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ABSTRACT

Tabular data have been playing a mostly important role in diverse real-world fields,
such as healthcare, engineering, finance, etc. With the recent success of deep
learning, many tabular machine learning (ML) methods based on deep networks
(e.g., Transformer, ResNet) have achieved competitive performance on tabular
benchmarks. However, existing deep tabular ML methods suffer from the rep-
resentation entanglement and localization, which largely hinders their prediction
performance and leads to performance inconsistency on tabular tasks. To over-
come these problems, we explore a novel direction of applying prototype learn-
ing for tabular ML and propose a prototype-based tabular representation learning
framework, PTARL, for tabular prediction tasks. The core idea of PTARL is to
construct prototype-based projection space (P-Space) and learn the disentangled
representation around global data prototypes. Specifically, PTARL mainly in-
volves two stages: (i) Prototype Generation, that constructs global prototypes as
the basis vectors of P-Space for representation, and (ii) Prototype Projection, that
projects the data samples into P-Space and keeps the core global data information
via Optimal Transport. Then, to further acquire the disentangled representations,
we constrain PTARL with two strategies: (i) to diversify the coordinates towards
global prototypes of different representations within P-Space, we bring up a diver-
sification constraint for representation calibration; (ii) to avoid prototype entangle-
ment in P-Space, we introduce a matrix orthogonalization constraint to ensure the
independence of global prototypes. Finally, we conduct extensive experiments in
PTARL coupled with state-of-the-art deep tabular ML models on various tabular
benchmarks and the results have shown our consistent superiority.

1 INTRODUCTION

Tabular data, usually represented as tables in a relational database with rows standing for the data
samples and columns standing for the feature variables (e.g., categorical and numerical features), has
been playing a more and more vital role across diverse real-world fields, including healthcare (Her-
nandez et al., 2022), engineering (Ye et al., 2023), advertising (Frosch et al., 2010), finance (Assefa
et al., 2020), etc. Starting from traditional machine learning methods (e.g., linear regression (Su
et al., 2012), logistic regression (Wright, 1995)) to tree-based methods (e.g. XGBoost (Chen &
Guestrin, 2016), LightGBM (Ke et al., 2017)), tabular machine learning has received broad atten-
tion from researchers for many decades.

More recently, with the great success of deep networks in computer vision (CV) (He et al., 2016) and
natural language processing (NLP) (Devlin et al., 2018), numerous methods based on deep learning
have been proposed for tabular machine learning (ML) to accomplish tabular prediction tasks (Song
et al., 2019; Huang et al., 2020; Gorishniy et al., 2021; Wang et al., 2021). For example, (Song
et al., 2019) proposed AutoInt based on transformers, (Gorishniy et al., 2021) further improved
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AutoInt through better token embeddings, and (Wang et al., 2021) proposed DCN V2 that consists
of an MLP-like module and a feature crossing module.

While the recent deep learning solutions have performed competitively on tabular benchmarks (Gor-
ishniy et al., 2021; Shwartz-Ziv & Armon, 2022), there still exists an performance inconsistency
in their predictions on tabular tasks: existing state-of-the-art deep tabular ML models (e.g., FT-
Transformer (Gorishniy et al., 2021), ResNet (Gorishniy et al., 2021)) cannot perform consistently
well on different tasks, such as regression, classification, etc. We investigate the learned patterns
of deep tabular ML models and identify two inherent characteristic hindering prediction: (i) rep-
resentation entanglement: the learned representations of existing deep tabular methods are usually
entangled and thus cannot support clear and accurate decision-making, and (ii) representation local-
ization: each data sample are represented distinctively, making the global data structures over data
samples are overlooked.

To better overcome the aforementioned challenges, we explore the direction of applying prototype
learning for tabular modeling, and accordingly we propose PTARL, a prototype-based tabular rep-
resentation learning framework for tabular ML predictions. The core idea of PTARL is to develop
a prototype-based projection space (P-Space) for deep tabular ML models, in which the disentan-
gled representations1 around pre-defined global prototypes can be acquired with global tabular data
structure to enhance the tabular predictions. Specifically, our PTARL mainly involves two stages,
(i) Prototype Generating and (ii) Representation Projecting. In the first stage, we construct K global
prototypes for tabular representations, each of which is regarded as the basis vector for the P-Space
to stimulate disentangled learning for more global data representations. We initialize the global pro-
totypes with K-Means clustering (Hartigan & Wong, 1979) to facilitate the efficiency of prototype
learning. In the second stage, we project the original data samples into P-Space with the global
prototypes to learn the representations with global data structure information. To learn the global
data structure, we propose a shared estimator to output the projected representations with global
prototypes; besides, we propose to utilize Optimal Transport (Peyré et al., 2017) to jointly optimize
the learned representations in P-Space with global prototypes and original representations by deep
tabular models, to preserve original data structure information.

In addition to employing global prototypes, we propose two additional strategies to further dis-
entangle the learned representations in PTARL: (i) Coordinates Diversifying Constraint motivated
by contrastive learning that diversifies the representation coordinates of data samples in P-Space
to represent data samples in a disentangled manner, and (ii) Matrix Orthogonalization Constraint
that makes the defined global prototypes in P-Space orthogonal with each other to ensure the in-
dependence of prototypes and facilitate the disentangled learning. In brief, our contribution can be
summarized as follows:

• We investigated the learned patterns of deep tabular models and explore a novel direction of ap-
plying prototype learning for tabular machine learning to address representation entanglement
and localization.

• We propose a model-agnostic prototype-based tabular representation learning framework, PTARL
for tabular prediction tasks, which transforms data into the prototype-based projection space and
optimize representations via Optimal Transport.

• We propose two different strategies, the Coordinates Diversifying Constraint and the Matrix Or-
thogonalization Constraint to make PTARL learn disentangled representations.

• We conducted extensive experiments in PTARL coupled with state-of-the-art (SOTA) deep tabular
ML models on various tabular benchmarks and the comprehensive results along with analysis and
visualizations demonstrate our effectiveness.

