

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DISTRACTOR-FREE GENERALIZABLE 3D GAUSSIAN SPLATTING

Anonymous authors

Paper under double-blind review

ABSTRACT

We present DGGS, a novel framework that addresses the previously unexplored challenge: **Distractor-free Generalizable 3D Gaussian Splatting** (3DGS). Previous generalizable 3DGS works are often limited to static scenes, struggling to mitigate distractor impacts in training and inference phases, which leads to training instability and inference artifacts. To address this new challenge, we propose a distractor-free generalizable training paradigm and corresponding inference framework, which can be directly integrated into existing Generalizable 3DGS frameworks. Specifically, in our training paradigm, DGGS proposes a feed-forward mask prediction and refinement module based on the 3D consistency of references and semantic prior, effectively eliminating the impact of distractor on training loss. Based on these masks, we combat distractor-induced artifacts and holes at inference time through a novel two-stage inference framework for reference scoring and re-selection, complemented by a distractor pruning mechanism that further removes residual distractor 3DGS-primitive influences. Extensive feed-forward experiments on the real and our synthetic data show DGGS’s reconstruction capability when dealing with novel distractor scenes. Moreover, our feed-forward mask prediction even achieves an accuracy superior to scene-specific Distractor-free methods.

1 INTRODUCTION

The widespread availability of mobile devices presents unprecedented opportunities for 3D reconstruction, fostering demand for feed-forward 3D synthesis capabilities from casually captured images or video sequences (referred to as references). Recent approaches introduce generalizable 3D representations to address this challenge, eliminating per-scene optimization requirements, with 3D Gaussian Splatting (3DGS) demonstrating particular promise due to its efficiency (Charatan et al., 2024; Liu et al., 2025; Chen et al., 2024b; Zhang et al., 2024a). In pursuit of scene-agnostic inference from references to 3DGS, existing methods project reference features onto 3D space to predict 3DGS attributes and simulate the complete pipeline: input **references**, infer **3DGS**, and **render** novel query views, within each training step. This process utilizes selected reference-query pairs for training and optimizes the model to learn the reference-query 3D consistency through query rendering losses.

While promising, this paradigm faces two major challenges in real-world, unconstrained capture scenarios due to the presence of distractor (e.g., transient objects such as vehicles or pedestrians). First, during training, real-world data often contains distractor that disrupt 3D consistency, limiting training to confined static scenes. Second, during inference, distractor in the reference images cannot be properly projected into 3D space, resulting in unwanted artifacts in the reconstructed 3D scene.

To tackle these issues, we propose Distractor-free Generalizable 3D Gaussian Splatting (DGGS), a novel framework that enhances training stability when training generalizable 3DGS models under distractor-data and mitigates distractor-induced artifacts during the inference process. This framework builds on two key components: **a Distractor-free Generalizable Training paradigm** and **a Distractor-free Generalizable Inference framework**. The core idea behind them lies in the discussion about how to predict distractor masks in a feed-forward manner and use them for training and inference. Unlike existing scene-specific distractor-free masking methods that require sufficient input and iterative optimization (Chen et al., 2024a; Unger et al., 2024; Sabour et al., 2024), our method takes advantage of the inherent **3D consistency across references** to infer distractor masks in each training iteration. These masks are then applied to exclude distractor regions from

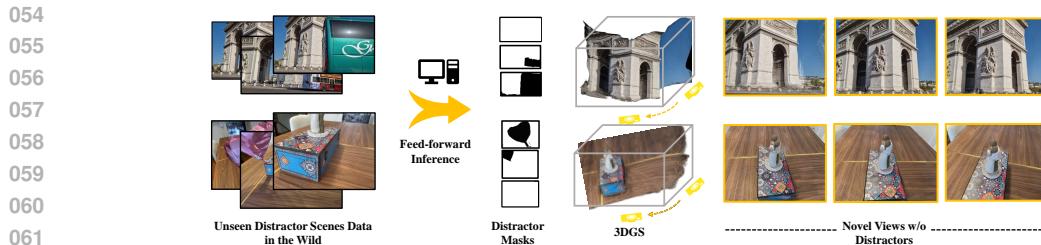


Figure 1: **Overview of Our Task.** Distractors are unwanted transient objects in static scene reconstruction, such as buses, balloons, or anything. DGGS enables feed-forward 3DGS reconstruction from limited distractor data while inferring corresponding distractor masks without extra supervision.

reconstruction loss during training, improving stability, and are further used during inference to prioritize cleaner references and suppress artifacts.

Specifically, in **Distractor-free Generalizable Training paradigm**, we design a **Reference-based Mask Prediction** and a **Mask Refinement** module for generalizable distractor masking, which is based on a core observation, *re-rendered reference non-distractor areas from 3DGS (inferred by references) are generally accurate and robust*. Therefore, given an initialized mask, we use these non-distractor areas in reference as guidance to filter out misclassified distractor regions in query. This process relies on the static geometric multi-view consistency of non-distractor areas. For higher mask accuracy, after decoupling the filtered masks into distractor and disparity error areas, our mask refinement module incorporates pre-trained segmentation results to fill distractor regions and designs a reference-based auxiliary loss to additionally supervise the unnoticed occluded regions in query view. Based on these masks, we propose a two-stage **Distractor-free Generalizable Inference framework** for mitigating holes and artifacts at inference time. In the first stage, we introduce more candidate references and design a **Reference Scoring** mechanism to score candidator based on the predicted distractor masks. These predicted scores guide the references selection with minimal distractors and disparity for fine reconstruction in the second stage. To further mitigate ghosting artifacts from residual distractor in the second stage, we introduce a **Distractor Pruning** strategy that eliminates distractor-associated 3D gaussian primitives.

Overall, we address a new task of *Distractor-free Generalizable 3DGS* as in Fig. 1, and this is, to our knowledge, the first work to explore this problem. For this objective, we present **DGGS**, a framework designed to alleviate distractor-related adverse effects during the training and inference phases of generalizable 3DGS. Extensive feed-forward experiments on real distractor data have shown that our approach successfully enhances training robustness and improves artifacts and holes during inference while expanding cross-scene (outdoor scenes training and indoor scenes inference) generalizability in conventional scene-specific distractor-free models (Chen et al., 2024a; Sabour et al., 2023; Ren et al., 2024; Sabour et al., 2024). Beyond real data, we also construct some synthetic distractor scenes based on Re10K and ACID datasets for further verification. Furthermore, our reference-based training paradigm achieves better generalizable distractor masking *without any mask supervision*, even outperforming scene-specific training distractor-free works(Chen et al., 2024a).

2 RELATED WORKS

2.1 GENERALIZABLE 3D RECONSTRUCTION

Contemporary advances in generalizable 3D reconstruction seek to establish scene-agnostic representations, building upon early explorations in Neural Radiance Fields (Mildenhall et al., 2021; Wang et al., 2021; 2022; Liu et al., 2022; Bao et al., 2023). However, these methods face significant bottlenecks due to their lack of explicit representations and rendering inefficiencies. The advent of 3D Gaussian Splatting (Kerbl et al., 2023), an explicit representation optimized for efficient rendering, has sparked renewed interest in the field. Existing works involve inferring Gaussian primitive attributes from references directly and rendering in novel views. Analogous to NeRF-based approaches, 3DGS-related methods emphasize spatial comprehension from references, particularly focusing on depth estimation (Charatan et al., 2024; Chen et al., 2024b; Liu et al., 2025; Zhang et al., 2024a; Liang et al., 2023). Subsequently, ReconX (Liu et al., 2024) and G3R (Chen et al., 2025) enhance reconstruction quality through the integration of additional video diffusion models and supplementary sensor inputs. The inherent reliance on high-quality references, however, makes

108 generalizable reconstruction particularly susceptible to **distractor**, a persistent challenge in real-world
 109 applications. In this study, we discuss Distractor-free Generalizable 3DGS, an unexplored topic.
 110

111 2.2 SCENE-SPECIFIC DISTRACTOR-FREE RECONSTRUCTION

112 It focuses on accurately reconstructing a *specific* static scene while mitigating the impact of distractor
 113 (Ren et al., 2024) (or transient objects (Sabour et al., 2023)). As a pioneering work, NeRF-
 114 W (Martin-Brualla et al., 2021) introduces additional embeddings to represent and eliminate transient
 115 objects in unstructured photo collections. Following a similar setting, subsequent works focus
 116 on mitigating the impact of distractor *at the image level*, which can generally be categorized into
 117 knowledge-based and heuristics-based methods.

118 **Knowledge-based methods** predict distractor using external knowledge sources. Among them,
 119 pre-trained features from ResNet (Zhang et al., 2024b; Xu et al., 2024), diffusion models (Sabour
 120 et al., 2024), and DINO (Ren et al., 2024; Kulhanek et al., 2024) guide visibility map prediction,
 121 effectively weighting reconstruction loss. Recent works (Chen et al., 2024a; Otonari et al., 2024;
 122 Nguyen et al., 2024) directly employ state-of-the-art segmentation models such as SAM (Kirillov
 123 et al., 2023) or Entity Segmentation (Qi et al., 2022) to establish clear distractor boundaries. Although
 124 these approaches demonstrate certain improvements (Martin-Brualla et al., 2021; Chen et al., 2022;
 125 Lee et al., 2023) with additional priors, they struggle to differentiate the distractor from static target
 126 scenes (Chen et al., 2024a; Otonari et al., 2024). **Heuristics-based approaches** employ handcrafted
 127 statistical metrics to distinguish distractor, emphasizing robustness and uncertainty analysis (Sabour
 128 et al., 2023; Goli et al., 2024; Ungermaann et al., 2024). These methods exploit the observation that
 129 regions containing distractor typically manifest optimization inconsistencies. Therefore, they seek
 130 to predict outliers and mitigate their impact in residual losses. Regrettably, these approaches suffer
 131 from significant scene-specific data dependencies and frequently confound distractor with inherently
 132 challenging reconstruction regions, limiting their effectiveness in generalizable contexts.

133 Recently, there has been increasing advocacy for integrating the two methods (Otonari et al., 2024;
 134 Chen et al., 2024a). Entity-NeRF (Otonari et al., 2024) integrates an existing Entity Segmentation (Qi
 135 et al., 2022) and extra entity classifier to determine distractor among entities by analyzing the
 136 rank of residual loss. Similarly, NeRF-HuGS (Chen et al., 2024a) integrates pre-defined Colmap
 137 and Nerfacto (Tancik et al., 2023) for capturing high and low-frequency features of static targets,
 138 while using SAM (Kirillov et al., 2023) to predict clear distractor masks. However, in our settings,
 139 acquiring additional entity classifiers or employing pre-defined scene-level knowledge such as Colmap
 140 and Nerfacto is nearly impossible, and residual loss becomes unreliable compared to single-scene
 141 optimization due to the absence of iteratively refined representation. Moreover, with limited references
 142 in unseen scenes, despite obtaining distractor masks, traditional Distractor-free methods struggle to
 143 handle occluded regions and artifacts. Therefore, we present a novel **Distractor-free Generalizable**
 144 framework that jointly addresses distractor effects in training and inference phases.

