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ABSTRACT

The advent of generative AI now enables large-scale de novo design of molecules,
but identifying viable drug candidates among them remains an open problem. Ex-
isting drug-likeness prediction methods often rely on ambiguous negative sets
or purely structural features, limiting their ability to accurately classify drugs
from non-drugs. In this work, we introduce BOUNDR.E: a novel modeling of
drug-likeness as a compact space surrounding approved drugs through a dynamic
deep one-class boundary approach. Specifically, we enrich the chemical space
through biomedical knowledge alignment, and then iteratively tighten the drug-
like boundary by pushing non-drug-like compounds outside via an Expectation-
Maximization (EM)-like process. Empirically, BOUNDR.E achieves 10% F1-
score improvement over the previous state-of-the-art and demonstrates robust
cross-dataset performance, including zero-shot toxic compound filtering. Ad-
ditionally, we showcase its effectiveness through comprehensive case studies in
large-scale in silico screening. Our codes and constructed benchmark data under
various schemes are provided at: github.com/eugenebang/boundr e.

1 INTRODUCTION

The expansion of deep generative models have reshaped the drug discovery landscape by rapidly
producing vast libraries of de novo compounds (Guan et al., 2023; Lee et al., 2023; Song et al.,
2024), conditioned by desired activity or pocket structure. However, evaluating which of these
molecules are truly “drug-like” is yet an open problem. Traditional property-based metrics, such as
Rule of five (Lipinski et al., 1997), offer efficient preliminary screening but lack a definitive criterion
to separate truly viable drug candidates from non-drugs. Thus, a data-driven approach for precisely
defining drug-likeness in terms of chemical or compound space is now required.

Fundamentally, the approval of drugs depends on more than just structural validity. A candidate must
exhibit favorable physicochemical properties and align with relevant biomedical context, including
biological target interactions, pharmacogenetic association and disease pathway modulation. Yet,
most existing predictive models ignore these requirements, depending heavily on structural features
alone (Zhu et al., 2023). Further complicating this structural reliance, approved drugs are highly
scattered in the chemical space, with fewer than two drugs typically sharing the same core scaffold.
This dispersion makes it challenging to define a compact decision boundary of drugs without includ-
ing non-drugs on a structural representation space, as observed in our initial studies (Appendix B).
Specifically, defining such a boundary poses two major challenges: 1) the absence of definitive
negatives, as any molecule could potentially be drug-like, and 2) the vast scale of chemical space,
estimated to be up to 1060 compounds (Polishchuk et al., 2013), making it impractical to sample a
representative set for training.

Dues to these challenges, supervised approaches that treat non-drug molecules as “hard negatives”
tend to over-restrict the boundary (Sun et al., 2022), while purely unsupervised methods often be-
come too broad (Li et al., 2024). Positive-unlabeled (PU) learning methods (Lee et al., 2022) also as-
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Figure 1: Overview of BOUNDR.E. Step 1 performs multi-modal mixup of two drug spaces: knowledge graph
K and molecular fingerprint S spaces into a unified space U . Step 2 performs EM-like boundary optimization,
where in E-step boundary B is updated and in M-step the latent space Z is updated by pushing the out-boundary
non-drugs further while contracts drugs to the center.

sume a well-defined negative distribution, which is impractical for the unbounded compound space,
where defining its representative set is challenging (Appendix A.6). Traditional one-class classifiers
(Schölkopf et al., 2001; Tax & Duin, 2004; Ruff et al., 2018), though independent of negative sam-
ples, remain unused in drug-likeness prediction due to their static nature and overly broad boundaries
which leads to high false positives.

In response, we propose BOUNDR.E: a novel approach that frames drug-likeness prediction as con-
srtucting a deep one-class boundary within a biomedical knowledge-integrated embedding space. A
desirable drug-likeness space should form a tight boundary around approved drugs, including only a
small fraction of existing compounds as drug candidates. BOUNDR.E achieves this by iteratively re-
fining the boundary through an Expectation-Maximization (EM)-like process, adaptively enclosing
drug-like molecules while pushing non-drug-like compounds outward. Furthermore, we integrate
the essential biomedical context via multi-modal mixup, merging molecular structure representation
with biomedical knowledge graphs into a unified embedding space to address the structural reliance.

Through extensive experiments, we show that our approach yields notable improvements in drug-
likeness prediction task of up to 10% F1-score improvement over the previous state-of-the-art, with
robust performance across time-based splits, scaffold-based splits, and cross-dataset validation on
three benchmark sets. Additionally, BOUNDR.E excels in zero-shot toxic compound filtering, with
comprehensive case studies further showcasing its utility in large-scale screening of AI-generated
compounds.

Our key contributions include: 1) Novel formulation of drug-likeness prediction as a one-class clas-
sification without reliance on negatives. 2) Proposal of deep EM-like optimization of both the drug-
likeness boundary and the embedding space for accurate drug-likeness prediction. 3) Knowledge-
integrated multi-modal alignment of structure and biomedical knowledge embeddings for defining
drug-likeness via machine learning. These advances collectively establish BOUNDDR.E as a dy-
namic, data-driven tool for initial screens of generated molecules, pushing the frontiers of drug-
likeness prediction and improving the overall efficiency and reliability of AI-driven drug discovery.

2 DEEP DRUG-LIKE BOUNDARY OPTIMIZATION

Given the highly dispersed nature of drugs in the chemical space and their approval based on both
structure and biomedical knowledge, our framework combines these two modalities into a unified
space, followed by iterative refinement of a hyperspherical one-class boundary to capture drug-
like compounds (Figure 1). The alignment of the two modalities (Section 2.2) and the boundary
optimization (Section 2.3) are the keys to addressing the challenges posed by an unbounded chemical
space and the absence of explicit negatives.

2.1 PROBLEM DEFINITION

We propose a new perspective on the problem of drug-likeness prediction as constructing a compact
and adaptive one-class boundaryB around drug-like compounds in a theoretically unbounded chemi-
cal space (Figure 2). Let this space of all compounds be denoted asXcomp, with subsetXdrug ⊂ Xcomp
representing drug-like compounds. The approved drug datasetDdrug represents a subset of the Xdrug,
while compound dataset Dcomp is a biased subset of Xcomp, where its small yet unknown portion
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are potential drugs that are to be rescued (Appendix A.6). As visualized in Figure 2, existing non-
drug datasets Dcomp (e.g. ZINC, PubChem, ChEMBL) form a distinct distribution and can not be a
representative set of the compound space (Appendix C.5).

     

     

     

        

           

           

        
  

     

       

           

Figure 2: Problem definition of drug-likeness predic-
tion with compound spaces X and datasets D.

We define the drug-likeness boundary through
1) training encoders Eκ and Eσ for alignment of
drugs’ knowledge space K and structural space S
into a unified embedding space U , followed by 2)
EM-like iterative optimization of boundary Bc,r
and its latent space Zθ. Notations throughout this
paper are organized in Appendix D.

2.2 KNOWLEDGE-INTEGRATED MULTI-MODAL ALIGNMENT

Each drug can be represented by two complementary embeddings, which encode different aspects
of drug-likeness: molecular structure and biomedical context. Drugs are enriched with their an-
notations of target proteins, pharmacogenetic associations and pathway modulation, which can be
represented through knowledge graph embeddings. The primary challenge is to train a structural
encoder that can also position non-drugs, which lack biomedical information, within a biologically
enriched space. Our objective is to unify these two embeddings into a common latent space U , en-
suring alignment and consistency between structural and knowledge-based representations of drugs.

To achieve this, we introduce a knowledge-integrated multi-modal mixup strategy. This involves
softening the CLIP loss (Radford et al., 2021) to encourage alignment between the two embedding
spaces based on semantic drug similarities as prior knowledge. The alignment is further augmented
with geodesic mixup (Oh et al., 2024), which ensures that the interpolated samples lie on a geodesic
path between the embeddings. By employing this strategy, we create a unified embedding space that
leverages the contexts from both molecular structure and biomedical knowledge, capturing a richer
representation of drug-like properties.

We begin by aligning two key embedding spaces of biomedical knowledge graph embeddings
kdrug ∈ K (Bang et al., 2023) and molecular structural embeddings sdrug ∈ S (Morgan Fingerprint).
This integration is crucial as it enriches drug representations by combining molecular structures with
their biomedical contexts. We train two encoders: a knowledge encoder Eκ : K → U and a structural
encoder Eσ : S → U , where both map their respective embeddings to a unified latent space U ⊂ Rd.
The details of the aligned spaces are explained in Appendix C.2.

2.2.1 SOFTENED CLIP LOSS WITH ATC SIMILARITY

In this section, we propose a novel knowledge-integration strategy for multi-modal contrastive learn-
ing of drug representations. We soften the CLIP loss (Radford et al., 2021) by incorporating seman-
tic similarity (Jiang & Conrath, 1997) between drugs using Anatomic Therapeutic Chemical (ATC)
classification. For a batch of data D = {(si,ki)}Mi=1, the original CLIP loss is given by:

C(s,k) =
1

M

M∑
i=1

− log
exp(si ⊙ ki/τ)∑M

j=1 exp (si ⊙ kj/τ)
LCLIP =

1

2
(C(s,k) + C(k, s)) (1)

where C(s,k) is the contrastive loss for structural and knowledge embeddings, si ⊙ ki = Eσ(s) ·
Eκ(k)T represents their dot-product similarity, and τ is the scaling temperature factor.

To introduce prior knowledge of drug similarities, we incorporate an ATC code similarity matrix
WATC = [wi,j ], where wi,j ∈ [0, 1] measures the semantic similarity between drugs i and j. The
modified loss incorporating WATC becomes a weighted sum over the soft labels (Eq. 3):

Csoft(s,k,WATC) =
1

M

M∑
i=1

M∑
j=1

wi,j

(
− log

exp(si ⊙ kj/τ)∑M
l=1 exp(si ⊙ kl/τ)

)
(2)

LsoftCLIP =
1

2
(Csoft(s,k,WATC) + Csoft(k, s,WATC)) (3)

Here, instead of assuming a hard one-hot target where wi,i = 1 and wi,j = 0 for i ̸= j (as of the
original CLIP loss), the soft labels wi,j encourage similarity of drug pair embeddings to match their
semantic similarity. Details of ATC similarity computation are provided in Appendix C.3.
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2.2.2 GEODESIC MIXUP FOR EMBEDDING ALIGNMENT

Several studies have reported the problem of “modality gap” in contrastive learning frameworks
including CLIP (Wang & Isola, 2020; Liang et al., 2022). To further improve alignment of the
two domains, we apply geodesic mixup (Oh et al., 2024) to interpolate between embeddings on a
hypersphere, ensuring the points are aligned uniformly in the latent space. Given two points a⃗ and
b⃗, the mixup is performed along the geodesic path:

mλ(⃗a, b⃗) = a⃗
sin(λϑ)

sin(ϑ)
+ b⃗

sin((1− λ)ϑ)

sin(ϑ)

where ϑ = cos−1(⃗a · b⃗), and λ ∼ Beta(α, α). Within the batch of length M , geodesic mixup
interpolates information from data indices i and i′ = M − i with λ and 1− λ fraction, respectively.
This allows smooth interpolation between data pairs, improving consistency within the latent space.

With our formulation, we introduce three forms of mixup (visualized in Figure 8):

Structural Mix (S-Mix) Interpolates within the structural embedding space (mλ(si, si′)):

CS(s,k) =
1

M

M∑
i=1

−λ log
exp(mλ(si, si′)⊙ ki/τ)∑M

j=1 exp(si ⊙ kj/τ)
− (1− λ) log

exp(mλ(si, si′)⊙ ki′/τ)∑M
j=1 exp(si ⊙ kj/τ)

LS-Mix =
1

2
(CS(s,k) + CS(k, s)) (4)

Knowledge Mix (K-Mix) Interpolates within the knowledge graph embedding space and has the
same formula with S-Mix, except that it is applied to knowledge embedding-side (mλ(ki,ki′)):

LK-Mix =
1

2
(CK(s,k) + CK(k, s)) (5)

Knowledge-Structural Mix (KS-Mix) Interpolates the knowledge and structural embeddings si-
multaneously:

CKS(s,k) =
1

M

M∑
i=1

− log
exp(mλ(si, si′)⊙mλ(ki,ki′)/τ)∑M

j=1 exp(si ⊙ kj/τ)

LKS-Mix =
1

2
(CKS(s,k) + CKS(k, s)) (6)

These interpolations ensure the robustness of embedding space by smoothing the transitions between
similar drugs and ensuring embeddings respect the L2-norm constraint of the hypersphere.