2 RELATED WORK

Deep Learning for Tabular machine learning. Starting from statistical machine learning methods
(e.g., linear regression (Su et al., 2012), logistic regression (Wright, 1995)) to tree-based methods

1In our paper, “disentangled representations” means the representations are more separated and discrimina-
tive for supervised tabular modeling tasks, which is different from disentanglement in deep generative models.
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(e.g. XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017)), traditional machine learn-
ing methods are broadly used for tabular machine learning. More recently, inspired by the success
of of deep learning in computer vision (CV) (He et al., 2016) and natural language processing
(NLP) (Devlin et al., 2018), numerous methods based on deep learning have been proposed for tab-
ular machine learning to accomplish tabular prediction tasks (Song et al., 2019; Huang et al., 2020;
Gorishniy et al., 2021; Wang et al., 2021). Among these works, Wang et al. (2021) proposed DCN
V2 that consists of an MLP-like module and a feature crossing module; AutoInt (Song et al., 2019)
leveraged the Transformer architecture to capture inter-column correlations; FT-Transformer (Gor-
ishniy et al., 2021) further enhanced AutoInt’s performance through improved token embeddings;
ResNet for tabular domain (Gorishniy et al., 2021) also achieved remarkable performance. How-
ever, these methods may fail to capture the global data structure information, and are possibly af-
fected by the representation coupling problem. Therefore, they cannot perform consistently well on
different tasks, e.g. regression and classification. Recently, another line of research has tried to use
additional information outside target dataset to enhancing deep learning for tabular data. TransTab
(Wang & Sun, 2022) incorporates feature name information into Transformer to achieve cross table
learning. XTab (Zhu et al., 2023) pretrains Transformer on a variety of datasets to enhance tabular
deep learning. Different from this line, PTARL does not need additional information outside target
dataset. Note that PTARL, as a general representation learning pipeline, is model-agnostic such that
it can be integrated with many of the above deep tabular ML models to learn better tabular data
representations.

Prototype Learning. Typically, a prototype refers to a proxy of a class and it is computed as the
weighted results of latent features of all instances belonged to the corresponding class. Prototype-
based methods have been widely applied in a range of machine learning applicaitons, like computer
vision (Yang et al., 2018; Li et al., 2021; Nauta et al., 2021; Zhou et al., 2022), natural language
processing (Huang et al., 2012; Devlin et al., 2018; Zalmout & Li, 2022). In the field of CV, pro-
totype learning assigns labels to testing images by computing their distances to prototypes of each
class. This method has been proven to make model to be more resilient and consistent when dealing
with few-shot and zero-shot scenarios (Yang et al., 2018). Likewise, in the field of natural language
processing (NLP), taking the mean of word embeddings as prototypes for sentence representations
has also demonstrated robust and competitive performance on various NLP tasks.

The mentioned approachs generally employ the design of prototype learning to facilitate the sharing
of global information across tasks, enabling rapid adaptation of new tasks (Huang et al., 2012;
Hoang et al., 2020; Li et al., 2021; Zhou et al., 2022). Similarly, in tabular deep learning, the global
information of data samples is crucial for inferring labels of each data sample (Zhou et al., 2020;
Du et al., 2021). This inspired us to incorporate prototype learning into our proposed framework for
capturing global information and leveraging it to enhance the tabular learning performance.

3 BACKGROUND

Notation. Denote the i-th sample as (xi, yi), where xi = (x
(num)
i , x

(cat)
i ) ∈ X represents numerical

and categorical features respectively and yi ∈ Y is the corresponding label. A tabular dataset
D = {X,Y } is a collection of n data samples, where X = {xi}ni=1 and Y = {yi}ni=1. We
use Dtrain to denote training set for training, Dval to denote validation set for early stopping and
hyperparameter tuning, and Dtest to denote test set for final evaluation. Note that in this paper we
consider deep learning for supervised tabular prediction tasks: binary classification Y = {0, 1},
multiclass classification Y = {1, ..., c} and regression Y = R. The goal is to obtain an accurate
deep tabular model F (·; θ) : X→ Y trained on Dtrain.

Optimal Transport. Although Optimal Transport (OT) possesses a rich theoretical foundation, we
focus our discussion solely on OT for discrete probability distributions, please refer to (Peyré et al.,
2017) for more details. Let us consider p and q as two discrete probability distributions over an
arbitrary space S ∈ Rd, which can be expressed as p =

∑n
i=1 aiδxi

and q =
∑m

j=1 bjδyj
. In this

case, a ∈
∑n and b ∈

∑m, where
∑n represents the probability simplex in Rn. The OT distance

between p and q is defined as:

OT(p, q) = min
T∈Π(p,q)

⟨T,C⟩, (1)
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where ⟨·, ·⟩ is the Frobenius dot-product and C ∈ Rn×m
≥0 is the transport cost matrix constructed by

Cij = Distance(xi, yj). The transport probability matrix T ∈ Rn×m
≥0 , which satisfies Π(p, q) :=

{T|
∑n

i=1 Tij = bj ,
∑m

j=1 Tij = ai}, is learned by minimizing ⟨T,C⟩. Directly optimizing Eq. 1
often comes at the cost of heavy computational demands, and OT with entropic regularization is
introduced to allow the optimization at small computational cost in sufficient smoothness (Cuturi,
2013).

4 PROPOSED METHOD: PTARL

Figure 1: The visualization of representations of deep network w/o and w/ PTARL with varying model layer
depths.

