adopt a window-averaged expression with a window size of D. This helps to smooth out
short-term fluctuations in the training process, providing a more stable view of local fisher informa-
tion’s changes. After receiving the updated gradients and FIMs from all mobile devices, the server
averages the aggregated gradients as FedAvg and calculates the TDr using Eq. (4).

By comparing TDr with a predefined threshold thr as shown in Eq. (7), the server determines
whether to increase or decrease the local subnetwork sizes and sends the global TA subnetwork
reconfiguration strategies together with the updated global model to the devices for the next-round
training.

Regarding computational complexity, our STARS-FL introduces overhead primarily from Fisher In-
formation computation. As formalized in Eq. 3, we approximate Fisher Information via the squared
norm of gradients, which can be parallelized with SGD operations. As a result, our design yields
negligible computational overhead, which is also verified by empirical results in Table 2 showing no
significant runtime increase versus standard FL.

4.3 LOCAL SA SUBNETWORK RECONFIGURATION

Upon receiving the guidance from the server to reconfigure subnetwork size (i.e., expand or shrink),
each device determines a specific layer-wise width adjustment strategy considering the spatial struc-
ture of the model. We denote ∆W r,+

i,l as the expansion adjustment in the l-th layer width compared
to the previous training round, W r−1

i,l . For the scenario of width expanding, the layer-wise width
expansion adjustment is defined as follows:

∆W r,+
i,l = ⌊min{

α−1
l∑

k α
−1
k

,∆}⌋, (5)

where ∆ ∈ (0, 1] is a developer-based adjustment interval that constrains the maximum step size for
width expansion per layer.

αl = Nl/
∑

l Nl represents the proportion of the l-th layer’s parameters Nl relative to the total
number of parameters in the entire model (i.e.,

∑
l Nl). A larger αl indicates that the l-th layer is

more parameter-dense, which in turn results in bigger computational and transmission overheads
for local training and gradient updates. To prevent disproportionately high overhead, the expansion
pace for such layers is moderated, as reflected in Eq. (5).
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Similarly, for the width shrinking scenario, the adjustment is defined as follows:

∆W r,−
i,l = ⌊−min{αl,∆}⌋. (6)

In this case, parameter-dense layers will shrink more rapidly due to their typically higher parameter
redundancy.

4.4 STA SUBNETWORK RECONFIGURATION

STA subnetwork reconfiguration integrates global TA subnetwork guidance and local SA subnet-
work adjustment in the previous two subsections. Such a STA subnetwork reconfiguration is jointly
done by the server, which is aware of the global model’s temporal training dynamics, and mobile
devices, which are aware of the local subnetwork’s spatial importance/redundancy of layer-wise
parameters. The STA subnetwork reconfiguration policy is formulated as follows.

∆W r
i,l =

{
⌊min{ α−1

l∑
k α−1

k

,∆}⌋, if TDr ≥ thr;

⌊−min{αl,∆}⌋, if TDr < thr.
(7)

In essence, when the TDr is high, indicating it is a CLP, the participating devices opt to increase
the size of their subnetworks. For those parameter-heavy layers, the width increment is moderated
to preserve training efficiency. Conversely, when TDr is low, signifying a not that critical period,
the mobile devices reduce their subnetwork sizes. For parameter-heavy layers, STA subnetwork
reconfiguration reduces more width to further alleviate computational and communication burdens.

4.5 STRAGGLER-RESILIENT STA SUBNETWORK UPDATES

Besides temporal-spatial awareness, our STARS-FL design makes subnetwork updates straggler-
resilient. In particular, for the i-th device in round r, the number of weights in the l-th layer of its
subnetwork is updated based on spatial- and temporal-aware width adjustment ∆W r

i,l as follows.

