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Abstract

Physical phenomena in the real world are often described by energy-based mod-
eling theories, such as Hamiltonian mechanics or the Landau theory. It is known
that physical phenomena based on these theories have an energy conservation
law or a dissipation law. Therefore, in the simulations of such physical phenom-
ena, numerical methods that preserve the energy-conservation or dissipation laws
are desirable. However, because various energy-behavior-preserving numerical
methods have been proposed, it is difficult to discover the best one. In this study,
we propose a method for learning highly accurate energy-behavior-preserving
integrators from data. Numerical results show that our approach certainly learns
energy-behavior-preserving numerical methods that are more accurate than existing
numerical methods for various differential equations, including chaotic Hamilto-
nian systems, dissipative systems, and a nonlinear partial differential equation. We
also provide universal approximation theorems for the proposed approach.

1 Introduction

Differential equations serve as fundamental tools for modeling the dynamics of various physical
systems. However, most real-world differential equations cannot be solved analytically, necessitating
the use of numerical methods to obtain approximate solutions. A critical challenge in this context is
ensuring both accuracy and stability over long simulation times, especially for systems governed by
complex or nonlinear dynamics.



Table 1: Comparison of the proposed method, discrete gradients, SympNets [31]. Because the
proposed method is a numerical integrator, the approximation accuracy is always guaranteed to a
certain extent, regardless of the results of training.

naive Runge-Kutta discrete gradient SympNets  Proposed
numerical integrators v v v
energy conservation v v v
energy dissipation v v
learnable from data v v

In recent years, advances in machine learning have inspired a new class of data-driven numerical
methods [1}[12} [21]], where neural networks are used to optimize the coefficients or design high-order
schemes for classical integrators such as Runge-Kutta methods. These methods offer remarkable
adaptability and high short-term accuracy when tailored to specific problems. However, a significant
limitation is their lack of preservation of key invariants, such as energy conservation or symplecticity,
which are essential for long-term simulations. In contrast, geometric numerical integrators [24]
are specifically designed to preserve such intrinsic structures, thereby ensuring better performance
over long time intervals. Among them, energy-preserving methods such as the discrete gradient
methods[[19, 47] have gained attention for their ability to conserve the system’s energy evolution
precisely. To the best of our knowledge, existing literature has not yet explored the potential of neural
networks in optimizing energy-preserving geometric integrators.

In this study, we propose a method for learning numerical integrators that preserve the energy
behaviors of target differential equations. More specifically, the focus of this paper is on dynamical
systems characterized by their energy-conserving or dissipating properties. We present a general form
of the discrete gradient method and propose a method for learning highly accurate energy-behavior-
preserving integrators from data by employing neural networks. In addition, we show universal
approximation theorems for the proposed approach.

The main contributions of this paper are as follows.

* We characterize and then parameterize the energy-behavior-preserving numerical integrators.

* We propose neural network models with universal approximation properties for the energy-
behavior-preserving numerical integrators. Numerical experiments have confirmed that
the method can be applied to a wide range of phenomena, including chaotic conservative
systems, dissipative systems, and nonlinear partial differential equations.

* Numerical experiments also show that the proposed method, in fact, finds highly accurate
computational methods, which are difficult to discover theoretically. In particular, it is
numerically shown that numerical schemes derived by the proposed method are highly
accurate and stable even for chaotic systems.

2 Related Work

Neural networks for improving numerical methods represent a hybrid paradigm. One line of re-
search focuses on optimizing classical numerical methods through data-driven parameterization rather
than approximating dynamics directly. Anastassi [[1]] developed artificial neural networks(ANNs) to
generate the coefficients of two-stage Runge-Kutta methods specifically optimized for solving the
two-body problem. Dehghanpour et al. [[12] utilized ANNs to automatically compute the optimal
coefficients of third-order Runge-Kutta methods. Similarly, Guo et al. [21]] explored machine learning
methods based on the Runge-Kutta-integrator architecture, capable of automatically generating
high-order integrators for specific families of ODEs. Universal Numerical Integrators (UNIs) [60}[61]]
proposed a framework, which combines neural networks as universal approximators with numerical
integrators. A second distinct line of work investigates learning discretization schemes from data.
Bar-Sinai et al. [2] introduced a data-driven discretization approach that employs neural networks
to optimize the computation of spatial derivatives. Maddu et al. [44] developed STENCIL-NET,
which can adaptively learn local discretization operators based on solution data, addressing long-term
prediction challenges for unknown nonlinear PDEs. Ranade et al. [S5] introduced DiscretizationNet,
a generative CNN-based approach to model discretization schemes. Our approach follows this hybrid



paradigm but shifts the focus from general integrator optimization to preserving the energy behavior
of dynamical systems. We achieve this by combining neural networks with the structure-preserving
discrete gradient method, rather than modifying traditional integration integrators.

Geometric numerical integration focuses on designing numerical methods that preserve certain
qualitative characteristics of dynamical systems. Unlike traditional methods such as the explicit
Euler method or the classical Runge-Kutta method, which may lead to long-term errors, geometric
integrators maintain properties that make them particularly suitable for long-time simulations of
physical systems.

Geometric numerical integrators are generally divided into symplectic integrators and energy-
preserving integrators, as Zhong [67] and Chartier et al. [[6] have shown that it is impossible for a
numerical integrator to preserve both properties. Symplectic integrators ([[L6, 56]]) are integrators
that preserve the symplectic structure of Hamiltonian systems. Energy-preserving methods aim to
conserve the total energy of the system. Among energy-preserving methods, the discrete gradient
method([[19, 35H377, 147]) is particularly successful and has also been extended to partial differential
equations ([5, 46]). Eidnes [15] develop order theory for discrete gradient methods. Projection
methods([[10, |14} 22| 23]]) can also be employed to preserve energy by projecting the numerical
solution back onto the manifold that satisfies a certain energy. Norton et al. [50] show that linear
projection methods are a subset of discrete gradient methods. Miyatake and Butcher [48]] provided a
condition to be energy-preserving for continuous stage Runge-Kutta methods. For other geometric
numerical integrators, see ([4, 24} |57]]) for details. In our study, we place particular emphasis on
discrete gradient methods, as they inherently preserve the energy behaviors, making them highly
relevant for simulations involving Hamiltonian dynamics and dissipative systems.

Neural network-Based Physical Modelings have been widely applied to the study of differential
equations by combining data-driven learning with physical principles. Chen et al. [7] introduced
Neural ODEs, which model continuous-time dynamics via parameterized vector fields. This idea
has been extended in various directions [3}[13}165]. Another influential framework is that of Physics-
Informed Neural Networks (PINNs) [54]], which incorporates differential equation residuals into
the loss function to enforce physical consistency during training. Numerous extensions have been
developed to enhance their accuracy, robustness, efficiency, and scalability [30} 32, |49 54} 58]].
Operator learning [38-42, 164] aims to learn mappings between infinite-dimensional function spaces.
Dynamic Mode Decomposition (DMD) and the Koopman operator theory have emerged as powerful
data-driven techniques for approximating nonlinear dynamical systems with linear representations
[34, 143,159, [63]. Beyond generic data-driven models, structure-preserving neural networks have
been proposed to better reflect the physical properties of dynamical systems. Hamiltonian Neural
Networks (HNNss) [20] model the Hamiltonian to enforce energy conservation. Extensions of HNNs
[L1} 25, 45]] have incorporated flexibility and accuracy improvements. Lagrangian Neural Networks
(LNNSs) [9] take a similar approach via Lagrangian mechanics. Many studies also focus on the
symplecticity [8, 31} 51} 162]. For energy-dissipative systems, some studies have introduced neural
networks grounded in thermodynamic principles such as the GENERIC framework to ensure stability,
interpretability, and physical consistency in modeling irreversible dynamics [26} 27, 166]). Despite their
effectiveness in capturing qualitative physical properties, these methods are not numerical integrators.
They focus on learning dynamics or flow maps, and their approximation quality can be difficult to
control or quantify in a classical numerical analysis sense. This limits their applicability in contexts
where rigorous accuracy guarantees or long-term stability are required.