The final multi-modal alignment loss is a weighted sum:

Lmulti-modal = λsoftCLIPLsoftCLIP + LS-Mix + LK-Mix + LKS-Mix (7)

We optimize the parameters of encoders Eσ and Eκ using the Adam optimizer (Kingma, 2014). The
trained structure encoder Eσ is further utilized to project the chemical structural features into the
unified embedding space U for downstream tasks including the drug-likeness boundary generation.

2.3 EM-LIKE ITERATIVE OPTIMIZATION OF DRUG-LIKENESS BOUNDARY

Once the multi-modal embeddings are aligned into the unified space U , we define a hyperspherical
boundary B in a latent space Z , which is generated by an encoder fθ : U → Z . This boundary is
characterized by its center c and radius r, and the goal is to optimize B such that it encapsulates as
many drug-like compounds as possible while minimizing the inclusion of non-drug-like compounds,
leading to decreased in-boundary compound ratio ρ.
We formulate the optimization of this drug-likenss boundary B as an iterative process inspired by
the Expectation-Maximization (EM) algorithm. The model adjusts the boundary parameters (a hy-
persphere with center c ∈ Rd and radius r) in the Expectation (E)-step, while refining the em-
bedding space Z and its encoder fθ during the Maximization (M)-step. This allows the boundary
to evolve throughout training, with each iteration improving the its compactness and reducing the
false-positive rate. The full algorithm is provided in Appendix A.1.
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2.3.1 EXPECTATION STEP: BOUNDARY UPDATE

In the E-step, we update c and r to enclose α ≈ 100% of drug-like compounds, keeping the embed-
ding function fθ fixed. Given the set of embedded drug compounds zdrug = {f(x; θ(t)) : x ∈ Xdrug}
at iteration time step t, the boundary parameters are updated as follows:

c(t+1) =
1

|zdrug|
∑

z∈zdrug

z, r(t+1) = Qα
z∈zdrug

(
∥z − c(t+1)∥2

)
, r(t+1)

comp = max
z∈zcomp

(
∥z − c(t+1)∥2

)
,

Here, c(t+1) is the center of the drug-like compounds at iteration t + 1, r(t+1) is the radius of the
smallest hypersphere containing the user-given α ≈ 100% of drug-like compounds, defined by the
α-th percentile (Qα) of the set of distances ∥z − c(t+1)∥2. r

(t+1)
comp captures the boundary of all

compounds. Compounds located outside the drug-like boundary are treated as pseudo-negatives in
the next M-step:

Xout := {x ∈ Xcomp | d(t)(x; θ, c) > r(t+1)},
where d(t)(x; θ, c) = ∥f(x; θ(t))− c(t+1)∥2 is the Euclidean distance from the boundary center.

2.3.2 MAXIMIZATION STEP: EMBEDDING FUNCTION UPDATE

         

      

            

Figure 3: Latent space optimization during M-step. The
margin between drug and compound are increased.

In the M-step, we optimize the embedding
function fθ : U → Z with parameters θ
to reduce the inclusion of non-drug-like com-
pounds inside the boundary while keeping
drug-like compounds near the center. The to-
tal loss function consists of two metric terms:

1. Drug loss Ldrug, which encourages drugs to be located closer the center of the boundary:
Ldrug(θ) =

∑
x∈Xdrug

dt(x; θ, c)

2. Out-boundary loss Lout, which pushes non-drugs labeled as pseudo-negatives during the
E-step to the compound space boundary:

Lout(θ) =
∑

x∈Xout
max

(
r
(t+1)
comp − dt(x; θ, c), 0

)
The loss terms can be interpreted as reducing/increasing the samples’ distances d(x) to 0 and r

(t+1)
comp

for drugs and out-boundary compounds, respectively. We then combine the two loss terms to yield
a total loss described as:

Lboundary(θ) = Ldrug(θ) + λout · Lout(θ) (8)
where λout controls the strength of the out-boundary penalty. This loss iteratively im-
proves the separation between drug-like and non-drug-like compounds, increasing the margin∑

xdrug∈Xdrug

∑
xcomp∈Xcomp

d(xcomp)− d(xdrug) between drugs and compounds (Figure 3).

We show that minimizing the metric loss function (Eq. 8) leads to a boundary B that encapsu-
lates drug-like compounds while excluding non-drug-like ones, improving drug-likeness prediction
accuracy:

Theorem 1 (Reduction of in-boundary non-drugs). Optimizing a neural network encoder with the
distance-based loss function reduces the number of non-drugs inside the boundary |Xin-boundary| be-
tween two successive steps t1 < t2, where L(t1)

drug > L(t2)
drug and L(t1)

out > L(t2)
out .

The proof is provided in Appendix A.2.

Finally, convergence is determined by the in-boundary compound ratio ρt = |X (t)
in-boundary|/|Xcomp|.

The algorithm stops when the change in ρt between iterations is smaller than a threshold ϵ: |ρt+1 −
ρt| < ϵ for npatience consecutive iterations. The computational complexity analysis of each step is
provided in Appendix A.4, demonstrating linearity with respect to the number of samples and data
dimensionality. In addition, a multi-initialization technique applied to avoid the EM-like models’
sensitivity to initialization, is further detailed in Appendix A.5.

Overall, our EM-like framework iteratively refines the boundary and embedding space, resulting in
a compact boundary that effectively excludes non-drug-like compounds. The knowledge-aligned
embeddings of U further enhances the model’s drug-likeness prediction capabilities.
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Table 1: Drug-like compound identification performance with time-split setting. Mean and standard deviation
of 10 fold CV are provided. Best performance and its comparable results (paired t-test p < 0.05) are marked in
bold, and second-best are underlined. (Avg: Average)

F1 (↑) IDR (↑) ICR (↓) AUROC (↑) Avg. Precision (↑)
FP-SVM (Boser et al., 1992) 0.665 (0.0126) 0.823 (0.0111) 0.067 (0.0052) 0.963 (0.0021) 0.724 (0.0174)
FP-XGB (Chen & Guestrin, 2016) 0.692 (0.0141) 0.815 (0.0205) 0.055 (0.0048) 0.966 (0.0026) 0.775 (0.0213)

FP-OCSVM (Schölkopf et al., 2001) 0.090 (0.0025) 0.274 (0.0000) 0.489 (0.0101) 0.331 (0.0030) 0.148 (0.0022)
FP-DeepSVDD (Ruff et al., 2018) 0.166 (0.0087) 0.834 (0.0350) 0.840 (0.0381) 0.494 (0.0532) 0.097 (0.0157)

FP-nnPU (Kiryo et al., 2017) 0.608 (0.0239) 0.789 (0.0367) 0.083 (0.0081) 0.944 (0.0049) 0.706 (0.0261)
FP-PU with NN (Li & Liu, 2003) 0.634 (0.0224) 0.791 (0.0296) 0.072 (0.0079) 0.949 (0.0045) 0.720 (0.0214)

DrugMetric (Li et al., 2024)* 0.170 (0.0319) 0.767 (0.1271) 0.760 (0.2028) N/A N/A
D-GCAN (Sun et al., 2022) 0.669 (0.1770) 0.942 (0.0337) 0.160 (0.2808) 0.918 (0.1396) 0.613 (0.1874)
DeepDL (Lee et al., 2022) 0.740 (0.0584) 0.888 (0.0546) 0.054 (0.0225) 0.979 (0.0114) 0.886 (0.0374)

BOUNDR.E 0.846 (0.0165) 0.799 (0.0184) 0.009 (0.0031) 0.978 (0.0029) 0.908 (0.0096)
∗DrugMetric’s GMM classifier fails to provide prediction probabilities for AUROC and Average Precision calculation

3 EXPERIMENTS

3.1 SETUP

Dataset Approved drugs are sourced from DrugBank v5.1.12 (Knox et al., 2024) and removed all
withdrawn drugs. 100k non-drug compounds are sampled from ZINC20 (Irwin et al., 2020), limited
to clean, annotated entries. We evaluate our model on drug-likeness prediction under two split sce-
narios: scaffold-based and time-based. The scaffold-based split ensures the molecular scaffolds in
train, validation, and test sets are mutually exclusive, based on the Bemis-Murcko scaffolds (Bemis
& Murcko, 1996). This evaluation scheme is applied to measure the models’ generalizablilty when
an unseen scaffold compound is input (Appendix C.4.1). In the time-based split, drugs are parti-
tioned based on their approval year (e.g., drugs approved post-2011 are in the test set), to reflect the
temporal evolution of approved drug properties (Appendix C.4.2).

Baselines We compare our model to established drug-likeness prediction models: DeepDL (Lee
et al., 2022), D-GCAN (Sun et al., 2022), and DrugMetric (Li et al., 2024), as well as several general
machine learning classifiers: SVM (Boser et al., 1992), XGBoost (Chen & Guestrin, 2016), Naive
PU algorithm by Li & Liu (2003) implemented with neural network, nnPU (Kiryo et al., 2017), OC-
SVM (Schölkopf et al., 2001), and DeepSVDD (Ruff et al., 2018). Each general baseline is provided
with molecular fingerprints as input features. Implementation details are provided in Appendix C.7.

3.2 DRUG-LIKENESS PREDICTION PERFORMANCES

We evaluate performance of models in distinguishing approved drugs from ZINC compounds under
both split strategies—time-based split and scaffold-based split. We report the results using F1-score
and two metrics: In-boundary Drug Ratio (IDR) and In-boundary Compound Ratio (ICR):

IDR =
|Drugs in boundary|
|Total drugs in test set|

= TPR, ICR =
|Compounds in boundary|
|Total compounds in test set|

= FPR.

IDR, equivalent of True Positive Rate (TPR), reflects how well the boundary captures drug-like
compounds, while ICR, representing False Positive Rate (FPR), measures how well non-drug com-
pounds are excluded. Reported AUROC further measures the models’ capabilities in balancing the
trade-off between TPR and FPR. In addition, Average Precision (AP), Recall@k and Precision@k
evaluates the quality of recommended compounds (Appendix E.1).

As a result, our model consistently outperforms binary classifiers, PU learners, and one-class clas-
sification models across both split settings. For the time-based split (Table 1), our model achieves
the highest F1, AUROC, and AP, demonstrating its ability to adapt to unseen drug-like compounds.
Results for the scaffold-based split (Appendix E.2) further confirm the robustness of our approach,
highlighting its capacity to generalize across diverse molecular structures.

Ablation studies Ablation studies on both the multi-modal alignment with softened CLIP loss
(Table 2) and EM-like boundary optimization (Table 3) further confirm the complementary nature
of BOUNDR.E’s two modules in improving drug-likeness prediction. The full ablation study results
including each component of Mixup and other traditional classifiers are provided in Appendix E.5.
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Table 2: Drug-like compound identification with EM-like
boundary optimization on embedding space aligned with
different alignment methods. Best and its comparable re-
sults (paired t-test p < 0.05) are marked in bold.

Alignment method F1 (↑) ICR (↓)
No Alignment (only FP) 0.54 (0.032) 0.057 (0.0161)
Manifold Alignment 0.40 (0.045) 0.009 (0.0055)
CLIP 0.59 (0.022) 0.025 (0.0133)
Geodesic Mixup 0.69 (0.045) 0.025 (0.0133)

Ours - softCLIP 0.73 (0.037) 0.018 (0.0066)
Ours 0.83 (0.049) 0.012 (0.0086)

Table 3: Drug-like compound identification
with different classifiers on knowledge-aligned
space. Best and its comparable results (paired
t-test p < 0.05) are marked in bold.

Aligned space F1 (↑) ICR (↓)
+ MLP 0.77 (0.020) 0.046 (0.0053)
+ SVM 0.86 (0.012) 0.050 (0.0050)
+ XGB 0.75 (0.012) 0.019 (0.0023)
+ naive PU 0.82 (0.011) 0.031 (0.0029)
+ DeepSVDD 0.32 (0.079) 0.351 (0.1148)

+ Ours − EM 0.44 (0.162) 0.259 (0.1931)
+ Ours 0.83 (0.049) 0.012 (0.0086)

Cross-dataset evaluation We further tested generalizability through cross-compound dataset
evaluation. Models are first trained on PubChem or ChEMBL compound sets then tested with the
ZINC compounds, with the drug set (DrugBank) and its split setting fixed. As a result, binary classi-
fiers and PU-learning frameworks show heavy decline in performances whereas one-class classifers
show no effect. BounDr.E demonstrate only moderate decline in both scaffold-based and time-based
splits (Appendix E.3). This result shows the generalizability of our one-class boundary approach by
not relying on the non-drug set. Experimental details are available in Appendix C.5.