W r
i,l = W r−1

i,l +

(
t̄

ti

)γ·sgn(∆W r
i,l)

∆W r
i,l. (8)

Here, sgn(∆W r
i,l) represents the sign of ∆W r

i,l, which indicates whether the layer width should
expand or shrink. ti is the per-round duration of device i, and t̄ denotes the average duration among
all the devices in the previous training round, which serves as the bottleneck reference. Thus, t̄

ti

tells whether mobile device i is prone to becoming a straggler. A larger t̄
ti

indicates that device i is
significantly faster, which allows it to retain more parameters in its subnetwork and contribute more
to FL training. The hyperparameter γ controls the sensitivity of subnetwork width adjustments to
the device’s relative speed. A larger γ puts more emphasis on mitigating the impact of stragglers,
while a smaller γ places less emphasis on the straggler issue. When the subnetwork size increases
(i.e., sgn(∆W r

i,l) > 0), we aim to limit the extent of width expansion for slower mobile devices to
prevent excessive computational and transmission burden. Conversely, when the subnetwork size
decreases (i.e., sgn(∆W r

i,l) < 0), we prioritize reducing the width slightly more for faster mobile
devices to maintain a balanced contribution across devices. Such an adaptive subnetwork updating
mechanism ensures that it effectively accommodates device heterogeneity.

Let Nl denote the total number of parameters on l-th layer. After obtaining the number of trainable
parameters W r

i,l for layer l, we can further calculate the subnetwork extraction ratio of the layer via:

W̃ r
i,l =

W r
i,l

Nl
, (9)
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where W̃ r
i,l ∈ (0, 1] represents the proportion of parameters trained in layer l. To facilitate imple-

mentation on mobile devices, these values are quantized into discrete candidate layer widths:

Ŵ r
i,l =



W 1, if W̃ r
i,l ≥ s;

W 2, if W̃ r
i,l ∈ [s2, s);

· · · , · · ·
W p, if W̃ r

i,l ∈ [sp, sp−1);

· · · , · · ·
WP , if W̃ r

i,l < sP−1,

(10)

where s is the shrinkage ratio of layer widths and |W p|/|Nl| = s2(p−1),∀l,W p ∈ WP . In every
FL training round, each device can perform subnetwork configuration by applying the above width
adjustments across all layers. This design ensures subnetwork sizes dynamically adapt to the chang-
ing requirements of local training contributions, while the layer-wise width adjustments are tailored
to both the devices’ capabilities and the model’s structural characteristics. This helps improve both
training efficiency and resource utilization in FL training.

The convergence of STARS-FL can be established by extending the theoretical framework in Su
et al. (2025) through a layer-wise neuron region redefinition of subnetworks. This analysis demon-
strates that STARS-FL converges under adaptive subnetwork size scheduling.

5 EXPERIMENTAL SETUP

5.1 IMPLEMENTATION TESTBED

Our implementation comprises an FL server equipped with an NVIDIA A40 and 20 heteroge-
neous mobile devices, including MacBook Pro 2018, NVIDIA Jetson Xavier, NVIDIA Jetson TX2,
NVIDIA Jetson Nano, and Raspberry Pi 4, with four devices of each type in the system. These
devices have significantly different CPU frequencies and memory, thereby effectively reflecting the
computational heterogeneity in real-world scenarios. Communication between the server and de-
vices occurs over LTE, Bluetooth 3.0, and Wi-Fi 5 networks. For subnetwork configuration, we set
the hidden channel shrinkage ratio to s = 1

2 and use 5 subnetwork size levels. The width shrinkage
ratios for the five levels are 1, 1

4 , 1
16 , 1

64 , and 1
256 , respectively. To simulate data heterogeneity,

we use a balanced non-IID data partition Li et al. (2021b), where σ represents the level of non-
IIDness, corresponding to the number of classes on each device. For our experiments, we use the
default setting of σ = 2. Additionally, we set the layer width adjustment interval to ∆ = 0.125 and
the threshold for identifying critical learning periods (CLPs) to thr = 1 × 10−5, unless otherwise
specified.