In summary, our method bridges geometric numerical integration and neural networks by learning
energy-behavior-preserving integrators. This offers improved long-term stability and accuracy in
simulating a wide range of systems.

3 Target Energy-Based Dynamical Systems

We focus on differential equations written in the form
= S(u)VH(u), ucR 1)

Here H € C'(R% R) and S € C(RY,R?*4), Differential equations in this form describe vari-
ous physical systems modeled by ordinary differential equations (ODEs) and discretized partial
differential equations (PDEs) [17,52]. Two classes of problems are usually considered:



Conservative case: S(u)? = —S(u) (skew-symmetric,)
Dissipative case: S(u) < O (negative semi-definite.)

Note that S < O means that the matrix S is negative semi-definite, i.e., ! Su < 0 for any vector u.
Also, if a matrix S is skew-symmetric, then u " Su = 0 for any vector .

The systems described by the above equations have the following properties.

Theorem 3.1. The system has the energy dissipation law if S < O and the energy conservation law
if S is skew-symmetric.

See Appendix [A]for the proof. Such differential equations include various equations that appear in
physics. For example, if S is skew-symmetric and invertible and also satisfies a certain condition
called the Jacobi identity, the equation describes Hamiltonian systems. As the Hamilton equation
is a generalization of Newton’s equation of motion, mechanical systems that can be described by
classical mechanics, such as the motion of a pendulum. As an example outside of physics, the
Lotka—Volterra predator—prey model is also a Hamiltonian system. On the other hand, this equation
describes dissipative systems when S is negative-definite. A typical example of dissipative systems
is the equation of motion for mechanical systems with friction. Thermodynamic systems can often
be expressed as dissipative systems as well. Also, this equation has a geometric background; see
Appendix [B] for details.

The system () also describes semi-discretized Hamiltonian or dissipative PDEs in space. For
example, the PDEs of the form

ou 0 0H
oY o)
ot Oz du @
are an example of Hamiltonian PDEs, where H (u,u,) is the energy density and 0 H/u denotes

the variational derivative of H, which is defined by %—IZ = 37},1 — %%—Ij. This equation admits

the energy conservation law: é—“t J Hdz = 0 under, for example, the periodic boundary condition.
Similarly, the PDEs

ou 9% SH
e 3)
ot 022 fu
admits the energy dissipation property: % f Hdz < 0 under the periodic boundary condition. See
Appendix [C] for details on the semi-discretization.

Hamiltonian PDEs include the Maxwell equation and the shallow water equations such as the KdV
equation, the advection equation, and the Burgers equation. Dissipative PDEs express physical
systems derived from the Landau free-energy minimization including the Cahn—Hilliard equation and
the phase—field models for phase transitions and pattern formulations. Other target equations include
the equations with complex state variables, such as the Schrodinger equation and the Ginzburg—
Landau equation. See, e.g., [[L7] for details.

4 Methods

4.1 Discrete Gradient Methods as Energy-Behavior-Preserving Integrators

A popular way of discretizing (1)) is by a class of numerical schemes called discrete gradient methods

defined as
w1 _ ()

h
where £ is the step size. In this discrete counterpart to (I)) the skew-symmetrix matrix S(z) has been
replaced by the matrix S(u, v) depending on two arguments, but still required to be skew-symmetric.
VH : R x R — R? is the discrete gradient defined as follows.

Definition 4.1. A discrete gradient for a smooth function H : RY — R is a continuous mapping
VH : R x RY — R that satisfies the following properties; for any z, y € R?,

H(v) — H(u) = (VH(u,v),v — u) for all u,v € R%, 5)
VH (u,u) = VH(u) for all u € R? (6)

= S(u("),u(n+1)) ?H(u("),u(”"'l)) )



The first condition corresponds to the discrete chain-rule dH (du; u) = VH (u) - du for the Fréchet
derivative dH (-; u) of H at u, where du is an infinitesimal change of u. The second condition ensures
that a discrete gradient V H is certainly an approximation of the gradient VH. The inner product
is typically the standard Hermitian inner product for ODEs and the discrete L? inner product for
discretized PDEs. For details on discrete gradient methods, see, e.g., [15].

The discrete gradient schemes preserve the energy behavior of the target differential equations in the
following sense.

Theorem 4.2. The discrete gradient scheme ([@) admits the discrete energy conservation law
Hu™) = H(u™)

if S is skew-symmetric and the discrete energy dissipation law
H(u(n—i-l)) < H(u(n))

if S < O. In particular; if the system is dissipative, the amount of energy dissipation is an approxima-
tion of that of the original differential equation.

Proof. The proof is exactly the same as that for Theorem[3.1] See Appendix [A]for details. O

There are several popular choices for discrete gradients. The average vector field (AVF) discrete
gradient [53] is defined as

1
VH (u,v) = / VH((1—-{)u+ Cv)dC.
0
The Gonzales discrete gradient [[19] is defined by

u;rv> JrH(v)—H(u)—<VH(“J2“’),U—u>

VH(U,U)VH< w01

Another example is the Itoh—Abe discrete gradient [29]]

H(vi,uz,..uq) = H(ui,uz,...,ud)

V1 —U1
H(vl,vz,...,uds—H(vl ,uQ,...,ud)
V2 —U2

Vitohabe H (u, v) 1=

H(vi,...;va—1,va) —H(v1,...,94—1,ud)
vg—Uq

4.2 Universal Energy-Behavior-Preserving Integrators
The above three discrete gradients are just examples from the family of maps V H satisfying (5) and
() above. In this paper, we fully characterize the set of all possible discrete gradients as follows.

Let Vo H be a particular choice of discrete gradient, henceforth denoted the reference gradient. Then,
from (5) it follows that any other discrete gradient V H (u, v) satisfies

(VH(u,v) — VoH (u,v),v —u) =0 @)

Thus, the set of all discrete gradients can be described, and hence, parameterized for learning as
follows.

Theorem 4.3 (Characterization of discrete gradients). For a fixed function H, the set of all discrete
gradient operators VH : R? x R? — RY has the following parametrization

VH(u,v) = VoH (u,v) + A(u,v)(v — u), (8)

where A(u,v) is continuous and skew symmetric for all u,v € R%, and where Vo H (u,v) is a fixed
reference gradient satisfying (B) and ().

Proof. For the proof, see Appendix [A] O

In fact, we can prove a stronger statement: all energy-conserving numerical methods for the Hamilton
equations can be written in this form.



Theorem 4.4. For a fixed function H, any energy-preserving integrators for the Hamilton equation

du
T SV H (u)

can be written as a discrete gradient scheme with a discrete gradient of the following form:
VH (u,v) = VoH (u,v) + A(u,v) (v — u),

where A(u,v) is skew symmetric for all u,v € R? and VoH (u,v) is a fixed reference gradient

satisfying (B) and ((6).
Proof. See Appendix [A]for the proof. O

Note that we cannot obtain a similar theorem for dissipative systems in a straightforward way because,
in the proof of the above theorem, we use the energy-conservation law of the conservative systems
and also the non-degeneracy of S.

