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ABSTRACT

Modeling many-body systems has been a long-standing challenge in science, from
classical and quantum physics to computational biology. Equivariance is a critical
physical symmetry for many-body dynamic systems, which enables robust and ac-
curate prediction under arbitrary reference transformations. In light of this, great
efforts have been put on encoding this symmetry into deep neural networks, which
significantly boosts the prediction performance of down-streaming tasks. Some
general equivariant models which are computationally efficient have been pro-
posed, however, these models have no guarantee on the approximation power and
may have information loss. In this paper, we leverage insights from the scalariza-
tion technique in differential geometry to model many-body systems by learning
the gradient vector fields, which are SE(3) and permutation equivariant. Specifi-
cally, we propose the Equivariant Vector Field Network (EVFN), which is built on
a novel tuple of equivariant basis and the associated scalarization and vectoriza-
tion layers. Since our tuple equivariant basis forms a complete basis, learning the
dynamics with our EVFN has no information loss and no tensor operations are in-
volved before the final vectorization, which reduces the complex optimization on
tensors to a minimum. We evaluate our method on predicting trajectories of sim-
ulated Newton mechanics systems with both full and partially observed data, as
well as the equilibrium state of small molecules (molecular conformation) evolv-
ing as a statistical mechanics system. Experimental results across multiple tasks
demonstrate that our model achieves best or competitive performance on baseline
models in various types of datasets.

1 INTRODUCTION

Modeling many-body systems has been a long-standing challenge in scientific fields from classi-
cal and quantum physics (Carleo & Troyer, 2017; Zhang et al., 2018; Satorras et al., 2021c) to
structural biology (Senior et al., 2020; Shi et al., 2021), due to its high numerical complexity and
complicated evolving mechanism. Graph neural network (GNN), which is superior to model the
high-dimensional structured data with permutation equivariance, brings a new opportunity to model
the many-body systems in an end-to-end manner. Since many-body physical systems follow many
physical constraints like SE(3) symmetry, pure black-box GNN models show limitations on general-
ization in this scenario and symmetry-preserving GNN models have become a hot research direction.

The core question to be solved for developing general equivariant GNN models is how to conduct
nonlinear operations on tensors in a reference-free way. To represent and manipulate equivariant
tensor of arbitrary orders, some approaches resort to equivariant function spaces such as spherical
harmonics (Thomas et al., 2018; Fuchs et al., 2020; Bogatskiy et al., 2020; Fuchs et al., 2021) or
lifting the spatial space to high-dimensional spaces such as Lie group space (Cohen & Welling,
2016; Cohen et al., 2018; 2019b; Finzi et al., 2020; Hutchinson et al., 2021). Since no restriction
on the order of tensors is imposed on these methods, sufficient expressive power of these models is
guaranteed. Unfortunately, transforming a many-body system into those high-dimensional spaces or
calculating equivariant functions usually brings excessive computational cost and great optimization
difficulty, which is unacceptable in some real-world scenarios. To remedy this issue, Satorras et al.
(2021c) proposed EGNN to directly implement equivariant operations in the original space, provid-
ing an efficient way to preserve equivariance without performing complex space transformations.
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Detailed experiments in (Satorras et al., 2021c) have shown that preserving equivariance without
transforming the space is theoretically possible and computationally efficient in practice.

However, one trade-off of EGNN is abandoning a certain amount of tensor information 1, which
causes the equivariance function class EGNN can approximate to be restricted. This drawback
may become serious when modeling complex dynamical scenarios such as molecular simulation,
where geometric information (e.g., angular potentials and rotatable bonds) plays an important role
in inducing conformation changes (Klicpera et al. (2020); Xu et al. (2021)). To mitigate this issue,
we propose a new model called Equivariant Vector Field Network (EVFN) to fit the gradient vector
fields (Song & Ermon, 2019; Shi et al., 2021) of many-body systems. With a scalarization block and
a vectorization block, EVFN is able to represent tensor information losslessly in the original space
and outputs equivariant vector fields with no restriction on the direction.

Inspired by the scalarization technique from differential geometry (Kobayashi, 1963; Hsu, 2002),
EVFN first introduces a tuple of complete basis associated with each particle pair that preserves
permutation and SE(3) symmetry under global rotation and translation transformation on the many-
body system. Based on this basis, the scalarization block losslessly transforms the geometric in-
formation into SO(3)-invariant scalar representations. In principle, the scalar representations can
be fed into any permutation-equivariant network to implement complex nonlinear transformations.
Moreover, the vectorization block could reverse the scalars back to the vector field without sacri-
ficing geometric information with the complete basis. Once obtained the estimated gradient field,
we can predict a certain state or the whole dynamical trajectory of a 3D many-body system via an
integration procedure.

We evaluate the proposed framework on two many-body scenarios that require equivariance: (1) the
simulated Newtonian many-body dynamics trajectory prediction and (2) the real-world molecular
conformation generation. Our model achieves best or competitive results in various types of datasets.

2 BACKGROUND

In this section, we first introduce some basic concepts on the notion of equivariance and tensor
field and then describe the scalarization technique from differential geometry. Finally, we define
the ‘vector field’ as the differential of a many-body system. Let X = (x1, . . . ,xN ) ∈ RN×3 be
a many-body system living in R3, where N is the number of particles. We use xi(t) to denote the
position of the particle i at time t.

SE(3) group and Equivariance In the Euclidean space R3 we can consider affine transformations
that preserve the distance between any two points, i.e., the isometric group SE(3). We call it the
symmetry group w.r.t. the Euclidean metric, and it turns out that SE(3) can be generated by the
translation group and the rotation group SO(3).

Once we have a symmetry group, it’s valid to define quantities that are “equivariant” under the
symmetry group. Given a function f : Rm → Rn, assuming the symmetry group G acts on Rm and
Rn, then f is G-equivariant if

f(gx) = gf(x), ∀x ∈ Rm and g ∈ G.

For SO(3) group, if n = 1, i.e., the output of f is a scalar, then the group action on R1 is the identity
map, in this case f should be SO(3)-invariant (Thomas et al., 2018): f(gx) = f(x).

The notion of tensor field can be defined for general Riemannian manifold (see Definition 2.1.10
of (Jost & Jost, 2008)). Let { ∂

∂xi
}3i=1 and {dxi}3i=1 be the tangent vectors and dual vectors in R3

respectively, and ⊗ denotes the tensor product. Then recall the definition of tensor field for R3 w.r.t.
the SO(3) group:
Definition 2.1. A (r, s)- tensor field θ is a multi-linear map from a collection of r vectors and s
dual vectors in R3 to R: θ(x) = θi1···irj1···js

∂
∂xi1

⊗ · · · ⊗ ∂
∂xir

⊗ dxj1 ⊗ · · · ⊗ dxjs . It implies that under
SO(3) coordinate transformation g := {gij}1≤i,j≤n, the tensor field θ transforms equivariantly:
θ
i′1···i

′
r

j′1···j′s
= gi′1i1 · · · gi′rirg

T
j1j

′
1
· · · gTjsj′sθ

i1···ir
j1···js , where gT is the inverse of g.

1For example, dihedral angle is a function of position vectors rather than the position’s norm, which are the
input of EGNN. Detailed definition is given in appendix A.2.4
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Figure 1: An overview of EVFN. For a many-body system X , we first centralize the positions to
preserve translation equivariance. Then we introduce a tuple of edge-level complete basis Fij to
transform the geometric tensors xi into SO(3)-invariant scalars. Afterwards, the scalar embeddings
tij , pre-defined node features hi and edge features eij are fed to the Graph Transformer to learn
edgewise embeddings mij . Finally, a vectorization block transforms the edgewise embeddings into
nodewise vector fields Vi.