5.2 TASKS AND BASELINES

We conduct our experiments with two common FL tasks. For the image classification task, we train
a CNN model (2 convolutional layers and 1 fully connected layer) on the MNIST dataset and a
ResNet18 model on the CIFAR10 dataset. For the human activity recognition (HAR) task, we train
a CNN model on the HAR dataset Gupta et al. (2022). We compare our STARS-FL approach with
the following baselines: (1) FedAvg McMahan et al. (2017), where all the devices train with full-
sized models. (2) HeteroFL Diao et al. (2021), which employs fixed subnetwork extraction ratios
throughout FL training, uniform across model layers, with subnetwork sizes matching devices’ full
computational and communication capacities. (3) FedDropout Wen et al. (2021), which generates
subnetworks by choosing the neurons at random. (4) FedRolex Alam et al. (2024), which extracts
subnetworks in a rolling way across FL training rounds. (5) TARS-FL, a variant of STARS-FL
incorporating only temporal-aware subnetwork reconfiguration. (6) SARS-FL, another variant of
STARS-FL incorporating only spatial-aware subnetwork reconfiguration.
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Figure 2: Performance comparison of different FL training approaches under various learning tasks. Figures
from left to right are CNN@MNIST, ResNet18@CIFAR10, and CNN@HAR with non-IID (σ = 2) datasets.

Figure 3: Performance analysis under STARS-FL, TARS-FL, and SARS-FL. Figures from left to right are
CNN@MNIST, ResNet18@CIFAR10, and CNN@HAR with non-IID (σ = 2) datasets.

6 EVALUATION AND ANALYSIS

6.1 LATENCY EFFICIENCY AND LEARNING PERFORMANCE

We begin by evaluating the latency efficiency of STARS-FL across different FL tasks. As shown
in Fig. 2, our STARS-FL consistently achieves significant training speedup across these tasks with-
out sacrificing learning accuracy. Compared with FedAvg, STARS-FL accelerates the FL train-
ing to the target testing accuracy by approximately 4.23x, 3.21x, and 3.16x for CNN@MNIST,
ResNet18@CIFAR10, and CNN@HAR tasks, respectively. By incorporating temporal and spatial-
aware subnetwork reconfiguration, STARS-FL assigns larger subnetworks to devices during CLPs
and reduces the widths of parameter-dense layers to minimize communication and computational
overheads. This dynamic adaptation ensures that local subnetworks are well-suited to varying com-
munication and computational conditions, as well as the evolving requirements of FL training at
different stages. In contrast, HeteroFL, FedRolex, and FedDropout employ a static fixed-size sub-
network assignment policy, which may increase transmission time without yielding significant accu-
racy improvements. As a result, STARS-FL achieves faster convergence and higher final accuracy
compared to the fixed-size methods, demonstrating its superior FL training efficiency and overall
performance.

6.2 ABLATION STUDY

We compare STARS-FL with variants that feature either temporal-aware or spatial-aware subnet-
work reconfiguration. The experiments are conducted on CNN@MNIST, ResNet18@CIFAR10,
and CNN@HAR FL tasks, with results shown in Fig. 3. In the presence of CLPs during early train-
ing, SARS-FL’s lack of temporal awareness causes devices to train with smaller subnetworks com-
pared to STARS-FL. While SARS-FL benefits from reduced transmission time due to spatial-aware
design, it cannot adjust subnetwork sizes according to the different training phases, resulting in
lower accuracy and slower convergence than STARS-FL. Similarly, TARS-FL, which lacks spatial-
aware layer width adjustment and may assign unnecessarily large widths to parameter-heavy layers,
experiences longer transmission delays. Although TARS-FL occasionally achieves slightly higher
accuracy than STARS-FL, its convergence speed is slower. These findings confirm that STARS-FL
effectively balances convergence speed and accuracy.
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6.3 SENSITIVITY ANALYSIS

Figure 4: Sensitivity analysis under thr, ∆, and γ values with non-IID (σ = 2) datasets.

We conduct sensitivity analysis of STARS-FL’s performance under different thr, ∆, and γ values,
and present the results in Fig. 4.

The hyperparameter thr is a threshold used to identify CLPs. As shown in Fig. 4(a), selecting a
larger threshold (thr = 1×10−3) makes the devices less likely to switch to larger subnetworks dur-
ing CLPs, which leads to faster early training with reduced computational and transmission latency,
but resulting in subpar final accuracy due to smaller subnetworks that limit learning capacity. In con-
trast, with smaller thresholds (thr = 1×10−4 and thr = 1×10−5), devices are more likely to select
larger subnetworks during CLPs, which, although causing slower convergence in the early stages,
leads to higher final accuracy. Therefore, appropriately setting thr can improve time-to-accuracy
performance by balancing early training speed with the need for sufficient learning capacity during
CLPs.