145 3 PRELIMINARIES

146 3.1 3D GAUSSIAN SPLATTING

147 3DGS \mathcal{G} represents 3D scenes by splatting numerous anisotropic gaussian primitives. Each gaussian
 148 primitive is characterized by a set of attributes \mathbb{A} , including position \mathbf{p} , opacity α , covariance matrix Σ ,
 149 and spherical harmonic coefficients for color $\hat{\mathbf{c}}$. To ensure positive semi-definiteness, the covariance
 150 matrix Σ is decomposed into a scaling matrix \mathbf{S} and a rotation matrix \mathbf{R} , such that $\Sigma = \mathbf{R}\mathbf{S}\mathbf{S}^\top\mathbf{R}^\top$.
 151 Consequently, the color value after splatting on view \mathbf{P} is:
 152

$$153 \hat{\mathbf{c}} = \mathcal{G}(\mathbf{P}) = \sum_{m \in M} \hat{\mathbf{c}}_m \alpha_m \prod_{j=1}^{m-1} (1 - \alpha_j), \quad (1)$$

154 where $\hat{\mathbf{c}}_m$ and α_m are derived from the covariance matrix Σ_m of the m -th projected 2D Gaussian, as
 155 well as the corresponding spherical harmonic coefficients and opacity, respectively.

156 3.2 GENERALIZABLE 3DGS

157 Generalizable 3DGS presents a novel paradigm that directly infers 3DGS \mathcal{G} attributes from references,
 158 circumventing the computational overhead of scene-specific optimization. During each training

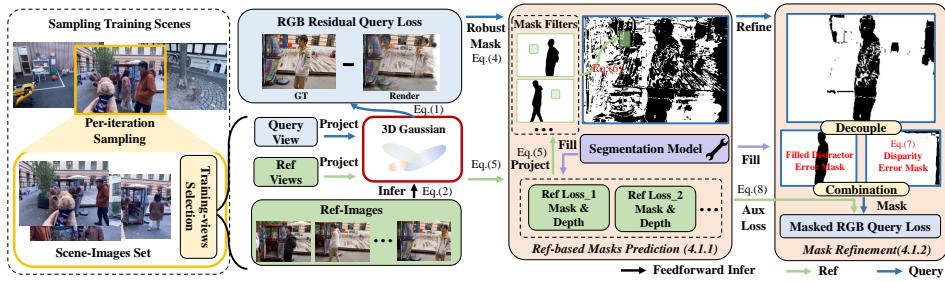


Figure 2: **Distractor-free Generalizable Training.** Based on the sampled reference-query pairs, DGGS first predicts 3DGS attributes and a fundamental robust mask \mathcal{M}_{Rob} . The **Reference-based Mask Prediction** module then filters this mask, which is further refined through the **Mask Refinement** module. The entire process is supervised through masked query loss and auxiliary loss.

iteration, existing works optimize model parameters θ by randomly sampling paired references $\{\mathbf{I}_i\}_{i=1}^N$ and query image \mathbf{I}_T as inputs and groundtruth under random sampled scenes. Specifically,

$$\mathcal{G} = \text{Decoder} \left(\mathcal{F} \left(\text{Encoder} \left(\{\mathbf{I}_i\}_{i=1}^N \right), \{\mathbf{P}_i\}_{i=1}^N \right) \right), \quad \arg \min_{\theta} \|\mathbf{I}_T - \mathcal{G}(\mathbf{P}_T)\|_2^2, \quad (2)$$

where $\{\mathbf{P}_i\}_{i=1}^N$ and \mathbf{P}_T are the camera extrinsics of the reference and query images, and N denotes the number of references. The \mathcal{F} denotes the process of projecting encoded 2D features into 3D space and refining (Chen et al., 2024b; Charatan et al., 2024). The 3D features are then decoded into the corresponding 3DGS attributes and rendered into query views, through which the network can be optimized by the query MSE loss.

3.3 ROBUST MASKS FOR 3D RECONSTRUCTION

Unlike conventional controlled static environments, our in-the-wild scenarios contain not only static elements but also distractor (Sabour et al., 2023), making it difficult to maintain 3D geometric consistency and training stability. Building on prior Scene-specific Distractor-free reconstruction research (Sabour et al., 2023; 2024; Ren et al., 2024; Chen et al., 2024a), we integrate the mask-based robust optimization loss in our pipeline (i.e. ‘MVSplat+ *’ in experiment, where * represents different mask prediction methods) that can predict and filter out distractor (outliers) in training process. Hence, Eq. 2 is modified, where \odot denotes pixel-wise multiplication:

$$\arg \min_{\theta} \mathcal{M}_{Rob} \odot \|\mathbf{I}_T - \mathcal{G}(\mathbf{P}_T)\|_2^2. \quad (3)$$

Here, \mathcal{M}_{Rob} represents the outlier masks on query view, where distractor is set to zero, while target static regions are set to one. Our work introduces a simple heuristic method (Sabour et al., 2023) as the foundation. The hyperparameters ρ_1 and ρ_2 are fixed across all scenes.

$$\mathcal{M}_{Rob} = \mathbb{1} \{ \mathcal{C} (\mathbb{1} \{ \|\mathbf{I}_T - \mathcal{G}(\mathbf{P}_T)\|_2 < \rho_1 \}) > \rho_2 \}, \quad (4)$$

where \mathcal{C} represents the kernel operator and the ρ_1 as well as ρ_2 remain consistent with (Sabour et al., 2023). Despite various mask refinements in follow-up studies (Otonari et al., 2024; Chen et al., 2024a; Sabour et al., 2024), their heavy dependence on loss $\|\mathbf{I}_T - \mathcal{G}(\mathbf{P}_T)\|_2$ leads to extensive misclassification of difficult-to-feed-forward-inference parts as distractor regions, as show in Fig. 3 and Fig. 6, which is addressed in subsequent sections.

4 METHOD

Given sufficient training reference-query pairs, the presence of distractor in either $\{\mathbf{I}_i\}_{i=1}^N$ or \mathbf{I}_T (or both) affects the 3D consistency relied upon by generalizable models. Therefore, we aim to design a **Distractor-free Generalizable** Training paradigm in Sec. 4.1 and a Inference framework in Sec. 4.2.

4.1 DISTRACTOR-FREE GENERALIZABLE TRAINING

In this training paradigm, we propose a **Reference-based Mask Prediction** in Sec.4.1.1 and a **Mask Refinement** module in Sec.4.1.2 to enhance per-iteration distractor mask prediction accuracy and training stability scene-agnostically in generalizable setting, as illustrated in Fig. 2.

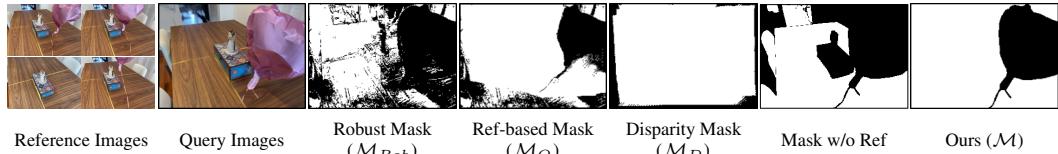


Figure 3: **The Mask Evolution in Sec. 4.1.** \mathcal{M}_Q is obtained by filtering \mathcal{M}_{Rob} from the references non-distractor regions, which is then filled by decoupling \mathcal{M}_D and using segmentation results to get final \mathcal{M} as Eq. 4 6 7. Without references filter, target regions are often misidentified as distractor.

4.1.1 REFERENCE-BASED MASK PREDICTION

This Mask Prediction module aims to enhance the \mathcal{M}_{Rob} accuracy within each iterative various scene, ensuring that optimization efforts remain focused on more non-distractor areas. It is essential for generalization training, since Eq. 4 inevitably misclassifies certain target regions as distractor, particularly those presenting challenges for feed-forward inference, as in Fig. 3 6, which impedes the model’s comprehension of geometric 3D consistency in Fig. 5. Our inspiration stems from an intuitive observation: *the 3DGS inferred from references maintains stable and accurate re-rendering results in non-distractor regions under reference views*. Specifically, we introduce a mask **filter** that harnesses non-distractor regions from re-rendered references (i.e. from references to infer 3DGS and render back to reference views) to identify and remove falsely labeled distractor regions in \mathcal{M}_{Rob} under query view, based on the multi-view consistency of non-distractor static objects. Given $i \in N$ where i denotes references and ρ_{Ref} is a hyperparameter (set to 0.001), discussed in Fig. 10, re-rendered reference non-distractor masks \mathcal{M}_{Ref_i} and corresponding projected query masks \mathcal{M}_{Qry_i} are

$$\mathcal{M}_{Ref_i} = \mathbb{1} \left\{ \|\mathbf{I}_i - \mathcal{G}(\mathbf{P}_i)\|_2^2 < \rho_{Ref} \right\}, \quad \mathcal{M}_{Qry_i} = \mathcal{W}_{i \rightarrow T}(\mathcal{M}_{Ref_i}, \mathbf{D}_i, \mathbf{P}_i, \mathbf{P}_T, \mathbf{U}), \quad (5)$$

where \mathbf{U} represents the camera intrinsic matrix of image pairs, \mathbf{D}_i corresponds to the depth maps rendered from \mathbf{P}_i utilizing a modified rasterization library, $\mathcal{W}_{i \rightarrow T}$ defines the image warping that projects each \mathcal{M}_{Ref_i} from \mathbf{P}_i to \mathbf{P}_T using \mathbf{D}_i and \mathbf{U} .

However, given the inherent noise presence in \mathcal{M}_{Ref_i} , \mathcal{M}_{Qry_i} exhibits limited precision. To solve this problem, we incorporate a pre-trained segmentation model for mask filling, while designing a multi-mask fusion strategy to counteract noise-induced deviations. Following (Chen et al., 2024a; Otonari et al., 2024), we incorporate a state-of-the-art Entity Segmentation Model (Qi et al., 2022) to refine \mathcal{M}_{Ref_i} into $\mathcal{M}_{Ref_i}^{En}$, which has the capability to fill different entities when the predicted distractor-region exceeds the threshold of total pixel count for that entity. After substituting \mathcal{M}_{Ref_i} with $\mathcal{M}_{Ref_i}^{En}$ in Eq. 5, we use an intersection operation to fuse all (N) \mathcal{M}_{Qry_i} , then filter \mathcal{M}_{Rob} based on it, $\mathcal{M}_Q = \left\{ \bigcap_{i=1}^N \mathcal{M}_{Qry_i} \right\} \cup \mathcal{M}_{Rob}$, obtaining the reference-based mask \mathcal{M}_Q , which can filter out misclassified regions in \mathcal{M}_{Rob} to some extent, as shown in Fig. 3.