3.3 ZERO-SHOT TOXIC COMPOUND IDENTIFICATION

Table 4: False-positive rate of toxic compound groups. Lowest and
its comparable results (paired t-test p < 0.05) are marked in bold.

Withdrawn Hepatotoxic Cardiotoxic Carcinogenic
FP-XGB 0.96 (0.003) 0.96 (0.003) 0.85 (0.010) 0.93 (0.010)
FP-OCSVM 0.69 (0.002) 0.53 (0.003) 0.25 (0.006) 0.86 (0.001)
FP-nnPU 0.95 (0.009) 0.94 (0.007) 0.87 (0.028) 0.86 (0.017)

DrugMetric∗ N/A 0.77 (0.073) 0.76 (0.118) 0.82 (0.087)
DGCAN 0.91 (0.020) 0.85 (0.023) 0.88 (0.045) 0.95 (0.017)
DeepDL 0.91 (0.016) 0.92 (0.018) 0.85 (0.042) 0.84 (0.025)

BOUNDR.E 0.51 (0.014) 0.54 (0.009) 0.20 (0.009) 0.19 (0.014)
∗DrugMetric fails to infer scaffolds not present in approved drug and ZINC datasets

To test our model’s capacity to fil-
ter out potentially toxic compounds,
we performed a zero-shot evaluation
on toxic compound sets including
DrugBank’s withdrawn drug list and
organ-toxicity groups (hepatotoxic,
cardiotoxic, and carcinogenic com-
pounds, Wu et al. (2023)).

As shown in Table 4, our model
demonstrates lower false-positive
rate compared to baseline models,
consistently identifying toxic compounds from diverse categories as out of drug boundary. Fur-
thermore, error analysis on the withdrawn drugs reveal that among the 51% false-positive, most of
them are withdrawn from some regions yet approved in others (Appendix E.4.2). These results indi-
cates that our boundary, along with its integrated biomedical contexts, can effectively generalize to
toxic compounds, offering a promising tool for early-stage toxicity filtering. Full table of baseline
model performances are provided in Appendix E.4.

3.4 EMBEDDING SPACE VISUALIZATION

Figure 4 displays the evolution of our embedding space as the EM-like boundary optimization pro-
ceeds. It is easy to spot that the compounds from ZINC database are being pushed out of the bound-
ary as FDA-approved drugs form more compact space as training epochs increase. The zoomed-in
boxes of each epoch further visualizes how the density of ZINC-compounds decreases as the embed-
ding space is optimized. This visualization effectively demonstrates our model’s ability to iteratively
refine the embedding space, making it increasingly more drug-focused over time.

3.5 APPLICATION OF BOUNDR.E IN DRUG DISCOVERY PIPELINES

To validate the effectiveness of BOUNDR.E in drug discovery pipelines, we analyzed the drug-
likeness scores for six compound sets spanning different stages of drug discovery: AI-generated
compounds (TargetDiff (Guan et al., 2023) and MOOD (Lee et al., 2023)), investigational com-
pounds and world-approved drugs (ZINC20 (Irwin et al., 2020)), withdrawn drugs, and FDA-
approved drugs. Figure 5 shows a clear progression, with compounds moving closer to the center
of the drug boundary as they advance through the drug development pipeline. The result reflects
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Figure 4: PCA visualization of latent space at each epoch of boundary optimization. Box on the upper-left
corner displays the space within the drug-like boundary based on PC1 and PC2. Red circle and gray triangle
display the movement of drug and zinc compound samples respectively, as training proceeds.

Figure 5: Distribution of drug-like scores of
compounds in different drug discovery stages.

     

    
   

         
            

          

   
       

       

            
     

    
        

        
            

          

                                               

     
          

       

  

            
            

          

Figure 6: Integration of BOUNDR.E for filtering 10,543
BCR-ABL pocket-based generated compounds

the increasing likelihood of drug-likeness as a compound matures from AI-generated candidates to
approved drugs.

Lastly, we demonstrate the utility of our model for initial screening and its potential real-world
impact in target-based drug discovery pipeline (Figure 6). Utilizing three well-known anti-cancer
targets, BCR-ABL, EGFR and CDK6, we first generated 10k anti-cancer compounds with pocket-
aware generative model (Guan et al., 2023). Then, we compared the filtering capability of our
approach with property-based filters, detailed in Appendix E.6.1. As a result, while BOUNDR.E-
integrated pipeline yields a very practical number (38 out of 10,543) for wet lab validations, the
filtered compound list exhibited enhanced drug-like properties including Quantitative Estimate of
Drug-likeness (QED) and Synthetic Accessibility (SA) scores (Appendix E.6.2).

This ability to rank and filter candidates based on accurate drug-likeness measure provides a valuable
tool for in silico screening, accelerating early-stage compound prioritization.

4 CONCLUSION AND FUTURE WORKS

In this work, we introduced BOUNDR.E, a novel framework for drug-likeness prediction that com-
bines knowledge-aligned embeddings with EM-like one-class boundary optimization. By leverag-
ing structural and biomedical knowledge through application of softened CLIP loss and Geodesic
Mixup, BOUNDR.E creates a robust multi-modal embedding space. Our experiments show that
BOUNDR.E consistently outperforms state-of-the-art models, excelling at identifying drug-like
compounds while effectively filtering out toxic molecules, with case studies demonstrating its utility
as initial screen of drug candidates.

Several opportunities for improvement remain in our framework. The EM-like strategy still requires
solid approaches and theoretical support for reaching global optima, and lower reliance to initializa-
tion points. Further experimental validation of the screened compounds, including efficacy, toxicity
and PK/PD profiles, may provide more convincing results on the utility data-driven drug filters in
drug discovery endeavours. In particular, the applicability of our model to specific therapeutic area
can be further elaborated. Nonetheless, we believe our model is a promising complementary solution
for prioritizing drug-like compounds in early-stage development for efficiency in drug discovery.
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A DETAILS IN EM-LIKE BOUNDARY OPTIMIZATION

A.1 ALGORITHM OF EM-LIKE BOUNDARY OPTIMIZATION

Algorithm 1 EM-like Training for Drug Boundary Optimization

Require: Dataset X = {xi}Ni=1 = Xdrug + Xcomp, Learning rate ηθ , Convergence tolerance ϵ
Ensure: Optimized embedding space parameters θ∗ and boundary parameters c∗, r∗

1: Initialize neural network parameters θ(0), boundary parameters c(0), r(0)
2: X ← Eσ(X ) where Eσ is pretrained multi-modal structure encoder

3: ρ(0) =
|X (0)

in-boundary|
|Xcomp| where X (0)

in-boundary :=
{
x | ∥f(xcomp; θ

(0))− c(0)∥2 ≤ r(0)
}

4: Set t = 0
5: while |ρt+1 − ρt| ≥ ϵ do
6: E-step (Boundary update):
7: zdrug ← f(xdrug; θ

(t))

8: c(t+1) ← 1
|zdrug|

∑
zdrug

9: r(t+1) ← max
(
∥zdrug − c(t+1)∥2

)
, r

(t+1)
comp ← max

(
∥zcomp − c(t+1)∥2

)
10: Identify Xout
11: M-step (Embedding function update):
12: Lboundary(θ

(t))← Ldrug(θ
(t), c(t+1), r(t+1)) + λout · Lout(θ

(t), c(t+1), r(t+1))

13: θ(t+1) ← θ(t) − ηθ · Adam
(
∇θL(θ(t), c(t+1), r(t+1))

)
14: ρ(t+1) ← |X (t)

in-boundary|
|Xcomp| where X (t)

in-boundary :=
{
x | ∥f(xcomp; θ

(t+1))− c(t+1)∥2 ≤ r(t+1)
}

15: Increment t← t+ 1
16: end while
17: Return Optimized parameters θ∗, c∗, r∗

A.2 PROOF OF THEOREM 1

To recap, the M-step of the EM-like iterative optimizes the latent space with the following loss
terms:

Ldrug(θ) =
∑

x∈Xdrug

dt(x; θ, c) (9)

Lout(θ) =
∑

x∈Xout

max
(
r(t+1)

comp − dt(x; θ, c), 0
)

(10)

Lboundary(θ) = Ldrug(θ) + λout · Lout(θ) (11)

where dt(x; θ, c) = ∥f(x; θ(t)) − c(t+1)∥2 is the Euclidean distance of samples from the drug
center, and λout is a hyperparameter controlling the strength of the out-boundary penalty. The loss
terms can be interpreted as reducing/increasing the samples’ distances d(x) to 0 and r

(t+1)
comp for drugs

and out-boundary compounds, respectively.

Theorem 1 (Reduction of In-boundary Non-drugs). Optimizing a neural network encoder with
Euclidean distance loss to regress distance of non-drugs toward a radius of rcomp and drugs toward
0 leads to a decrease in the number of non-drugs in boundary |Xin-boundary| between two successive
time steps t1 < t2 where L(t1)

drug > L(t2)
drug and L(t1)

out > L(t2)
out .

To prove this, we will break down the proof to show that the decreasing nature of r and the in-
consistency that arises if the number of points inside an arbitrary threshold ν increases during the
optimization of the Euclidean distance-based loss.

Proposition 1 (Shrinkage of r): As the optimization of the Euclidean distance loss proceeds over
time, the drug boundary radius r, defined as the maximum distance of drug-like points from the
center c, decreases.
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Proof: Let Xdrug ⊂ Rd denote the set of drug-like compounds and c ∈ Rd be a center point. The
drug loss function Ldrug (Eq. 9) is given by:

Ldrug =
∑

x∈Xdrug

d(x) =
∑

x∈Xdrug

∥f(x; θ)− c∥2,

where d(x) represents the Euclidean distance between point f(x; θ) and c.

The objective of the optimization process is to minimize Xdrug by penalizing larger distances more
severely with the square operation, while attracting points further away from c more strongly, and
since the Euclidean distance norm is a strictly convex function, any reductions in the loss Xdrug
implies a reduction in the distance ∥f(x; θ)− c∥2 for each x ∈ Xdrug.

Thus the furthest point x∗ ∈ Xdrug, which determines r, experiences a decrease in distance from c
as the loss function decreases, and therefore, as Ldrug is minimized, r decreases as the optimization
progresses. □

Lemma 1 (Impact of Compounds Inside ν to Lout): The contribution to the out-boundary loss Lout
from points x with d(x) < ν is greater than the contribution from points with d(x) ≥ ν.

Proof: The out-boundary loss Lout (Eq. 10) is given by:

Lout(θ) =
∑

x∈Xout

max (rcomp − d(x), 0) ,

where d(x) represents the Euclidean distance between the compound x and the center c. Consider-
ing the loss contribution of a point x ∈ Xout with distance d(x), the individual contribution to the
loss for this point is

Lout,x = max (rcomp − d(x), 0) .

So, for points x such that x with d(x) < ν with given an arbitrary threshold radius, we have

rcomp − d(x) > rcomp − ν.

On the other hand, for points where d(x) ≤ ν, we have

rcomp − d(x) ≤ rcomp − ν.

Since the out-boundary loss Lout is the sum of the individual contributions for each point in Xcomp,
increasing the number of points for which d(x) < ν will increase the overall loss Lout more than
increasing the number of points with d(x) ≥ ν. Therefore, the points with the threshold radius ν
contribute more to the loss than those outside. Thus, the contributions of points with d(x) < ν is
greater than that of points with d(x) ≥ ν. □

Proposition 2 (Decrease in Points Inside ν): If the out-boundary loss Lout decreases with each
iteration step, that is, L(t2)

out < L(t1)
out , then the number of points x such that d(x) < ν decrease

between steps t1 and t2.

Proof: For given iterative steps t1 and t2, assume that the number of points x such that d(x) < ν
increases between iterative steps, meaning that more points fall within the threshold ν at step t2 than
at step t1. From Lemma 1, we know that the contribution to the out-boundary loss Lout from points
within the threshold ν is greater than the contribution from points outside ν. Specifically, for any
point x where d(x) < ν, the contribution to the loss satisfies

rcomp − d(x) > rcomp − ν.

Thus, if the number of points x such that d(x) < ν increase at step t2, the out-boundary loss Lout at
step t2 should increase relative to its value at step t1, since the points inside ν contribution more to
the loss. This would imply that the loss at step t2, L(t2)

out , is greater than or equal to the loss at step
t1, L(t1)

out .