Equivariant Vector field To model X(t), a natural way is to estimate its differential dX(t)
dt and

apply an ODE solver to integrate the differential to obtain the dynamic trajectory or a state at a given
time. Due to the SO(3) symmetry, we define such differential as an equivariant vector field. Most
3D real-world scenarios adopt first-order and second-order equivariant vector fields to depict their
dynamic evolving mechanisms, which are also the modeling targets in this paper. A typical second-
order vector field is the acceleration field of Newtonian systems.

Gradient field is a widely used terminology meaning the first-order derivative w.r.t. a scalar function
(Jost & Jost, 2008; Song & Ermon, 2019). To generate molecular conformations (i.e. equilibrium
state) with a single stage, (Shi et al., 2021) define “gradient field” to serve as pseudo-forces acting
on each particle. By evolving the particles following the direction of the gradient field, the non-
equilibrium system will finally converge to an equilibrium state. Gradient field is a special case of
first-order vector field.

3 METHODOLOGY

Given a many-body system X , we aim at modeling its vector field to predict the long-term dy-
namic trajectory or the equilibrium state within a single stage. To preserve the physical symmetries
of the system, the estimated vector field should be equivariant for permutation and SE(3) group.
To achieve this goal, we represent the system as a spatial graph and construct EVFN based on it
with three key components: (1) a Scalarization block to encode the geometric tensors into SO(3)-
invariant scalar representations attached to each node; (2) a Graph Transformer block to learn
SO(3)-invariant edgewise embeddings by propagating and aggregating information on the graph;
and (3) a Vectorization block to reverse scalar representations back to geometric tensors to estimate
the vector field. A brief overview of EVFN is illustrated in Figure 1. Once the vector field network
(EVFN) is optimized, an Evolving block is incorporated to integrate the vector field for predicting
the dynamics. The translation symmetry can be easily preserved by moving the particle system’s
centroid at t = 0 to the origin (the Centralization operation in Figure 1). Permutation equivariance
is automatically guaranteed for the message-passing based Graph Transformer. We provide detailed
proof about these symmetries in Appendix A.2.1. Now we concentrate on SO(3) symmetry in the
following sections.

3.1 SCALARIZATION BLOCK

The scalarization block is designed to transform geometric tensors into edgewise SO(3)-invariant
scalar features by introducing a novel tuple of complete basis. Given a particle xi(t), define neighbor
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N (xi(t)) as the particles that react with xi(t). Then we can consider a particle pair (xi(t),xj(t)),
where xj(t) ∈ N (xi(t)). Suppose we take the positions of the two particles as the relevant ge-
ometric information of edge ⟨i, j⟩, then the edgewise SO(3)-invariant scalars could be defined as
tij := Scalarize(xi(t),xj(t),Fij), where Scalarize is the scalarization operation under an edge-
wise dynamical basis Fij defined below.

Equivariant basis construction For the particle pair (xi(t),xj(t)), let a(t) = xi(t)−xj(t)
∥xi(t)−xj(t)∥ and

× denotes the cross product of two vectors, define

b(t) =
xi(t)× xj(t)

∥xi(t)× xj(t)∥
and c(t) = a(t)× b(t), (3.1)

Then we build a SO(3)-equivariant basis Fij := (a(t), b(t), c(t)). In practice we add a small
constant ϵ to the normalization factor in case that xi and xj collapse. Under the condition that the
matrix (a(t), b(t), c(t)) is non-degenerate, Fij formulates a complete orthonormal basis (frame) of
the tangent space at xi(t). Note that this is a dynamical basis w.r.t. t and the construction process
of such basis is permutation-equivariant. Since the Euclidean metric is flat, the dual basis (living
in the cotangent space of xi (Hsu, 2002)) of Fij is just its transpose: (aT (t), bT (t), cT (t)). The
‘bad’ event that Fij is degenerate for all neighbors happens only when all particles are restricted to
a straight line, which is a measure zero set in R3. Therefore, we assume Fij is non-degenerate from
now on. Proof for SO(3)-equivariance of Fij is provided in proposition A.1.

Invariant scalarization of geometric tensors With the complete equivariant basis, we can realize
the scalarization operation (Kobayashi, 1963) in an elementary way. First of all, notice that under
the basis Fij ((a(t), b(t), c(t))), the position vector of xk naturally owns a ‘coefficient’ or ‘scalar’
representation:

(xk · a(t),xk · b(t),xk · c(t)). (3.2)
We define the process obtaining such scalars as Scalarize operation. Here we demonstrate that the
set of obtained coefficients (3.2) is actually a SO(3)-invariant scalar tuple. Let g ∈ SO(3) be an
arbitrary orthogonal transformation, then

xk → gxk and (a(t), b(t), c(t))→ (g · a(t), g · b(t), g · c(t)).
Therefore (3.2) undergoes

(xk · a(t),xk · b(t),xk · c(t))→ (gxk · ga(t), gxk · gb(t), gxk · gc(t))
= (xk · a(t),xk · b(t),xk · c(t)), (3.3)

where we use the fact that gT g = I to get the last line.

It is easy to prove that the Scalarize operation could transform arbitrary geometric tensors into
SO(3)-invariant scalars. Taking (2,0)-type tensors as an example, by extending the complete basis
(a, b, c) through tensor product, it’s easy to check that

{a⊗ a, b⊗ b, c⊗ c,a⊗ b, b⊗ a,a⊗ c, c⊗ a, b⊗ c, c⊗ b}
forms an equivariant basis of the (2, 0)-type tensor space. Then the scalarization of a tensor is just
the linear combination coefficients under this basis. In the same way as (3.3), we can prove that
the coefficients are also SO(3)-invariant scalars. Given a (2, 0)-symmetric tensor θ (e.g., energy-
momentum tensor), under the complete basis Fij = (a, b, c), θ can be expressed as:

θ =θaaa⊗ a+ θbbb⊗ b+ θccc⊗ c+ θab(a⊗ b+ b⊗ a)

+ θac(a⊗ c+ c⊗ a) + θbc(b⊗ c+ c⊗ b). (3.4)

The scalars tuple tij := {θaa, θab, . . . } are the scalarization of θ under the equivariant basis Fij ,
which are SO(3)-invariant. Since any nonlinear transformations acting on SO(3)-invariant scalars are
still SO(3)-invariant, therefore the scalars tuple can be fed into any neural network architectures
without concerns about breaking the equivariance symmetry. Our scalarization is inspired by
the scalarization technique on the frame bundle in differential geometry (Hsu, 2002), the equivalence
of the scalarization technique and (3.4) is given in proposition A.2.

In practice, we focus on the scalarization of (1, 0)-type tensors (i.e., vectors). Since the most com-
mon geometric information of input is vectors in real-world scenarios. We define the Scalarize
operation as:

Scalarize(xi, xj , Fij) = (xi · a(t), xi · b(t), xi · c(t), xj · a(t), xj · b(t), xj · c(t)) (3.5)
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3.2 GRAPH TRANSFORMER BLOCK
Algorithm 1: EVFN

Input: X = (x1, . . . ,xN ) ∈ RN×3,
hi ∈ Rh, eij ∈ Re,GX

// Centralization
X← Centralize(X);
// Scalarization Block
for xi ∈ X do

for xj ∈ N (xi) do
Fij = EquiBasis(xj ,xj);
tij = Scalarize(Fij ,xi,xj);

end
end
// Graph Transformer Block
mij = GraphTransformer(tij , hi, eij);
// Vectorization Block

Vi =
1
N

∑
j∈N (xi)

Vectorize(mij ,Fij);
Output: Vi

After encoding the geometric tensors into SO(3)-
invariant scalars tij , we first embed them alone
with other pre-defined node/edge attributes (hj ,
eij) into high-dimensional representations, and
leverage an attention-based Graph Transformer
architecture (Shi et al., 2020) to learn the SO(3)-
invariant edgewise message embeddings mij by
propagating and aggregating information on the
graph GX . The attention mechanism is intro-
duced due to its powerful capacity in modeling
those graphs with unknown topology. We pro-
vide further design details in Appendix A.2.2.