Here, we employ the intersection as a conservative strategy to ensure that the filtered-out regions in \mathcal{M}_{Rob} are non-distractor regions acknowledged by all references and preserve the potential distractor are excluded from optimization regions, which is crucial for the training process. However, \mathcal{M}_Q still exhibits limitations in accurate distractor masking, due to incorrect \mathbf{D}_i prediction and view disparities, as illustrated in Fig. 3. Consequently, the distractor masks undergo further refinement in Sec. 4.1.2.

4.1.2 MASK REFINEMENT

Given \mathcal{M}_Q , a straightforward approach is to utilize a pre-trained segmentation model to refine noise regions and fill imprecise warping areas, as discussed with respect to $\mathcal{M}_{Ref_i}^{En}$. In contrast to references, \mathcal{M}_Q contains distractor regions and disparity-induced errors arising from reference-query view variations, simultaneously, the latter being present in the query view but absent in all references and primarily occurring at the query image margins. Thus, before introducing the segmentation model, regions decoupling is essential, where the prediction of the disparity-induced error mask can follow a deterministic approach. Given N one-filled masks \mathcal{M}_i^1 corresponding to different reference views \mathbf{P}_i , we warp them to the target view \mathbf{P}_T as in Eq. 5. Then, the warped masks are merged using a union operation to ensure that these regions are absent from all references as Fig. 3.

$$\mathcal{M}_D = \bigcup_{i=1}^N \left\{ \mathcal{W}_{i \rightarrow T}(\mathcal{M}_i^1, \mathbf{D}_i, \mathbf{P}_i, \mathbf{P}_T, \mathbf{U}) \right\}. \quad (6)$$

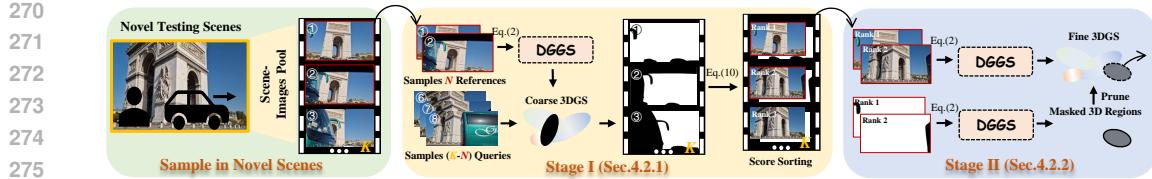


Figure 4: **Distractor-free Generalizable Inference Framework.** DGGS initially samples adjacent references from the scene-images pool and leverages trained DGGS for coarse 3DGS. Based on the **Reference Scoring mechanism**, masks and quality scores are computed for all pool images. These masks and scores subsequently guide reference selection and **Distractor Pruning** for fine 3DGS.

Finally, we decouple \mathcal{M}_D from \mathcal{M}_Q and recombine them after introducing the segmentation model (Qi et al., 2022) and refining the distractor mask. The final refined mask, termed \mathcal{M} in Fig. 3, substitutes \mathcal{M}_{Rob} in Eq. 3 to mitigate distractor effects during training. Furthermore, we observe that if only Mask Refinement is used, without leveraging reference and our observation, the misclassification remains severe in Fig. 3, which verifies the importance of reference filter.

Additionally, in contrast to traditional distractor-free frameworks, references enable auxiliary supervision in the query view, providing guidance for occluded areas. Specifically, we re-warp \mathcal{M} to reference views and utilize $\mathcal{M}_{Ref_i}^{En}$ to determine whether occlusion information is included. Therefore, our auxiliary loss \mathcal{L}_A can focus on areas occluded from query view but visible from references.

$$\mathcal{L}_A = \sum_{N}^{i=1} \mathcal{W}_{T \rightarrow i} (1 - \mathcal{M}) \odot \mathcal{M}_{Ref_i}^{En} \odot \|\mathbf{I}_i - \mathcal{G}(\mathbf{P}_i)\|_2^2. \quad (7)$$

All pre-trained segmentation are pre-computed and cached. The final form of Eq. 3 is modified to:

$$\arg \min_{\theta} \mathcal{M} \odot \|\mathbf{I}_T - \mathcal{G}(\mathbf{P}_T)\|_2^2 + \mathcal{L}_A. \quad (8)$$

4.2 DISTRACTOR-FREE GENERALIZABLE INFERENCE

Despite improvements in training robustness and mask prediction, DGGS’s inference faces two key limitations: (1) insufficient references compromise reliable reconstruction of occluded and unseen regions; (2) persistent distractor in references inevitably appear as artifacts in synthesized novel views for feed-forward inference paradigm (encoder-decoder) in Eq. 2. To address these challenges, we propose a two-stage **Distractor-free Generalizable Inference** framework in Fig. 4. The first stage employs a **Reference Scoring** mechanism in Sec.4.2.1 to score candidate references from the images pool, facilitating the selected references with minimal distractor and disparity. The second stage uses a **Distractor Pruning** module in Sec.4.2.2 to suppress the remaining artifacts.

4.2.1 REFERENCE SCORING MECHANISM

The objective of the first inference stage is to select references with minimal distractor and disparity among the predefined scene-images pool, adjacent K views ($K \geq N$) sampled in the test scenes. Therefore, we propose a Reference Scoring mechanism based on the pre-trained DGGS in Sec. 4.1. Specifically, it first samples N adjacent references from the scene-images pool $\{\mathbf{I}\}_P^K$ for coarse 3DGS prediction. We then designate unselected views from $\{\mathbf{I}\}_P^K$ as query for mask prediction $\{\mathcal{M}\}^{K-N}$, while the distractor masks of the chosen reference views are $\{\mathcal{M}_{Ref}^{En}\}^N$. All image masks in pool are scored by Eq. 9, in which top N images are selected in next stage,

$$\{\mathbf{I}_i\}^N = \{\mathbf{I}_i\}_P^K \mid i \in \arg \max_N \{S(\{\mathcal{M}\}^{K-N}; \{\mathcal{M}_{Ref}^{En}\}^N)\}. \quad (9)$$

where S is the pixel-wise summation for each mask. In practice, besides distractor size, the extrinsics of candidate images are also crucial reference scoring factors due to disparity. Thanks to the discussion of disparity-induced error masks in Sec. 4.1.2, we can directly utilize the count of positive pixels in \mathcal{M} as the single criterion, which selects references that provide better coverage of query view, as shown in Fig. 7 8. In the second stage, we employ top-ranked images as references for fine reconstruction, effectively reselecting the candidate images in the pool without increasing GPU memory. Although this approach successfully handles distractor-heavy references, it comes at the cost of decreased rendering efficiency. Optionally, we mitigate this by halving the image resolution in the first stage.

324 Table 1: **Quantitative Experiments for distractor-free Generalizable 3DGS** under RobustNeRF. *
325 denotes pre-trained models, + indicates baseline models augmented with existing masking methods.

Methods	Statue (RobustNeRF)			Android (RobustNeRF)			Mean (Five Scenes)			Train Data
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	
Pixelsplat* (2024 CVPR) (Charatan et al., 2024)	18.65	0.673	0.254	17.98	0.557	0.364	20.10	0.704	0.279	Pre-Train on Re10K
Mvsplat* (2024 ECCV) (Chen et al., 2024b)	18.88	0.670	0.225	18.24	0.586	0.301	20.03	0.722	0.255	
Pixelsplat (2024 CVPR) (Charatan et al., 2024)	15.49	0.378	0.531	16.34	0.331	0.492	16.02	0.422	0.511	
Mvsplat (2024 ECCV) (Chen et al., 2024b)	15.05	0.412	0.391	16.17	0.509	0.381	15.45	0.515	0.426	
+RobustNeRF (2023 CVPR) (Sabour et al., 2023)	16.17	0.463	0.382	16.46	0.470	0.411	17.11	0.534	0.400	Re-Train on Distractor-Datasets
+On-the-go (2024 CVPR) (Ren et al., 2024)	14.73	0.366	0.522	15.05	0.440	0.472	15.44	0.476	0.526	
+NeRF-HUGS (2024 CVPR) (Chen et al., 2024a)	18.21	0.694	0.266	18.33	0.640	0.299	19.18	0.700	0.283	
+HybridGS (CVPR 2025) (Jingyu Lin, 2025)	17.16	0.540	0.369	16.37	0.517	0.375	17.82	0.556	0.388	
+SLS (Arxiv 2024) (Sabour et al., 2024)	18.11	0.695	0.270	18.84	0.662	0.282	19.29	0.709	0.286	
DGGS-TR (w/o Inference Part)	19.68	0.700	0.238	19.58	0.653	0.286	21.02	0.738	0.242	
DGGS (Our)	20.78	0.710	0.233	20.93	0.711	0.236	21.74	0.758	0.237	

334 Table 2: **Ablation** for DGGS-TR and DGGS. Table 3: **Comparison** of Fine-Tuned models.

Methods	Mean (Five Scenes)			Methods	Arcdetriomph			Mountain		
	PSNR↑	SSIM↑	LPIPS↓		PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
Baseline (Mvsplat)	15.45	0.515	0.426	Mvsplat*+FT	23.58	0.841	0.08	17.06	0.622	0.202
+Robust Mask	17.11	0.534	0.400	Mvsplat*+SLS-FT	27.19	0.916	0.084	22.03	0.698	0.160
++Ref-based Mask Prediction	20.35	0.701	0.283	Mvsplat*+DGGS-FT	28.61	0.922	0.068	23.00	0.723	0.144
+++Mask Refinement (DGGS-TR)	21.02	0.738	0.242	(Mvsplat+SLS)*+SLS-FT	24.18	0.887	0.095	20.77	0.645	0.189
w/o Reference Entity Segmantation	20.79	0.733	0.248	SLS(Single Scene Train)	-	-	-	22.53	0.77	0.18
w/o Aux Loss	20.64	0.725	0.253	DGGS-TR*+DGGS-FT	29.04	0.931	0.058	23.85	0.787	0.128
DGGS-TR	21.02	0.738	0.242							
+ Reference Scoring mechanism	21.47	0.749	0.242							
++ Distractor Pruning (DGGS)	21.74	0.758	0.237							

344 Table 4: **Comparison** on Efficiency.

Methods	Pixelsplat	Mvsplat	DGGS (Two Stage Inference)
Rendering Time (s)	0.160	0.084	0.148 [w pre-segmentation 0.111]

4.2.2 DISTRACTOR PRUNING

346 Although cleaner references are selected, obtaining N distractor-free images in the wild is virtually
347 impossible. These residual distractor propagate via the gaussian encoding-decoding process in Eq. 2,
348 manifesting as phantom splats in rendered query view, as shown in Fig. 8. Therefore, we propose
349 a Distractor Pruning protocol in the second inference stage, which is readily implementable given
350 the reference distractor masks in Sec. 4.2.1. Instead of direct masking on the references, which
351 affects one-to-one mapping between pixels and gaussian primitives in Eq. 2, we selectively prune
352 gaussian primitives within the 3D space by directly removing decoded attributes in distractor regions
353 while preserving the remaining components. However, when references exhibit a large amount of
354 commonly occluded regions, the pruning strategy induces white speckle artifacts. Consequently,
355 based on projected masks, DGGS implements the pruning strategy only in scenarios where it is not
356 considered a common occluded region for all references, which is also discussed in Limitation.