However, this contradicts the assumption that L(t2)
out < L(t1)

out , i.e., the loss decreases over steps.
Therefore, our assumption that the number of points with d(x) < ν increases between iterations is
false.

Thus, for the optimization process of the out-boundary loss over steps, the number of points x such
that d(x) < ν is decreases between steps t1 and t2. □
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Corollary 1 (Upper Bound of r): The radius r(t1) serves as an upper bound on the maximum
distance of drug-like points from the center at t2 where t1 < t2. As r(t1) > r(t2), fewer compounds
lie inside this radius at t2, implying that the boundary of the drug-like space shrinks and becomes
more compact.

Proof: By Proposition 1, the drug boundary radius r, defined as the maximum distance of drug-like
points from the center, decreases over steps. In other words, r(t2) < r(t1) for t2 > t1, meaning the
boundary becomes tighter as the optimization progresses.

And then, by Proposition 2, the number of points x such that d(x) < ν is decreases over steps for
any fixed threshold radius ν. This implies that between steps t1 and t2. the number of compounds
within the radius r(t2) decreases more than the number of compounds within the radius r(t1).

Since r(t1) encompasses all drug-like points at time t1 and r(t2) < r(t1), we conclude that r(t1)
remains an upper bound on the maximum distance of drug-like points from the center at time t2
even as the boundary shrinks. Therefore, as r decreases with step, the drug boundary become
increasingly compact, with fewer compounds lying within the shrinking boundary. □

Based on the above proofs, we now move on to the proof of Theorem 1.

Proof of Theorem 1: By Proposition 1, we know that the radius r, which represents the boundary
of drug-like points, decreases over steps as the Euclidean distance loss is minimized. This shrinking
boundary implies that the space enclosing the drug-like compounds becomes more compact as the
optimization proceeds from t1 to t2.

From Proposition 2, we concluded that if the out-compound loss Lout decreases over steps, the
number of points inside an arbitrary radius ν decreases. Thus, the number of non-drug points within
the boundary shrinks as t progresses.

By Lemma 1, the contribution to the out-compound loss Lout from non-drug points inside a given
radius ν is larger than from points outside. Hence, as the number of in-boundary points decreases,
the out-compound loss decreases, consistent with the assumption that L(t1)

out > L(t2)
out .

According to the Corollary 1, the drug boundary radius r(t1) serves as an upper bound on the
maximum distance of drug-like points from the center, and this boundary becomes more compact
over steps. As r(t2) < r(t1), fewer non-drug points will lie inside the boundary at step t2. □

Combining these results, we see that as the optimization proceeds, both the drug boundary shrinks
and the number of non-drug points within this boundary decreases. Given that Ldrug and Lout both
decrease between steps t1 and t2, we conclude that the number of non-drug points inside the bound-
ary |Xin-boundary| decreases as well.

A.3 CONVERGENCE CRITERION OF EM-LIKE OPTIMIZATION

For our EM-like optimization algorithm, we applied a convergence criterion based on the in-
boundary compound ratio (ICR) metric. We initially considered using a traditional loss-based con-
vergence criterion, which would directly correspond to the model’s objective of distance minimiza-
tion. However, due to the nature of our distance metric, convergence using a loss-based criterion
proved challenging; it occasionally led to expansions or contractions of the latent space that risked
numerical instability (e.g., overflow/underflow issues). Consequently, we adopted the in-boundary
compound ratio as the convergence criterion with following reasons.

Theoretical Alignment Following the proof of theorem 1 in the Appendix A.2, optimizing the
distance metric inherently results in a decrease in the in-boundary compound ratio. This proof estab-
lishes a theoretical link between loss minimization and our chosen convergence criterion, indicating
that both approaches are consistent with the model’s objectives.

Empirical Stability We conducted experiments to empirically compare the performance of our
model when using the loss-based criterion versus the in-boundary compound ratio (Table 5). The
results show no significant difference in final model accuracy, with a p-value of 0.737 which is
greater than 0.05 based on a two-sided paired t-test, demonstrating that the two methods converge to
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Table 5: Performances of BOUNDR.E with two different convergence metrics. (ICR: In-boundary compound
ratio, Avg.: Average)

Convergence metric F1 (↑) IDR (↑) ICR (↓) AUROC (↑) Avg. Precision (↑) Avg. Epochs (↓)
Time-based split
ICR 0.826 (0.0486) 0.781 (0.0326) 0.012 (0.0086) 0.973 (0.0075) 0.877 (0.0419) 47.7 (4.20)
Lboundary 0.833 (0.0463) 0.806 (0.0236) 0.014 (0.0098) 0.973 (0.0071) 0.885 (0.0463) 202.7 (99.20)

Paired t-test p-value 0.737 0.055 0.615 0.956 0.723

Scaffold-based split
ICR 0.655 (0.0209) 0.796 (0.0258) 0.063 (0.0079) 0.938 (0.0049) 0.590 (0.0369) 68.5 (4.39)
Lboundary 0.653 (0.0297) 0.793 (0.0348) 0.063 (0.0059) 0.941 (0.0084) 0.639 (0.0431) 174.2 (21.76)

Paired t-test p-value 0.892 0.594 0.937 0.158 0.040

similar solutions. Furthermore, the average number of training epochs needed for convergence was
slightly reduced when using the in-boundary compound ratio, indicating faster stabilization.

A.4 COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we provide the detailed computational complexity analysis, further supporting our
model’s efficiency and scalability.

E-step (Boundary Update): The E-step in our model relies on computing the Euclidean distance
from the center, with a time complexity linear in both the number of samples (N ) and the dimen-
sionality (D) of the data, resulting in O(N ×D). This ensures that the boundary update is scalable
even for high-dimensional datasets.

M-step (Neural Network Optimization): In the M-step, the primary computational effort in-
volves neural network optimization. If we denote H as the number of layers, Fh as the num-
ber of operations in layer h, and N as the dataset size, then the complexity for a forward pass is
O(N ·

∑H
h=1 Fh). Given that the backward pass is approximately twice as computationally expen-

sive, the overall complexity for each EM iteration is O(N ×D) +O(N ·
∑H

h=1 Fh).

These complexities illustrate the model’s linear behavior with respect to data size and dimensional-
ity, making it efficient for large-scale drug discovery tasks. To validate these claims empirically, we
trained our model with approximately 200 drugs and 2,000 non-drug compounds around 100 epochs
using single NVIDIA RTX 3090 GPU, and the total training time was consistently under 5 minutes,
demonstrating the alignment between theoretical analysis and practical performance.

A.5 MULTIPLE-EM APPROACH FOR AVOIDANCE OF LOCAL OPTIMA

Avoiding local optima and searching for globally optimal parameters is the core challenge of ma-
chine learning. However, classical EM algorithms, including K-means clustering and GMMs, are
prone to local optima convergence due to their deterministic and hill-climbing nature of monotonic
increase in likelihood, which leads to the model’s sensitivity to initialization conditions.

Our model is optimized through the Adam optimizer, a stochastic approach for gradient descent
that allows flexibility in escaping EM algorithm’s monotonic increases during training. On top of
this, the biomedical knowledge-aligned embedding space offers an informative initialization point;
however, we aimed to develop a more direct solution to address the initialization sensitivity of our
framework.

Inspired by successful strategies in EM-based models, such as the Multiple Expectation maximiza-
tions for Motif Elicitation (MEME) gene motif search algorithm (Bailey & Elkan, 1995), we ini-
tialize our boundary optimization process multiple times from different random seeds (for our ex-
periments, 0 ∼ 9) and retain the best-performing model based on the validation set performance
without any reliance on the test data. This approach has proven effective in enhancing performance
by mitigating the risk of poor local optima.
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Table 6: Key differences between binary classification, PU-learning setting and proposed definition of drug-
likeness prediction.

Binary classification PU-learning One-class Drug-likeness prediction

Goal Decision boundary between
positive and negative

Decision boundary between positive
and unseen negative

Boundary around positives
(here, approved drugs)

Train set composition Positive + Negative Positive + Unlabeled Drug + Compound

Positive data distribution Positives (Ppositive) Positives (Ppositive) Xdrugs as subset of Xcompound

Unlabeled data
distribution - (Only negative data) Ppositive + Pnegative (unseen) Xcompound

Assumption of
unlabeled dataset - Representative of Ppositive and Pnegative Biased subset of intractable Xcompound

Characteristics Strong reliance to negative set,
lower generalizability

Reliance to unlabeled set,
lower generalizability

Low reliance to compound set,
higher generalizability

Objective Risk minimization with
cross-entropy

Risk minimization with class prior
and cross-entropy Metric learning (one-class hypersphere)

A.6 PROBLEM FORMULATION DETAILS AND COMPARISON WITH PU LEARNING

Our problem setting roots on the idea to rescue any non-drugs from the compound libraries by not
treating any as ‘negative drugs’. This motivation naturally led us to apply an one-class classification
based approach.

On the other hand, PU learning typically assumes that the distribution of unlabeled data, Punlabeled,
can be expressed as a mixture model: Punlabeled ∼ Ppositive + Pnegative. This leads to training objectives
rooted in empirical risk minimization that assume a tractable and bounded space of both positive
and negative examples with the dataset as a representative subset of such space. In this context,
PU methods often aim to minimize classification error with cross entropy-based loss functions by
estimating the contribution of a negative distribution, frequently relying on class prior (ratio of
positive/negative in the dataset) estimates.

Conventional methods in drug-likeness prediction mainly employ binary classification and some-
times Positive-Unlabeled (PU) learning frameworks, seeking to classify compounds by minimizing
the risk of misclassification between positive (drug-like) and negative (non-drug-like) examples with
cross entropy-based objectives. However, these approaches rely on defined negative sets or a rep-
resentative dataset from Pnegative distribution, which may not be feasible in the vast and partially
known chemical space.

In contrast, our formulation of the drug-likeness prediction task does not assume a well-defined
Pnegative. The chemical space is vast, partially explored, and inherently complex, with any sampled
“negative” set non-representative of the true distribution of non-drug compounds. Therefore, instead
of attempting to estimate a boundary between positive and potential negatives, we propose a one-
class classification framework that constructs a drug-likeness boundary to capture the compact space
of drug-like compounds directly, optimized based on distance-based metric learning terms. We
summarize the key differences between binary classification, PU-learning and our proposed problem
definition of drug-likeneess prediction in Table 6.

B INITIAL STUDY DETAILS

Scaffold-based distribution of approved drugs We analyzed 2,610 approved drugs from Drug-
Bank using the Bemis-Murcko scaffold split, which partitions molecules into rings and the linker
atoms between them. This decomposition resulted in 1,324 unique scaffold sets, with an average of
1.97 molecules per scaffold. These findings indicate a well-dispersed distribution of approved drugs
in the chemical space, with minimal structural overlap. Notably, 1,074 scaffold sets (81.1%) con-
tained only a single compound, further emphasizing the low scaffold redundancy among approved
drugs.

Evaluating how models generalize to unseen scaffolds is crucial given the extreme sparsity of the
scaffold distribution and its potential impact on model generalization, which encouraged us to per-
form a scaffold-based splitting scheme, further detailed in Appendix C.4.
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(a) Fingerprint (b) GraphMVP

Figure 7: PCA visualization of embedding spaces of approved drugs (red) and 100k ZINC compounds (gray).

Table 7: Distribution of drugs and compounds in the two latent spaces. Max: Maximum; ICR: In-boundary
compound ratio.

Representation Max. Drug distance Max. Compound distance ICR

GraphMVP 29.33 25.78 1.0
Morgan Fingerprint 12.02 10.01 1.0

Distribution of approved drugs in representation spaces To explore the spatial distribution of
approved drugs and non-drug compounds, we represented the structural features of 2,610 approved
drugs and 100k ZINC compounds in two distinct spaces: Morgan fingerprints and pretrained Graph-
MVP embeddings (Liu et al., 2022). Morgan fingerprints, a type of circular fingerprint, capture
molecular structure by encoding atom environments within a specified radius. Each substructure,
or circular neighborhood of bonds, is hashed into a bitstring, where each bit indicates the presence
or absence of specific substructures in the molecule. This approach creates a fixed-length binary
vector, efficiently capturing the molecular topology. In contrast, GraphMVP uses a GNN-based en-
coder, pretrained to align 2D and 3D molecular structures, to generate embeddings that reflect both
graph-level and spatial information about molecules.

For each representation space, we calculated the center point of the drug embeddings (centroid)
and defined the drug boundary as the maximum distance from the centroid to any drug. We then
computed the distance of all 100k ZINC compounds from this centroid to determine the in-boundary
compound ratio (ICR).