4.1 MOTIVATION AND OVERALL PIPELINE

In the context of tabular data, the intrinsic heterogeneity presents a challenge for achieving satisfac-
tory performance using deep models. As shown in the first subfigure of Fig. 1, the latent representa-
tions learned by the FT-Transformer (Gorishniy et al., 2021) (one of the SOTA deep tabular models)
on a binary classification dataset Adult (Kohavi et al., 1996) are entangled. To validate whether it is
caused by the limitation of model capacity, we gradually increase FT-Transformer’s layer depths and
visualize the corresponding latent representation by T-SNE (Van der Maaten & Hinton, 2008). As
shown in the first row of Fig. 1, with a sequential increase in the number of model layers, we could
observe the representation entanglement phenomenon has not be mitigated while gradually aug-
menting the model capacity. In addition, our empirical observations indicate that this phenomenon
also exists for other deep tabular models and we recognize that the representation entanglement is
the inherent limitation of deep models in tabular domain. Moreover, the learned representations
also lack global data structure information, which failed to model the shared information among
the data instances. Compared to other domains like CV and NLP, especially in the heterogeneous
tabular domain, samples overlook the statistical global structure information among the total dataset
would drop into representation localization. Furthermore, recent researches (Gorishniy et al., 2021;
Shwartz-Ziv & Armon, 2022) show that different types of data may require varying types of deep
models (e.g. Transformer based and MLP based architecture).

To address the aforementioned limitations of deep models for the tabular domain, we apply proto-
type learning into tabular modeling and propose the prototype-based tabular representation learning
(PTARL) framework. Note that PTARL, as a general representation learning framework, is model-
agnostic such that it can be coupled with any deep tabular model F (·; θ) to learn better tabular data
representations in our redefined Prototype-based Projection Space, which is the core of PTARL. In
the following, we will elaborate on the specific learning procedure of our PTARL in Section 4.2;
then, we will provide two constraints to further constraint PTARL for representation calibration and
prototype independence in Section 4.3. As shown in the second row of Fig. 1, with PTARL, the
latent space is calibrated to make the representation disentangled. Fig. 2 gives an overview of the
proposed PTARL. Before the introduction of PTARL, we first present the formal definition of the
prototype-based projection space as follows:
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Figure 2: The PTARL framework. The original representation of each sample by backbone would be pushed
forward to the corresponding projection representation by minimizing the Optimal Transport Distance. The
two sentences “coordinates diversifying” and “prototypes orthogonalization” correspond to two constraints for
representation disentanglement.

Definition 1. Prototype-based Projection Space (P-Space). Given a set of global prototypes
B = {βk}Kk=1 ∈ RK×d where K is the number of prototypes and βk is the representation of
the k-th prototype with d as the hidden dimension, we define the P-Space as a projection space
consisting of the global prototypes B as the basis vectors for representation. For example, given a
representation in P-Space with coordinates denoted as r = {rk}Kk=1 ∈ RK×1, each representation
in P-Space can be formulated as

∑K
k=1 r

kβk.

4.2 PROTOTYPE-BASED TABULAR REPRESENTATION LEARNING (PTARL)

PTARL consists of the following two stages: (i) prototype generating, that constructs global pro-
totypes of P-Space, and (ii) representation projecting, that projects F (·; θ)’s representations into
P-Space to capture global data structure information via optimal transport.

Global Prototypes Initialization. To start with, let us rewrite the deep tabular network F (·; θ) as
Gh(Gf (·; θf ); θh), where Gf (·; θf ) is the backbone and Gh(·; θh) is the head parameterized by θf
and θh respectively. To obtain global prototypes initialization, we first train F (·; θ) by:

minLtask(X,Y ) = min
θf ,θh

L(Gh (Gf (X; θf ); θh) , Y ), (2)

where L is the loss function, and then propose applying K-Means clustering (Hartigan & Wong,
1979) to the output of the trained backbone Gf (X; θf ):

min
C∈RK×d

1

n

n∑
i=1

min
ỹi∈{0,1}K

∥Gf (xi; θf )− ỹi
TC∥, subject to ỹi

T1K = 1, (3)

where 1K ∈ RK is a vector of ones, ỹi is the centroid index and C is the centroid matrix. The
centroid matrix C would be served as the initialization of prototypes B to guide the stage (ii) train-
ing process of PTARL. The advantage of using K-Means to generate the initialization of global
prototypes lies in (a) enabling the preservation of global data structure information from the trained
F (·; θ) in stage (i), despite the presence of noise, and (b) facilitating a faster convergence of the
stage (ii) training process compared to random initialization.

Representation Projecting with Global Data Information via Optimal Transport. After con-
structing the global prototypes B, we re-initialize the parameters of F (·; θ) and start to project
F (·; θ)’s representation into P-Space via PTARL to capture global data structure information. To
obtain the projection of i-th instance representation Gf (xi; θf ), we use a shared estimator ϕ(·; γ)
with learnable γ to calculate its coordinate ri by ϕ(Gf (xi; θf ); γ). Mathematically, our formulation
for the i-th projection representation distribution takes the following form: Qi =

∑K
k=1 r

k
i δβk

. On
the other hand, the i-th latent representation Gf (xi; θf ) could be viewed as the empirical distribution
over single sample representation: Pi = δGf (xi;θf ).

Since all samples are sampled from the same data distribution, it is reasonable to assume that there
exists shared structural information among these samples. To capture the shared global data structure
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information, we formulate the representation projecting as the process of extracting instance-wise
data information by Gf (xi; θf ) to Pi, and then pushing Pi towards Qi to encourage each prototype
βk to capture the shared global data structure information, a process facilitated by leveraging the
optimal transport (OT) distance:

minLprojecting(X,B) = min
1

n

n∑
i=1

OT(Pi, Qi) = min
θf ,γ,B

1

n

n∑
i=1

min
Ti∈Π(Pi,Qi)

⟨Ti,Ci⟩, (4)

where C is the transport cost matrix calculated by cosine distance and T is the transport probability
matrix, please refer to Section 3 for more details about OT. We provide the more detailed explanation
of the optimization process of Eq. 4 in Appendix A.8. In contrast to the latent space of F (·; θ),
the P-Space consists of explicitly defined basis vectors denoted as global prototypes, thus it is more
accurate to give predictions on representations within P-Space. We incorporate the label information
by re-defining Eq. 2:

minLtask(X,Y ) = min
θf ,θh,γ,B

1

n

n∑
i=1

L(Gh(

K∑
k=1

rki βk; θh), yi), (5)

By representing each projected representation using the shared basis vectors (global prototypes B)
within the P-Space, we can effectively model this global data structure information to effectively
solve one of the deep tabular network’s inherent characteristic: sample localization. The representa-
tion entanglement problem still exists within P-Space, and we will introduce the designed constraints
to make the representation disentangled in the following section.