5 EXPERIMENTS

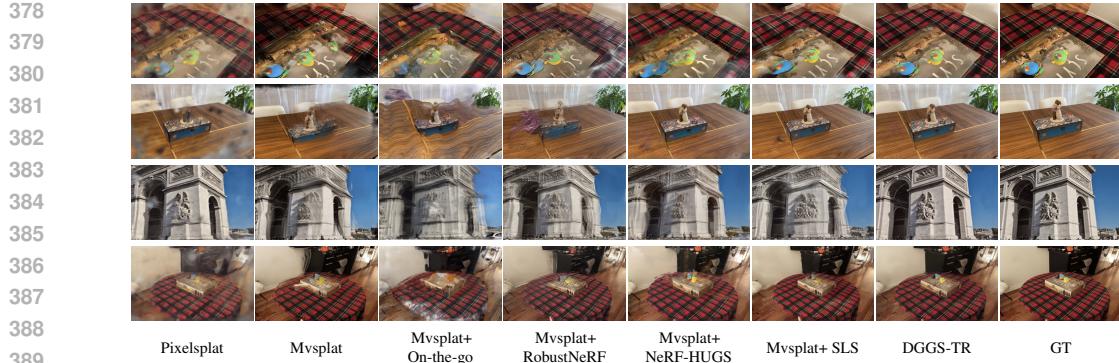
5.1 SYNTHETIC DATASET

361 To train and evaluate DGGS, beyond the real-world datasets On-the-go (Ren et al., 2024) and
362 RobustNeRF Dataset (Sabour et al., 2023), we construct a synthetic dataset to augment the number
363 of distractor scenes based on Re-10K and ACID, with details provided in AppendixA.

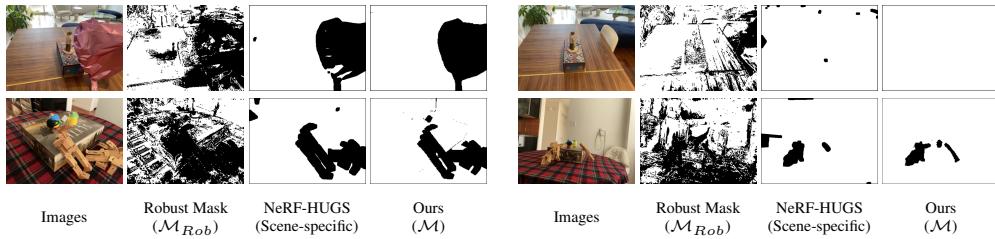
5.2 COMPARATIVE EXPERIMENTS

5.2.1 BENCHMARK

369 Our Distractor-free Generalizable training and inference paradigms can be seamlessly integrated with
370 existing generalizable 3DGS frameworks. We adopt Mvsplat (Chen et al., 2024b) as our baseline
371 model. Extensive comparisons are conducted against existing works trained under same settings and
372 distractor datasets, including: (1) **retraining** existing generalization methods (Chen et al., 2024b;
373 Charatan et al., 2024), and (2) **retraining** Mvsplat (Chen et al., 2024b) ‘+’ different mask prediction
374 strategies from distractor-free approaches (Ren et al., 2024; Sabour et al., 2023; Chen et al., 2024a;
375 Sabour et al., 2024). Although all current distractor-free works are scene-specific, most of them focus
376 on applying distractor masks in loss function (as discussed in Sec. 2.2), so we can directly transfer
377 them to the query rendering loss under our baseline. Specifically, during the training phase, we
378 combine these mask prediction methods from existing works and replace \mathcal{M}_{Rob} in Eq. 3. Furthermore,
379 (3) we compare with existing **pre-trained** generalizable models (on distractor-free data).



390 Figure 5: Qualitative Comparison of Re-trained Existing Methods across unseen scenes.



399 Figure 6: Qualitative Comparison for our masks prediction vs. scene-specific results.

400 5.2.2 QUANTITATIVE AND QUALITATIVE EXPERIMENTS

401 Tab. 1, Fig. 5 and Fig. 7 quantitatively and qualitatively compares DGGS-TR (only TRaining in
402 Sec. 4.1 without two stages inference in Sec. 4.2) and DGGS with existing methods. The results are
403 analyzed from three aspects: re-training models, pre-training models and models after fine-tuning.

404 **For Re-train Model:** Tab. 1 and Fig. 5 demonstrate that our training paradigm significantly enhances
405 training robustness, outperforming existing generalizable 3DGS algorithms, **PSNR: 21.02 vs. 15.45**,
406 under same training conditions. Compared to introducing existing scene-specific distractor-free
407 approaches, where overaggressive distractor prediction degrades reconstruction fidelity, DGGS-TR
408 exhibits enhanced reconstruction detail and 3D consistency, **PSNR: 21.02 vs. 19.29**, through precise
409 distractor prediction, which is further validated in Fig. 6. Similarly, the qualitative results in Fig. 5
410 show training instability and significant performance drops, even without distractors in some test
411 references. It confirms that distractor presence severely impairs model learning of geometric 3D
412 consistency, aligning with our motivation. Additionally, experiments also show that DGGS possesses
413 cross-scene feed-forward inference capabilities that existing distractor-free methods lack.

414 **For Pre-train Model:** Tab. 1 reports comparisons between DGGS-TR, DGGS and existing pre-train
415 generalizable models. Compared with pre-train models on distractor-free data, DGGS-TR exhibits
416 superior performance even with training on limited distractor scenes, mainly due to mitigating the
417 inference scene *distractor impacts* and *domain gap*. Fig. 7 also illustrates similar findings: DGGS-TR
418 effectively attenuates partial distractor effects in the 3D inconsistency regions. Furthermore,
419 after introducing our inference paradigm, DGGS demonstrates ‘pseudo-completion’ and artifact removal
420 capabilities, which benefit from the **Reference Selection** mechanism that can choose references with
421 less distractor as well as disparity and the **Distractor Pruning** during inference process as in Fig. 8.
422 To further validate effectiveness, we compare DGGS’s results on synthetic data, which maintains the
423 same data domain as the pre-trained MVSplat* except for inserted distractor. In Fig. 9, DGGS shows
424 better resistance to distractor, effectively mitigating artifact. More results are shown in Appendix.

425 **After Fine-tuning:** To further demonstrate DGGS’s capability, we conduct fine-tuning experiments
426 on the different pre-trained models (including Mvsplat*, (Mvsplat+SLS)* and DGGS-TR* corre-
427 sponding Line 2, 8, and 9 in Tab. 1) and training strategies (including FT, SLS-FT and DGGS-FT
428 corresponding Mvsplat (Chen et al., 2024b), SLS (Sabour et al., 2024) and Ours). We fine-tune using
429 the ‘clutter’ data and evaluate on the ‘extra’ data in test scenes. For fairness in comparison, our
430 inference framework is not employed. In Tab. 3, DGGS-TR demonstrates significant improvements
431 over existing models and strategies, attributed to our reliable distractor prediction. **Furthermore,**
432 **we find that DGGS’s single-scene fine-tuning performance is even better than SLS’s single-scene**
433 **training (metrics reported by SLS (Sabour et al., 2024)). This benefits from DGGS’s pretraining on**
434 **large-scale datasets and its reference-based strategy for distractor prediction.**

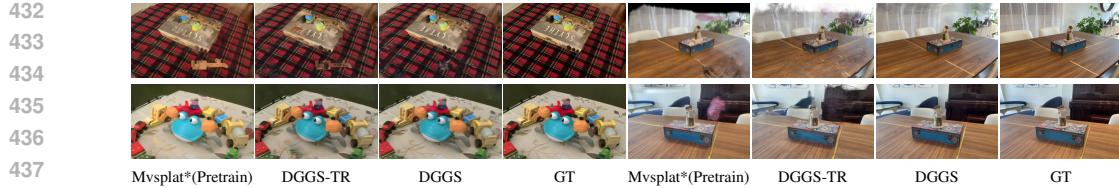


Figure 7: Qualitative Comparison of Pre-trained Models, DGGS-TR and DGGS.

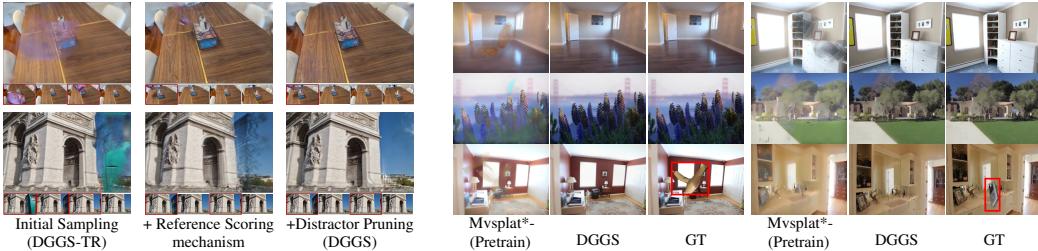


Figure 8: Ablation for Inference Strategy.

Figure 9: Comparison on synthetic data.

Efficiency: Tab. 4 shows the efficiency comparison. Due to the segmentation model and two-stage inference, DGGS has a slight decrease in efficiency compared to (Chen et al., 2024b), but mitigates distractor and obtains masks. It can be boosted by reducing segmentation resolution.

Re-rendered Reference Accuracy: One of the core insights of DGGS is to leverage the more stable reference re-render as an additional filter to assist query distractor mask prediction. Most existing works exhibit this trend, such as Mvsplat* (Chen et al., 2024b). To verify the stability of re-rendering during the generalizable 3DGS entire training process, we compare the performance of query and re-rendering reference views in Tab. 6. From the experimental results on DGGS, it can be easily observed that from the beginning of DGGS training, reference re-rendering exhibits more stable performance relative to the query view. This characteristic allows reference re-rendering to effectively guide distractor mask prediction for the query view. Furthermore, we simultaneously observe that as the training process progresses, the performance gap between the two gradually narrows.

5.3 ABLATION STUDIES

5.3.1 ABLATION ON TRAINING FRAMEWORK

The upper section of Tab. 2 and Fig. 3 show the effectiveness of each component in DGGS training paradigm. The Reference-based Mask Prediction combined with Mask Refinement successfully mitigates the tendency of over-predicting targets as distractor that occurred in the original \mathcal{M}_{Rob} . Within the Mask Refinement module, Auxiliary Loss demonstrates remarkable performance, while Mask Decoupling and Entity Segmentation contribute substantial improvements to the overall framework. Furthermore, our analysis in Fig. 6 reveals that DGGS-TR achieves scene-agnostic mask prediction capabilities, with feed-forward inference results superior to single-scene trained models (Chen et al., 2024a). Note that, for fair evaluation, all masks are predicted under DGGS-TR based same references, without the involvement of our inference framework.