3.3 VECTORIZATION BLOCK

Given the refined edgewise message mij , the
vectorization block is designed to transform these
scalars back to equivariant vectors, which re-
quires pairing mij with the corresponding complete basis2 Fij := (a, b, c). More precisely, we
first project mij into a scalar triple {x1, x2, x3}, then define the vectorization process as:

(x1, x2, x3)
Pairing−−−→ x1a+ x2b+ x3c. (3.6)

We encapsulate the pairing process as Vij = Vectorize(mij ,Fij). It’s easy to check that the output
follows the transformation rule of vectors. Finally, we aggregate all vectors Vij associated with xi

to estimate the ground-truth vector field Vi.

So far, we have achieved permutation and SE(3) equivariance by employing the three blocks. The
evolving block is introduced to simulate dynamics of the system with the optimized vector field
network, acting like an ODE solver. We will discuss the evolving block designed specifically for
each scenario in Section 4. The workflow of our method is summarized in Algorithm 1.

Discussion: First, the SO(3)-equivariance of EVFN can be proved from the following facts: (1) The
scalarization block is SO(3)-invariant because its inputs are SO(3)-invariant scalars; (2) The SO(3)-
invariant variables are still SO(3)-invariant after being transformed by the graph transformer block
(or any nonlinear neural network); (3) The vectorization block is SO(3)-equivariant if the input is
SO(3)-invariant. We put the detailed proof in appendix A.2.3. Second, note that by pairing the
scalars obtained from the scalarization block with the equivariant basis, we can recover back the
tensor fields in the data. Therefore the transformation is invertible, which implies that there is no
information loss when going through the scalarization block.

4 EXPERIMENTS

Our method (EVFN together with the evolving block) is a general framework for modeling many-
body systems. To validate the effectiveness of the method, we conduct extensive experiments on two
scenarios: (1) simulated Newtonian many-body systems trajectory prediction (second-order vector
field task) and (2) the real-world molecular conformation prediction (first-order vector field task).

4.1 NEWTONIAN MANY-BODY SYSTEM

In this experiment, we apply our model to predict the long-term motion trajectory of an unknown
many-body Newton system given its initial position and velocity. To highlight the strength of EVFN
on including complete geometric information, we place particular emphasis on non-radical Newto-
nian forces under three settings.

2Since every vector is a linear combination of a basis, the output of the vectorization block has no restriction
on the direction. We will discuss how our basis changes under reflection in remark A.3.
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Partially observed system (POS). This system consists of six particles under Newton’s gravitation
(radical force) but only four of them could be observed, i.e., for each trajectory, we are provided
with positions X(t) ∈ R4×3 and velocities V (t) ∈ R4×3. The two unobserved particles act as a
‘virtual’ external field for the system.

Static external force field (SEFF). This system consists of six particles under both Newton’s grav-
itation and an external static force : fη = (0, 0, η), where η > 0 is the magnitude of the external
field along the z-axis.

Dynamical external force field (DEFF). This system consists of three particles governed by both
Newton’s gravitation and a Lorentz-like dynamical external force field, which means there exists a
force field perpendicular to the current direction of each particle’s velocity: fl(v(t)) = qv(t)×B,
where q is a positive constant that mimics the charge of particles and B denotes the pseudo-vector
of the external field.

Problem definition. Following (Zhuang et al., 2020; Li et al., 2021), we formulate trajectory pre-
diction as two tasks: Interpolation and Extrapolation in the original and rotated reference.

The experimental setting is as follows. For each trajectory, given the initial condition, we use
observations xi(t), t ∈ {∆t, 2∆t . . . , T1} as the training labels and observations xi(t), t ∈
{T1 + ∆t, T1 + ∆t, . . . , T2} as the validation set. To evaluate the interpolation and extrap-
olation capacity of all methods, the observations xi(t), t ∈ { 12∆t, 3

2∆t, . . . , T1 + 1
2∆t} and

xi(t), t ∈ {T2 + ∆t, T2 + 2∆t, . . . , T3} are used as interpolation and extrapolation test sets
respectively. We measure the mean square error (MSE) between the predicted trajectory and ground
truth for both tasks. To measure the exactness of equivariance, we follow (Fuchs et al., 2020) to
apply uniformly sampled SO(3)-transformations on the input and output. The MSE between the
predicted trajectory with rotated input and rotated ground truth could reflect the transformation ro-
bustness of method. The normalized distance between the rotated prediction with original input and
the original prediction with the rotated input defines the equivariance error ∆EQ:

∆EQ = ∥LsΦ(x)− ΦLs(x)∥/∥LsΦ(x)∥, (4.1)

where Ls and Φ denote SO(3) transformations and equivariant neural networks, respectively.

Learning Framework. Inspired by (Norcliffe et al., 2020), for a Newtonian system, we utilize
EVFN to parameterize its acceleration vector field and adopt a second-order neural ODE (SNODE)
as the evolving block (see Appendix A.2.5) to integrate both the position and velocity trajectories.
Only the MSE between predicted position trajectory and ground truth is taken as the loss penalty:

L(θ) = 1

n

n∑
i=1

L2(xti ,SNODE(xt0 ,vt0 , t0, ti,Θ)), t0 < t1 < · · · < tn, (4.2)

where (xt0 ,vt0) and Θ denote the initial condition of the system and the parameters of EVFN Φ.

Implementation Details. Following (Zhuang et al., 2020), all trajectories are simulated using the
Dopri5 solver (Dormand & Prince, 1980) with the tolerance to 10−7 and the modified physical rules.
In this experiment, we set η to 0.98, q to 1 and B to [0.5, 0.5, 0.5]⊤, respectively. We sample 1,
100 and 100 trajectories for the three systems as our evaluation platform, where the data is split
into training, validation and test sets by the time span: T1 = {1.5, 0.5, 0.5}, T2 = {2, 0.55, 0.55}
and T3 = {2.5, 0.6, 0.6}. We compare our method to the non-equivariant graph convolutional
network (GCN) (Kipf & Welling, 2016) without and with SO(3) data augmentation (denoted as
GCN (Aug)), as well as two equivariant models designed for vector field modeling: Radial Field
(Köhler et al., 2019) and EGNN (Satorras et al., 2021a;c). Further details about data generation and
model implementation are provided in Appendix A.3.1.

Results. All the baselines and EVFN implement the feature transformations in the original space.
Notice that GNNs are manifestly permutation-equivariant and the centroid of data is reduced for
all models to preserve translation equivariance. Thus we only need to evaluate the generalization
capacity of all models for SO(3) transformations.

From Table 1, we have the following conclusions: (1) With the original input, EVFN outper-
forms all other equivariant methods in the interpolation and extrapolation tasks, which demonstrates
that EVFN exhibits stronger expressive power by representing geometric information losslessly3;

3We put more discussions especially the performance of the non-equivariant GCN in Appendix A.3.1.
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Table 1: Comparison on three simulated Newtonian systems. Inter. and Extra. denote the interpola-
tion and extrapolation task respectively. Rot. denotes the results in the rotated reference.