Proposed Method Although the discrete gradient
method preserves the energy behaviors, it still introduces

numerical errors that accumulate and grow over time. In u®, uy
this study, we propose a method for learning highly accu-

rate energy-behavior-preserving integrators. The method /~
can be summarized as Figure[I] This paper aims to op-
timize the discrete gradient based on the above charac-

terization of discrete gradients, with the aim of not only
preserving the energy but also yielding numerical solutions \_

()
u 7
u(n+ 1) : s\

closer to the true solution. ¥
(— N\
The proposed method is formulated as follows: VuwH ™, uD)
_ B = VH@u™,u™ D) + Myy D — y0v)
VanH (u™, vy = VH (u™, u( D) B ;
+ Myn (™, u D) (D — ) (9) O ST (u®,u0) ]

where Myx (u(™, u(+1) is a skew-symmetric matrix
learned by a neural network that takes u(™ and u("*1) as
the input. The universal approximation properties are the direct consequences of the above theorems.

Figure 1: Outline of proposed method

Theorem 4.5 (Universal approximation theorem for energy-preserving integrators for Hamiltonian
systems). Suppose that the phase space is compact and My is modeled by using a multilayer
perceptron (MLP) with a sufficiently smooth activation function so that the MLPs admit the uni-
versal approximation property for the continuous skew symmetric matrices M (u,v)’s. Then the
proposed method admits the universal approximation property for energy-preserving integrators for
Hamiltonian systems.

Theorem 4.6 (Universal approximation theorem for energy-dissiptive discrete-gradient integrators for
dissipative systems). Suppose that the phase space is compact and My is modeled by using a MLP
with a sufficiently smooth activation function so that the MLPs admit the universal approximation
property for the continuous skew symmetric matrices M (u,v)’s. Then the proposed method admits the
universal approximation property for energy-dissiptive discrete-gradient integrators for dissipative
systems.

Given a time series data u(™)’s at time ¢(™)’s, the proposed model is trained to minimize the squared
error between the left- and right-hand sides of (9):

. u m __ . .
minimize Z HT _ SVNNH(U( H),u( ))”g, (10)
where h(") = ¢(n+1) _ (),

If the matrix My satisfies Mxn(u, v) = My (v, 1), then the proposed integrator @) at least has
the second-order accuracy. Otherwise, the proposed integrator (9) is the first-order method [24].



5 Experiment

We used standard multilayer perceptrons with the hyperbolic tangent (tanh) as the activation function
to learn the matrix Myy. The hyperparameters for training are provided in Appendix The
optimizer is set to Adam [33]]. As for the loss function, we chose MSELoss (Mean Squared Error
Loss). Final loss values are provided in Appendix All experiments were performed on an Intel
15-13500H CPU, and computations were done in double precision.

In our experiments, we employ the AVF and Itoh—Abe methods as reference discrete gradient. As
demonstrated in the experiments provided in the Appendix for the choice of the reference
discrete gradient, we prefer to use the AVF method for its accuracy when it is computationally
feasible. Otherwise, the Itoh-Abe method offers a simpler approach, making it more suitable for
general equations. Moreover, to improve the performance of the Itoh—Abe method, we employ its
time-symmetric version as the reference method in all subsequent experiments as follows:

VitohAbesyy H (4, V) = (Vigonabe H (1, v) + Vigonane H (v, 1)) /2.

Although the proposed method can theoretically guarantee at most second-order accuracy, we conduct
comparisons with reference numerical methods using half step size and double steps, as well as with
fourth-order AVF and Itoh—Abe methods constructed by the composition method [24]].

The implementation code is available in supplementary material on OpenReview: |https://
openreview.net/forum?id=G2uILEbcLF.

5.1 AVF Discrete-Gradient-Based Method for Energy-Conservative Nonlinear System

Hénon-Heiles System The Hénon-Heiles model (Figure [2)) describes the
stellar motion restricted to a plane. It shows chaotic motion and has a separable
and polynomial Hamiltonian given by:

q2

1 1 1
H(p.q) = 5 (0 +p3) + 541 + &) + ala2 — 565
Figure 2: Hénon- o . L . .
Heiles Since this is a polynomial Hamiltonian equation, the AVF method can be easily
applied. Due to the chaotic characteristics of the system, even small errors can
evolve into large deviations over long iterations. Although the AVF method conserves energy, it can
still lead to significant errors for this system.

We use two sets of data: the flow data and the irregular data for the Hénon-Heiles equation. The
training flow data { (u("~1,u(™) | n. = 1, ..., N} consists of N = 100 pairs of points obtained from
the trajectory calculated using a high-order integrator sampled with a time step h = 0.3, starting from
uw® = (qio), q§0>,p§0>,p§°>) = (0.3,0.3, —0.2, —0.2). After training, we use the trained integrator
to compute the flow starting at u(™) for 300 steps.

Ground truth Proposed method AVF solution AVF half stepsize AVF orderd Sympnets
075 075 P 075 075 s 075 075 Y Global error
it al
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Figure 3: Results for the Hénon-Heiles eq. (predicted trajectory and global error.) The error plot uses
the same color as the trajectory plots.

We also consider the computational time because the proposed numerical scheme is computationally
more expensive than the AVF method due to the use of the neural network. When using a 10-layer,
100-width network for the Hénon-Heiles experiment, the computation time for the trajectory of
300 points falls between the AVF method and the AVF (half step size), which uses half the time
step size and doubles the number of steps. For example, The computational times were: Proposed:
5.522 [sec], AVF: 3.608 [sec], AVF (half step size): 6.616 [sec]. In fact, the proposed method
outperforms the fourth-order method, which offer higher accuracy while require more computation
time than AVF(half step size). We also compared the trajectory computed using a 10-layer, 100-width
G-sympnets trained for 100, 000 iterations with learning rate 0.001 and the same training dataset by
modifying the officially released code [31]. The predicted trajectory and the corresponding global
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error (||u™ — u(nh)||2) comparison are illustrated in Figure 3| from which we can deduce that the
proposed method yields trajectory closer to the ground truth, and for details see Appendix [D.4]

We further conducted experiments using irregular data. The training dataset {((u(~", (), u?) |
i =1,...,1} consists of I = 100 one-step input-output pairs, where the elements of w1 are
randomly sampled from the domain [—1, 1], and the corresponding step sizes h(*) are randomly chosen

from [0, 0.5]. Each u(?) represents the one-step solution computed from «(*~1) using step size h(*).

After training, we simulate the flow starting from the initial state u(?) = (qgo), qéo), p(lo), p(QO)) =

(0.3,0.3,—0.2,—0.2) using a fixed step size h = 0.3 for 100 time steps. The numerical results
indicate that the proposed method yields significantly improved accuracy over baseline methods. For
detailed comparisons, please refer to Appendix

We also conducted experiments on the pendulum system to validate the generality of our proposed
method. Detailed experimental settings and results are provided in Appendix

5.2 1Itoh-Abe Discrete-Gradient-Based Method for Energy-Conservative Nonlinear System

Two-body Problem In the two-body problem, the motion of two bodies that
attract each other is considered. We assume that one of the bodies is fixed at
the center of the coordinate system and the position of the other one is given as
q = (q1,42) (Figure ) The Hamiltonian is given as follows:
1 1

- . . H(q1,q2,p1,02) = 5 (T +03) — ——5-

E(l)%l;re 4: Two D) \/m

The training flow data { (™", u(™) | n = 1,..., N} consists of N = 30 pairs with a fixed time

step h = 0.1, starting from u(®) = (q§0)7 q§°>,p§°),p§°)) = (—0.8,0,0,1). After training, we use the

trained integrator to compute the flow starting at v™\) for 300 steps.