5.3.2 ABLATION ON INFERENCE FRAMEWORK

The bottom portion of Tab. 2, Fig. 7, and Fig. 8 analyze the component effectiveness within the inference paradigm. Results indicate that although the Reference Scoring mechanism alleviates the impact of distractor in references by re-selection, red box represent distractor references in Fig. 8, certain artifacts remain unavoidable. Then, our Distractor Pruning strategy effectively mitigates these residual artifacts. We also analyze how the choice of K and N in DGGS, the sizes of scene images pool and references, affects inference results in Fig. 10. Generally, larger values of K yield better performance up to $2N$, beyond which performance plateaus, likely due to increased significant view disparity in the images pool. A similar situation occurs with N , where excessive references actually increase distractor and disparity. And, Tab. 13 explores why the Reference Scoring mechanism brings performance improvements. A potential possibility is our ability to access more references during inference (Chen et al., 2024b). Therefore, we directly select more references in DGGS-TR. Experimental findings indicate, incorporating additional references directly will introduce novel artifacts. It proves that the quality of references takes precedence over quantity in our setting, and the proposed Reference Scoring mechanism can filter out higher-quality references.

Table 5: **Ablation Study on Segmentation Module** under RobustNeRF dataset.

Method	PSNR↑	SSIM↑	LPIPS↓
DGGS-TR (w/o Segmentation)	20.67	0.730	0.251
DGGS-TR (SAM2)	21.07	0.740	0.240
DGGS-TR (w/ Segmentation)	21.02	0.738	0.242
DGGS (w/o Segmentation)	21.41	0.749	0.240
DGGS (SAM2)	21.77	0.758	0.236
DGGS (w/ Segmentation)	21.74	0.758	0.237

Table 6: **Query v.s. Re-rendering Reference Analysis** comparing PSNR at different training iterations.

Method	Train Stage	Query	Ref Re-render
Trained Mvsplat*	Done	26.02	29.71
DGGS-TR	200	12.13	17.82
DGGS-TR	1000	16.36	20.38
DGGS-TR	10000	22.11	25.65
Trained DGGS-TR	Done	26.51	28.02

5.3.3 ABLATION ON PRE-TRAINED SEGMENTATION MODEL

Pre-trained entity segmentation has been widely used in previous scene-specific distractor-free studies (Catley-Chandar et al., 2024; Chen et al., 2024a). We further analyze the role of the pretrained segmentation model in the training and inference stages of DGGS in Tab. 5 and Tab. 2. It is not difficult to find that whether during training or inference, the pretrained segmentation model provides limited performance improvement compared to other modules, such as reference-based mask prediction. This is attributed to the fact that the core factors for stable and generalizable 3DGS training are 3D consistency among reference views, rather than fine-grained distractor segmentation boundaries. During the inference process, multi-reference inference and the reference scoring mechanism similarly contribute to enhancing the robustness of DGGS with respect to segmentation results. Furthermore, we also replace the Entity Segmentation model with the more robust segmentation model SAM2 (Ravi et al., 2024). Although it is capable of outputting more accurate distractor segmentation masks, experiments demonstrate that its impact on overall reconstruction performance is limited. This also further demonstrates DGGS’s robustness to predefined segmentation results in terms of reconstruction performance. More discussion about the segmentation model is presented in the Appendix. B.4

6 CONCLUSION

Distractor-free Generalizable 3D Gaussian Splatting presents a practical challenge, offering the potential to mitigate the limitations imposed by distractor scenes on generalizable 3DGS while addressing the scene-specific training constraints of existing distractor-free methods. We propose novel training and inference paradigms that alleviate both training instability and inference artifacts from distractor data. Extensive experiments across diverse scenes validate our method’s effectiveness and demonstrate the potential of the reference-based paradigm in handling distractor scenes. We envision this work laying the foundation for future community discussions on Distractor-free Generalizable 3DGS and potentially extending to address real-world 3D data challenges in broader applications.

Limitation: DGGS mitigates distractor but experiences performance degradation under extensive common occlusions. Since DGGS does not have additional generative completion capabilities, it will exhibit phenomena such as speckles when facing situations with common occlusions among all references, as shown in Fig. 16. Generative models offer a potential solution. In addition, the sacrifice in efficiency is unavoidable, which can be mitigated through lighter segmentation models and resolution.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure our work is reproducible. Our experiments are conducted on the public Mvsplat benchmarks. The methodology for constructing the DGGS is detailed in Sec.4. To further facilitate replication, we provide comprehensive training configurations and implementation details in appendix A. The source code for our framework and experiments will be made publicly available upon publication.

REFERENCES

Yanqi Bao, Tianyu Ding, Jing Huo, Wenbin Li, Yuxin Li, and Yang Gao. Insertnerf: Instilling generalizability into nerf with hypernet modules. *arXiv preprint arXiv:2308.13897*, 2023.

Sibi Catley-Chandar, Richard Shaw, Gregory Slabaugh, and Eduardo Perez-Pellitero. Roguenerf: A robust geometry-consistent universal enhancer for nerf. *arXiv preprint arXiv:2403.11909*, 2024.

540 David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaussian
 541 splats from image pairs for scalable generalizable 3d reconstruction. In *Proceedings of the*
 542 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 19457–19467, 2024.

543

544 Jiahao Chen, Yipeng Qin, Lingjie Liu, Jiangbo Lu, and Guanbin Li. Nerf-hugs: Improved neural
 545 radiance fields in non-static scenes using heuristics-guided segmentation. In *Proceedings of the*
 546 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 19436–19446, 2024a.

547

548 Xingyu Chen, Qi Zhang, Xiaoyu Li, Yue Chen, Ying Feng, Xuan Wang, and Jue Wang. Hallucinated
 549 neural radiance fields in the wild. In *Proceedings of the IEEE/CVF Conference on Computer*
 550 *Vision and Pattern Recognition*, pp. 12943–12952, 2022.

551

552 Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-Jen
 553 Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view images.
 554 *arXiv preprint arXiv:2403.14627*, 2024b.

555

556 Yun Chen, Jingkang Wang, Ze Yang, Sivabalan Manivasagam, and Raquel Urtasun. G3r: Gradient
 557 guided generalizable reconstruction. In *European Conference on Computer Vision*, pp. 305–323.
 558 Springer, 2025.

559

560 Lily Goli, Cody Reading, Silvia Sellán, Alec Jacobson, and Andrea Tagliasacchi. Bayes’ rays:
 561 Uncertainty quantification for neural radiance fields. In *Proceedings of the IEEE/CVF Conference*
 562 *on Computer Vision and Pattern Recognition*, pp. 20061–20070, 2024.

563

564 Lubin Fan Bojian Wu Yujing Lou Renjie Chen Ligang Liu Jieping Ye Jingyu Lin, Jiaqi Gu. Hybrids:
 565 Decoupling transients and statics with 2d and 3d gaussian splatting. In *CVPR*, 2025.

566

567 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
 568 for real-time radiance field rendering. *ACM Transactions on Graphics*, 42(4):1–14, 2023.

569

570 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 571 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings*
 572 *of the IEEE/CVF International Conference on Computer Vision*, pp. 4015–4026, 2023.

573

574 Jonas Kulhanek, Songyou Peng, Zuzana Kukelova, Marc Pollefeys, and Torsten Sattler. Wildgaus-
 575 sians: 3d gaussian splatting in the wild. *arXiv preprint arXiv:2407.08447*, 2024.

576

577 Jaewon Lee, Injae Kim, Hwan Heo, and Hyunwoo J Kim. Semantic-aware occlusion filtering neural
 578 radiance fields in the wild. *arXiv preprint arXiv:2303.03966*, 2023.

579

580 Yiqing Liang, Numair Khan, Zhengqin Li, Thu Nguyen-Phuoc, Douglas Lanman, James Tompkin,
 581 and Lei Xiao. Gaufre: Gaussian deformation fields for real-time dynamic novel view synthesis.
 582 *arXiv preprint arXiv:2312.11458*, 2023.

583

584 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 585 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer vision–*
 586 *ECCV 2014: 13th European conference, zurich, Switzerland, September 6–12, 2014, proceedings,*
 587 *part v 13*, pp. 740–755. Springer, 2014.

588

589 Andrew Liu, Richard Tucker, Varun Jampani, Ameesh Makadia, Noah Snavely, and Angjoo
 590 Kanazawa. Infinite nature: Perpetual view generation of natural scenes from a single image.
 591 In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 14458–14467,
 592 2021.

593

594 Fangfu Liu, Wenqiang Sun, Hanyang Wang, Yikai Wang, Haowen Sun, Junliang Ye, Jun Zhang, and
 595 Yueqi Duan. Reconx: Reconstruct any scene from sparse views with video diffusion model. *arXiv*
 596 *preprint arXiv:2408.16767*, 2024.

597

598 Tianqi Liu, Guangcong Wang, Shoukang Hu, Liao Shen, Xinyi Ye, Yuhang Zang, Zhiguo Cao, Wei Li,
 599 and Ziwei Liu. Mvsgaussian: Fast generalizable gaussian splatting reconstruction from multi-view
 600 stereo. In *European Conference on Computer Vision*, pp. 37–53. Springer, 2025.

594 Yuan Liu, Sida Peng, Lingjie Liu, Qianqian Wang, Peng Wang, Christian Theobalt, Xiaowei Zhou,
 595 and Wenping Wang. Neural rays for occlusion-aware image-based rendering. In *Proceedings of*
 596 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7824–7833, 2022.

597

598 Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy,
 599 and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo collections.
 600 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7210–
 601 7219, 2021.

602

603 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 604 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
 605 *of the ACM*, 65(1):99–106, 2021.

606

607 Thang-Anh-Quan Nguyen, Luis Roldão, Nathan Piasco, Moussab Bennehar, and Dzmitry Tsishkou.
 608 Rodus: Robust decomposition of static and dynamic elements in urban scenes. *arXiv preprint*
 609 *arXiv:2403.09419*, 2024.

610

611 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 612 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 613 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

614

615 Takashi Otonari, Satoshi Ikehata, and Kiyoharu Aizawa. Entity-nerf: Detecting and removing moving
 616 entities in urban scenes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 617 *Pattern Recognition*, pp. 20892–20901, 2024.

618

619 Lu Qi, Jason Kuen, Weidong Guo, Tiancheng Shen, Jiuxiang Gu, Jiaya Jia, Zhe Lin, and Ming-Hsuan
 620 Yang. High-quality entity segmentation. *arXiv preprint arXiv:2211.05776*, 2022.

621

622 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 623 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev
 624 Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer.
 625 Sam 2: Segment anything in images and videos. *arXiv preprint arXiv:2408.00714*, 2024. URL
 626 <https://arxiv.org/abs/2408.00714>.

627

628 Weining Ren, Zihan Zhu, Boyang Sun, Jiaqi Chen, Marc Pollefeys, and Songyou Peng. Nerf on-the-
 629 go: Exploiting uncertainty for distractor-free nerfs in the wild. In *Proceedings of the IEEE/CVF*
 630 *Conference on Computer Vision and Pattern Recognition*, pp. 8931–8940, 2024.