Setting Method Inter. Extra. Rot. Inter. Rot. Extra. ∆EQ

POS

GCN 0.143 1.452 0.772 2.633 18.163
GCN (Aug) 1.177 6.696 1.821 14.310 18.163
Radial Field 1.996 7.665 1.996 7.665 5.77 · 10−6

EGNN 0.726 6.449 0.726 6.462 9.19 · 10−7

EVFN 0.138 2.502 0.137 2.428 1.23 · 10−4

EVFN* 0.206 2.432 0.206 2.442 4.13 · 10−6

SEFF

GCN 1.24 · 10−2 0.119 0.462 3.824 0.154
GCN (Aug) 0.173 1.389 0.463 3.931 0.154
Radial Field 0.701 6.032 0.701 6.032 5.23 · 10−7

EGNN 0.463 4.248 0.467 4.275 5.88 · 10−6

EVFN 0.139 1.289 0.142 1.310 1.05 · 10−6

EVFN* 0.278 2.406 0.289 2.556 8.17 · 10−7

DEFF

GCN 2.99 · 10−3 4.75 · 10−2 0.203 1.524 8.86 · 10−2

GCN (Aug) 8.81 · 10−2 0.740 9.07 · 10−2 0.760 8.86 · 10−2

Radial Field 9.57 · 10−2 0.804 9.57 · 10−2 0.804 5.10 · 10−7

EGNN 1.99 · 10−2 0.213 3.22 · 10−2 0.290 8.55 · 10−7

EVFN 1.38 · 10−3 2.43 · 10−2 1.39 · 10−3 2.48 · 10−2 1.15 · 10−5

EVFN* 1.66 · 10−3 3.13 · 10−2 1.81 · 10−3 3.24 · 10−2 6.51 · 10−7

(2) With the rotated input, EVFN still performs best and all equivariant networks exhibit better
equivariance-preserving capacity than GCNs even with data augmentation, implying that it is dif-
ficult to achieve equivariance with simple data augmentation. We leave a detailed analysis about
different augmentation degrees in Appendix A.3.1. 4

4.2 MOLECULAR CONFORMATION GENERATION

In this experiment, we leverage EVFN to fit the first-order vector field of small molecules’ equi-
librium distribution and generate reasonable conformations for a given molecular graph. Note that
in this case, the SO(3) and translation symmetry are in the distribution level, rather than a specific
trajectory. Previous works demonstrate that geometric information (e.g., angular potentials and ro-
tatable bonds) plays a critical role in inducing conformation changes (Xu et al., 2021; Klicpera et al.,
2020), which provides a natural platform to evaluate the strength of EVFN.

Evaluation Tasks. We conduct experiments on two tasks: (1) Conformation Generation evaluates
the capacity of EVFN to learn the conformation distribution by measuring the diversity and accuracy
of generated conformations. (2) Distributions Over Distances evaluates the discrepancy of distance
geometry between the generated conformations and the reference conformations.

Learning Framework. Following (Shi et al., 2021), for this first-order statistical ensemble system,
we leverage a score-based generative modeling framework to estimate the gradient field of atomic
positions (See more details about score-based networks in (Shi et al., 2021; Song et al., 2020) or
Appendix A.2.5, A.3.2). The optimization objective of EVFN Φ can be summarized as:

L(θ) = 1

n

n∑
i=1

EX(0){λ(ti)∥∇Hti(X(ti))− Φ(X(ti), ti,Θ)∥22, t0 < t1 < · · · < tn, (4.3)

where λ(t) : [0, T ] → R+ is a positive weighting function and ∇Hti is the pre-computed gradient
field of noisy atomic positions. Once the score network is optimized, we can use an annealed
Langevin dynamics (ALD) sampler or an ODE-based PC sampler as the evolving block to generate
conformations (Song et al., 2020).

4Note that the division operation in the basis construction procedure will bring considerable numerical error
into EVFN which increases ∆EQ. Therefore, we tune the constant C in a(t) =

xi(t)−xj(t)

∥xi(t)−xj(t)∥+C
. The model

variant EVFN* with the suitable C can achieve a comparable equivariant error with other baselines.
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Table 2: COV and MAT scores of different approaches on GEOM-QM9 and GEOM-Drugs datasets.
For the COV score, the threshold δ is set to 0.5Å for QM9 and 1.25Å for Drugs.

Dataset GEOM-QM9 GEOM-Drugs

Metric COV (%)↑ MAT (Å)↓ COV (%)↑ MAT (Å)↓
Mean Median Mean Median Mean Median Mean Median

RDKit 83.26 90.78 0.3447 0.2935 60.91 65.70 1.2026 1.1252
CGCF 78.05 82.48 0.4219 0.3900 53.96 57.06 1.2487 1.2247

ConfGF 88.49 94.13 0.2673 0.2685 62.15 70.93 1.1629 1.1596

EGNN 80.93 86.27 0.3832 0.3898 40.71 33.01 1.3574 1.3346
EVFN 90.21 93.14 0.2430 0.2457 88.64 97.56 0.9040 0.9023

Datasets. Following (Xu et al., 2021; Shi et al., 2021) we evaluate the proposed model on the
GEOM-QM9 and GEOM-Drugs datasets (Axelrod & Gomez-Bombarelli, 2020) as well as the
ISO17 dataset (Schütt et al., 2017). To keep a fair comparison with the existing state-of-the-art
(SOTA) method ConfGF (Shi et al., 2021), we reproduce its data collection and split settings rigor-
ously. Further details are described in Appendix A.3.2.

Metrics. Given the RMSD of heavy atoms that measures the distance between generated confor-
mation and the reference, Coverage (COV) and Matching (MAT) scores are defined to measure the
diversity and accuracy for a given RMSD threshold δ respectively.

COV(Sg, Sr) =
1

|Sr|
|{R ∈ Sr|RMSD(R, R̂) < δ, R̂ ∈ Sg}|, (4.4)

MAT(Sg, Sr) =
1

|Sr|
∑
R∈Sr

min
R̂∈Sg

RMSD(R, R̂), (4.5)

where Sg and Sr denote generated and reference conformations, respectively.

Implementation Details. The EVFN is equipped with 4 Graph Transformer blocks and the hidden
dimensions are set to 288. All models are trained with Adam optimizer via the loss function (4.3)
for 400 epochs. For each molecule in the test set, we follow (Shi et al., 2021) to sample twice as
many conformations as the reference ones from each model. We provide all hyperparameters of the
score-based framework in Appendix A.3.2.

Baselines. We compare EVFN to four classic methods for conformation generation. Specifically,
both RDKit (Landrum, 2013) and CGCF(Xu et al., 2021) are distance-based approaches. ConfGF
(Shi et al., 2021) is most close to us, attempting to generate conformations by learning the gradient
field of the data distribution in an equivariant manner. However, ConfGF only utilizes the distance
matrix as the geometric input. We also reproduce EGNN on this task as our baseline.

Results. We summarize the mean and median COV and MAT scores on two benchmarks for all
methods. As shown in Table 2, EVFN achieves the best performance on almost all metrics and
datasets, demonstrating the effectiveness of our proposed method. Compared with ConfGF which
employs a similar learning strategy with us, EVFN significantly increases 26.5% COV-mean and
26.6% COV-median scores on the GEOM-Drugs dataset. A potential interpretation is that molecules
in Drugs usually contain more atoms and complex chemical functional groups (e.g., Benzene rings)
than those of QM9, thus distance-based geometry is not sufficient to model the gradient field of
this complex distribution. EVFN also achieves significant improvement in the Distributions Over
Distances task, and we provide the empirical results and further discussions in Appendix A.3.2.

Ablations. Although the superior performance on multiple tasks verifies the effectiveness of EVFN,
it remains unclear whether the proposed strategies make a critical contribution. In light of this, we set
up several ablative configurations and list the empirical results in Table 3. For the scalarization block,
we conduct a variant of EVFN without the scalarization block, named EVFN w/o Sca., which only
takes the distance matrix of molecules as the input geometric feature. The results show that including
scalarization block plays an important role in the model, as the COV-mean and COV-median scores
on the Drugs dataset increase by 23.0% and 21.9%, respectively, which implies that including all
geometric information will boost the performance of the model. For the graph transformer block,
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Table 3: Ablations for EVFN on two datasets.
Dataset GEOM-QM9 GEOM-Drugs

Metric COV (%)↑ MAT (Å)↓ COV (%)↑ MAT (Å)↓
Mean Median Mean Median Mean Median Mean Median

EVFN w/o Sca 88.99 94.55 0.3050 0.3066 65.67 75.63 1.1410 1.1132
EVFN w/o GT 85.21 91.18 0.3057 0.3060 70.57 81.82 1.1075 1.1004

EVFN 90.21 93.14 0.2430 0.2457 88.64 97.56 0.9040 0.9023

we replace the block with the GIN network (Xu et al., 2018) that is employed in ConfGF, getting
the variant named EVFN w/o GT. The results indicate that introducing the attention mechanism
will also contribute to the gradient field modeling. We cannot conduct the ablative study for the
vectorization block because it guarantees the output of EVFN is an equivariant vector field.