4.3 CONSTRAINTS FOR PTARL VIA COORDINATES DIVERSIFYING AND PROTOTYPE
MATRIX ORTHOGONALIZATION

P-Space Coordinates Diversifying Constraint. Directly optimizing the above process could po-
tentially result in a collapse of coordinates generating, which entails all projection representations
exhibiting similar coordinates within P-Space. To alleviate it, we design a constraint to diversifying
the coordinates towards global prototypes within P-Space to separate the representation into several
disjoint regions, where representations with similar labels are in the same regions. Specifically, for
classification, we categorize samples within the same class as positive pairs (Khosla et al., 2020),
while those from different classes form negative pairs. In the context of regression, we segment the
labels within a minibatch into t sub-intervals as indicated by t = 1 + log(nb), where nb is bach-
size. Samples residing within the same bin are regarded as positive pairs, while those from distinct
bins are regarded as negative pairs, thereby facilitating the formation of pairings. This process is
achieved by minimizing:

Ldiversifying(X) = −
nb∑
i=1

nb∑
j=1

1{yi, yj ∈ positive pair} log exp (cos(ri, rj))∑nb

i=1

∑nb

j=1 exp (cos(ri, rj))
(6)

This constraint is motivated by contrastive learning (CL) (Khosla et al., 2020). Distinct from con-
ventional contrastive learning methods in tabular domain that directly augment the variety of sample
representations (Wang & Sun, 2022; Bahri et al., 2021), it diversifies the coordinates of latent rep-
resentations within P-Space to calibrate the entangled latent representations. In this context, the
use of prototypes as basis vectors defines a structured coordinate system in the P-Space, thereby
facilitating the enhancement of generating disentangled representations among samples, as opposed
to directly optimizing their representations. To improve computational efficiency, practically, we
randomly select 50% of the samples within a minibatch. We posit that this approach can mitigate
computational complexity while makes it easier to approximate the model to the optimized state.

Global Prototype Matrix Orthogonalization Constraint. Since the P-Space is composed of a set
of global prototypes, to better represent the P-Space, these global prototypes should serve as the basis
vectors, with each prototype maintaining orthogonal independence from the others. The presence
of interdependence among prototypes would invariably compromise the representation efficacy of
these prototypes. To ensure the independence of prototypes from one another, the condition of
orthogonality must be satisfied. This mandates the following approach:

minLorthogonalization(B) = min(
∥M∥1
∥M∥22

+max(0, |K − ∥M∥1|)), (7)
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where M ∈ [0, 1]K×K and Mij = ∥ cos(βi, βj)∥1. The first term ∥M∥1

∥M∥2
2

forces the M to be sparse,
i.e., any element Mij = ∥ cos(βi, βj)∥1 to be close to 0 (βi and βj is orthogonal) or 1, while the
second term motivates ∥M∥1 → K, i.e., only K elements close to 1. Since Mii = ∥ cos(βi, βi)∥1 =
1,∀i ∈ {1, 2, ...,K}, it would force Mij = ∥ cos(βi, βj)∥1,∀i, j ∈ {1, 2, ...,K}, i ̸= j to be 0, i.e.
each prototype maintains orthogonal independence from the others.

5 EXPERIMENT & ANALYSIS

5.1 EXPERIMENT SETUP

Datasets. As described before, it is challenging for deep networks to achieve satisfactory perfor-
mance due to heterogeneity, complexity, and diversity of tabular data. In this paper, we consider
a variety of supervised tabular deep learning tasks with heterogeneous features, including binary
classification, multiclass classification, and regression. Specifically, the tabular datasets include:
Adult (AD) (Kohavi et al., 1996), Higgs (HI) (Vanschoren et al., 2014), Helena (HE) (Guyon et al.,
2019), Jannis (JA) (Guyon et al., 2019), ALOI (AL) (Geusebroek et al., 2005), California housing
(CA) (Pace & Barry, 1997). The dataset properties are summarized in Appendix A.1. We split each
dataset into training, validation and test set by the ratio of 6:2:2. For the data pre-processing, please
refer to Appendix A.1 for more details.

Baseline Deep Tabular Models. As the PTARL is a model-agnostic pipeline, we include 6 main-
stream deep tabular models to test PTARL’s applicability and effectiveness to different predictors
with diverse architectures, which are as follows: MLP (Taud & Mas, 2018), ResNet (He et al.,
2016), SNN (Klambauer et al., 2017), DCNV2 (Wang et al., 2021), AutoInt (Song et al., 2019), and
FT-Transformer (Gorishniy et al., 2021). More details could be found in Appendix A.2.

PTARL Details. The PTARL is a two-stage model-agnostic pipeline that aims to enhance the
performance of any deep tabular model F (·; θ) without altering its internal architecture. The first
stage is to construct the core of PTARL, i.e. P-Space, that consists of a set of global prototypes
B. The number of global prototypes K is data-specific, and we set K to the ceil of log(N), where
N is the total number of features. The estimator ϕ(·; γ), which is used to calculate the coordinates
of representations within P-Space, is a simple 3-layer fully-connected MLP. To ensure fairness, in
the second stage of training, we inherit the hyperparameters of F (·; θ) (the learnable θ would be
re-initialized). We provide the PTARL workflow in Appendix A.3. Following the common practice
of previous studies, we use Mean-Square Error (MSE) (lower is better) to evaluate the regression
tasks, Accuracy (higher is better) to evaluate binary and multiclass classification tasks. To reduce
the effect of randomness, the reported performance is averaged over 10 independent runs.