The hyperparameter ∆ governs the maximum step size for subnetwork width expansion or shrink-
age. As shown in Fig. 4(b), larger intervals like ∆ = 0.3 can induce abrupt changes in subnetwork
size reconfigurations across devices, potentially destabilizing local training and impeding FL conver-
gence. Conversely, overly conservative intervals (e.g., ∆ = 0.0625) may lead to insufficient adapta-
tion of subnetwork dimensions to evolving training requirements, ultimately degrading model per-
formance. Our experimental results identify ∆ = 0.125 as achieving superior performance through
balanced adjustment granularity under our settings, enabling faster convergence while maintaining
model accuracy. Practical implementations may benefit from dynamically tuning ∆ through real-
time monitoring of accuracy progression, allowing step size adaptation to specific task demands and
system states.

The hyperparameter γ controls how responsive subnetwork width adjustments are to a device’s
relative training speed compared with others. Our experimental results in Fig. 4(c) reveal that setting
γ = 0 essentially ignores slower devices’ limitations. This configuration allows slower devices
to frequently process oversized subnetworks, creating significant training delays. Simultaneously,
faster devices become constrained from expanding their subnetwork sizes efficiently during CLP.
Consequently, devices may fail to achieve optimal subnetwork sizes, leading to prolonged training
times and reduced final accuracy. Notice that using γ = 5 achieves very similar performance to
γ = 1, while it marginally overcompensates for slower devices’ impacts and results in slightly
inferior model outcomes.

7 CONCLUSION

In this paper, we have proposed STARS-FL, a novel subnetwork-based FL design that integrates
temporal and spatial awareness into subnetwork reconfiguration. In the temporal domain, STARS-
FL leverages Fisher Information to identify critical learning periods and dynamically adjusts subnet-
work sizes to align with evolving training dynamics. In the spatial domain, it introduces a layer-wise
subnetwork width adjustment mechanism, enabling adaptive configuration of layer widths based on
layer-specific computational and communication constraints. Through extensive experiments, we
have demonstrated the superior performance of STARS-FL in achieving training speedup while
maintaining competitive accuracy.
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A APPENDIX

The appendix contains supplementary experimental results.
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Figure 5: The relation between Fisher Information and test accuracy.
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Table 2: Performance comparison under different data heterogeneity levels σ (Task: CNN@MNIST).

σ 2 5 10 2 5 10

Metric Final Accuracy Latency (hours)

FedAvg 89.1 98.9 99.0 13.36 15.42 12.34
HeteroFL 79.0 98.4 98.8 1.50 2.50 1.62
TARS-FL 85.9 98.9 99.0 1.78 2.35 1.88
SARS-FL 80.1 98.2 98.8 0.53 1.01 0.95

STARS-FL 83.6 98.7 99.0 1.35 1.48 1.29

In Fig. 5, we show the relationship between CLPs and test accuracy, with the information embedded
in weights quantified using FedFIM from Eq. (3).

We further evaluate the impact of data heterogeneity on STARS-FL’s performance using
CNN@MNIST as an example. We examine cases where each device has σ = 2, 5 or 10 classes,
where the data distribution is IID if σ = 10, i.e., every device has all classes. The results are shown
in Table. 2. As the non-IID level increases, FL training typically achieves lower final accuracy.
However, STARS-FL maintains accuracy close to that of FedAvg (within a 6% loss), while achiev-
ing faster convergence by 9.8x, 10.4x, and 9.5x for σ = 2, 5 or 10, respectively. In extreme non-IID
scenarios (σ = 2), HeteroFL’s accuracy drops from 89.1 to 79, while STARS-FL achieves an ac-
curacy of 83.6 with a notable 10% reduction in convergence time. This improvement is attributed
to STARS-FL’s ability to capture training dynamics and model structural characteristics for sub-
network reconfiguration, which enables a remarkable enhancement in FL training efficiency under
various data heterogeneity scenarios.
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