5 RELATED WORK

Equivariant neural network. Existing equivariant networks with a theoretical guarantee can be
roughly classified into two categories by whether conducting all operations in the original space
or not. The first category of methods lift the data into high-dimensional spaces (e.g., lie group) or
introduce equivariant functions (e.g., spherical harmonics) to preserve equivariance (Worrall et al.,
2017; Thomas et al., 2018; Kondor et al., 2018; Weiler et al., 2018b;a; Weiler & Cesa, 2019; Esteves
et al., 2020; Romero et al., 2020; Klicpera et al., 2020; Anderson et al., 2019). They exhibit sufficient
expressive power but usually bring expensive computational costs. Our work follows methods of
the second category that operates on the original space in a computationally efficient way (Schütt
et al., 2018; Köhler et al., 2019; Shi et al., 2021). However, most of these approaches (e.g., EGNN
(Satorras et al., 2021c)) abandon a certain amount of geometric (tensor) information, causing their
expressive power to be restricted. Different from existing methods, we propose a novel architecture
that avoids complex vector-level transformations while preserving complete geometric information
(see the discussion at the end of section 3). Essentially, the scalarization is also adopted by EGNN,
which is only computed from one basis and EVFN extends the one basis (i.e., radical direction
xi − xj) in EGNN into a tuple of bases for information lossless.

Gradient fields modeling. Gradient fields modeling is one of the popular tools for modeling
many-body systems from predicting motion trajectories of physical systems (Greydanus et al., 2019;
Norcliffe et al., 2020; Li et al., 2020) to estimating probabilistic densities of complex systems (Song
& Ermon, 2019; Cai et al., 2020; Shi et al., 2021). Neural ODEs (Chen et al., 2018; Zhuang et al.,
2020) are built for learning the gradient of a system by the adjoint method. With the estimated
gradient, the NODEs can make predictions for irregular time series by integrating to any given
time. Score-based methods attempt to model the data distribution by learning the gradient of its
probabilistic density (Song & Ermon, 2020; Song et al., 2020). More precisely, Sohl-Dickstein et al.
(2015); Shi et al. (2021); Wu et al. (2021) model the equilibrium states by going through the process
determined by the gradient of the density.

6 CONCLUSION AND FUTURE WORK

To learn the gradient fields for many-body system modeling, we propose an equivariant vector
field neural network (EVFN) aiming at lossless utilization of tensors without incorporating high-
dimensional spaces or equivariant functions. With the proposed scalarization technique, EVFN
could cooperate with any neural networks without concerns about breaking the equivariance sym-
metry. Theoretical analyses and extensive empirical results verify the effectiveness of the proposed
method. In the future, we will investigate the performance of EVFN in large-scale many-body sys-
tems and extend the strategy to other symmetry groups or local symmetry group such as gauge group
(Cohen et al., 2019a).
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Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: sampling configurations for multi-
body systems with symmetric energies. arXiv preprint arXiv:1910.00753, 2019.

Risi Kondor, Zhen Lin, and Shubhendu Trivedi. Clebsch–Gordan nets: a fully Fourier space spher-
ical convolutional neural network. In NeurIPS, 2018.

Greg Landrum. Rdkit: A software suite for cheminformatics, computational chemistry, and predic-
tive modeling, 2013.

Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. Scalable gradients
for stochastic differential equations. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings
of the Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108
of Proceedings of Machine Learning Research, pp. 3870–3882. PMLR, 26–28 Aug 2020. URL
https://proceedings.mlr.press/v108/li20i.html.

Ziming Li, Bohan Wang, Qi Meng, Wei Chen, Max Tegmark, and Tie-Yan Liu. Machine-learning
non-conservative dynamics for new-physics detection. arXiv preprint arXiv:2106.00026, 2021.

Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Liò. On second
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A APPENDIX

A.1 PROOF AND DISCUSSION ON SCALARIZATION AND VECTORIZATION

Proposition A.1. The complete basis (a(t), b(t), c(t)) defined by (3.1) is equivariant under SO(3)
transformation of the spatial space.

Proof. Let g ∈ SO(3), then under the action of g, the positions of the many-body system X(t)
transform equivariantly:

(x1(t), . . . ,xn(t))
g−→ (gx1(t), . . . , gxn(t)).

Then from the definition of a(t), we know that

a(t)
g−→ ga(t).

For b(t), since

(gxi(t))× (gxj(t)) = det(g)(gT )−1(xi(t)× xj(t)) (A.1)
= g(xi(t)× xj(t)), (A.2)

where we have used g−1 = gT for orthogonal matrix g to get the last line. Therefore, b(t)
g−→ gb(t).

Applying (A.1) once again, we have c(t)
g−→ gc(t).

Frame bundle and scalarization technique A frame at x ∈ M is a linear isomorphism u from
Rd to the tangent space at x:TxM . We use F (M)x to denote the space of all frames at x. Then
GL(d,R) acts on F (M)x by

Rd g−→ Rd u−→ TxM.

Then the frame bundle
F (M) = ∪x∈MF (M)x

can be made into a differential manifold. From the principle bundle point of view, each differential
manifold M is a quotient of its frame bundle F (M) by the general linear group GL(d,R): M =

F (M)/GL(d,R). We denote the quotient map by π: F (M)
π−→ M. Then, each point of u ∈

F (M) is a reference frame located at x := π(u) ∈ M . On the other hand, Rd can be seen as
a d-dimensional differential manifold with a global coordinates chart and SO(3) is the structure-
preserving group of the Euclidean metric with a fixed orientation.

Following Hsu (2002), let {ei, 1 ≤ i ≤ d} be the canonical basis of Rd, and {ei} the corresponding
dual basis. At each frame u, the vectors Yi := uei form a basis of TxM . Let {Y i} be the dual frame
of T ∗

xM , then a (r,s)-tensor θ can be expressed as

θ = θi1···irj1···jsYi1 ⊗ · · · ⊗ Yir ⊗ Y j1 ⊗ · · · ⊗ Y js .

The scalarization of θ at u is

θ̃(u) := θi1···irj1···jsei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs . (A.3)

Through scalarization, a tensor field θ becomes an ordinary vector space valued function on F (M):

θ̃ : F (M)→ Rr ⊗ Rs.

Therefore, geometric operations such as covariant derivative and tensor product on manifolds can
be realized as directional derivative and tensor product of ordinary vector spaces (Hsu, 2002).
Proposition A.2. There is a one-to-one correspondence between the scalarization of tensor fields
on the orthonormal frame bundle O(R3) (A.3) and the SO(3)-invariant scalars tuple obtained by the
scalarization block (3.4) under an equivariant basis.

Proof. Since we are working in R3 with a fixed orientation, the GL(3,R) group action is reduced
to SO(3) global group action acting on the orthonormal frame bundle O(R3). A frame u ∈ O(R3)
at π(u) ∈ R3 can be transported to another point in R3 by translation. Therefore, we neglect the
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origin of the frame in the proof. Let ue = (e1, e2, e3) be an equivariant basis of R3, then given a
scalars tuple {θi1,...,ir}, we construct a vector-valued function on O(R3) by:

θ̃i1,...,ir (u) = gi1i′1 · · · giri′rθ
i′1,...,i

′
r ,

where g is the SO(3) transformation from ue to another frame u. Moreover, θ̃i1,...,ir (u) is SO(3)-
equivariant, since

θ̃(gu) = gθ̃(u),

where the g on the right side means the usual extension of the action of SO(3) from R to the tensor
space R⊗r. We have constructed the (r,0) tensor field from the scalars tuple. It’s easy to check that
θ̃i1,...,ir (u) induces a (r,0) tensor field on R3 by following the definition of (2.1).