5.2 EMPIRICAL RESULTS

PTARL generally improves deep tabular models’ performance. From Table 1 we can observe
that PTARL achieves consistent improvements over the baseline deep models in all settings. It
achieves a more than 4% performance improvement for all settings, whether using Accuracy or
RMSE as the evaluation metric. In addition, we conduct Wilcoxon signed-rank test (with α = 0.05)
(Woolson, 2007) to measure the improvement significance. In all settings, the improvement of
PTARL over deep models is statistically significant at the 95% confidence level. This demonstrates
the superior adaptability and generality of PTARL to different models and tasks. In addition, the
results also indicate that there is no deep model that consistently outperforms others on all tasks,
i.e., the universal winner solution does not exist, which is aligned with the findings in previous
works (Gorishniy et al., 2021).

Ablation results. We further conduct ablation study to demonstrate the effectiveness of key com-
ponents of PTARL. Specifically, we conduct a comparison between the deep model coupled with
PTARL and three variants: (i) PTARL w/o O, that removes the global prototype matrix orthogonal-
ization constraint, (ii) PTARL w/o O, D, that further removes the P-Space coordinates diversifying
constraint and (iii) w/o PTARL, that is identical to directly training deep models by Eq. 2. The
results in Table 2 show that the removal of any of the components degrades the performance of
PTARL. The comparison between PTARL w/o O, D and w/o PTARL indicates that by projecting
deep tabular model’s representation into P-Space, the shared global data structure information are
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Table 1: Tabular prediction performance of PTARL over different deep tabular models for different tasks. “↑”
represents higher evaluation metric is better for classification, “↓” represents lower evaluation metric is better
for regression. The best results are highlighted in bold. “Win” represents the number of datasets that one
scheme achieves the best.

MLP +PTaRL DCNV2 +PTaRL SNN +PTaRL ResNet +PTaRL AutoInt +PTaRL FT-Trans +PTaRL

AD ↑ 0.825 0.868 0.826 0.867 0.825 0.859 0.813 0.862 0.823 0.871 0.827 0.871
HI ↑ 0.681 0.723 0.681 0.731 0.69 0.724 0.682 0.729 0.685 0.738 0.687 0.738
HE ↑ 0.352 0.396 0.34 0.389 0.338 0.394 0.354 0.399 0.338 0.396 0.352 0.397
JA ↑ 0.672 0.71 0.662 0.723 0.689 0.732 0.666 0.723 0.653 0.722 0.689 0.738
AL ↑ 0.917 0.964 0.905 0.959 0.917 0.961 0.919 0.964 0.894 0.955 0.924 0.97
CA ↓ 0.518 0.489 0.502 0.465 0.898 0.631 0.537 0.498 0.507 0.464 0.486 0.448
Win 0 6 0 6 0 6 0 6 0 6 0 6

Table 2: Ablation results on the effects of different components in PTARL. The experiment is conducted on
FT-Transformer. The best results are highlighted in bold.

AD ↑ HI ↑ HE ↑ JA ↑ AL ↑ CA ↓ Win

FT-Transformer + PTARL 0.871 0.738 0.397 0.738 0.97 0.448 6
PTARL w/o O 0.859 0.722 0.383 0.725 0.96 0.453 0

PTARL w/o O, D 0.841 0.704 0.369 0.702 0.94 0.466 0
w/o PTARL 0.827 0.687 0.352 0.689 0.924 0.486 0

captured by global prototypes to solve the representation localization to enhance the representation
quality. In addition, diversifying the representation coordinates in P-Space and orthogonalizing the
global prototypes of P-Space could both enable the generation of disentangled representations to al-
leviate the representation entanglement problem. Besides, we also provide additional ablation tests,
including validating the effectiveness of K-Means as the global prototypes initialization method and
the effectiveness of Optimal Transport (OT) as the distribution measurement in Table 3. The result
of initialization method is aligned to our explanation for the advantage of K-Means in Section 4.2. In
addition, the result of distribution measurement indicates that compared to Manhattan distance and
Euclidean distance, OT measures the minimum distance between two distributions through point by
point calculation, which could better capture the data structure between two distributions. Due to
the space limit, we leave more details and results about the above ablation study to Appendix A.4.

Computational efficiency and sensitivity analysis. In our paper, while Optimal Transport (OT)
demonstrates strong computational capabilities for measuring the minimum distance between two
distributions, it does not significantly increase computational complexity. We include the computa-
tional efficiency details in Appendix A.5. In addition, we also incorporate the sensitivity analysis for
the weights of different loss functions in Appendix A.6. Since the core of PTARL is the constructed
P-Space, we further explore PTARL’s performance under different global prototypes number in
Appendix A.6.

5.3 PTARL PROCEDURE ANALYSIS AND VISUALIZATION

PTARL enables the generation of disentangled representation. Fig. 3 shows the learned repre-
sentation of deep model F (·; θ) w/ and w/o PTARL on binary and multiclass classification tasks.
The first row shows that different deep models suffer from the representation entanglement problem
and this is aligned with our motivation. With PTARL, representations within P-Space are separated
into several disjoint regions, where representations with similar labels are in the same regions. This

Table 3: Ablation results on the effects of different prototype initialization and distribution measurement in
PTARL. The experiment is conducted on FT-Transformer. The best results are highlighted in bold.

Initialization AD ↑ HI ↑ HE ↑ JA ↑ AL ↑ CA ↓
PTARL w/ K-Means (Ours) 0.871 0.738 0.397 0.738 0.97 0.448

PTARL w/ Random 0.863 0.721 0.389 0.729 0.951 0.462

Distribution measurement AD ↑ HI ↑ HE ↑ JA ↑ AL ↑ CA ↓
PTARL w/ OT (Ours) 0.871 0.738 0.397 0.738 0.97 0.448

PTARL w/ Manhattan distance 0.859 0.729 0.382 0.721 0.953 0.454
PTARL w/ Euclidean distance 0.862 0.713 0.390 0.724 0.949 0.459
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Figure 3: Visualization of learned representations of deep tabular models w/ and w/o PTARL.

demonstrates PTARL’ ability to generate disentangled representations for tabular deep learning.
PTARL enables P-Space coordinates diver-
sifying. To validate whether the learned coor-
dinates of representation within P-Space have
been diversified, we average the coordinates
of data points which are belong to the same
category and visualize them in Fig. 4. With-
out the Diversifying Constraint, coordinates of
different categories appear similar, but incor-
porating the constraint enhances the diversity
between category coordinates. PTARL en-
ables the orthogonalization of global proto-
types within P-Space. To explore the struc-
ture of constructed P-Space, we visualize the
relation between any (βi, βj) by calculating
∥ cos(βi, βj)∥1 in Fig. 5. Each prototype main-
tains orthogonal independence from the others,
which demonstrates the effectiveness of proto-
type matrix orthogonalization constraint.