Ground truth Proposed method Itoh-Abe solution Itoh-Abe half stepsize Itoh-Abe order4 Global error
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Figure 5: Results of the Two-body (predicted trajectory and global error.) The error plot uses the
same color as the trajectory plots.

Figure [5| compares the trajectories predicted by the proposed method with Itoh-Abe methods. While
the Itoh—Abe methods yield solutions that generally follow the elliptical shape of the ground-truth,
they exhibit noticeable deviations from the true trajectory. For details, see Appendix[D.4]

Double Pendulum The double pendulum is known to exhibit complex behaviors with a strong
sensitivity to initial conditions, which makes the computation very challenging.

This system has a non-polynomial Hamiltonian as follows:

2 2
pi + 2p3 — 2p1p2 cos(q1 — go)
: H(q1,q2,p1,p2) = - — 2cosq; — Ccosqs.
; 'lfh 2(1 + Sln2(q1 — QQ))
Figure 6: 2- The training flow data {(u™~Y,u(™) | n = 1,..., N} consists of N = 100 pairs with
pendulum  a fixed time step i = 0.3, starting from u(®) = (¢\”), ¢{” p¥ p) = (g, 3m,0,0).

After training, we use the trained integrator to compute the flow starting at (™) for 300 steps.

Although the chaotic nature of the double pendulum makes learning difficult, the proposed method
provides a solution that is close to the true trajectory (Figure[7). For more details, see Appendix [D.4]

5.3 AVF Discrete-Gradient-Based Method for Dissipative Nonlinear System

The discrete gradient methods can also be applied to dissipative systems

alp) = (5 )
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Figure 7: Results of the double pendulum (predicted trajectory and global error.) The error plot uses
the same color as the trajectory plots.

to construct energy-dissipating integrators, where J denotes the dissipative coefficient. Therefore, our
proposed approach can be employed to optimize them.

Dissipative Pendulum The Hamiltonian for Global error Eneray
the dissipative pendulum is the same as that for — Proposed method — Ground truth

—— Proposed method
AVF half stepsize

the pendulum H (g, p) = %p2 — cos(q). 010 T e -

The dissipation coefficient was set to § =
0.01. We train the network with the flow data o , —
{(w™ VD w™) | n = 1,..,N} consists of P rEeE crorrEE®
N = 100 pairs with a fixed time step h = 0.3, Figure 8: Results of the dissipative pendulum
starting from u(?) = (¢(© p(®) = (2,0). After training, the trained integrator was used to compute
the flow starting at ") for 100 steps. As seen in Figure the accuracy of the integrator was greatly
improved again by the proposed method while preserving the dissipation property.

Duffing Oscillator The Duffing equation is a non-linear differential equation that models certain
damped oscillators with the Hamiltonian:

1 1 1
H _ 12,1 2, 1,4
(4,p) = 59" + 50" + 7 5q
where we set the linear stiffness coefficient to a« = 1, the non-linearity coefficient to 5 = —5 and the
damping coefficient to § = 0.05. We train the flow data {(u("~1 u(™) | n = 1,..., N} consists of
N = 200 pairs with a fixed time step & = 0.1, starting from (¢(©), p(9)) = (4, 0). After training, we
computed the flow starting at (™) for 300 steps.

Figure 9] shows that the proposed method again Glob error Energy
improves the accuracy; however, compared to | _| — frovoseametnod ’ T Srowndtntn
energy-conserving systems, the numerical error | = et HULMJW 0 — v

is slightly larger. This is because the discrete uu ,

gradient method only guarantees the energy dis- ij

sipation property but does not ensure the accu- *° B S e

racy of energy for energy-dissipative systems. Figure 9: Results of the Duffing oscillator

5.4 AVF Discrete-Gradient-Based Method for Energy-Conservative Nonlinear PDEs

As the discrete gradient method is applicable to semi-discretized PDEs, our approach is also applicable.
We applied the proposed method to a semi-discretized Hamiltonian PDE, the Korteweg-de Vries
(KdV) equation:

ou ou  du
ot~ ox 9a®
Global error The  semi-discrete  Hamiltonian is  defined as H(u) =
0006 >, (W(uﬂ'“ —uj)? — uj) where the index j denotes spatial dis-
0004 1— Proposed metfo cretization points at a fixed time level with the spatial step size Ax.

0.002 A This equation is a partial differential equation that describes shallow water waves.
o000 We consider this equation on the interval [0, 20] under the periodic boundary
! condition. We used the training data with the time length of 7' = 30 and the

Figure 10: . . - v . - '
Results of KdV time step size of At = 0.01. The spatial step size was Az = 0.5. For testing,

o
15
N
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the computation was carried out from the time length 7' = 30, with the starting being at the final state
of the training dataset.

The numerical errors shown in Figure [T0] confirm that the proposed method yields more accurate
solutions compared to the AVF method. For more details, see Appendix [D.4]

5.5 Supplementary Experiments

Impact of Training Data We also conducted comparative experiments to investigate how varying
the size of irregularly training data influences the performance of the learned integrator. The
experimental results demonstrate that increasing the amount of training data is beneficial for improving
the training performance of the learned integrator. See Appendix [D.2]for details

Comparison with Other Methods For completeness of exposition, we compare our approach with
other methods. Our method focuses on learning structure-preserving numerical integrators, whereas
many existing approaches (e.g., PINNs) aim to directly approximate continuous solutions. Because
these objectives differ, such comparisons are inherently difficult and should be interpreted with
care. We therefore report supplementary results with PINNs and TRS-ODEN on standard dynamical
systems. The protocol and complete results are given in Appendix [D.5] Overall, our method shows
smaller errors and more stable long-horizon trajectories.

Computational Time One limitation of the method is the increased computational time associated
with neural networks during training and inference. In particular, the proposed method requires time
for data preparation and network training. To see the actual increase in total computation time, we
conducted additional numerical experiments. Specifically, we discuss the computation time in detail,
especially for the case of the KdV equation, which is the largest system in the experiments. For other
experiments, see Appendix[D.6] Also, GPUs can be used for training to accelerate calculations. In the
experiment, we used an Intel Xeon 6900P CPU and an AMD Instinct MI300A GPU for computation.

We first set the number of nodes for spatial discretization of the KdV equation to 100. The computation
time for generating the training data was 28.709 sec using a CPU and the scipy odeint function. The
training time was 6.407 sec using a MI300A GPU. The integration time during testing was 52.738
(proposed), 22.785 (2nd order AVF) and 127.280 (4th order AVF). Thus the total computational time
of the proposed method was 28.709 + 6.407 4 52.738 = 87.854, which is less than the 127.280
sec required by the 4th order AVF method. Similarly, if we set the number of the nodes to 120,
the computational time for each method was 50.957 (data generation) + 8.311 (training) + 76.460
(integration) = 135.728 (proposed), 33.034 (2nd order AVF), 200.003 (4th order AVF). The total
computational time of the proposed method was again shorter than that of the 4th-order AVF method.
Because our proposed approach typically outperforms the 4th-order AVF method, the proposed
approach can compute more accurate numerical solutions in a shorter amount of time, even when the
training time and the time for generating data are included.

A closer look at the execution time of the above experiments shows that the computation of the neural
network itself is actually not so large. Rather, the matrix-vector multiplication of the skew-symmetric
matrix affects the computational complexity. However, the effect of this matrix multiplication does
not seem to be so significant, since the multiplication with the skew-symmetric or negative-definite
matrix placed in front of the gradient of the energy takes about the same amount of computation. It is
also possible to reduce computational cost by low-rank approximation of the learned matrices. In
addition, our method does not necessarily need to be used at all time steps. By using it only when
higher computational accuracy is desired, computational time can be further reduced.