631

632 Sara Sabour, Suhani Vora, Daniel Duckworth, Ivan Krasin, David J Fleet, and Andrea Tagliasacchi.
 633 Robustnerf: Ignoring distractors with robust losses. In *Proceedings of the IEEE/CVF Conference*
 634 *on Computer Vision and Pattern Recognition*, pp. 20626–20636, 2023.

635

636 Sara Sabour, Lily Goli, George Kopanas, Mark Matthews, Dmitry Lagun, Leonidas Guibas, Alec
 637 Jacobson, David J Fleet, and Andrea Tagliasacchi. Spotlesssplats: Ignoring distractors in 3d
 638 gaussian splatting. *arXiv preprint arXiv:2406.20055*, 2024.

639

640 Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In *Proceedings of*
 641 *the IEEE conference on computer vision and pattern recognition*, pp. 4104–4113, 2016.

642

643 Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Terrance Wang, Alexander
 644 Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, et al. Nerfstudio: A modular framework
 645 for neural radiance field development. In *ACM SIGGRAPH 2023 Conference Proceedings*, pp.
 646 1–12, 2023.

647

648 Paul Unger, Armin Ettenhofer, Matthias Nießner, and Barbara Roessle. Robust 3d gaussian
 649 splatting for novel view synthesis in presence of distractors. *arXiv preprint arXiv:2408.11697*,
 650 2024.

651

652 Peihao Wang, Xuxi Chen, Tianlong Chen, Subhashini Venugopalan, Zhangyang Wang, et al. Is
 653 attention all that nerf needs? *arXiv preprint arXiv:2207.13298*, 2022.

648 Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T Barron,
 649 Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning multi-view
 650 image-based rendering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 651 *Pattern Recognition*, pp. 4690–4699, 2021.

652 Jiacong Xu, Yiqun Mei, and Vishal M Patel. Wild-gs: Real-time novel view synthesis from uncon-
 653 strained photo collections. *arXiv preprint arXiv:2406.10373*, 2024.

654 Chuanrui Zhang, Yingshuang Zou, Zhuoling Li, Minmin Yi, and Haoqian Wang. Transplat: Gener-
 655 alizable 3d gaussian splatting from sparse multi-view images with transformers. *arXiv preprint*
 656 *arXiv:2408.13770*, 2024a.

657 Dongbin Zhang, Chuming Wang, Weitao Wang, Peihao Li, Minghan Qin, and Haoqian Wang.
 658 Gaussian in the wild: 3d gaussian splatting for unconstrained image collections. *arXiv preprint*
 659 *arXiv:2403.15704*, 2024b.

660 Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
 661 Learning view synthesis using multiplane images. *arXiv preprint arXiv:1805.09817*, 2018.

662 A EXPERIMENTAL DETAILS

663 A.1 REAL AND SYNTHETIC DATASET

664 In accordance with existing generalization frameworks, DGGS is trained in a cross-scene setting
 665 with distractor and evaluated in novel unseen distractor scenes to simulate real-world scenarios.
 666 Specifically, we utilize two widely used mobile-captured datasets: On-the-go (Ren et al., 2024)
 667 and RobustNeRF (Sabour et al., 2023), containing multiple distractor-scenes in outdoor and indoor
 668 environments, respectively. For fair comparison in real data, we train all models on On-the-go
 669 outdoor-scenes except *Arcdetriomphe* and *Mountain*, which, along with the RobustNeRF indoor-
 670 scenes, serve as test scenes. In addition to real data, we also construct synthetic datasets for additional
 671 verification.

672 A.1.1 REAL DATASET

673 DGGS primarily addresses distractor challenges in both training and inference under generalization
 674 settings. To validate the reliability of DGGS in the wild, we conduct experiments on existing real-
 675 world distractor datasets, which combine the On-the-go (Ren et al., 2024) (outdoor scenes) and
 676 RobustNeRF (Sabour et al., 2023) (indoor scenes) datasets. These datasets are captured by mobile
 677 devices and constitute the most widely utilized benchmark for scene-specific distractor-free methods,
 678 as discussed in Sec. 2.2.

679 **On-the-go Dataset:** It, captured using an iPhone 12, Samsung Galaxy S22, and DJI Mini 3 Pro
 680 drone, provides a diverse and dynamic range of distractor with varying occlusion ratios (5% to 30%).
 681 The dataset consists of 12 casually captured sequences, including Drone, Patio, and ArcdeTriomphe,
 682 most of which are outdoor scenes.

683 **RobustNeRF Dataset:** It comprises four natural indoor scenes —two in an apartment and two
 684 in a robotics lab—captured with controlled settings and varying complexities, including dynamic
 685 distractor and fixed camera parameters.

686 We downsample all images’ resolution to 192×256 in all experiments. As described in Sec. 5.1,
 687 we designate all scenes from On-the-go dataset except *Arcdetriomphe* and *Mountain* as the training
 688 set, while these two scenes along with the RobustNeRF dataset serve as evaluation scenes. For
 689 evaluating the robustness against distractor, we utilize the ‘extra’ views from the On-the-go dataset
 690 and the ‘clean’ views from the RobustNeRF dataset (except for the *Crab1*) as inference views, and
 691 compute corresponding evaluation metrics to assess performance. Note that all reference-query pair
 692 selection strategies ensure distinct poses between them, particularly for scenes with clean-clutter
 693 paired configurations.

702 A.1.2 SYNTHETIC DATASET
703

704 To further validate our novel task: Distractor-free Generalizable 3D Gaussian Splatting, we construct
705 numerous synthetic scenes based on Re10K (Zhou et al., 2018) and ACID (Liu et al., 2021) datasets
706 that are widely used in the field of generalizable reconstruction (Chen et al., 2024b). These datasets,
707 sourced from YouTube, contain numerous multi-view images of static indoor and outdoor scenes
708 with corresponding camera poses that we use as the foundation to construct distractor on them. For
709 distractor, we select the COCO (Lin et al., 2014) dataset as our source, as it contains numerous object
710 categories with their corresponding semantics and masks.

711 Specifically, we build a distractor library using COCO masks and randomly introduce different
712 distractor to random positions with random rotations in the multi-view images of various static scenes.
713 It's worth noting that for multi-view images of a same scene, we ensure the inserted distractor is the
714 same object, which better aligns with real-world scenarios. Unlike real-world scene data, we can
715 control the frequency of distractor appearances and their coverage area in images, which provides
716 further validation for DGGS. We ensure that 70% of the images contain inserted distractors while the
717 remaining images remain distractor-free. Additionally, through scaling the distractors, we control
718 their occupied area to consistently range between 0% and 30% of the entire scene. During evaluation,
719 we maintain consistent settings with the Real Dataset, including the selection of references and
720 queries and the evaluation methodology.

721 A.2 TRAINING AND EVALUATION SETTING
722

723 In all experiments, we set the number of references $N=4$ and the size of scene-images pool $K=8$,
724 which are discussed in Fig. 10. During all training, query views and reference views are selected,
725 regardless of ‘clutter’ or ‘extra’. In evaluation phase, we utilize all ‘extra’ images and ‘clear’ images
726 with a stride of eight as query views for On-the-go (*Arcdetriomphe* and *Mountain*) and all RobustNeRF
727 scenes. For references in evaluation, we construct the scene-images pool using views closest to the
728 query view, ensuring inclusion of both distractor-containing and few distractor-free data to validate
729 the effectiveness of Reference Scoring mechanism. Note that this setting is only for validation and
730 evaluation purposes. In practical applications, the scene-images pool can be constructed using any
731 adjacent views, independent of the query view and distractor presence. Finally, we compute the
732 average PSNR, SSIM, and LPIPS metrics across all scenes on all query renders. More details are
733 described in Appendix.

734 A.2.1 EXPERIMENTAL SETTING
735

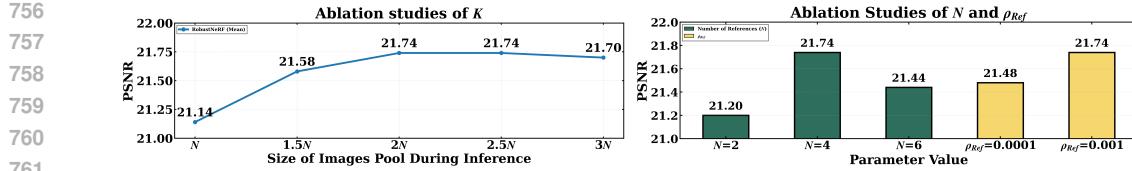
736 To ensure a fair comparison, we maintain hyperparameters, experimental settings, and evaluation
737 method across all re-training experiments. All re-trained models are implemented with PyTorch 2.1.0,
738 and all experiments are conducted using Nvidia RTX 3090 GPUs with CUDA 12.1 and trained for
739 10K iterations.

740 A.2.2 OTHER RE-TRAINED COMPARATIVE METHODS
741

742 In addition to maintaining consistent experimental settings as mentioned above, we conduct com-
743 parative experiments by integrating distractor-free approaches with generalizable 3DGS methods.
744 Specifically, we incorporate existing distractor-free mask prediction and loss function improvements
745 into our baseline model, Mvsplat (Chen et al., 2024b). This integration approach is viable primarily
746 because existing distractor-free methods largely emphasize residual-based mask prediction, facilitat-
747 ing seamless incorporation into the query residual loss framework within generalizable configura-
748 tions. The integration methodology varies according to different approaches, as detailed below:

750 **RobustNeRF (Sabour et al., 2023) and SLS (Sabour et al., 2024):** We directly incorporate
751 RobustNeRF’s and SLS’s mask prediction component to guide the MSE loss in Mvsplat (Chen et al.,
752 2024b).

753 **NeRF-On-the-go (Ren et al., 2024):** While maintaining all other components unchanged, we
754 similarly incorporate DINoV2 (Oquab et al., 2023) to predict uncertainty maps for guiding the MSE
755 loss in Mvsplat (Chen et al., 2024b).

Figure 10: **Performance Comparison under Different Inputs, and Ablation Studies for ρ_{Ref} .**Table 7: **Quantitative Experiments** for DGGS under single-scene setting

Methods	Statue (RobustNeRF)		
	PSNR↑	SSIM↑	LPIPS↓
NeRF-W (Martin-Brualla et al., 2021) (CVPR 2021)	18.91	0.616	0.369
HA-NeRF (Chen et al., 2022) (CVPR 2022)	18.67	0.616	0.367
RobustNeRF (Sabour et al., 2023) (CVPR 2023)	20.60	0.758	0.154
On-the-go (Ren et al., 2024) (CVPR 2024)	21.58	0.77	0.24
NeRF-HuGS (Chen et al., 2024a) (2024 CVPR)	21.00	0.774	0.135
SLS (Sabour et al., 2024) (Arxiv 2024)	22.69	0.85	0.12
DGGS-TR	21.57	0.769	0.187
DGGS-TR (+ Distractor-free References)	30.50	0.952	0.052

NeRF-HuGS (Chen et al., 2024a): To maintain maximum consistency with the original method, we incorporate both SAM (Kirillov et al., 2023) and predefined Colmap (Schonberger & Frahm, 2016) to guide mask prediction in MvSplat (Chen et al., 2024b)'s MSE loss. We exclude Nerfacto (Tancik et al., 2023) from our implementation, as the per-scene pretraining becomes impractical under our iterative scene transition setting.