From scalarization θ̃i1,...,ir (u) on O(R3) to scalarization is obvious. Note that any equivariant basis
ue is also a point on O(R3), therefore the scalars tuple is just the values of θ̃i1,...,ir at ue:

θi1,...,ir = θ̃i1,...,ir (ue).

For general (r,s)-type tensors, the proof is the same by adding the dual basis of ue.

Remark A.3. For molecular structures, one common obstruction for distance-based modeling (Shi
et al., 2021) is the chirality problem (Bruice, 2000). Therefore it’s meaningful to investigate how the
equivariant basis (3.1) transforms under reflection x→ −x. Notice that a→ −a, and

b = xi × xj → b.

It implies that c → −c. In conclusion, the orientation of the equivariant basis remains unchanged
under reflection.

A.2 METHODOLOGY

A.2.1 PERMUTATION AND TRANSLATION EQUIVARIANCE

For a many-body system X(t) = (x1(t), . . . ,xn(t), the centroid C(t) is defined by

c(t) =
x1(t) + · · ·xn(t)

n
.

Translating the reference by h, then

X(t) + h→ c(t) + h.

Therefore, recentering the reference’s origin to the centroid at the input’s time t = 0, we have

X(t)− c(0)
translation by h at t=0−−−−−−−−−−−−−→X(t)− c(0).

That is, the system is translation-invariant under the recentered reference if the translation is done
at the input’s time t = 0, which is exactly the scenario considered in predicting the future trajectory
or state. Note that although the gradient field is supposed to be translation-invariant, the state of the
many-body system after integrating should be translation-equivariant. Therefore, we add c(0) back
for the output of the evolving block.

To emphasis the permutation symmetry, we quote the Kolmogorov–Arnold representation theorem:
if f(x1, . . . ,xn) is a permutation invariant multivariate continuous function, then

f(x1, . . . ,xn) = g(

n∑
i=1

ϕ(xi)). (A.4)

The crucial point is the function ϕ is shared among all the points, which exactly fits the definition
of the so-called message-passing scheme. For a many-body system X , let v = (v1, . . . vn) be its
vector field, then vi ∈ R3 corresponds the equivariant vector for xi ∈ {x1, . . . ,xn}. Denote EVFN
with parameters θ by Φθ,t = {Φθ

i }ni=1, then

vi(t) = Φθ
i (X(t), t),
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for a fixed particle xi. Suppose (i1, . . . , ik) (neighbors of xi) indicate indexes of particles which
have interaction with xi, then obviously 1 ≤ k ≤ n− 1. By (A.4), Φi(X(t), t) is an aggregation of
message from xi’s neighbors, therefore we have:

Φi(X(t), t) =
1

k

k∑
j=1

ϕ(xi(t),xij (t), t), (A.5)

and ϕ is a SO(3)-equivariant network with vector output. Note that (A.5) performs aggregation at
the level of vectors, therefore we choose g in (A.4) to be the arithmetic mean to preserve SO(3)
symmetry. A shared neural network ϕ guarantees the permutation equivariance of EVFN.

A.2.2 GRAPH TRANSFORMER BLOCK

For a many-body system X , we first represent it as a spatial graph and utilize an attention-based to
learn the SO(3)-invariant edgewise embeddings mij from the graph. Considering that there does not
exist any graph topology in most real-world scenarios, we introduce the attention mechanism due
to its powerful capacity in learning the correlations between inter-instances (Vaswani et al., 2017).
Now we discuss the workflow of the GTB block. Note that here we omit the time index of the
SO(3)-invariant scalars for the simplicity of description.

Feature embedding Given geometric scalars tij , node features hi and edge features mij , GTB
first embeds them into high-dimensional representations:

hi = MLP(hi), (A.6)
eij = MLP(eij), (A.7)
tij = Fourier(tij), (A.8)
eij = eij + tij , (A.9)

where MLP denotes a fully connected network and Fourier denotes a Fourier transformation with
a tuple of learnable frequencies.

Transformer block The overall architecture of our GTB block is inspired by (Shi et al., 2020).
For each GTB block, we first compute the edge-wise message with ϕ1

m (A.7), then leverage the
message embeddings and node embeddings with a transformer encoder-like architecture to refine
the node embeddings. After that, we update edgewise messages with a residue block (A.13). The
whole pipeline is expressed as (A.9)-(A.15).

mij = ϕ1
m(hi, hj , eij), (A.10)

qi = ϕq(hi), kij = ϕk(hi,mij), vij = ϕv(mij), (A.11)

αij =
⟨qi, kij⟩∑

j′∈N (i) ⟨qi, kij′⟩
, (A.12)

Mi = LayerNorm(
∑

j∈N (i)

αijvij), (A.13)

hi = ϕh(hi,Mi), (A.14)
hi = hi + LayerNorm(hi), (A.15)

mij = ϕ2
m(hi, hj , eij) +mij , (A.16)

where ϕ1
m, ϕq , ϕk, ϕv , ϕh and ϕ2

m are fully connected networks. αij andMi denote the attention
weights and the refined nodewise embeddings, respectively. LayerNorm refers to the normalization
layer adopted in (Vaswani et al., 2017).

A.2.3 EQUIVARIANCE OF EVFN

We need the following lemma:

Lemma A.4. Suppose h is an invariant function, f1, . . . , fk are arbitrary nonlinear functions. Then,
the composition fk ◦ · · · ◦ f1 ◦ h is an invariant function.
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Proof. Consider the group action g acting on x ∈ R3, then f is invariant means that f ◦ g(x) :=
f(gx) = f(x). We have

fk ◦ · · · ◦ f1 ◦ g = fk ◦ · · · ◦ f1,
hence the composition fk ◦ · · · ◦ f1 is invariant.

Let f1 be the scalarization block. Because the output of f1 are scalars (from (3.3)) and SO(3)-
scalars must be invariant under SO(3) group action, we can conclude that f1 is invariant. Denote
each graph-transformer layer by fi, i ∈ {2, . . . , k}, then by Lemma A.4, we can conclude that the
output of the graph-transformer block is also invariant.
Finally, from the standard fact that scalars multiply vectors yield equivariant vectors, we conclude
that the output of the vectorization block is SO(3)-equivariant. Combining with the translation
equivariance in A.2.1, our model is SE(3)-equivariant.

A.2.4 DIHEDRAL ANGLE

For a given node xl with three neighbors xi, xj and xk. The dihedral angle of the plane spanned
by (xl − xi,xl − xj) and the plane spanned by (xl − xi,xl − xk) is given by the inner product of
normal vectors of the two planes:

(xl − xi)× (xl − xj)

∥(xl − xi)× (xl − xj)∥
,

and
(xl − xi)× (xl − xk)

∥(xl − xi)× (xl − xk)∥
.

Therefore, the dihedral angle is a function of the position vectors xl, xi, xj and xk, which cannot
be determined purely by the positions’ norm: ∥xl − xi∥,∥xl − xj∥ and ∥xl − xk∥.
However, by the complete equivariant basis, the position vectors are fully expressed (only the co-
ordinates are transformed from the natural coordinate system to the equivariant coordinate system),
then all functions of the position vectors can also be expressed.

A.2.5 EVOLVING BLOCK

According to the order of vector field in dynamic systems, we design different evolving blocks to
integrate the estimated vector field to obtain the dynamics.