6 Conclusion

In this work, we proposed a method for learning numerical integrators that preserve the energy
conservation or dissipation laws with universal approximation properties. We validated the proposed
approach across a diverse set of systems, including chaotic nonlinear Hamiltonian systems, dissi-
pative systems, and a nonlinear partial differential equation. In all scenarios, the method exhibited
advantages, particularly in complex or chaotic regimes. With further optimization, we believe this
method will play an important role in application areas in the future.
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A  Proofs

Proof of Theorem[3.1] By using the chain rule, it holds that

dH du
—VH'"
dt dt”
Substitution of the equation yields
dH =0 (if S is skew symmetric)
=VH'SVH
a ~VH SV {g 0 (ifS<0)

O

Proof of Theorem The proof is an discrete analogue of the proof of Theorem[3.1} By using the
discrete chain rule, it holds that

H(u(”+1>) — H(u(”>) oHT w1 — g (n)

h h
Substitution of the discrete gradient scheme yields
H(u™ ) — Hu™)
; =

=0 (if S is skew symmetric)
<0 (ifS<0)

O

Proof of Theorem First, note that if a vector w is perpendicular to another vector v — u, then
there exists a skew symmetric matrix A such that w = A(v — w). Hence, the proof is completed if
we show that all discrete gradient operators have the following representation:

VH(u,v) = VoH (u,v) + w(u,v), where w(u,v) L v — uforall u,v € RY.
Let VH (u,v) be of the form (8) for some w(u,v), and we check that it satisfies (5) and (6).
(VH(u,v),v—u) =

(VoH (u,v), v—u)+(w(u,v),v—u) = (Vo H (u,v),v—u) = H(v)—H (u).
By definition, V H (u, u)
(

= VoH (u,u) + w(u,u) = VH (u). Conversely, if VH (u, v) is a discrete
gradient, then define w(u,v) = VH (u,v) — VoH (u,v) which is continuous. By (7), w(u,v) L
v —u, and w(u, u) = H(u u) — VoH (u,u) = 0 by @) since both of the discrete gradients are
consistent.

Proof of Theorem Suppose that a numerical scheme
M = f(u("+1),u(n)) (11)
preserves the energy
H(u™) = H(u™).
Let u("*1) and u(™ be solutions to (TT). It is sufficient to show that f can be written as
f(u,v) =S (VoH (u,v) +w(u,v)), where w(u,v) Lv—u
with a reference discrete gradient Vo H (u, v) of H.
From the property of the discrete gradient and the energy-conservation property, we get
H(u(”"'l)) _ H(u(")) (n+1) _ (1)

0= = VoH (u™D), u(n))TuT — VoH (u™, uM)T fu+D)

h

Hence f must be perpendicular to the discrete gradient Vo H. Because we assume that the target
system is a Hamiltonian equation, the matrix S is invertible. Therefore, we have

(SﬁOH(u(n—&-l)’ u(n)))TS—lf(u(n+l)7 u(n)) _ @OH(u(n—l-l) (n))TSTS 1f( (n+1) u(n))
= —?OH(U("H),U(”)) f(u(n-H)7 u(")) =0
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Thus, S™1 £ is in the orthogonal complement M of SV H. Because S is skew-symmetric, Vo H is
perpendicular to SV H, which means that V(H is in the orthogonal complement M. Therefore,
we can obtain an orthogonal basis {e1, e, ..., ex} of M, where e; = VoH and N = dim M. By
using this basis, S~! f can be written as

Silf = ClvoH +e

where ¢; € Rand e € span{e,, ..., ex }. We want to show that e is perpendicular to (1) — (") =
hf (w1 4(™)). The inner product of e and f is

(WD —ut™ e) = h(f,e) = h(f,S7f — cthVoH) = h{f, S~ f) = c1h(f,VoH) = 0
because S~! is skew-symmetric, (f,f) = 0. Hence (f,VoH) = 0. Thus e is perpen-
dicular to (Y — (™) 5o there exists a skew-symmetric matrix A(u("*1) u(")) such that
e = A(utD y ) (w1 — (),

Finally, we show that ¢; = 1. To this end, we take the limit h — 0 in
S_lf —eiVoH + e =c1VoH + A(u("+1),u("))(u("+1) _ u(”)).

Since the scheme is consistent, S~ f — V H as h — 0. On the other hand, the right-hand side tends
to ¢1 V H because of the consistency condition (@) of discrete gradients. Hence we get VH = ¢y VH
and hence ¢; = 1. O

B Geometric Description of Target Differential Equations

The target equations in this study are characterized as gradient flows on symplectic or Riemannian
manifolds. Let (M,w) be a symplectic manifold and (M, g) be a Riemannian manifold. For
symplectic manifolds, w is a symplectic 2-form. In Riemannian manifolds, g denotes the inner
product. These define a bilinear function w,, : T,M x TyM — Ror g, : TyM x T,M — R
for each u € M. It is assumed that w and g are nondegenerate in the sense that the matrix M,
representing these bilinear functions is nondegenerate for any v € M.

For a given energy function H : M — R, we can define differential equations

t=X, w(X,)=dH()
on symplectic manifolds and

u=X, g¢g(X,)=-dH()
on Riemannian manifolds, where dH : T M — R is the differential of H. For symplectic manifolds,
this equation is the Hamilton equation, and for Riemannian manifolds, it is the gradient flow.
These equations have energy conservation and the energy dissipation laws, respectively. In fact, in
Hamiltonian systems, it holds that

i—i] =dHX)=w(X,X)=0

because w,, is skew-symmetric due to the property of symplectic forms. Also, for Riemannian
manifolds,
dH

o = H(X) = —g(X,X) <0

By using the relation between the gradient and the derivative
dH(X)=(VH,X)

these equations can be rewritten as vector-matrix representations:

du
—=M,VH
dt
for symplectic manifolds and
du
=-M,VH
dt v

for Riemannian manifolds, respectively. These equations are the target equations of this study.
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C Target Partial Differential Equations and Its Semi-Discretization

The proposed method in this paper can also be applied to semi-discretized partial differential equations
in the spatial direction. Typical examples of the target partial differential equations are equations of
the following form

du <a) 0H §H 12

ot \ozx/) du du’
where H is the energy density, which is a function of u, u,, 1, and so on. u, denotes g—;‘, and Uy,
2 . . . . . . . .
denotes 2715. 0H /du is called the variational derivative of H. For example, if H is a function of u
and u,, then this is defined by

oo _oH 9 on
Su  Ou Oz duy

Equations of the form (T2)) include many partial differential equations, such as the advection equation,
the KdV equation, the Burgers equation, the Allen—Cahn equation, and the Cahn—Hilliard equation.
Equations that are slightly different but can be expressed in a similar form include the Maxwell
equation, the wave equation, the Klein—Gordon equation, and the nonlinear Schrodinger equation.
Although the above equations are defined in one-dimensional space, they can be extended to multiple
dimensions in a straightforward way. See, e.g., Furihata and Matsuo [18]] for details.