Our results indicate that all 100k ZINC compounds were positioned within the drug hypersphere
in both the Morgan Fingerprint and GraphMVP spaces. Specifically, the maximum distance of
approved drugs from the centroid (i.e., the drug radius) was consistently smaller than the maximum
distance of ZINC compounds, confirming that non-drug compounds are distributed further from the
drug center in both embedding spaces (Table 7).

C EXPERIMENTAL DETAILS

C.1 OVERVIEW OF SOFTENED CLIP AND GEODESIC MIXUP

Figure 8: Comparison of contrastive losses using structural encoder Eσ and knowledge encoder Eκ. CLIP
enforces pair-wise similarity between knowledge graph and structural embeddings from a single entity. Soft-
ened CLIP allows pair-wise similarity between knowledge graph and structural embeddings to match the prior
similarity matrix (WATC). S-Mix (and K-Mix), KS-Mix performs intra-modality interpolation.

C.2 MULTI-MODAL ALIGNMENT SPACES

Biomedical knowledge graph space To represent the biomedical context of drugs, we use em-
beddings from DREAMwalk (Bang et al., 2023), which has shown efficacy in tasks of drug-disease
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association prediction and drug repurposing. DREAMwalk employs a heterogeneous skip-gram
model to encode entities from the Multi-scale Interactome (MSI) network (Ruiz et al., 2021) into a
300-dimensional vector space. The MSI network integrates information on drugs, genes, diseases,
and Gene Ontology terms, enriching each drug representation with biomedical knowledge. We uti-
lize the embeddings of 1,449 approved drugs from DREAMwalk for alignment with their structural
representations.

Molecular Fingerprint Space For the structural representation of drugs, we use Morgan Finger-
prints, a widely adopted method that encodes molecular structures based on substructure patterns. In
this study, we employ 1,024-dimensional Morgan Fingerprints for multi-modal alignment, capturing
the structural diversity of the molecules.

C.3 SEMANTIC DRUG SIMILARITY CALCULATION WITH ATC CODES

Anatomical Therapeutic Chemical Classification of drugs The ATC classification system cat-
egorizes drugs based on their therapeutic, pharmacological, and chemical properties. Each drug
is assigned a unique ATC code that reflects its primary mechanism of action and target area. The
hierarchy is naturally a tree-structured acyclic graph, and on the highest level (Level 1) exists 14
foundational categories, including A (Alimentary tract and metabolism), B (Blood and blood form-
ing organs), C (Cardiovascular system), and more.

A direct modeling of such complex hierarchical structure as prior knowledge in model training is
challenging. In order to retain the essence of the hierarchical ATC relationships without complex ad-
justments to the architecture that may significantly increase computational overhead and complicate
the model training process, we utilized the concept of semantic similarities between terms within
the hierarchy and integrated them as prior knowledge to our softened CLIP loss.

Information Content (IC) We adopt the semantic similarity measure introduced by Jiang & Con-
rath (1997). To quantify the semantic similarity of drugs within the ATC hierarchy, we first need
to calculate the Information Content (IC) of each entity. IC measures how informative an entity
is, based on its frequency or position within a hierarchical structure. For a term c, IC is inversely
proportional to the number of child terms Nchild(c), meaning that terms with fewer descendants
have higher IC, as they provide more specific information. The IC for a term in a tree-structured
hierarchy is computed as:

IC(c) = 1− log(Nchild(c) + 1)

log(Nchild(root))

This formulation ensures that IC values are normalized within the range [0, 1], where the root entity
has an IC of 0.

Semantic Similarity Given two entities c1 and c2 and their Most Informative Common Ancestor
(MICA), the semantic distance between them is calculated as:

dist(c1, c2) = IC(c1) + IC(c2)− 2× IC
(
MICA(c1, c2)

)
Since the maximum possible distance is 2 (when IC is 1 for both entities), we normalize the distance
into a similarity score in the range [0, 1) using the following equation:

sim(c1, c2) = 1−
(

dist(c1, c2)
2

)
We compute pairwise similarities for all drugs based on their ATC codes, generating a similarity
matrix S ∈ Rn×n, where n is the number of approved drugs.

C.4 DATA SPLITTING SCHEMES

Two data splitting schemes are employed to rigorously evaluate model generalizability to unseen
compounds: a scaffold-based split, which ensures structurally novel compounds appear in the test
set, and a time-based split, where drugs approved after a certain time point are assigned to the test
set. Since the structural complexity of approved drugs tends to increase over time, with molecular
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properties diverging (Stegemann et al., 2023), the time-based split is considered a more challenging
evaluation compared to scaffold-based splits.

To simulate real-world drug discovery conditions, where the chemical space is much larger than the
number of approved drugs, we follow a multi-step procedure: first, split the approved drugs into
train-valid-test sets in an 8:1:1 ratio, then sample 10 times the number of test drugs from the 100k
ZINC compounds to account for the larger compound space.

C.4.1 SCAFFOLD-BASED SPLIT

In drug discovery, scaffold diversity is a key concern, as new drugs often emerge from novel scaf-
folds that were previously untested. The scaffold-split evaluation aligns closely with these real-world
scenarios, making it a more rigorous and realistic test of generalization than a random split, where
similar scaffolds are likely to appear in both training and test sets.

Drugs are first grouped based on their scaffolds, defined using Bemis-Murcko scaffolds (Bemis &
Murcko, 1996), which capture core molecular ring systems and linkers, ensuring that structurally
similar drugs are grouped together. Then, the scaffold sets are split into 10 parts for 10-fold cross-
validation (CV), with an 8:1:1 ratio for train, validation, and test sets. Each fold ensures that test
sets contain unseen scaffolds. The 100k ZINC compounds are also grouped by Bemis-Murcko
scaffolds, then split similarly to match the number of drug scaffolds in each fold. For the test set,
ZINC scaffolds are sampled to include 10 times the number of drugs.

Our pilot study demonstrates how prediction performance significantly decreases when using
scaffold-split compared to randomly splitted setting (Table 8), indicating that the model’s ability to
handle unseen scaffolds is inherently more challenging. This underscores the necessity of scaffold-
split as a more appropriate evaluation scheme for understanding the impact of scaffold sparsity and
further evaluate the models’ generalizability.

Table 8: Prediction performances of BounDr.E when applied on different split schemes. Our model displays
significant decrease in prediction performances when applied with scaffold split, a splitting scheme to evalutate
the models’ generalizability in the sparse distribution of approved drugs’ scaffolds. The best performance and
comparable values (p-value < 0.05) are marked in bold.

F1 IDR ICR AUROC Average Precision
Scaffold-based split 0.655 (0.0209) 0.796 (0.0258) 0.063 (0.0079) 0.938 (0.0049) 0.590 (0.0369)
Random split 0.689 (0.0142) 0.742 (0.0291) 0.041 (0.0060) 0.942 (0.0037) 0.663 (0.0379)
Paired t-test p-value 4.4E-4 4.6E-4 1.6E-04 0.082 0.008

C.4.2 TIME-BASED SPLIT

The properties of approved drugs have evolved over the past decades, particularly with the emer-
gence of new therapeutic modalities and technologies. For example, kinase-targeted drugs and
biologics became prominent in the 2000s, leading to an increase in molecular complexity, larger
molecular weights, and drugs that often fall outside traditional Rule-of-5 constraints (DeGoey et al.,
2017). Additionally, the advancement of drug delivery systems has allowed for a higher range of
LogP values (lower solubility) among approved drugs (Vargason et al., 2021).

Drugs are first split based on their approval date, with approximate splits of 8:1:1 for train, validation,
and test sets. The cut-off years are 2000 and 2011. Drugs approved before 2000 are assigned to the
training set, those approved between 2000 and 2010 to the validation set, and drugs approved after
2011 to the test set. Then, The ZINC compound scaffolds are sampled following the same procedure
as the scaffold-based split, ensuring 10 times more compounds in the test set.

To validate that our time-based split reflects these temporal trends, we have conducted a detailed
analysis of drug properties over the periods represented in our dataset (Table 9). Specifically, we
tracked changes in key chemical characteristics (e.g., molecular weight, LogP, polar surface area)
across different temporal splits, observing clear shifts that align with known trends in drug develop-
ment.
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Table 9: Molecular properties averaged over drugs in the train set (approved before 2011) and test set (approved
since 2011). Drugs in the test set show significant difference from the train set drugs, according to the temporal
evolution of approved drugs. (Ro5: Number of passed criterions with the Lipinski’s Rule of Five)

Ro5 Molecular Weight LogP Polar Surface Area
Train (Before 2011) 3.652739 398.120084 2.142421 100.041105
Test (Since 2011) 3.379032 540.368339 2.937724 137.452177

Paired t-test p-value 0.000396 0.000583 0.024349 0.033635

C.5 CROSS-COMPOUND DATASET EVALUATION

We have further performed the performed cross-dataset validation using 10,000 molecules sam-
pled from each of PubChem and ChEMBL databases. PubChem contains a vast array of bioassays
covering numerous biological targets, while ChEMBL provides curated information on chemical
compounds linked to bioactivity against biological targets. These external repositories are widely
recognized for their breadth and diversity in assay-centric compound data. We have carefully ex-
amined how these datasets complement our original validation set, ZINC20, and their distributions
compared with approved drug distribution.

Specifically, we first measured the distributions of three key molecular properties in drug discovery:
molecular weight (Mw), LogP and polar surface area (PSA) (Figure 9). The distances between
the distributions were computed using 1-Wasserstein distance metric, which display the similarity
between ChEMBL compounds and DrugBank approved drugs, followed by PubChem then ZINC20
compounds.

However, the pairwise Tanimoto similarity distribution of molecular fingerprint between DrugBank
and other three compound sets reveal that PubChem molecules display the highest average similarity
(0.112) compared to ZINC20 (0.111) and ChEMBL (0.013) (Figure 10) Overall, the dissimilarity
between datasets demonstrate the uniqueness of each database, and these discrepancies necessitate
cross-dataset evaluation for testing the generalizability of drug-likeness prediction models.

Figure 9: Distribution of molecular properties of DrugBank, ZINC20,
PubChem and ChEMBL datasets. The numbers between the distribu-
tions represent the Wasserstein distance between the two distributions.

Figure 10: Distribution of
pairwise similarities between
DrugBank and compound
datasets.

C.6 MODEL PARAMETERIZATION AND TRAINING DETAILS

The chosen hyperparameter search space (Table 10) aligns with prior work in drug-likeness predic-
tion and molecular property prediction, where 2-3 layers with 256-1024 dimensions are commonly
used due to their balance between expressiveness and computational efficiency. The selected con-
figuration was validated through a search on a validation set.

Multi-modal alignment Our multi-modal alignment encoders consists of 2-layer multi-layer
perceptrons (MLPs) with LayerNorm and ReLU activation. The aligned space is set to
output dimension=512. The model is trained using the Adam optimizer (Kingma, 2014) with
a learning rate=0.001 and batch size=32.

EM-like boundary optimization For models requiring boundary optimization, we use a 2-layer
MLP architecture with LayerNorm, ReLU activations, and a hidden dimension=512. When
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generating latent spaces, the output dimension is set to 2. The model is trained with the Adam
optimizer (Kingma, 2014) using a learning rate=0.0005 and batch size=1024.

Table 10: Hyperparameter search space and selected values.

Parameter Search space Selected value
Alignment hidden dim [512] 512
Alignment num layers [2,3] 2
Alignment drop out [None, 0.1] 0.1
λsoft (Soft CLIP loss weight) [0.01, 0.1, 0.5, 1] 0.1

Boundary hidden dim [128,512,1024] 512
Boundary out dim [2,16,128,512] 2
Boundary num layers [2,3,4] 2
Boundary drop out [None, 0.1] 0.1
Boundary learning rate [1e-4, 5e-4, 1e-3] 5e-4
Boundary batch size [256, 512, 1024] 1024
α (drug boundary percentile) [90, 95, 99, 99.9, 100] 95
λout (out-boundary loss weight) [0.1, 1, 1.5, 2] 1

C.7 BASELINES

C.7.1 DRUG-LIKENESS PREDICTION MODELS

DrugMetric DrugMetric1 (Li et al., 2024) is an unsupervised drug-likeness prediction model
based on JT-VAE (Jin et al., 2018) and Gaussian Mixture Models (GMMs). JT-VAE encodes
molecules as tree-structured graphs of predefined substructures, with the VAE generating a latent
space that follows a Gaussian distribution. Ensemble of GMMs are applied to model this latent
space for predicting drug-likeness, and the drug-likeness score is computed using a Wasserstein
distance-based metric.