Recall that given a multi-particle Newton dynamic system X(t) = {xi(t) ∈ R3, i = 1, 2, · · · , n}
whose underlying physical rules are unknown, let vi denote the velocity of particle xi. We attempt
to predict its position or trajectory by integrating a second-order equivariant vector field. In this case,
the EVFN network Φ is implemented for modeling the acceleration vector v̇(t). More precisely, the
hidden differential unit of NODE (Chen et al. (2018)) has the following form:[

Ẋ(t)
v̇(t)

]
=

[
v(t)

Φ(X(t),v(t), t)

]
. (A.17)

For the i-th particle,

v̇i(t) = Φi(X(t),v(t)) :=

k∑
j=1

ϕ(xi(t),xij (t), t). (A.18)

The ordinary differential equation (A.17) is then solved by black-box ODE solver as in (Chen et al.,
2018). We denote the evolving block in the second-order vector field case by SNODE.

As to the statistical ensemble system, we try to predict the reverse evolving process from a random
state to equilibrium by integrating a first-order equivariant vector field. For example, all physical-
allowable molecule conformations are located in an equilibrium state determined by the energy
function. Suppose the forward process from equilibrium to non-equilibrium of the system satisfies:

dX(t) = f(X(t), t)dt+ g(t)dWt, 0 ≤ t ≤ T,
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where Wt is the Brownian motion and the initial state X(0) follows an unknown equilibrium distri-
bution p0. Denote the marginal distribution at time t by pt, then

pt(X) = exp{−βHt(X)},
so the Hamiltonian function Ht at time t is entangled with p0. According to the Liouville equation
(the probability flow in Song et al. (2020)), the reverse evolving process satisfies the following ODE:

dX(T − t) = f(X(T − t), T − t)dt− 1

2
g2(T − t)∇HT−t(xT−t)dt.

The gradient field of the Hamiltonian function are also called the force field. Therefore the NODE
evolving block has the following form:

Ẋ(T − t) = Φ(X(T − t)), 0 ≤ t ≤ T.

and for the i-th particle, following form:

Φi(X(T − t)) = fi(X(T − t), T − t)− 1

2
g2(T − t)[

k∑
j=1

ϕ(xi(T − t),xij (T − t), T − t)]. (A.19)

In this case, we will use the PC scheme proposed by (Song et al., 2020) for correcting the numerical
integration error. Note that the vector-valued function f(x, t) and the scalar function g(t) is prior
knowledge and set to be fixed, so the only learnable module in EVFN is the vector field network ϕ.
In Shi et al. (2021) and our molecular experiment, we use the discretization of VP SDE (Song et al.,
2020), where f ≡ 0 and

g(t) =

√
[dσ2(t)]

dt
.

A.2.6 NEURAL ODE AS A CONTINUOUS LIMIT

The idea of neural ODE is to fit dynamics by modelling its infinitesimal rates of change (gradient)
and implementing numerical integration. The whole process can be seen as taking the continuous
limit of the residual network as the depth goes to infinity. Consider a residual network where all
hidden layers have the same dimension, denote the neural network’s parameters at t-th layer by θt,
then

ht+1 = ht + f(ht, θt), t ∈ N+.

Taking the discrete layer index t to its continuous limit, we get

dh(t)

dt
= f(h(t), θt), t ∈ R+.

The discrete back-propagation method also has a continuous limit: the adjoint method Chen et al.
(2018); Norcliffe et al. (2020).

A.2.7 SCALABILITY

Compared to EGNN, the extra cost of EVFN is to calculate the values of the scalars in tij ,∀i, j.
Compared to the computational cost of back-propagation in the neural networks, the cost of calcu-
lating the O(3 ∗ 3 ∗N2) (N is the number of nodes in the graph) scalars is much less. For example,
for the molecular conformation generation task, transforming the tensors into SO(3)-invariant scalars
only brings 9.6% extra real-time computational cost and 17.4% extra memory cost.

A.3 EXPERIMENT

A.3.1 NEWTONIAN MANY-BODY SYSTEM

Partially observed system This system consists of six particles under Newton’s gravitation but
only four of them could be observed, i.e., for each trajectory we are provided with positions X(t) ∈
R4×3 and velocities V (t) ∈ R4×3. The time evolution of the particles is given by

ẍi =
∑

j∈{1,...,i−1,i+1,...6}

−mj
xi − xj

∥xi − xj∥3
, 1 ≤ i ≤ 4. (A.20)
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Gravity field This system consists of six particles under both the mutual newton’s gravitation and
an external static force of the form: fg = (0, 0, η). The time evolution of the particles are given by

ẍi =
∑

j∈{1,...,i−1,i+1,...6}

−mj
xi − xj

∥xi − xj∥3
+ fη, 1 ≤ i ≤ 6. (A.21)

Lorentz force field This system consists of three particles and controlled by Newton’s law of
motion and a Lorentz field, which means there exists a force field perpendicular to the direction of
velocity v, i.e., fl(v) = qv × B, where q and B denote the charge of particles and the direction
vector of the electromagnetic field respectively. The time evolution of the particles is given by:

ẍi =
∑

j∈{1,...,i−1,i+1,...3}

−mj
xi − xj

∥xi − xj∥3
+ f i

l (vi), 1 ≤ i ≤ 3. (A.22)

Implementation Details Following (Zhuang et al., 2020), all trajectories are simulated using the
Dopri5 solver (Dormand & Prince, 1980) with the tolerance to 10−7 and the modified physical rules.
The trajectory points are uniformly sampled with ∆t = 10−3 for the POS dataset or ∆t = 5 · 10−4

for the other two datasets. The number of training labels (i.e., trajectory points) for three tasks is
1.5k, 100k and 100k, respectively. We implement all baselines and our method with Pytorch (Paszke
et al., 2019). All models use the same ODE solver (Dopri5) as the evolving blocks and are trained
with Adam optimizer (Kingma & Ba, 2014) via an MSE loss for 800 epochs. We set the number
of layers to 2 for all models and adjust the hidden dimensions of each model separately to keep the
parameters in the same level. We adopt EGNN from (Satorras et al., 2021a) for outputting vectors.
For all datasets, we take the time t and the Ł2 norm of velocities as the node features and take the
relative distances as the edge features.

Further Analysis of Results As shown in Table 1, the non-equivariant GCN performs the best
with the original input on SEFF task. The reason is that the equivariant models are superior to
model the force that is a function of the radial direction, however, the external force in SEFF is a
constant vector that is independent with the radial direction.

We also compare EVFN with the non-computational efficient equivariant models such as SE(3)-
Transformer (Fuchs et al., 2020), which leverages spherical harmonics to preserve equivariance. In
practice, we find that it is hard to jointly optimize the neural ODE and the SE(3)-Transformer model
by directly combining the two models together. And the empirical results in Table 4 show that
SE(3)-Transformer achieves an extremely poor performance compared with EVFN. To the best of
our knowledge, there is no previous work studying the combination of SE(3)-Transformer and neural
ODEs. We would like to further explore this problem in future work. For the results in Table 4, all
SE(3)-Transformer models are implemented according to the official codebase 5, where the number
of hidden layers is set to 2 and each layer has representation degrees {0, 1} and channels {8, 4}.
This setting makes the number of parameters of SE(3)-Transformer (i.e., 40k) comparable with
EVFN and other baselines. We also implemented another variant with the default setting of SE(3)-
Transformer, where each layer has representation degrees {0, 1, 2, 3} and 8 channels per degree. We
find it would bring much more parameters (i.e., 118k) and computational efforts, but only marginal
improvement (e.g., 0.405 vs. 0.422 for MSE on the POS dataset).

Data Augmentation For all Newtonian many-body systems, we propose to force a naive GCN
to be SO(3) equivariant by introducing numerous SO(3) augmentation samples. The augmentation
strategy is that, for each iteration, we rotate the initial condition and the ground-truth trajectory with
a random probability p. We visualize four MSE metrics of GCN (Aug) with different augmentation
probabilities on the POS dataset in Figure 2. As shown in Figure 2, with the original input, the
interpolation and extrapolation capacity of GCN is damaged as p grows. with the rotated input, the
MSE of GCN (Aug) gradually decreases as p grows, but it is still higher several magnitudes than
that of real equivariant networks, implying that it is difficult to achieve equivariance with simple
data augmentation.