Figure 4: P-Space coordinates diversifying visualiza-
tion of FT-Transformer on HI w/o and w/ Coordinates
Diversifying Constraint (D). The first column and sec-
ond column correspond to the average coordinates val-
ues of two different categories, the third column repre-
sents the difference of the two categories.

Figure 5: Global prototypes orthogonalization visualization of MLP on two different tasks.

6 CONCLUSION

In this paper, we have investigated the learned patterns of deep tabular models and identified two
inherent representation challenges hindering satisfactory performance, i.e. sample localization and
representation entanglement. To handle these challenges, we proposed PTARL, a prototype-based
tabular representation learning pipeline that can be coupled with any deep tabular model to enhance
the representation quality. The core of the PTARL is the constructed P-Space, that consists of a
set of global prototypes. PTARL mainly involves two stages, i.e. global prototype generation and
projecting representations into P-Space, to capture the global data structure information. Besides,
two constraints are designed to disentangle the projected representations within P-Space. The em-
pirical results on various real world tasks demonstrated the effectiveness of PTARL for tabular deep
learning. Our work can shed some light on developing better algorithms for similar tasks.
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A APPENDIX

In this section, we provide details of the datasets, baseline methods, the implementation of our
method, comprehensive experimental results and visualizations. More detailed information is avail-
able at https://github.com/HangtingYe/PTaRL.

A.1 DATASETS DETAILS.

Data pre-processing. Due to the property of neural networks, data pre-processing is important,
especially for tabular data. To handle categorical features, we adopt an integer encoding scheme,
where each category within a column is uniquely mapped to an integer to index the embedding
in lookup table. Furthermore, we maintain consistent embedding dimensions for all categorical
features. For numerical features, we apply column-wise normalization method. In regression tasks,
we also apply the normalization to the labels. To ensure fair comparisons, we adhere to identical
preprocessing procedures across all deep networks for each dataset. Following (Gorishniy et al.,
2021), we use the quantile transformation from the Scikit-learn library (Pedregosa et al., 2011). We
apply Standardization to HE and AL. The latter one represents image data, and standardization is a
common practice in computer vision.

Table 4: Tabular data properties. Accuracy is used for binary and multiclass classification, RMSE
denotes Root Mean Square Error for regression.

AD HI HE JA AL CA

Objects 48842 98050 65196 83733 108000 20640
Numerical, Categorical 6, 8 28, 0 27, 0 54, 0 128, 0 8, 0

Classes 2 2 100 4 1000 -
metric Accuracy Accuracy Accuracy Accuracy Accuracy RMSE

A.2 BASELINE DEEP TABULAR MODELS DETAILS.

• MLP (Taud & Mas, 2018).
• DCNV2 (Wang et al., 2021). Consists of an MLP-like module and the feature crossing module (a

combination of linear layers and multiplications).
• SNN (Klambauer et al., 2017). An MLP-like architecture with the SELU activation that enables

training deeper models.
• ResNet (He et al., 2016). The key innovation is the use of residual connections, also known as

skip connections or shortcut connections. These connections enable the network to effectively
train very deep neural networks, which was challenging before due to the vanishing gradient
problem. In this paper, we use the ResNet version introduced by (Gorishniy et al., 2021).

• AutoInt (Song et al., 2019). Transforms features to embeddings and applies a series of attention-
based transformations to the embeddings.

• FT-Transformer (Gorishniy et al., 2021). FT-Transformer is introduced by (Gorishniy et al., 2021)
to further improved AutoInt through better token embeddings.

A.3 PTARL WORKFLOW.

13
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Algorithm 1 PTARL algorithm workflow.

Input: Input data D = {X,Y }, deep tabular model F (·; θ) = Gh (Gf (·; θf ); θh), coordinates
estimator ϕ(·; γ)

1: Phase 1: prototype generating
2: Train F (·; θ) by minLtask(X,Y ) = minθf ,θh L(Gh (Gf (X; θf ); θh) , Y ) (Eq.2)
3: Obtain global prototypes B = {βk}Kk=1 ∈ RK×d through applying K-Means clustering to the

output of the trained backbone Gf (X; θf )
4: Phase 2: representation projecting
5: Re-initialize the parameters of F (·; θ) = Gh (Gf (·; θf ); θh)
6: while B, θf , θh, γ has not converged do
7: Sample minibatch of size nb from D
8: for i← 1 to nb do
9: Obtain i-th instance representation distribution by Pi = δGf (xi;θf )

10: Calculate i-th instance projection representation coordinates ri = ϕ(Gf (xi; θf ); γ)

11: Obtain i-th instance projection representation distribution: Qi =
∑K

k=1 r
k
i δβk

12: Calculate the OT distance between Pi and Qi: OT(Pi, Qi) = minTi∈Π(Pi,Qi)⟨Ti,Ci⟩
13: end for
14: Average the OT distance within the minibatch to compute Lprojecting(X,B) =

1
nb

∑nb

i=1 OT(Pi, Qi) =
1
nb

∑nb

i=1 minTi∈Π(Pi,Qi)⟨Ti,Ci⟩ (Eq.4)

15: Compute Ltask(X,Y ) = 1
nb

∑nb

i=1 L(Gh(
∑K

k=1 r
k
i βk; θh), yi) (Eq.5)

16: Random select 50% of the samples within minibatch to compute Ldiversifying(X) =

−
∑nb

i=1

∑nb

j=1 1{yi, yj ∈ positive pair} log exp (cos(ri,rj))∑nb
i=1

∑nb
j=1 exp (cos(ri,rj))

(Eq.6)

17: Compute Lorthogonalization(B) = (∥M∥1

∥M∥2
2
+max(0, |K − ∥M∥1|)) (Eq.7)

18: Update B, θf , θh, γ by minimizing O = Ltask + Lprojecting + Ldiversifying +
Lorthogonalization through gradient descent

19: end while
20: return Gf , Gh, ϕ,B
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A.4 COMPARISON WITH BASELINE DEEP NETWORKS.