DeepDL DeepDL2 (Lee et al., 2022) introduces two models: (1) an unsupervised LSTM-based
model for drug-likeness scoring and (2) a PU learning-based Graph Convolutional Network (GCN)
for binary drug-likeness classification. The LSTM model predicts the next token likelihood based
on a molecule’s string representation, aggregating these probabilities into a drug-likeness score. As
this method does not perform strict classification, we focus on the PU learning GCN for comparison.

D-GCAN D-GCAN3 (Sun et al., 2022) is a graph convolution attention network designed for bi-
nary drug-likeness classification. The model encodes molecular subgraphs into atom-level vector
embeddings using graph convolutional layers, followed by graph attention layers, global sum pool-
ing, and dense layers to learn representations from molecular structures. We reproduce results using
the official repository.

C.7.2 GENERAL CLASSIFIERS

To comprehensively evaluate our model’s performance in drug-likeness prediction, we compare
it against a range of classifiers for binary classification, PU-learning, and one-class classification
tasks. Each model is trained on Morgan fingerprint vectors of dimension 1,024 as molecular input
representations.

For comparisons with plain MLP-based architectures, we ensured that both our model and the base-
lines had identical numbers of layers and parameters. Specifically, each baseline was adjusted to
match the total parameter count and architectural capacity of our model, ensuring comparable ex-
pressibility. For machine learning-based baseline models, we conducted limited search across a
range of hyperparameters, including number of estimators. This search was performed using cross-
validation to ensure that the most effective configurations were applied consistently across all mod-
els.

1github.com/renly0313/DrugMetric
2github.com/SeonghwanSeo/DeepDL
3github.com/JinYSun/D-GCAN
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Binary classifiers For binary classification of drugs and non-drugs, we compare our model with
traditional machine learning classifiers, including Support Vector Machine (SVM) (Boser et al.,
1992) and eXtreme Gradient Boosting (XGBoost) (Chen & Guestrin, 2016). XGBoost is a
gradient-boosting framework that excels in handling structured data and is widely used for molec-
ular property prediction tasks due to its ability to capture complex patterns in sparse input spaces.
SVM constructs a hyperplane (or multiple hyperplanes) to separate data points in high-dimensional
space, often using a Radial Basis Function (RBF) kernel to model nonlinear decision boundaries.
Both models have demonstrated strong performance in molecular property prediction, often surpass-
ing neural network-based models for certain biological endpoints (Wu et al., 2023). For XGBoost
model, we searched its number of estimators parameter among [50, 100, 200] and chose
100 as the best parameter.

PU-learning baselines Positive-Unlabeled (PU) learning algorithms are well-suited for scenarios
where only positive examples (drug-like compounds) and a large set of unlabeled examples are
available. We benchmark our model against two PU-learning methods:

• Naive PU (Li & Liu, 2003): This method uses the Rocchio classification algorithm, which
computes centroids for the positive class and an unlabeled set to form a decision boundary.
We adapt this approach with a neural network classifier identical to our model to capture
more complex decision boundaries in molecular data.

• nnPU (Kiryo et al., 2017): nnPU is an advanced PU-learning algorithm that mitigates over-
fitting by introducing a non-negative correction term in the risk estimator. This method has
shown strong empirical performance in cases where positive and unlabeled data exhibit sig-
nificant overlap, providing a more robust solution for PU-learning tasks in drug discovery.

One-Class Classification Baselines One-class classification methods are designed to distinguish a
single target class (e.g., drug-like compounds) from all other compounds without explicitly modeling
the negative class. We evaluate the following one-class models:

• OCSVM (Schölkopf et al., 2001): One-Class Support Vector Machines (OCSVM) esti-
mate the support of a high-dimensional distribution, fitting a hyperplane that encompasses
most of the positive (drug-like) examples. This is widely used in anomaly detection tasks,
including outlier detection in chemical spaces.

• SVDD (Tax & Duin, 2004): Support Vector Data Description (SVDD) is an extension
of SVMs for one-class classification, which minimizes the radius of a hypersphere that en-
closes the positive data points. The method is particularly effective in constructing compact
decision boundaries around the positive class.

• DeepSVDD (Ruff et al., 2018): DeepSVDD extends SVDD by utilizing deep neural net-
works to learn a transformation of input data into a latent space, where the decision bound-
ary is optimized. This method is well-suited for handling high-dimensional and non-linear
representations of molecular structures, making it a strong baseline for drug-likeness pre-
diction tasks in high-dimensional spaces.

D NOTATION

Data Sets

Xcomp the set of all chemical compounds Xin-boundary the set of non-drugs inside the boundary

Xdrug the set of drug-like compounds zdrug the set of embedded drug compounds

Xout the set of pseudo-negatives D the set of batch data

Embedding Spaces and Arrays

S the structural embedding space scomp the structural embedding vector

K the biomedical knowledge embedding space kdrug the knowledge embedding vector

U the unified latent space Z the latent space at EM-like training
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Functions

Eσ a structural encoder from space S to U C(·) the contrastive loss function

Eκ a knowledge encoder from space K to U L(·) the loss function

fθ an encoder from space U to Z ⊙ the dot-product similarity operator

B a hyperspherical boundary d(·) the Euclidean distance from the boundary
center

Parameters

c the center of the drug-like compounds ρ the in-boundary compound ratio

r the radius of the smallest hypersphere τ the scaling temperature factor

rcomp the radius for all compounds η learning rate

t the number of iteration steps ϵ convergence tolerance

θ neural network parameters ν an arbitrary threshold radius

E ADDITIONAL EVALUATION RESULTS

E.1 RANK-BASED EVALUATION

Since the core concept of our drug-likeness prediction problem lies in treating compound dataset
as potential drugs, using classification-centric metrics including F1 score, is not perfectly fit for
evaluation of drug-likeness prediction. Since our dataset does not have absolute negative samples,
we here provide further evaluation of models using average precision, precision@k and recall@k
metrics in Table 11. These metrics further measure how well models identify drug-like compounds
among the vast chemical space.

Table 11: Drug-like compound ranking performance with time-based split setting. Mean and standard devia-
tion of 10 fold cross-validation are provided. Best performances marked in bold and second-best underlined.

Avg. Precision Prec@50 Prec@100 Prec@200 Rec@50 Rec@100 Rec@200

FP-SVM 0.724 (0.0174) 0.852 (0.0160) 0.777 (0.0090) 0.540 (0.0067) 0.344 (0.0065) 0.627 (0.0072) 0.871 (0.0108)

FP-XGB 0.775 (0.0213) 0.868 (0.0458) 0.773 (0.0155) 0.538 (0.0117) 0.350 (0.0185) 0.623 (0.0125) 0.868 (0.0188)

FP-OCSVM 0.148 (0.0022) 0.280 (0.0000) 0.180 (0.0100) 0.132 (0.0023) 0.113 (0.0000) 0.145 (0.0081) 0.212 (0.0037)

FP-SVDD 0.143 (0.0022) 0.240 (0.0000) 0.144 (0.0049) 0.108 (0.0040) 0.097 (0.0000) 0.116 (0.0040) 0.174 (0.0064)

FP-DeepSVDD 0.097 (0.0157) 0.098 (0.0569) 0.106 (0.0420) 0.101 (0.0274) 0.040 (0.0230) 0.085 (0.0339) 0.164 (0.0442)

FP-nnPU 0.706 (0.0261) 0.846 (0.0457) 0.713 (0.0279) 0.500 (0.0101) 0.341 (0.0184) 0.575 (0.0225) 0.807 (0.0163)

FP-PU 0.720 (0.0214) 0.864 (0.0367) 0.712 (0.0248) 0.502 (0.0147) 0.348 (0.0148) 0.574 (0.0200) 0.810 (0.0237)

DeepDL 0.886 (0.0374) 0.976 (0.0233) 0.846 (0.0393) 0.513 (0.0172) 0.448 (0.0215) 0.777 (0.0390) 0.942 (0.0289)

DGCAN 0.613 (0.1874) 0.512 (0.2461) 0.464 (0.2520) 0.499 (0.1687) 0.217 (0.1047) 0.393 (0.2126) 0.884 (0.2857)

BOUNDR.E 0.908 (0.0096) 0.988 (0.0098) 0.923 (0.0135) 0.569 (0.0070) 0.398 (0.0040) 0.744 (0.0108) 0.918 (0.0113)

E.2 DRUG-COMPOUND IDENTIFICATION WITH SCAFFOLD SPLIT

Drug-compound identification performances with scaffold split are provided in Table 12.

E.3 CROSS-DATASET EVALUATION RESULTS

We extended our experiments to cross-dataset evaluation two additional well-established datasets:
PubChem and ChEMBL. Both datasets encompass a wide range of chemical scaffolds and molecular
properties, making them suitable for testing our model’s ability to generalize across varied chemical
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Table 12: Drug-like compound identification performance with scaffold-split setting. Mean and standard devi-
ation of 10 fold cross-validation are provided. Best performances marked in bold and second-best underlined.

MCC (↑) F1 (↑) IDR (↑) ICR (↓) IDR/ICR (↑)

FP-SVM 0.597 (0.0120) 0.597 (0.0090) 0.951 (0.0286) 0.122 (0.0061) 7.798 (0.2746)

FP-XGB 0.599 (0.0166) 0.602 (0.0181) 0.941 (0.0281) 0.118 (0.0112) 8.059 (0.6524)

FP-OCSVM 0.060 (0.1159) 0.179 (0.0582) 0.551 (0.2165) 0.446 (0.0172) 1.223 (0.4332)

FP-SVDD -0.132 (0.0287) 0.151 (0.0033) 0.881 (0.0203) 0.970 (0.0022) 0.909 (0.0211)

FP-DeepSVDD -0.120 (0.1607) 0.147 (0.0294) 0.834 (0.1787) 0.938 (0.0423) 0.890 (0.1871)

FP-nnPU 0.546 (0.0213) 0.550 (0.0182) 0.923 (0.0385) 0.146 (0.0110) 6.362 (0.4021)

FP-PU 0.549 (0.0239) 0.555 (0.0188) 0.907 (0.0491) 0.135 (0.0130) 6.776 (0.5185)

DrugMetric -0.028 (0.0794) 0.160 (0.0238) 0.692 (0.2932) 0.690 (0.3452) 1.115 (0.3095)

D-GCAN 0.599 (0.0340) 0.594 (0.0456) 0.859 (0.0966) 0.109 (0.2808) 8.145 (1.9174)

DeepDL 0.528 (0.0298) 0.523 (0.0403) 0.889 (0.0608) 0.137 (0.0248) 6.661 (0.8857)

BOUNDR.E 0.626 (0.0211) 0.655 (0.0209) 0.796 (0.0258) 0.063 (0.0079) 12.808 (1.4438)

spaces. As shown in Tables 13 and 14, our model maintains stable prediction performance across
these diverse datasets, demonstrating its ability to generalize effectively beyond the training data.

Table 13: Drug-like compound identification performance on scaffold-split setting with cross-dataset evalua-
tion setting. Mean and standard deviation of 10 fold cross-validation are provided. Best performances marked
in bold.