5https://github.com/FabianFuchsML/se3-transformer-public
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Table 4: Comparison with SE(3)-Transformer
Setting Method Inter. Extra. Rot. Inter. Rot. Extra. ∆EQ

POS SE(3)-Transformer 0.422 4.555 0.442 4.559 7.82 · 10−4

EVFN 0.138 2.502 0.137 2.428 1.23 · 10−4

SEFF SE(3)-Transformer 12.623 53.358 12.623 53.258 3.67 · 10−5

EVFN 0.139 1.289 0.142 1.310 1.05 · 10−6

DEFF SE(3)-Transformer 9.119 37.313 9.119 37.312 3.31 · 10−4

EVFN 1.38 · 10−3 2.43 · 10−2 1.39 · 10−3 2.48 · 10−2 1.15 · 10−5

(a)

(d)(c)

(b)

Figure 2: Results of GCN with various data augmentation degrees on the POS dataset

The Impact of the Number of Training samples To further explore the impact of the number
of training data for both non-equivariant and equivariant models, we re-train GCN and EVFN with
the different number of training samples on the POS dataset and summarize the results in Figure
3. In particular, under the same data splitting setting described in Section 4.1, we choose to sample
the trajectories with different time intervals {10−2, 1.5 · 10−3, 5 · 10−4, 3 · 10−4}, corresponding
to 150, 1000, 3000 and 5000 training labels, respectively. The time interval of the test set remains
the same as before (i.e., 10−3). Note that we avoid introducing new trajectories into the dataset
because it may influence the problem complexity of the original interpolation and extrapolation
tasks. As shown in Figure 3 (a) and (b), with the number of samples growing, the interpolation
performance of GCN becomes better but its extrapolation becomes worse, indicating that the GCN-
based neural ODE may easily overfit to the interpolation task. Compared to GCN, EVFN achieves
more robust performance to the different number of training samples. As shown in Figure 3 (c)
and (d), introducing more training samples in the original coordinate frame cannot enhance the
equivariant capacity of GCN efficiently, which demonstrates that SO(3) augmentation is a more
reasonable choice to realize equivariance for non-equivariant methods.

Equivariant Errors As discussed in Section 4.1, the bigger equivariance error of EVFN (Table 1,
col 7) is caused by numerical errors introduced by the basis construction procedure and the neural
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(a)

(d)(c)

(b)

Figure 3: Results for different number of training trajectories on the POS dataset

Table 5: The impact of different normalization constants. SE(3)-T denotes the SE(3)-Transformer
model.

Setting Method C Inter. Extra. Rot. Inter. Rot. Extra. ∆EQ

POS

EGNN O(1) 0.726 6.449 0.726 6.462 9.19 · 10−7

SE(3)-T - 0.422 4.555 0.442 4.559 7.82 · 10−4

EVFN O(10−3) 0.138 2.502 0.137 2.428 1.23 · 10−4

EVFN O(1) 0.206 2.432 0.206 2.442 4.13 · 10−6

EVFN O(10) 0.608 2.344 0.608 2.344 3.60 · 10−6

SEFF

EGNN O(1) 0.463 4.248 0.467 4.275 5.88 · 10−6

SE(3)-T - 12.623 53.358 12.623 53.258 3.67 · 10−5

EVFN O(10−3) 0.139 1.289 0.142 1.310 1.05 · 10−6

EVFN O(1) 0.213 1.888 0.213 1.888 3.38 · 10−6

EVFN O(10) 0.498 4.417 0.496 4.414 5.41 · 10−7

DEFF

EGNN O(1) 1.99 · 10−2 0.213 3.22 · 10−2 0.290 8.55 · 10−7

SE(3)-T - 9.119 37.313 9.119 37.312 3.31 · 10−4

EVFN O(10−3) 1.38 · 10−3 2.43 · 10−2 1.39 · 10−3 2.48 · 10−2 1.15 · 10−5

EVFN O(1) 1.88 · 10−3 3.17 · 10−2 1.88 · 10−3 3.29 · 10−2 2.11 · 10−6

EVFN O(10) 1.66 · 10−3 3.13 · 10−2 1.81 · 10−3 3.24 · 10−2 6.51 · 10−7

ODE training framework. More precisely, to build the equivariant basis, we incorporated the nor-
malization operation x

∥x∥ →
x

∥x∥+C (x denotes vectors and C denotes the normalization constant)
to obtain unit vectors, where the division operation would introduce numerical errors and neural
ODE would lead to a larger cumulative error with the integration process. The similar phenomenon
is also observed in SE(3)-Transformer (Fuchs et al., 2020) and EGNN (Satorras et al., 2021b). As
shown in Table 5, with some suitable normalization constants, EVFN can achieve comparable or
even better equivariant errors than other equivariant models, validating the equivariance of the pro-
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Input 
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Figure 4: Visualizations of generated conformations. For each molecule randomly selected from
GEOM-Drugs dataset, we sample multiple conformations and show the best-aligned ones with the
reference ones.

posed method. In most cases, EVFN with larger normalization constants can still outperform other
baselines significantly.

A.3.2 MOLECULAR CONFORMATION GENERATION

Dataset For each dataset, 40, 000 molecules are randomly drawn and 5 most likely conforma-
tions (sorted by energy) are selected for each molecule, and 200 molecules are drawn from the
remaining data, which results in 200, 000 conformations in the training set, 22, 408 and 14, 324 con-
formations in the test set for GEOM-QM9 and GEOM-Drugs datasets, respectively. The distances
over distributions task are evaluated on the ISO17 dataset, where we follow the setup in (Simm &
Hernández-Lobato, 2019).

Implementation Details Besides the geometric input, we feed the node type, edge type and rel-
ative distances as extra node/edge attributes into the graph transformer block. Our score-based
training framework is adapted from (Shi et al., 2021). The maximum and minimum noise scales are
set to 10 and 0.01. Let {σi}Li=1 be a positive geometric progression scheme with a common ratio,
we split the noise range into 50 levels. For the reverse process, we find the performance difference
between the ALD sampler and the PC sampler is marginal, so we do not compare this point with
quantitative results. We choose the PC sampler as our evolving block and respectively set the itera-
tion steps of predictor and corrector to 10 and 100. The sample step size ηs is chosen according to
(Song & Ermon, 2020). We keep all hyper-parameters mentioned in the forward and reverse process
the same as (Shi et al., 2021). The results reported in Table 2 are copied from (Shi et al., 2021)
considering that we rigorously evaluate EVFN on the same benchmark and data split setting.

Conformation Generation Here we introduce the calculation equation of RMSD:

RMSD(R, R̂) = min(
1

n

n∑
i=1

||Ri − R̂i||2)
1
2 , (A.23)

where n denotes the number of heavy atoms.

We visualize several conformations in the Drugs dataset in Figure 4 that are best aligned with the
reference ones generated by different methods, illustrating EVFN’s superior capacity on generating
high-quality drug molecular conformation.

Distributions over Distances To evaluate the distribution of the generated conformations, we uti-
lize maximum mean discrepancy (MMD) (Gretton et al., 2012) to measure the discrepancy between
the generated distributions and the reference distributions. As shown in Table 6, EVFN dramatically
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Table 6: Accuracy of the distributions over distances generated by different approaches compared
to the ground-truth.

Method Single Pair All
Mean Median Mean Median Mean Median

RDKit 3.4513 3.1602 3.8452 3.6287 4.0866 3.7519
CGCF 0.4490 0.1786 0.5509 0.2734 0.8703 0.4447

ConfGF 0.3684 0.2358 0.4582 0.3206 0.6091 0.4240

EVFN 0.1317 0.0420 0.1787 0.0695 0.3185 0.1142

outperforms the previous SOTA (ConfGF), demonstrating the strong capacity of the proposed model
in modeling molecular dynamics data. In particular, EVFN reduces the MMD by a magnitude in
both Single-median and Pair-Median metrics.
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