Table 5: Ablation results on the effects of different components in PTARL.

AD ↑ HI ↑ HE ↑ JA ↑ AL ↑ CA ↓ Win

MLP + PTARL 0.868 0.723 0.396 0.71 0.964 0.489 6
PTARL w/o O 0.856 0.711 0.381 0.703 0.955 0.496 0

PTARL w/o O, D 0.838 0.696 0.364 0.683 0.937 0.511 0
w/o PTARL 0.825 0.681 0.352 0.672 0.917 0.518 0

ResNet + PTARL 0.862 0.729 0.399 0.723 0.964 0.498 5
PTARL w/o O 0.848 0.712 0.383 0.707 0.949 0.493 1

PTARL w/o O, D 0.83 0.698 0.368 0.69 0.933 0.518 0
w/o PTARL 0.813 0.682 0.354 0.666 0.919 0.537 0

FT-Transformer + PTARL 0.871 0.738 0.397 0.738 0.97 0.448 6
PTARL w/o O 0.859 0.722 0.383 0.725 0.96 0.453 0

PTARL w/o O, D 0.841 0.704 0.369 0.702 0.94 0.466 0
w/o PTARL 0.827 0.687 0.352 0.689 0.924 0.486 0

A.5 COMPUTATIONAL EFFICIENCY DETAILS.

To approximate the optimal transport (OT) distance between two discrete distributions of size n,
the time complexity bound scales as n2 log(n)/ϵ2 to reach ϵ-accuracy with Sinkhorn’s algorithm, as
demonstrated by (Chizat et al., 2020; Altschuler et al., 2017). In this paper, for each instance xi, we
pushing Gf (xi; θf )’s representation distribution Pi to the corresponding projection representation
distribution Qi by minimizing their OT distance. Thus the instance-wise time complexity bound
scales as O(K2 log(K)/ϵ2), where K is set to the number of global prototypes. The number of
global prototypes K is data-specific, and we set K to the ceil of log(N), where N is the total number
of features. While OT demonstrates strong computational capabilities for measuring the minimum
distance between two distributions, it does not significantly increase computational complexity in
our setting.

We also compare the computational cost of PTARL on a single GTX 3090 GPU. We report the
computational cost (s) of PTARL per training epoch on different datasets. As shown in Table 6,
coupling deep models with PTARL produces a better performance on all datasets with an acceptable
cost.

Table 6: Computational cost (s) per training epoch for PTARL.

AD HI HE JA AL CA

MLP + PTARL phase1 0.230 0.482 0.312 0.402 0.520 0.107
MLP + PTARL phase2 1.030 2.435 0.909 1.204 1.469 0.543

DCNV2 + PTARL phase1 0.436 1.000 0.653 0.840 1.081 0.210
DCNV2 + PTARL phase2 1.217 2.831 1.159 1.485 1.934 0.599

SNN + PTARL phase1 0.257 0.506 0.343 0.446 0.555 0.117
SNN + PTARL phase2 1.025 2.371 0.926 1.162 1.528 0.533

ResNet + PTARL phase1 0.413 0.919 0.616 0.783 1.019 0.196
ResNet + PTARL phase2 1.131 2.697 1.167 1.451 1.908 0.568
AutoInt + PTARL phase1 0.655 2.278 1.394 3.575 7.278 0.304
AutoInt + PTARL phase2 2.009 9.976 5.578 22.884 23.444 0.707

FT-Transformer + PTARL phase1 0.828 2.367 1.489 3.130 9.194 0.418
FT-Transformer + PTARL phase2 1.579 4.176 1.976 3.798 9.962 0.804
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A.6 SENSITIVITY ANALYSIS.

The influence of loss weights. Altogether, the proposed PTARL aims to minimize the following
objective function in stage 2:

O = Ltask(X,Y ) +Lprojecting(X,B) +Ldiversifying(X) +Lorthogonalization(B). (8)

The weights of above losses are set to 1.0, 0.25, 0.25 and 0.25 respectively and the weights are fixed
in all settings. We provide the sensitivity analysis for the loss weights conducted on FT-Transformer
in Table 7. The results indicate that PTARL is robust to the loss weights.

Table 7: Sensitivity analysis for loss weights.

Loss weights AD ↑ HI ↑ HE ↑ JA ↑ AL ↑ CA ↓
1.0, 0.25, 0.25, 0.25 0.871 0.738 0.397 0.738 0.97 0.448
1.0, 0.25, 0.25, 0.2 0.871 0.740 0.398 0.737 0.97 0.449

1.0, 0.25, 0.25, 0.15 0.870 0.739 0.397 0.737 0.97 0.448
1.0, 0.25, 0.25, 0.1 0.869 0.737 0.395 0.736 0.969 0.450

1.0, 0.25, 0.25, 0.05 0.864 0.734 0.391 0.731 0.964 0.451
1.0, 0.25, 0.25, 0.0 0.859 0.722 0.383 0.725 0.96 0.453

1.0, 0.25, 0.25, 0.25 0.871 0.738 0.397 0.738 0.97 0.448
1.0, 0.25, 0.15, 0.25 0.869 0.737 0.397 0.736 0.969 0.451
1.0, 0.25, 0.05, 0.25 0.869 0.737 0.395 0.734 0.969 0.452
1.0, 0.25, 0.0, 0.25 0.861 0.724 0.379 0.722 0.961 0.456

The influence of global prototype num-
ber to PTARL. Since the core of PTARL
is the constructed P-Space, we further ex-
plore PTARL’s performance under different
global prototypes number. Fig. 6 shows the
results of average performance of PTARL
and its variants over all deep models. The
PTARL ’s performance gradually improves
with global prototypes number increasing,
and finally reaches a stable level. Thus it is
reasonable to set the number of prototypes
K as the ceil of log(N), where N is the total
number of features.