PubChem + DrugBank ChEMBL + DrugBank

F1 IDR ICR Avg. Precision AUROC F1 IDR ICR Avg. Precision AUROC

FP-SVM 0.268 (0.0194) 0.835 (0.0734) 0.434 (0.0174) 0.334 (0.1912) 0.795 (0.0759) 0.371 (0.0519) 0.681 (0.1427) 0.195 (0.0200) 0.494 (0.1982) 0.819 (0.0768)

FP-XGB 0.254 (0.0209) 0.810 (0.0804) 0.451 (0.0197) 0.320 (0.1181) 0.773 (0.0741) 0.358 (0.0589) 0.675 (0.1411) 0.206 (0.0213) 0.469 (0.1839) 0.814 (0.0784)

FP-OCSVM 0.179 (0.0582) 0.551 (0.2165) 0.446 (0.0172) 0.366 (0.2717) 0.576 (0.1949) 0.179 (0.0582) 0.551 (0.2165) 0.446 (0.0172) 0.366 (0.2717) 0.576 (0.1949)

FP-SVDD 0.151 (0.0033) 0.881 (0.0203) 0.970 (0.0022) 0.055 (0.0019) 0.235 (0.0173) 0.151 (0.0033) 0.881 (0.0203) 0.970 (0.0022) 0.055 (0.0019) 0.235 (0.0173)

FP-DeepSVDD 0.147 (0.0294) 0.834 (0.1787) 0.938 (0.0423) 0.080 (0.0146) 0.415 (0.1224) 0.147 (0.0294) 0.834 (0.1787) 0.938 (0.0423) 0.080 (0.0146) 0.415 (0.1224)

FP-nnPU 0.244 (0.0182) 0.833 (0.0727) 0.504 (0.0637) 0.240 (0.0816) 0.749 (0.0556) 0.327 (0.0525) 0.666 (0.1337) 0.241 (0.0374) 0.380 (0.1999) 0.778 (0.0812)

FP-PU 0.241 (0.0265) 0.664 (0.1219) 0.379 (0.0528) 0.228 (0.0556) 0.702 (0.0560) 0.311 (0.0495) 0.653 (0.1477) 0.250 (0.0311) 0.396 (0.1701) 0.778 (0.0874)

DeepDL 0.170 (0.0199) 0.764 (0.0754) 0.598 (0.0481) 0.092 (0.0112 0.590 (0.0233) 0.195 (0.0389) 0.681 (0.1329) 0.530 (0.1553) 0.102 (0.0196) 0.612 (0.0686)

DGCAN 0.213 (0.0232) 0.775 (0.0643) 0.520 (0.0653) 0.1352 (0.0153) 0.685 (0.0436) 0.314 (0.0620) 0.652 (0.1283) 0.285 (0.2380) 0.211 (0.0601) 0.737 (0.1076)

Ours 0.501 (0.0232) 0.759 (0.0441) 0.126 (0.0148) 0.460 (0.0380) 0.875 (0.0157) 0.513 (0.0451) 0.746 (0.0281) 0.117 (0.0190) 0.435 (0.0889) 0.869 (0.0258)

Table 14: Drug-like compound identification performance on time-split setting with cross-dataset evaluation
setting. Mean and standard deviation of 10 fold cross-validation are provided. Best performances marked in
bold.

PubChem + DrugBank ChEMBL + DrugBank

F1 IDR ICR Avg. Precision AUROC F1 IDR ICR Avg. Precision AUROC

FP-SVM 0.223 (0.0046) 0.576 (0.0115) 0.365 (0.0137) 0.177 (0.0085) 0.663 (0.0073) 0.252 (0.0068) 0.385 (0.0079) 0.171 (0.0088) 0.200 (0.0080) 0.624 (0.0077)

FP-XGB 0.216 (0.0087) 0.575 (0.0165) 0.382 (0.0241) 0.214 (0.0256) 0.655 (0.0098) 0.248 (0.0108) 0.415 (0.0103) 0.198 (0.0139) 0.232 (0.0152) 0.638 (0.0123)

FP-OCSVM 0.136 (0.0028) 0.250 (0.0000) 0.248 (0.0052) 0.168 (0.0031) 0.371 (0.0029) 0.136 (0.0028) 0.250 (0.0000) 0.248 (0.0052) 0.168 (0.0031) 0.371 (0.0029)

FP-SVDD 0.139 (0.0024) 0.766 (0.0000) 0.947 (0.0034) 0.143 (0.0020) 0.360 (0.0032) 0.139 (0.0024) 0.766 (0.0000) 0.947 (0.0034) 0.143 (0.0020) 0.360 (0.0032)

FP-DeepSVDD 0.158 (0.0071) 0.810 (0.0439) 0.860 (0.0344) 0.096 (0.0132) 0.480 (0.0362) 0.158 (0.0071) 0.810 (0.0439) 0.860 (0.0344) 0.096 (0.0132) 0.480 (0.0362)

FP-nnPU 0.212 (0.0116) 0.621 (0.0130) 0.430 (0.0235) 0.139 (0.0135) 0.632 (0.0144) 0.229 (0.0153) 0.447 (0.0333) 0.253 (0.0246) 0.163 (0.0130) 0.616 (0.0215)

FP-PU 0.188 (0.0218) 0.491 (0.1036) 0.381 (0.0941) 0.151 (0.0348) 0.579 (0.0386) 0.217 (0.0285) 0.398 (0.0312) 0.234 (0.0318) 0.176 (0.0310) 0.608 (0.0300)

DeepDL 0.200 (0.0166) 0.786 (0.0618) 0.575 (0.0548) 0.108 (0.0090) 0.621 (0.0285) 0.207 (0.0362) 0.658 (0.0539) 0.506 (0.0707) 0.111 (0.0183) 0.617 (0.0406)

DGCAN 0.256 (0.0377) 0.810 (0.0707) 0.467 (0.1835) 0.155 (0.0267) 0.700 (0.0724) 0.318 (0.0691) 0.639 (0.1352) 0.251 (0.1072) 0.220 (0.0647) 0.739 (0.0732)

Ours 0.769 (0.0426) 0.796 (0.0137) 0.029 (0.0125) 0.760 (0.0492) 0.941 (0.0093) 0.816 (0.0149) 0.749 (0.0288) 0.009 (0.0038) 0.870 (0.0149) 0.950 (0.0047)
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E.4 ZERO-SHOT TOXIC COMPOUND IDENTIFICATION

E.4.1 FULL TABLE OF MODEL PERFORMANCES

We provide the full table of zero-shot toxic compound identification performances on all baseline
models in Table 15. The zero-shot prediction was performed using each model trained on DrugBank-
ZINC dataset, without any further fine-tuning on the toxic compound sets. False-positive rate was
measured to evaluate how correctly each model determines the toxic compounds as ‘non-drug-like’.
DrugMetric in particular fails to yield predictions for withdrawn compound set since JTVAE is
capable of encoding only the scaffolds present in the training set, in this case the combined set of
ZINC and DrugBank approved drugs.

Table 15: False-positive rate of toxic compound groups. The best performances and the comparable values
(paired t-test p-value < 0.05) are marked in bold.

Withdrawn Hepatotoxic Cardiotoxic Carcinogenic

FP-SVM 0.98 (0.001) 0.98 (0.001) 0.86 (0.006) 0.98 (0.002)

FP-XGB 0.96 (0.003) 0.96 (0.003) 0.85 (0.010) 0.93 (0.010)

FP-SVDD 0.95 (0.002) 0.93 (0.002) 0.92 (0.003) 0.99 (0.001)

FP-OCSVM 0.69 (0.002) 0.53 (0.003) 0.25 (0.006) 0.86 (0.001)

FP-DeepSVDD 0.81 (0.022) 0.80 (0.020) 0.87 (0.032) 0.56 (0.063)

FP-PU 0.95 (0.007) 0.94 (0.005) 0.87 (0.021) 0.85 (0.009)

FP-nnPU 0.95 (0.009) 0.94 (0.007) 0.87 (0.028) 0.86 (0.017)

DrugMetric∗ N/A 0.77 (0.073) 0.76 (0.118) 0.82 (0.087)

DGCAN 0.91 (0.020) 0.85 (0.023) 0.88 (0.045) 0.95 (0.017)

DeepDL 0.91 (0.016) 0.92 (0.018) 0.85 (0.042) 0.84 (0.025)

BOUNDR.E 0.51 (0.014) 0.54 (0.009) 0.20 (0.009) 0.19 (0.014)
∗DrugMetric fails to infer scaffolds not present in approved drug and ZINC datasets

E.4.2 ERROR ANALYSIS ON “PARTIALLY-WITHDRAWN” DRUGS

Figure 11: Partially-withdrawn
drug ratio between in- and out-
drug-boundary sets.

We conducted an in-depth error analysis on the false-positive with-
drawn drugs predicted as “in-drug-boundary” by our model (51%
in Table 15), identifying a trend of predictions involving drugs re-
ferred to as “partially-withdrawn”—drugs that are approved in some
regions but withdrawn in others, in contrary to “fully-withdrawn”
drugs. This category represents complex cases where the criteria for
withdrawal may vary.

Our analysis across 10 cross-validation trials revealed a signifi-
cantly higher presence of partially-withdrawn drugs in the in-drug-
boundary predicted (false positive) set (61.2%) compared to out-
drug-boundary (true negative) ones (38.8%) with p-value of 7.8E-3
(paired t-test)(Fig. 11). This suggests that our model’s predictions
reflect real-world complexities in regulatory approval, while main-
taining a false positive ratio of 0.52, with 60% of these false positives falling into this partially-
withdrawn category.

E.5 ADDITIONAL ABLATION STUDY RESULTS

Effect of Multi-modal Alignment with Softened CLIP Loss We compared our softened CLIP
loss with alternative alignment strategies, including CLIP (Radford et al., 2021), Geodesic Mixup
(Oh et al., 2024), naive manifold alignment (Ham et al., 2005), and unaligned space (i.e., molec-
ular fingerprints) (Table 2). Our proposed method significantly improves boundary quality due to
the enriched representation that aligns molecular structure with biomedical knowledge. The result-
ing embedding space produces a tighter drug boundary, leading to improved drug-like compound
identification performances.
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Figure 12: Change of F1 score with the decrease in
drug-compound ratio of the test set.

Effect of EM-like Optimization We evalu-
ated the advantage of our EM-like boundary op-
timization against traditional binary classifiers,
PU learners, and one-class models (Table 3).
Our model achieves the lowest ICR (or FPR),
showcasing the strength of iterative boundary
refinement, which iteratively increases the out-
boundary compounds (Appendix E.5.1). Figure
12 shows the robustness of our method under in-
creasing compound-to-drug ratios (from 1:1 to
1:100), maintaining performance in more realis-
tic conditions of 1:50 and 1:100 ratios where non-
drug compounds vastly outnumber drugs.

These ablations confirm the complementary nature of multi-modal alignment and boundary opti-
mization in improving drug-likeness prediction.

E.5.1 EFFECT OF EM-LIKE OPTIMIZATION

The core advantage of our method lies in its iterative updates to both the decision boundary and the
encoder. Unlike other classifiers including MLP, which relies on fixed embeddings, our algorithm
dynamically adjusts the feature space and boundary across multiple iterations as following:

1. An initial, coarse boundary is set using the contrastive embeddings.
2. The encoder refines these embeddings based on feedback from the initial boundary, adjust-

ing the representation.
3. A new boundary is established using these refined embeddings.
4. This process repeats, allowing the model to fine-tune both the decision criteria and the

feature space.

This iterative refinement can also be seen in Figure 13, where the ratio of out-boundary compounds
increases and converges over time with each EM iteration. This progressive refinement demonstrates
the limitations of a static MLP approach, reinforcing the necessity of our iterative EM-like strategy
for accurate boundary learning.

E.5.2 EFFECT OF MULTI-MODAL ALIGNMENT WITH SOFTENED CLIP LOSS

Figure 13: Iterative improvement of out-
boundary compound ratio. Line plot shows the
average over 10 trials, and area between maxi-
mum and minimum values are colored.

Our multi-modal alignment loss encompases four mod-
ules; softened-CLIP loss, S and K-mix, and KS-
mix. While softened-CLIP loss is designed to integrate
prior knowledge as ATC semantic similarity, geodesic
mixup-inspired loss terms—S-mix, K-mix, and KS-
mix—facilitate the learning of the intermediate space
between conflicting representations. Specifically:

• S-mix & K-mix: These loss terms focus
on intra-space interpolation within the struc-
tural (S-mix) and knowledge-based (K-mix)
embeddings, respectively. By encouraging
the model to interpolate between known data
points, it learns a smoother and more contin-
uous embedding space, reducing sensitivity to
local conflicts.

• KS-mix: This component specifically targets
inter-space interpolation, blending structural
and biomedical representations. It creates syn-
thetic data points that reflect a balanced compromise between structural and biomedical
features, enabling the model to harmonize inconsistencies and achieve a unified represen-
tation.
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Table 16: Drug-like compound identification with EM-like boundary optimization on embedding space aligned
with alignment method ablations on time-based split scheme. Best performance and comparable values in bold.