It is known that has the global energy conservation law or the energy dissipation or increasing
law under certain boundary conditions, such as the periodic boundary condition. Suppose that the
equation is defined on the interval [0, L]. For simplicity, we assume the periodic boundary condition.
In this case, the time differentiation of the total energy yields

d/LHd _/L 8H | OH d_/L OH 0 0H\ 1.4 |98
atSo TS \ou M T ou )Ty \ou T dwou, ) T Gus

Because we assume the periodic boundary condition, the boundary term must vanish. Therefore, we

have
d [F L/oH 0 OH
&/0 de—/o (m‘am)“td”

Substituting the definition of the variational derivatives and also the equation into the above equality,

we obtain
d [* Lron o 0H LsH (0\"6H
— Hdz = —_— - — dx = — | =] —dx.
dt/o v /0 (6'u azaum)“t * /0 su <3x) ou "
If o is odd and expressed as & = 2n + 1 with an integer n, then by repeating the integration by parts,
we get
L 2n+1 L n n+1
[ (DY Sy e [ 2y,
o Ou \ Oz ou o \ Oz ou \ Oz ou

L n+1 n
_ (_1)n+1 / 2 67H é 5—de.
o \ Oz ou \ Oz ou
Therefore, we have

W (E N 6H (0N oH W (O 6H (0" 6H
[ (5) W @) we= (@) W () e

and hence the energy conservation law follows:

W [P oN6H (0N oH

Similarly, when a = 2n, we have
L 2n+1 L n 2
0H (0 0H 0 o0H
— = —udx = (=1)" — ] — dx.
/0 ou (393) u (=1) /0 {(817) §u] e
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Thus, the energy decreasing or increasing law follows. Thus, it can be seen that these equations have
the same energy behavior as the target ordinary differential equations of this study.

Next, we semi-discretize these partial differential equations only in the spatial direction using the
finite difference method while preserving the energy behaviors. We devide the interval [0, L] into M
equal parts with the spatial step size Ax. The approximation of u(t, jAx) is denoted by w;(t), and we
donote the vector (ug(t), ..., ups(t)) as 4. Let D1, Dy, and D_ be difference matrices representing
the central, forward, and backward differences, respectively:
0 1 -1 -11 1 -1
1 [-101 1 “11 1 (-1t

— .. s D = — . 7D7 = - c.
20z ~10 1 T 2Ax 11 2Ax iy
1 10 1 -1 S

D,

First, the energy function can be approximated by approximating w, in the energy function by using
the finite difference

L
/ H (u,ug)dz ~ Hy(@, D1, Dy i, D_i) =: Hy(@)
0

8 [e%
(52) (13)

in the equation. For o = 2n, we can use n copies of D, and D_ to form a matrix

D ---DyD_---D_

We also discretize the differential operator

to approximate (T3)). This matrix is positive or negative semi-definite, since D] = —D_. Thus, the
semi-discretized equation

du o

n =D,---D.D_---D_VHy(@)

is an ordinary differential equation with the energy dissipating or increasing property. Similarly, if a
is 2n + 1, then the equation is semi-discretized into an ordinary differential equation with an energy
conservation law:

du (o
E = D+ e D+D1D_ e D_de(u)

Notethat Dy --- D D D_ --- D_ is skew-symmetric because D is skew-symmetric. The proposed
method yields numerical integrators that preserve the energy behavior for each of these semi-
discretized equations.

D Supplementary experiments

D.1 hyperparameters

Table 2] shows the hyperparameters for training.

D.2 Experiment loss

Loss under Different Reference Methods with Varying Network Depths and Widths We use
the Hénon-Heiles model:

1 1 1
H(p.q) = 5t +p3) + 54 + &) + ae2 — 565
The training flow data {(u®~"), u() | n = 1,..., N} consists of N = 100 pairs of points obtained
from the trajectory calculated using a high-order integrator sampled with a time step h = 0.3, starting
from u(®) = (qgo), qéo),pgo),pgo)) = (0.3,0.3, —0.2, —0.2). After training, we use the flow starting

at u™) for 300 steps as test.
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Table 2: hyperparameters

PROBLEM LR EPOoCHS LAYER WIDTH
PENDULUM
-FLOW 0.0001 10000 5 50
-IRREGULAR 0.0001 10000 5 50
-DISSPATIVE 0.0001 10000 5 50
HENON-HEILES
-FLOW 0.00001 30000 10 100
-IRREGULAR 0.00001 30000 10 100
2-BoDYy 0.0001 10000 5 50
2-PENDULUM 0.0001 10000 5 50
DUFFING 0.0001 10000 5 50
KpV 0.0001 10000 5 200
Loss
width
0.000001
10 50 100
AVF2layer AVF2-test
— AVF5layer - AVF5-test
0.0000001
— AVF10layer == AVF10-test
ITOH2layer ITOH2-test
g 1E-08 — [TOHSlayer - ITOH5-test
— ITOH10layer = ITOH10-test
SYMITOH2layer SYMITOH2-test
1E-09
— SYMITOHSlayer -+ SYMITOH5-test
— SYMITOH1O0layer - SYMITOH10-test
1E-10

Figure 11: Loss for Different Reference Methods with Varying Network Depths and Widths

We conducted experiments using both AVF, Itoh-Abe method and time-symmetric Itoh-Abe method
as baseline schemes. The learning rate was set to 0.00001, and the number of epochs was 30,000.
The network architecture was varied with 2, 5, and 10 layers, and width of 10, 50, and 100 per layer.
For each configuration, we performed five independent training runs and reported the final loss as
results, as shown in the Figure 11.

As expected, the AVF-based method, being a second-order scheme, generally outperformed the
Itoh-Abe method.

Based on the above experimental results and observations, we conclude that in the initial selection of
the baseline method, the AVF scheme should be prioritized whenever it is computationally feasible,
due to its higher accuracy and time symmetry. In cases where the original Hamiltonian system is too
complex for the AVF discrete gradient to be computed, the [toh—Abe method can serve as a practical
alternative. Furthermore, it is worth exploring the possibility of constructing a time-symmetric
version of the Itoh—Abe method to enhance its accuracy, potentially achieving a second-order scheme.

For this reason, we adopt a time-symmetric construction of Itoh—Abe method to achieve second-order.
And the results in the Figure 11 indicate that the time-symmetric Itoh—Abe method outperforms the
standard one.

VitohAbesyn H (1, 0) = (Vitonabe H (1, v) + Viconane H (v, 1)) /2
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(n) __(n—1)
Experiment loss  The training loss was computed by the mean-squared-error between “tain_Strain_
train
and SVNnH (ugfa)in, ug?;nl )), and the test loss was computed by the mean-squared-error between
(n) _, (n—1) _ _ .
e Mo and SV H (u;, ul"7"). Table[3{shows the losses in the form of mean =+ standard
test

deviation measured from 5 independent experiments. Note that all computations were performed in
double precision. It can be seen that the models were trained very accurately.

Table 3: The values of the train and test loss.

PROBLEM TRAIN LOSS TEST LOSS
PENDULUM
-FLOW 775 x 1071+ 746 x 1071° 195 x 1078 +£2.21 x 1078

-IRREGULAR 1.33x1077+1.07x 1077  6.08x 1077 +3.95x 1077
-DISSPATIVE 4.69 x 1072 +£2.06 x 107° 1.70 x 1078 £ 9.67 x 107°
HENON-HEILES

-FLOW 1.19 x 10719 +2.64 x 1071 1.72x 1072 +4.64 x 10710
-IRREGULAR 1.40 x 1078 +2.71 x 107° 214 x 1078 +£5.22 x 107°
2-BoDY 1.14 x 1078 +3.21 x 107° 2.92x 1078 +1.01 x 1078
2-PENDULUM 6.34x 1078 £4.06 x 107®  8.69 x 1078 £5.79 x 1078
DUFFING 924 x 1077 £3.95 x 107 7.73x 107% +£5.91 x 1076
KbV 1.09 x 1076 +1.25 x 1071°  1.69x 1076 +1.61 x 107 %°

Experiment loss with different data and initial conditions We conducted additional experiments
on both the Hénon-Heiles and the double pendulum. The aim was to evaluate the impact of training
data distribution, data size, and initial conditions on the performance of the learned integrator.