B ADDITIONAL RESULTS AND ANALYSIS

This section presents extensive experimental results, both qualitative and quantitative, across various scenarios, with further analysis validating the efficacy of DGGS.

B.1 QUANTITATIVE RESULTS IN MORE REAL-SCENES

Qualitative comparisons of DGGS in RobustNeRF scenes are presented in Tab. 1. Furthermore, we present results on scenes *Arcdetriomphe* and *Mountain* from the On-the-go dataset in Tab. 12. It is worth noting that we omit the discussion of DGGS (with Our Inference) for these scenes quantitatively as their 'extra' views used for evaluation still contain partial distractor. The qualitative comparisons for them are extensively discussed in subsequent sections. Extensive quantitative evaluations across diverse scenes validate the superiority of DGGS, notably outperforming existing generalizable methods that suffer from distractor-induced uncertainties. Although augmenting the baseline with scene-specific distractor-free methods improves stability in some scenes, DGGS's scene-agnostic mask prediction capability demonstrates superior performance in generalizable distractor-free 3DGS reconstruction.

B.2 MEMORY USAGE AND TIME ANALYSIS

To further analyze the memory Usage and time for DGGS, we additionally report the efficiency under different $N(K)$ and different resolutions in Tab. 8. The impact of these factors on efficiency is similar to works like Mvsplat (Chen et al., 2024b); that is, as the resolution and N increase, the inference time and memory usage of DGGS also increase accordingly.

810
811
812
Table 8: **Memory Usage and Time** under dif-
ferent configurations.

<i>N</i> (<i>K</i>)	Resolution	Memory	Time (w/o Seg)
4 (8)	252	10G	0.111s
4 (8)	504	16G	0.277s
6 (12)	252	12G	0.203s

813
814
815
816
817
818
819
Table 9: **Ablation Study on Segmentation Model**
for Mask Prediction.

Method	PSNR↑	SSIM↑	LPIPS↓
DGGS-TR (Feature Consistency)	20.85	0.733	0.242
DGGS-TR (Clustering)	20.92	0.736	0.245
DGGS-TR (Our)	21.02	0.738	0.242

820
821
822
823
824
825
826
Table 10: **Quantitative Experiments** for DGGS on Synthetic Testing Scenes

Methods	Synthetic Testing Scenes (Mean)		
	PSNR↑	SSIM↑	LPIPS↓
Mvsplat* (Pre-train on Re-10K) (Chen et al., 2024b)	18.02	0.758	0.220
DGGS (Real → Synthetic)	26.51	0.912	0.105
DGGS (Fine-tuning on Synthetic Training Scenes)	29.66	0.949	0.059

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843

B.3 ABLATION STUDY FOR MASK FUSION

DGGS adopts a conservative intersection operation reference multi-mask fusion strategy in Sec.4.1.1, which effectively reduces the impact of distractors during generalizable 3DGS training. To further verify the effectiveness of this method, we additionally discuss some variant mask fusion approaches. In Tab.11, we modify the original intersection-based mask fusion strategy to require at least 50% of the references to agree, meaning that if two references indicate that the corresponding location is a static region, it can be considered static. The experimental results show that this leads to a decline in the training model’s performance, which may be due to distractor regions being misclassified as static regions. This further demonstrates what we mention earlier: incorrectly classifying dynamic regions as static has a greater impact on generalizable 3DGS training than incorrectly classifying static regions as dynamic. Furthermore, we also discuss utilizing soft weighting as an alternative to the strict intersection of all references during inference. A straightforward approach is to employ the view angle as an additional condition for weighted fusion of all masks, whereby references that are more distant from the target view are assigned proportionally lower weights. Experiments demonstrate that distractor masks are view-independent, and such fusion leads to additional distractor artifacts in some cases. This means that if a distractor appears in any reference view, regardless of its distance from the target view, it negatively affects the reconstruction quality of the entire scene.

844
845
846

B.4 ABLATION STUDY FOR SEGMENTATION MODELS

To further discuss the importance of pretrained segmentation models, we additionally introduce feature consistency loss terms or Cclustering strategies to replace the segmentation model. These strategies are verified to have certain robustness against some misclassified regions for distractor. From the results in Tab. 9, it can be found that the pretrained segmentation model can be replaced during the training process without causing serious impact on reconstruction performance. This is similar to our previous analysis, that is, DGGS mainly relies on 3D consistency among references to determine the distractor and stabilize the training process, rather than accurate masks. However, the difference from these methods is that they can hardly output accurate distractor masks additionally, whereas DGGS is able to simultaneously achieve distractor mask prediction during the reconstruction.

856
857

B.5 QUANTITATIVE RESULTS IN SYNTHETIC-SCENES

Corresponding to Fig.10 in the main text, we quantitatively discuss the performance comparison of DGGS in synthetic scenes. We discuss two training settings for DGGS, including training on real scenes and directly inferring on synthetic scenes, as well as fine-tuning the model trained on real scenes using synthetic scenes. To test on unseen scenes, the scenes used for fine-tuning are kept inconsistent with the scenes used for inference. Tab. 10 demonstrates the generalization ability of DGGS despite the significant domain gap between the real scenes used for training and the synthetic scenes used for testing. Meanwhile, this also shows that the pre-trained Mvsplat* struggles to handle

864
865
866 Table 11: **Ablation Study for Mask Fusion.**
867
868
869

Method	PSNR↑	SSIM↑	LPIPS↓	Method	PSNR↑	SSIM↑	LPIPS↓
DGGS-TR (50%)	20.70	0.734	0.250	DGGS (View Angles)	21.60	0.752	0.240
DGGS-TR (Our)	21.02	0.738	0.242	DGGS (Our)	21.74	0.758	0.237

870
871 Table 12: **Quantitative Experiments** for distractor-free Generalizable 3DGS under *Arcdetriomphe*
872 and *Mountain* scenes.
873
874

Methods	Arcdetriomphe			Mountain		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
Pixelsplat (Charatan et al., 2024)	15.15	0.311	0.435	15.43	0.443	0.441
Mvsplat (Chen et al., 2024b)	14.96	0.341	0.401	13.73	0.253	0.419
MVSGaussian (Liu et al., 2025)	14.28	0.528	0.531	-	-	-
+RobustNeRF (Sabour et al., 2023)	15.98	0.390	0.372	14.61	0.276	0.445
+On-the-go (Ren et al., 2024)	14.67	0.354	0.432	14.23	0.287	0.436
+NeRF-HuGS (Chen et al., 2024a)	19.02	0.699	0.250	15.26	0.463	0.355
+SLS (Sabour et al., 2024)	19.28	0.716	0.227	15.14	0.443	0.388
DGGS-TR	20.32	0.737	0.214	16.37	0.492	0.337

884
885 the impact brought by distractors, which may be caused by 3D inconsistencies. We further verify this
886 in subsequent qualitative experiments, as shown in Fig. 11.
887888
889

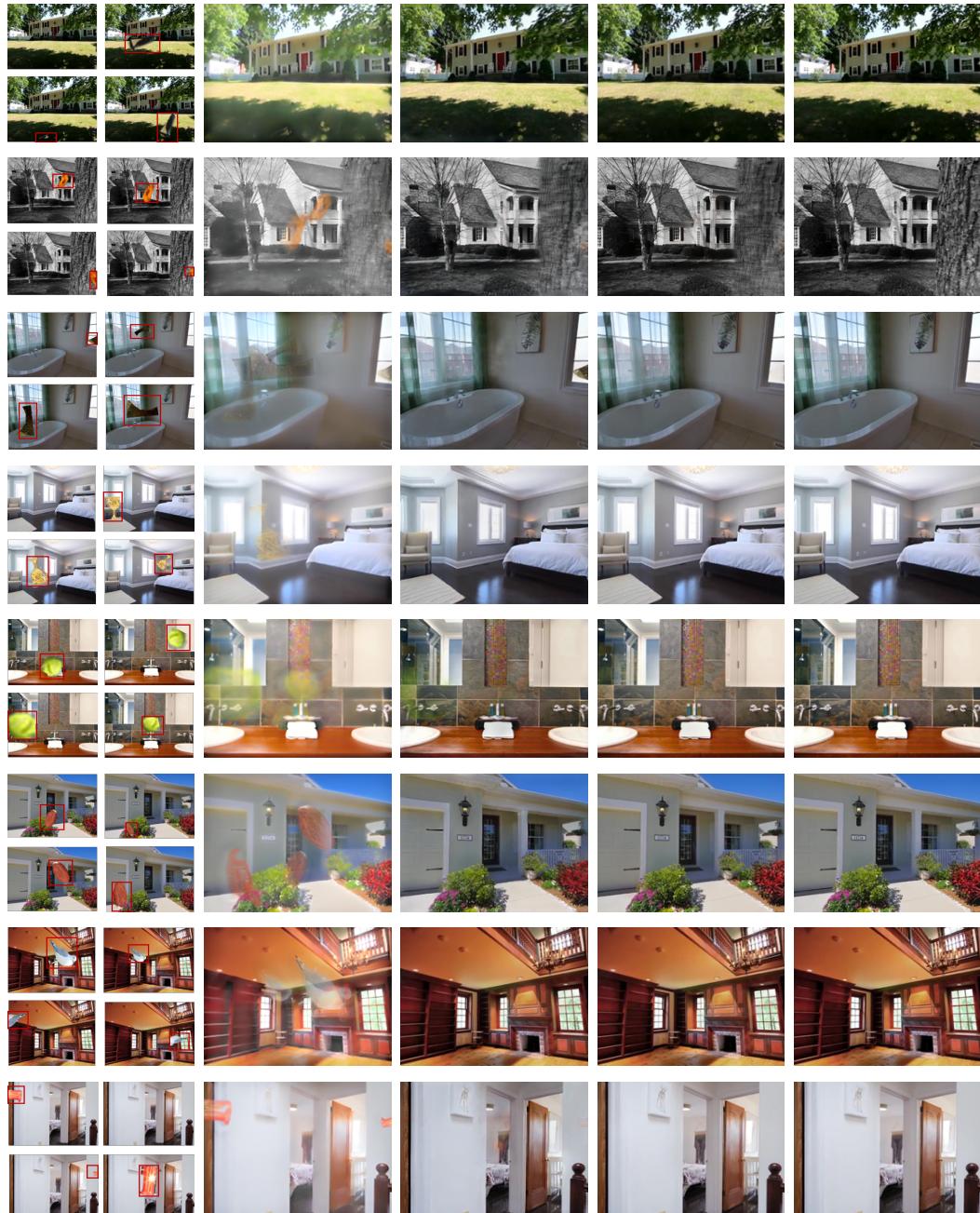
B.6 QUALITATIVE EXPERIMENTS

890891 Fig. 14 and Fig. 15 present comprehensive qualitative comparisons of DGGS-TR and DGGS against
892 existing methods. Through extensive visualization results, DGGS-TR demonstrates superior stability,
893 particularly in high-frequency regions, compared to other methods trained on distractor-rich data.
894 However, its performance deteriorates when processing reference images containing substantial
895 distractor. While marginally outperforming pre-trained models (Chen et al., 2024b), it continues to
896 face challenges with artifact suppression and hole elimination. Leveraging our inference strategy,
897 DGGS effectively addresses these challenges. Extensive examples in Fig. 15 validate its ability to
898 mitigate artifacts and holes, producing cleaner scene representations.
899900