Figure 6: Tabular prediction performance of the variants of
PTARL with various numbers of prototypes. The results
are averaged over all baseline deep tabular models under
binary classification (AD), multiclass classification (HE)
and regression (CA).

A.7 ADDITIONAL RESULTS.

Table 8: The influence of DNN depths to the performance of PTARL.

Datasets Models layers = 3 layers = 5 layers = 7 layers = 9

HI ↑
MLP 0.680 0.707 0.675 0.669

MLP + PTARL 0.719 0.730 0.729 0.732
FT-Transformer 0.687 0.719 0.709 0.691

FT-Transformer + PTARL 0.738 0.742 0.741 0.737

JA ↑
MLP 0.670 0.715 0.704 0.689

MLP + PTARL 0.708 0.732 0.728 0.733
FT-Transformer 0.689 0.716 0.729 0.709

FT-Transformer + PTARL 0.738 0.741 0.745 0.742

CA ↓
MLP 0.522 0.513 0.509 0.524

MLP + PTARL 0.491 0.480 0.482 0.479
FT-Transformer 0.486 0.476 0.472 0.478

FT-Transformer + PTARL 0.448 0.446 0.442 0.443
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A.8 DETAILED EXPLANATION OF THE OPTIMIZATION PROCESS OF EQ. 4.

The Optimal Transport (OT) problem is usually to find the most cost-effective way to transform a
given distribution to another distribution, which is typically achieved by calculating the specified
transportation plan that minimizes the total transportation cost, while the minimized cost is usually
called OT distance. In our paper, we minimize the distance between original representation distri-
bution over each sample Pi by deep tabular models and the corresponding projection representation
distribution Qi in P-Space with global prototypes, in order to preserve original data information (of
Pi) in Qi. We follow the typical setting of OT problem to first estimate the transport plan to obtain
the OT distance between Pi and Qi. Then, the obtained OT distance is further used as loss function
to jointly learn the two representations.

Specifically, after initializing the global prototypes B of P-Space, we project the original data sam-
ples into P-Space to learn the representations with global data structure information. To better illus-
trate the optimization process, we revise the Eq. 4 in the original paper to make it more readable.
In Eq. 4, the i-th sample representation by deep tabular model is denoted as Gf (xi; θf ), the em-
pirical distribution over this sample representation is Pi = δGf (xi;θf ), the projection representation
distribution is denoted as: Qi =

∑K
k=1 r

k
i δβk

, where ri is coordinates. To capture the shared global
data structure information, we formulate the representation projecting as the process of extracting
instance-wise data information by Gf (xi; θf ) to Pi, and then pushing Pi towards Qi to encourage
each prototype βk to capture the shared global data structure information, a process achieved by
minimizing the OT distance between Pi and Qi. The OT distance between Pi and Qi could first
be calculated by: OT(Pi, Qi) = minTi∈Π(Pi,Qi)⟨Ti,Ci⟩, where Cik = 1 − cos(Gf (xi; θf ), βk),
the average OT distance between Pi and Qi over train sets could be viewed as loss function
Lprojecting(X,B) to be further optimized: minLprojecting(X,B) = min 1

n

∑n
i=1 OT(Pi, Qi) =

minθf ,γ,B
1
n

∑n
i=1 minTi∈Π(Pi,Qi)⟨Ti,Ci⟩, we use gradient descent to update θf , γ,B.

A.9 DETAILED DESCRIPTION OF THE global data structure information AND sample
localization.

In the context of any tabular dataset, we have observed global data structure information comprises
two different components: (i) the global feature structure and (ii) the global sample structure.

Considering the feature structure, traditional and deep tabular machine learning methods utilize
all features or a subset of features as input, allowing them to model inherent interactions among
features and thereby acquire a comprehensive global feature structure. In addition, there also exists
the sample structure given a tabular dataset. Traditional methods (e.g., boosted trees) can effectively
model the overarching relationships between data samples. Specifically, in XGBoost, the dataset
undergoes partitioning by comparing all the samples, with each node of a decision tree representing
a specific partition, and each leaf node corresponding to a predictive value. The iterative splitting
of nodes during training empowers decision trees in XGBoost to learn the distribution of all the
samples across distinct regions of the data space, capturing global sample structure.

However, we note that deep tabular machine learning methods typically rely on batch training to
obtain data representations within a batch. These methods do not explicitly consider the structure
between samples within a batch. Furthermore, they fail to capture the global structure between
samples across different batches. This limitation presents challenges in comprehensively capturing
global data distribution information, consequently impeding overall performance.

Our methods rebuild the representation space with global prototypes (P-Space) in the first stage.
Then in the second stage, the original data representation by deep tabular machine learning methods
is projected into P-Space to obtain projection representation with global prototypes. On the one
hand, by minimizing the Optimal Transport distance between the two representations, we could rep-
resent each sample with global prototypes, and in the meanwhile encode the global feature structure
in learning global prototypes, considering backbone models can inherently learn the interactions
among features. On the other hand, the global prototypes are learned by directly modeling all the
data samples and thus the complex data distribution could be obtained by global prototypes to cap-
ture the global sample structure. Therefore, PTARL is able to capture both the feature and sample
structure information by prototype learning. Considering previous deep tabular machine learning
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methods can only acquire the representations limited by the batch training, we use the concept of
sample localization to encapsulate this limitation.

A.10 GLOBAL PROTOTYPES ORTHOGONALIZATION VISUALIZATION.

Figure 7: Global prototypes orthogonalization visualization of MLP.

Figure 8: Global prototypes orthogonalization visualization of ResNet.
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Figure 9: Global prototypes orthogonalization visualization of FT-Transformer.
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