Hénon-Heiles system: We used irregular training data {((u(~", (), () | i = 1,..., I'}, where the
elements of u(*~1) are randomly sampled from the domain [—1, 1] and each step size h(% is drawn
independently from [0, 0.5]. Each u(?) represents the one-step solution computed from u(*~1) using
step size h() with a high-order solver.

We performed experiments using 100, 1000, 5000 training samples, respectively. The neural network
consists of 10 layers, each with 100 width. We set the learning rate to 0.00001 and trained the model
for 30000 iterations. For testing, we selected random initial conditions from [—0.4,0.4]*. For each
test trajectory, a fixed step size h was randomly chosen from [0, 0.5] and applied over 100 time steps.

Double pendulum: We generated training data as follows. First, we randomly sampled initial angles
(g1, ¢2) from the interval [—0.8,0.8] , and set the initial momenta (p1, p2) to zero. For each initial
condition, we randomly chose a fixed step size h from the interval [0, 0.5], and integrated the system
forward for 100 time steps using a high-order solver. This process was repeated to generate 500
trajectories, each of 100 steps. From the resulting collection of one-step pairs, we randomly shuffled
and selected 100, 1000, 5000 samples to construct training datasets. The neural network consists of
10 layers, each with 100 width. We set the learning rate to 0.0001 and trained the model for 30000
iterations.

During testing, we followed the same protocol as in training: each test trajectory starts from a
randomly chosen initial condition, with angles in [—0.8, 0.8] and momenta set to zero. A fixed step
size h € [0,0.5] was randomly selected per test and kept constant over 100 steps.

Table ] shows the average training and test loss with standard deviations for different training dataset
sizes. Each result is computed based on 5 independent training runs with different data. For both
systems, the training loss consistently converges to a similar small value and the test loss improves as
the number of training samples increases.

D.3 Pendulum Experiment

We conduct experiments on the pendulum (Figure [I2). The mathematical pendulum (mass m = 1,
string length [ = 1, gravity g = 1) is a system with the Hamiltonian H (g, p) = 1p? — cos(q).
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Table 4: The values of the train and test loss with different data and initial conditions.

PROBLEM TRAIN LOSS TEST LOSS

HENON-HEILES
-100 TRAINING DATA  1.64 x 1078 +£6.09 x 107° 3.43x 107 +£1.98 x 1078
-1000 TRAINING DATA 1.83 x 1078 £2.66 x 107° 5.29 x 1072 £4.45 x 10~°
-5000 TRAINING DATA 190 x 1078 +£1.30 x 107° 1.58 x 1072 £ 1.60 x 107°
2-PENDULUM
-100 TRAINING DATA  2.09 x 1077 £2.37x 1077 1.22x107°+1.64 x 107°
-1000 TRAINING DATA  3.44 x 1077 £ 1.11 x 1077 6.43x 107 +£1.78 x 1078
-5000 TRAINING DATA  3.09 x 1077 £3.05 x 1078 424 x 107® £3.52 x 1078

The position coordinate g denotes the angle from the vertical suspension point and p = ¢
denotes the momentum. Although the trigonometric function exists in the Hamiltonian,
the integral in the AVF method is analytically computable, and hence the AVF method
is available.

Figure 12: . .
The Pen- In this experiment, we wused two sets of data: flow dataset
dulum and irregular dataset like the example shown in the Figure [I3

The training flow data consists of N = 15 points sampled from a trajectory for each

fixed time step h = 0.5, calculated using a high-order integrator starting from «(?) =
(9, p(®) = (2,0). The training flow data are pairs of numerical solutions at a certain time step n
along with the one at the next time step: {(u(™~Y,u(™) | n = 1,..., N}. After training, we use the
trained gradient to compute the flow starting at (™) for 200 steps.

= The training irregular data {((u~" h®) u®) | i = 1,..., T} consists of [ =
s K 100 pairs of points. u(*~1) are randomly sampled from [—3, 3] x [—3, 3] and the
“\ ’_,‘. time steps (") are randomly chosen from [0, 0.8]. u(*) are numerical solutions at
et the next step of u(*~1) with the step size h(*). After training, we use the trained
ol gradient to compute the flow starting at u(®) = (2, 0) with h = 0.5 for 200 steps.
’\,. o< J| In Figure 14, we show the additional for the pendulum experiment. The plot in
Rl 2 the top-left corner shows the irregular training data. The top-right plot displays

the test trajectories of the trained network and numerical integrators during the
test. The two middle plots show the values of ¢ and p over time. The bottom-left
plot shows the error evolutions over time, while the bottom-right plot illustrates
the energy conservation.

Figure 13: Flow
and irregular
data with 15
pairs of points

In Figure 15, we show the additional results for the pendulum experiment with the
irregular data. The plot in the top-left corner shows the irregular training data. The top-right plot
displays the test trajectories of the trained network and numerical integrators during the test. The two
middle plots show the values of ¢ and p over time. The bottom-left plot shows the error evolutions
over time, while the bottom-right plot illustrates the energy conservation.

D.4 Supplementary figures of the experimental results

Results for the Hénon-Heiles system In Figure 16, we show the additional results for the Hénon-
Heiles experiment. The plot in the top-left corner shows the positions of the training flow data, while
the top-middle displays the values of test q;. The plot in the top-right shows the change in error over
time, and the center-right shows energy conservation. The remaining plots display the test trajectories
of the ground truth, the solution by the AVF method, that by the AVF method with a half step size, 4
order, and the solution by the proposed method.

In Figure 17, we show the additional results for the Hénon-Heiles experiment with the irregular data.
The plot in the top-left corner shows the positions of the randomly selected irregular training data,
while the top-middle displays the values of test ¢;. The plot in the top-right shows the change in
error over time, and the center-right shows energy conservation. The remaining plots display the test
trajectories of the ground truth, the solution by the AVF method, that by the AVF method with a half
step size, 4 order, and the solution by the proposed method.
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Figure 15: Results for the pendulum experiment with the irregular data

Results for 2body In Figure 18, in addition to the numerical errors and the evolutions of the energy
mentioned in the main text, the top-left corner shows the training flow data, while the top-middle
display the values of test g;. The plot in the center-right shows energy conservation.
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Figure 14: Results for the pendulum experiment

Results for Double pendulum

method.

In Figure 19, the plot in the top-left corner shows the positions of
the training flow data, while the two plots at the center-right show the evolutions of the errors and the
energy over time. The bottom plots display the trajectories of the ground truth, the solution by the
AVF method, the solution by the AVF method with a half step size, and the solution by the proposed
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Results for the dissipative pendulum In Figure 20, in addition to the numerical errors and the
evolutions of the energy mentioned in the main text, the top-left corner shows the training flow data,
the top-right corner displays the test trajectory after training, the middle display the values of test g, p,
and the two plots at the bottom correspond to the values of the coordinates over time.

Results for the Duffing oscillator In Figure 21, we show the results for the Duffing oscillator. In
addition to the numerical errors and the evolutions of the energy mentioned in the main text, the
top-left corner shows the training flow data, the top-right corner displays the test trajectory after
training, the middle display the values of test g, p, and the two plots at the bottom correspond to the
values of the coordinates over time.