B.7 QUALITATIVE COMPARISON OF PREDICTED MASKS

901902 As shown in Fig. 16, our comparison between generalizable mask predictions, Robust Masks, and
903 scene-specific trained masks reveals DGGS’s capability to eliminate over-predicted regions from
904 initial Robust Masks while achieving accurate results without scene-specific training. The predicted
905 masks exhibit, unexpectedly, performance levels that rival scene-specific training approaches. Note
906 that for fair evaluation, all masks are predicted under DGGS-TR without the involvement of any
907 inference framework.908 Our reference-based prediction proves effective for distractor mask estimation, an approach rarely
909 addressed in previous distractor-free works. While NeRF-HuGS (Chen et al., 2024b) introduced simi-
910 lar concepts using SfM-based Heuristics, their approach relied heavily on predefined scene Colmap
911 rather than direct reference inference, presenting substantial challenges in generalizable settings.
912 Drawing inspiration from human perception, we observe that humans naturally identify transient
913 objects (or distractor) across N references from arbitrary scenes by leveraging 3D consistency to
914 establish correspondences between different viewpoints. In this process, distractor typically manifest
915 in regions exhibiting inconsistent correspondence relationships. Capitalizing on this fundamental
916 insight, DGGS identifies non-distractor regions scene-agnostically through the exploitation of stable
917 references residual loss and 3D consistency of static regions. This process, detailed in Sec. 4.1.1,
918 effectively functions as a filtering mechanism for the Robust Masks based on references, establishing
919 a novel paradigm for references-based distractor mask prediction.

918
919
920
921



922
923
924
925
926
927
928
929
930
931
932

933
934
935
936
937
938
939
940
941
942

943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958

959
960
961
962
963

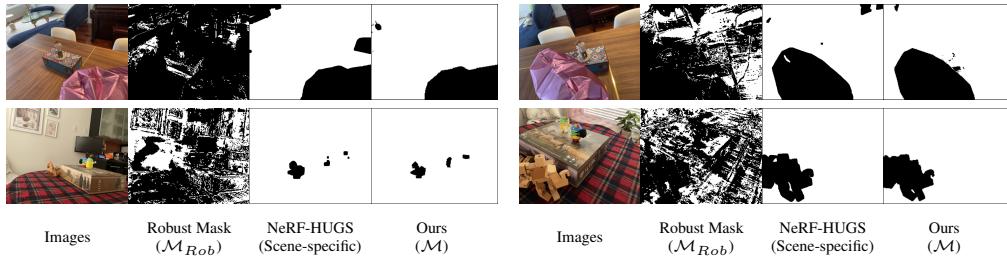
964
965
966

Figure 11: Qualitative Comparison on Synthetic scenes with Same References.

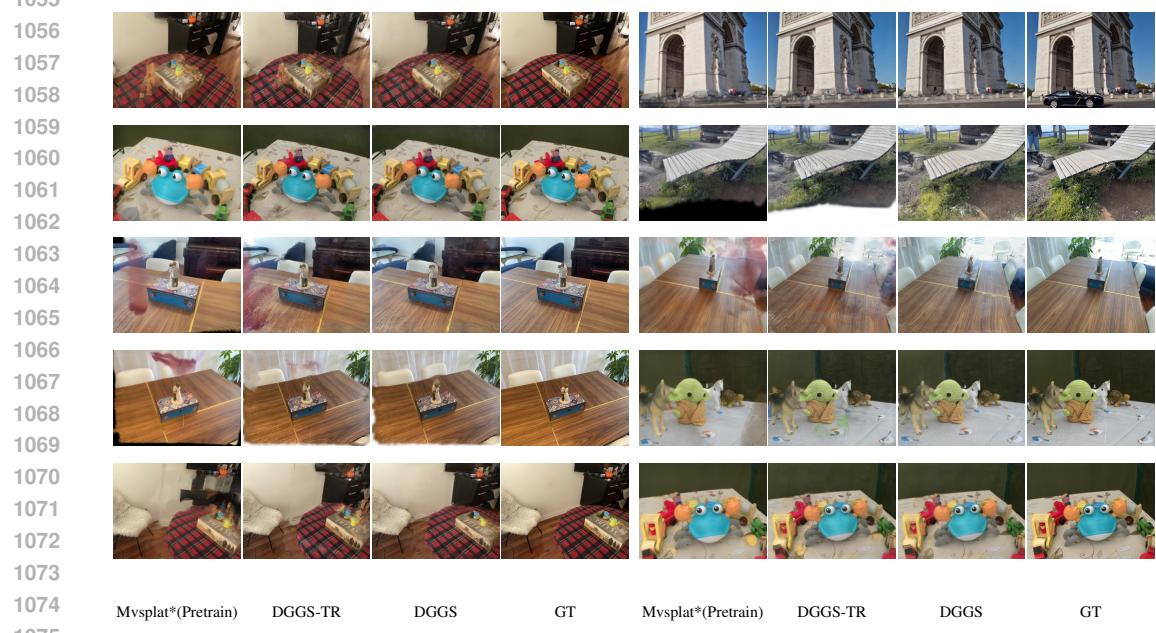
967
968
969
970
971

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
Table 13: **Ablations** for Reference Scoring.

Methods	Mean (RobustNeRF)		
	PSNR↑	SSIM↑	LPIPS↓
DGGS-TR ($N=4$)	21.02	0.738	0.242
DGGS-TR ($N=8$)	20.22	0.690	0.311
DGGS w/o Pruning ($N=4$)	21.47	0.749	0.242

990
991
Figure 12: **Qualitative Comparison** for our scene-agnostic masks prediction vs. Robust Mask and
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
222210
222211
222212
222213
222214
222215
222216
222217
222218
222219
222220
222221
222222
222223
222224
222225
222226
222227
222228
222229
2222210
2222211
2222212
2222213
2222214
2222215
2222216
2222217
2222218
2222219
2222220
2222221
2222222
2222223
2222224
2222225
2222226
2222227
2222228
2222229
22222210
22222211
22222212
22222213
22222214
22222215
22222216
22222217
22222218
22222219
22222220
22222221
22222222
22222223
22222224
22222225
22222226
22222227
22222228
22222229
222222210
222222211
222222212
222222213
222222214
222222215
222222216
222222217
222222218
222222219
222222220
222222221
222222222
222222223
222222224
222222225
222222226
222222227
222222228
222222229
2222222210
2222222211
2222222212
2222222213
2222222214
2222222215
2222222216
2222222217
2222222218
2222222219
2222222220
2222222221
2222222222
2222222223
2222222224
2222222225
2222222226
2222222227
2222222228
2222222229
22222222210
22222222211
22222222212
22222222213
22222222214
22222222215
22222222216
22222222217
22222222218
22222222219
22222222220
22222222221
22222222222
22222222223
22222222224
22222222225
22222222226
22222222227
22222222228
22222222229
222222222210
222222222211
222222222212
222222222213
222222222214
222222222215
222222222216
222222222217
222222222218
222222222219
222222222220
222222222221
222222222222
222222222223
222222222224
222222222225
222222222226
222222222227
222222222228
222222222229
2222222222210
2222222222211
2222222222212
2222222222213
2222222222214
2222222222215
2222222222216
2222222222217
2222222222218
2222222222219
2222222222220
2222222222221
2222222222222
2222222222223
2222222222224
2222222222225
2222222222226
2222222222227
2222222222228
2222222222229
22222222222210
22222222222211
22222222222212
22222222222213
22222222222214
22222222222215
22222222222216
22222222222217
22222222222218
22222222222219
22222222222220
22222222222221
22222222222222
22222222222223
22222222222224
22222222222225
22222222222226
22222222222227
22222222222228
22222222222229
222222222222210
222222222222211
222222222222212
222222222222213
222222222222214
222222222222215
222222222222216
222222222222217
222222222222218
222222222222219
222222222222220
222222222222221
222222222222222
222222222222223
222222222222224
222222222222225
222222222222226
222222222222227
222222222222228
222222222222229
2222222222222210
2222222222222211
2222222222222212
2222222222222213
2222222222222214
2222222222222215
2222222222222216
2222222222222217
2222222222222218
2222222222222219
2222222222222220
2222222222222221
2222222222222222
2222222222222223
2222222222222224
2222222222222225
2222222222222226
2222222222222227
2222222222222228
2222222222222229
22222222222222210
22222

1049 **Figure 14: More Qualitative Comparison of Re-trained Existing Methods** across unseen scenes.
1050



1076 **Figure 15: More Qualitative Comparison of Pre-trained Models and our DGGS-TR as well as
1077 DGGS under unseen scenes.**
1078
1079

Figure 16: **Failure Cases.**

1093 B.10 SINGLE-SCENE TRAINING SETTING

1095 In addition to generalization capabilities, we investigate the performance of our reference-based
 1096 paradigm in single-scene training configurations.

1097 Following distractor-free experimental protocols (Sabour et al., 2023; 2024; Chen et al., 2024a),
 1098 Tab. 7 presents the performance of scene-specific trained DGGS-TR on the *statue* scene, trained on
 1099 distractor-rich data (‘clutter’) without access to distractor-free references during inference ‘extra’.
 1100 Notably, DGGS achieves comparable results to existing approaches despite the absence of explicit
 1101 iterative optimized representations. Moreover, when simulating practical scenarios by introducing
 1102 partial distractor-free references during inference (while maintaining partial distractor-rich refer-
 1103 ences, corresponding to the bottom row of the Tab. 7), DGGS exhibits superior performance. This
 1104 performance can be primarily attributed to DGGS’s accurate distractor prediction capabilities.

1106 C FAILURE CASES

1108 Fig. 16 presents an analysis of failure cases. As mentioned in Sec. 6, although DGGS effectively
 1109 mitigates distractor effects during both training and inference phases, it encounters difficulties with
 1110 consistently occluded regions across reference views and novel areas. Examples include regions
 1111 occluded by robots that are not visible in other views (left) and areas consistently blocked by a car in
 1112 the lower-left corner (right).

1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133