Alignment method F1 (↑) IDR (↑) ICR (↓) AUROC (↑) Avg. Precision (↑)

Ours w/ Original CLIP 0.727 (0.0365) 0.670 (0.0605) 0.018 (0.0066) 0.801 (0.0506) 0.755 (0.0481)

Ours w/o S,K-mix 0.466 (0.1705) 0.745 (0.1058) 0.270 (0.3446) 0.818 (0.1825) 0.420 (0.1995)

Ours w/o KS-mix 0.604 (0.2238) 0.858 (0.0734) 0.241 (0.3782) 0.849 (0.2091) 0.576 (0.2546)

No alignment (only FP) 0.539 (0.0324) 0.571 (0.0176) 0.057 (0.0161) 0.907 (0.0144) 0.557 (0.0461)

Ours (softened CLIP + S,K,KS-mix) 0.826 (0.0486) 0.781 (0.0326) 0.012 (0.0086) 0.973 (0.0075) 0.877 (0.0419)

Ours + Multiple-EM 0.846 (0.0165) 0.799 (0.0184) 0.009 (0.0031) 0.978 (0.0029) 0.908 (0.0096)

We evaluated the performance of the model by selectively removing each component the final setup
(Table 16). The results indicate that each component contributes uniquely to the model’s perfor-
mance. Replacing the softened CLIP loss with the original CLIP loss brought 10 percent point
loss in F1 score, highlighting the importance of knowledge integration in our model’s accurate per-
formances. Removing both S-mix and K-mix resulted in a drop of 36 percent points in F1 score,
indicating their contribution to aligning embeddings across diverse drug classes and scaffolds in
each of structural and knowledge spaces. Additionally, without KS-mix, the model showed a reduc-
tion of 22 percent point in F1 score, underscoring the importance of a balanced contribution from
both structural and semantic features.

Overall, our results show that the combination of all three strategies yields the best performance,
with a synergistic effect that improves both classification accuracy and stability, effectively integrat-
ing knowledge and simultaneously resolving conflicts between structural and biomedical spaces.

E.6 FILTERING AI-GENERATED ANTI-CANCER MOLECULES

E.6.1 DETAILS ON UTILIZED PROPERTY-BASED FILTERING CRITERIA

PAINS filter The PAINS (Pan-Assay Interference Compounds) filter is designed to identify and
eliminate molecules that are likely to produce false-positive results in high-throughput screening
assays. These compounds often interfere with biological assays through non-specific mechanisms
such as covalent binding, redox activity, or fluorescence interference. The PAINS filter operates by
detecting specific substructures known to cause assay interference. In our pipeline, each compound
is scanned against a comprehensive library of PAINS substructure patterns. Compounds that do not
contain any of these substructures are considered clean and retained for further analysis. This filter
ensures that the remaining molecules have a reduced likelihood of assay-related artifacts, enhancing
the reliability of downstream predictions.

Lipinksi’s Rule of 5 Lipinski’s Rule of Five (Ro5) is a widely accepted guideline to assess the
drug-likeness of a molecule based on its physicochemical properties. The rule includes four criteria:

1. Molecular Weight must be less than or equal to 500 Daltons.

2. LogP (Partition Coefficient) must be less than or equal to 5, ensuring favorable lipophilicity.

3. No more than 5 hydrogen bond donors (sum of OH and NH groups).

4. No more than 10 hydrogen bond acceptors (sum of O and N atoms).

Compounds that adhere to all four criteria are considered to have favorable pharmacokinetic proper-
ties, such as good oral bioavailability and permeation, and are retained for further consideration. By
applying this rule, we effectively filter out molecules that are less likely to succeed in later stages of
drug development due to poor absorption or bioavailability.

Predicted IC50 Binding affinity prediction is a critical step for assessing the potential biological
activity of a compound. We employed XGBoost models to predict IC50 values, which represent the
concentration of a compound required to inhibit a biological process by 50%. These models were
trained on bioassay datasets from with IC50 values in ChEMBL database, specifically: BCR-ABL
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(CHEMBL2096618), EFGR (CHEMBL203), and CDK6 (CHEMBL2508) (accessed 16 November
2024).

The input features for these models were Morgan molecular fingerprints, which capture key struc-
tural and functional aspects of each compound. Compounds predicted to have an IC50 below 10 µM
are classified as “active” and retained. This threshold was selected to balance the need for potent bi-
ological activity with the feasibility of further development, ensuring that only promising candidates
proceed to subsequent stages of evaluation.

E.6.2 CHARACTERISTICS OF IN-DRUG-BOUNDARY COMPOUNDS

In this section, we provide detailed experimental results in investigating the potentials of our model
as a complementary data-driven filter in a AI-driven rational drug discovery pipeline. To be specific,
our model can serve as an efficient, early-stage filtering tool that can significantly narrow down the
search space in large chemical libraries, thereby easing the computational burden on subsequent
analyses.

Filtering capability of BounDr.E-integrated pipeline We applied our model to filter 10,000 AI-
generated compounds from TargetDiff, using three widely-known anti-cancer targets: BCR, EGFR
and CDK6, each targeted by cancer drugs imatinib, erlotinib and ribociclib, respectively. The results
demonstrate the outstanding filtering ratio of our approach compared to others (Table 17). Addition-
ally, by initially applying BounDr.E followed by all other filters yielded approximately 0.3% of
screened compounds, a very practical number for wet lab validations.

Table 17: Number of filtered compounds by different filters.

Filtering Method BCR-ABL EGFR CDK6

Total Generated 10,543 (100%) 12,550 (100%) 11,496 (100%)

PAINS filter 10,078 (95.7%) 11,878 (94.6%) 10,996 (95.6%)

Rule of Five 4,997 (47.5%) 6,520 (52.0%) 5,782 (50.3%)

Predicted IC50 2,786 (26.5%) 1,018 (8.10%) 4,734 (41.2%)

BounDr.E 300 (2.8%) 374 (3.00%) 264 (2.3%)

All filters−BounDr.E 1,320 (12.5%) 491 (3.9%) 2,710 (23.6%)

All filters 38 (0.36%) 17 (0.15%) 47 (0.40%)

Figure 14: Distribution of molecular properties of Targetdiff generated molecules on BCR protein pocket
(PDB: 1OPJ) and its filtered sets. BOUNDR.E-filtered set shows more distant distribution of molecular proper-
ties from the original 10k molecules.

Characteristics of In-drug-boundary compounds After screening with our drug boundary, we
retained 300, 374 and 264 in-boundary compounds for each target. For comparison, we randomly
sampled the equal amount of molecules (repeated 100 times) and measured key molecular properties
of the filtered drugs, including polar surface area (PSA), molecular weight (Mw), and logP.

Figure 14 highlights a significant shift in key drug-like properties in the BOUNDR.E-filtered com-
pounds compared to randomly sampled compounds generated for BCR. Furthermore, Table 18
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Table 18: Various traditional drug-likeness measures of Targetdiff generated molecules and filtered sets. Most
desirable values are in bold. (SAS: Synthetic Accessibility Score; Avg.: Average)

Target protein BCR (PDB: 1OPJ) EGFR (PDB: 4HJO) CDK6 (PDB: 5L2T)

Groups SAS (↓) Avg. QED (↑) Ro5 ratio (↑) SAS (↓) Avg. QED (↑) Ro5 ratio (↑) SAS (↓) Avg. QED (↑) Ro5 ratio (↑)

TargetDiff 10k 4.956 0.425 0.474 5.562 0.410 0.521 5.378 0.384 0.507

Random sampled* 4.958 0.426 0.475 5.586 0.409 0.514 5.353 0.382 0.508

BounDr.E filtered 4.930 0.433 0.532 5.477 0.413 0.546 5.523 0.392 0.532
∗ Repeated 100 times

shows a marked increase in average QED, Ro5-passing ratio and Synthetic Accessibility Score
(SAS), implying the sampled compounds are more drug-like whens cross-measured through con-
ventional metrics. In detail, the Wasserstein distance of the three properties from the starting 10k
compounds reveal that our filtering strategy significantly alters the distribution of the key molecular
properties of filtered compounds (Table 19).

Table 19: Properties of filtered Targetdiff-generated molecules and their distributional distance from to the
original distribution of 10k generated molecules for three protein targets (BCR, EGFR, CDK6). (W-distance:
1-Wasserstein distance)

Groups
W-distance from BCR-10k W-distance from EGFR-10k W-distance from CDK6-10k

Mw PSA logP Mw PSA logP Mw PSA logP

Random sampled 6.122 2.205 0.058 6.882 2.566 0.099 5.997 5.584 0.266

BounDr.E filtered 17.695 1.979 0.187 16.834 2.298 0.168 10.903 5.032 0.135

∗ Repeated 100 times

Table 20: PDF of approved drugs with the distribution of three key molecular properties on different filtered
sets, originated from 10k generated molecules for three protein targets (BCR, EGFR, CDK6). (Mw: Molecular
weight; PSA: Polar surface area)

Groups
PDF of imatinib (BCR) PDF of Erlotinib (EGFR) PDF of Ribociclib (CDK6)

Mw PSA logP Mw PSA logP Mw PSA logP

TargetDiff 10k 4.00E-03 1.02E-03 2.26E-01 2.88E-03 5.10E-03 2.14E-01 3.64E-03 9.49E-03 2.06E-01

Random sampled* 4.02E-03 1.03E-03 2.27E-01 2.84E-03 5.05E-03 2.14E-01 3.68E-03 9.57E-03 2.06E-01

BounDr.E filtered 3.94E-03 1.05E-03 2.32E-01 3.09E-03 5.32E-03 2.26E-01 3.49E-03 8.87E-01 2.18E-01
∗ Repeated 100 times

In addition, the Probability Density Function (PDF) of approved drugs, imatinib, erlotinib and ri-
bociclib among the three properties also increased, implying identifying the approved drugs among
the filtered molecules is more likely with our filtered set (Table 20).

The Wasserstein distance and Probability Density Function (PDF) of imatinib properties are mea-
sured using gaussian KDE. The properties of the approved drugs are computed with rdkit python
package.

These findings demonstrate the practical utility of our model in filtering AI-generated compounds,
enabling efficient virtual screening and improving the quality of early-stage candidates.

E.7 STATISTICAL VALIDATION RESULTS

In this section, we provide the statistical validation results for the tables in the main text (Tables
1 ∼ 5), computed with one-sided paired t-test to compare the significance compared to the best
performing models (Tables 21 to 23).
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Table 21: Statistical validation for drug-like compound identification performance with time-split setting (Table
1). Mean and standard deviation of 10 fold CV are provided. Best performance and its comparable results
(paired t-test p < 0.05) are marked in bold

.

F1 (↑) IDR (↑) ICR (↓) AUROC (↑) Avg. Precision (↑)

SVM 1.0 1.0 1.0 1.0 1.0

XGB 1.0 1.0 1.0 1.0 1.0

OCSVM 1.0 1.0 1.0 1.0 1.0

DeepSVDD 1.0 0.9999 1.0 1.0 1.0

nnPU 1.0 1.0 1.0 1.0 1.0

naive PU 1.0 1.0 1.0 1.0 1.0

DrugMetric* 1.0 1.0 1.0 1.0 1.0

DGCAN 0.9947 Best 0.9311 0.9988 0.8841

DeepDL 0.9999 0.9905 0.9999 Best 0.4459

BounDr.E Best 1.0 Best 0.07378 Best

Table 22: Statistical validation for drug-
like compound identification with EM-like
boundary optimization on embedding space
aligned with different alignment methods
(Table 2). One-sided paired t-test p-values
of 10 trials compared to the best model are
provided. Lowest and its comparable results
(paired t-test p < 0.05) are marked in bold.

Alignment method F1 (↑) ICR (↓)

No Alignment (only FP) 1.0 0.7489

Manifold Alignment 1.0 Best

CLIP 1.0 0.4685

Geodesic Mixup 0.9998 0.001325

Ours - softCLIP 0.9992 8.50E-06

Ours Best 9.86E-08

Table 23: Statistical validation for drug-like compound
identification with different classifiers on knowledge-
aligned space (Table 3). Best performance in bold and sec-
ond best underlined. One-sided paired t-test p-values of 10
trials compared to the best model are provided. Lowest and
its comparable results (paired t-test p < 0.05) are marked
in bold.

Aligned space F1 (↑) ICR (↓)

+ MLP 1.0 1.0

+ SVM Best 0.9863

+ XGB 1.0 1.0

+ naive PU 1.0 0.9999

+ DeepSVDD 1.0 1.0

+ Ours − EM 1.0 0.9978

+ Ours 0.9816 Best

Table 24: Statistical validation for false-positive rate of toxic compound groups (Table 4). One-sided paired
t-test p-values of 10 trials compared to the best model are provided. Lowest and its comparable results (paired
t-test p < 0.05) are marked in bold.

Withdrawn Hepatotoxic Cardiotoxic Carcinogenic

XGB 1.0 1.0 1.0 1.0

OCSVM 1.0 Best 1.0 1.0

nnPU 1.0 1.0 1.0 1.0

DrugMetric N/A 0.9616 0.9995 1.0

DGCAN 1.0 1.0 1.0 1.0

DeepDL 1.0 1.0 1.0 1.0

BOUNDR.E Best 0.9875 Best Best
∗DrugMetric fails to infer scaffolds not present in approved drug and ZINC datasets
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