Results for KDV We consider this equation on the interval [0, L], L = 20 under the periodic
boundary condition. We used the training data with the time length of 7' = 30 and the time step
size of At = 0.01. The spatial step size was Ax = 0.5. The initial condition of the training
data is constructed by superimposing two solitary wave solutions of the KdV equation: ug(x) =
Usor (T — 1, 1) + Usor (T — X9, c2), Where usoi(x, ¢) = %c . sechZ(%\ﬁ -x) with ¢; = 0.75, 21 =
0.33L,co = 0.4, z; = 0.65L. The time evolution is computed by solving the KdV equation using
the solver with high accuracy, where spatial derivatives were approximated using finite difference
methods. For testing, the computation was carried out from the time length T' = 30 , with the start
point being at the final state of the training dataset.

In Figure 22, we show the results for the KdV. The plot in the top-left corner shows the positions
of the training flow data. The plot in the bottom-left shows the change in error over time, and the
bottom-middle shows energy conservation. The remaining plots display the test trajectories of the
ground truth, the solution by the AVF method, and the solution by the proposed method.
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Figure 16: Results for the Hénon-Heiles experiment

23



Traindata ql Global error

109~ : 10
s sl L
P N 054 R 0.3
L ' VoA
001 «* +u I ooq\ I} [ 0.2
. eed . . I i
L \. [N
AV YA 011
. CE | e
SALEE. . —10h . ; ; 001 - ; ;
0 1 0 10 20 30 0 10 20 30
AVF half stepsize AVF order4 Energy
0.75 0.75 0.14810 7
—— Ground truth
0.50 0.50 0.14805 — Proposed method
— AVF
0.25 1 0.25
S S 0.14800
0.00 1 0.00 4
~0.25 ~0.25 0.147951
-0.50 -— T T ~0.50 +— T T 0.14790 T - -
-05 0.0 05 -05 0.0 0.5 0 10 20 30
ql ql
Ground truth Predicted solution AVF solution
0.75 0.75 0.75
0.50 1 0.50 4 0.50 1
0.25 1 0.25 0.25 4
&~ &~
T
0.00 - 0.00 0.00 4
~0.25 ~0.25 -0.25 =
-0.50 T -0.50 —0.50 -—

-0.5 0.0 0.5
ql

-0.5 0.0 0.5
ql

Figure 17: Results for the Hénon-Heiles experiment with the irregular data
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Figure 18: Results for 2body
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Figure 19: Results for the double pendulum
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D.5 Comparison with other methods

We implemented the PINNs as in [54] with energy conservation/dissipation regularization terms,
using the DeepXDE library, and applied it to three benchmark systems: Hénon—Heiles, double
pendulum, and Duffing oscillator. Both our method and the PINNs use the same network architecture
(10 layers, width 100), optimizer (Adam, learning rate 0.0001), and 30000 training iterations. We
sampled 2000 random collocation points over the spatiotemporal domain.

We also implemented the Time-Reversal Symmetric ODE Network (TRS-ODEN) [28]]. For the
time-reverse symmetry loss term, we conducted experiments with three different weight values: A =
10,1, 0.5, which are employed in the reference paper. The network architecture (10 layers, width
100), optimizer (Adam, learning rate 0.0001), and 30000 training iterations are kept the same.

To evaluate the performance, we generated a ground-truth reference trajectory for each system using
a high-order solver with 100 time steps, starting from the same initial conditions. We then simulated
trajectories using both the trained PINNs, TRS-ODEN and our proposed method under the same
initial condition. We report the maximum error over the time domain [0, T, defined as the maximum
deviation from the ground-truth trajectory. Furthermore, since PINNs tends to degrade over long time
horizons, we computed the maximum error accumulated up to each checkpoint (7" = 5, 10, 50, 100),
i.e., the largest deviation from the reference trajectory from step O up to the given time step 7.

Hénon-Heiles System We set the initial condition as u(® = (qio),qg‘”,pg"),pg@) =

(0.3,0.3,—0.2, —0.2), and performed simulations over 100 steps with a fixed time step size h = 0.3.

Double Pendulum  We set the initial condition as u(©® = (¢\”, ¢\, p{”) p{*) = (7/6,7/,0,0),
and performed simulations over 100 steps with a fixed time step size h = 0.3.

Duffing Oscillator We set the initial condition as u(?) = (¢(9,p(®)) = (2.95, —3.08) and per-
formed simulations over 100 steps with a fixed time step size h = 0.1.

The maximum errors of both models, measured against the reference solution, are summarized in
table

These results in all three systems suggest that our structure-preserving method offers improved accu-
racy and stability over the other two methods, especially in long-term simulations. This improvement
is attributed to its formulation as a numerical integrator designed to respect the system’s physical
structure.

Table 5: Comparison of Maximum Errors

TIME STEP PROPOSED METHOD PINNS TRS-ODEN
A=10 A=1 A=05
HENON-HEILES
5 1.43 x 1074 2.86x 1072 9.11x107% 3.72x107% 2.37x 1073
10 1.54 x 1074 9.77x 1072 216x1072 1.24x1072 4.35x 1073
50 1.10 x 1073 1.48 740 x 1071 316 x 107! 5.21 x 1072
100 9.53 x 1073 1.50 1.32 3.26 x 1071 1.43 x 107!
2-PENDULUM
5 1.72 x 1074 1.92x 1072 1.32x 1072 1.08x 1072 958 x 1073
10 8.28 x 107* 539x 1072 1.85x1072 1.18x1072 9.58 x 1073
50 3.50 x 1073 198 x 107 1.01x 107! 385x 1072 4.37x 10?2
100 6.18 x 1073 238 x 107 2.64x107' 7.59x1072 1.24x 107!
DUFFING
5 8.40 x 107* 420%x 1071 144 x107Y 3.90x 1072 2.96 x 1072
10 9.38 x 107* 6.99 x 107! 2.06 x 1071 3.90x 1072 3.55 x 1072
50 5.18 x 1072 4.50 2.86 5.22 3.33
100 1.12 x 107¢ 4.50 6.40 5.38 5.12
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D.6 Computational Time

We performed additional experiments to re-evaluate the computation time across different systems.
In the experiments, we used an Intel Xeon 6900P CPU.

The results, the size of the neural networks used and the number of time steps in the numerical
calculations are shown in Table[6] The computation time is generally similar to that of the Hénon-
Heiles problem reported in the main body. In particular, the proposed method achieves better accuracy
with less computational time than the fourth-order methods. For the KdV equation experiment, the
network was made as small as possible without sacrificing accuracy. The network used is quite small,
yet the test loss was 1.706 x 10~9, which is not much different from the test loss of 1.695 x 10~—¢
when a larger network with 5 layers with width of 200 is used. For other experiments, the computation
time can be further reduced by making the network smaller.

Table 6: Comparison of Computational Time (sec)

Problem Layer Width Steps Proposed 2nd Order Methods 4th Order Methods
Pendulum 5 50 200 0.579 0.503 1.137
Hénon-Heiles 10 100 300 2.090 1.437 3.533
2-Body 5 50 300 2.862 2.443 7.693
2-Pendulum 5 50 300 5.768 5.197 18.043
Duffing 5 50 300 1.020 0.685 1.084

KdVv 2 30 3000 6.566 1.634 8.781
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction clearly reflect the key
contributions and findings of the paper, and are well supported by both the theoretical
analysis and experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: One limitation of the method lies in the increased computational cost due to
the use of neural networks.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The assumptions required for our theoretical results are described in the main
paper, and the proofs are provided in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide detailed experimental settings and the code.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We have provided a ZIP file containing the experimental code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide detailed experimental settings and the code.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide detailed experimental losses in the form of mean + standard
deviation measured from 5 independent experiments in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We include a description of the hardware.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We adhere to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used the official code of SympNet. Although the information about the
license is not available online, we properly acknowledged the code.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not introduce any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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