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Abstract001

This paper introduces a benchmark for evaluat-002
ing Indigenous language knowledge in large003
language models using zero- and few-shot004
prompting. The benchmark includes three005
tasks: (1) language identification, (2) cloze006
completion of Spanish sentences aided by007
Indigenous-language translations, and (3) gram-008
matical feature classification. We apply the009
benchmark to 13 Indigenous languages, includ-010
ing Bribri, Guarani, and Nahuatl, and evaluate011
models from five major families (GPT, Gem-012
ini, DeepSeek, Qwen, and LLaMA). Results013
reveal large differences across both languages014
and model families, with a small subset of015
model–language combinations showing consis-016
tently stronger performance across tasks, while017
other combinations remain close to random018
chance.019

1 Introduction020

Indigenous languages present structural properties021

that challenge current language models. Many022

are morphologically rich, with features such as023

polysynthesis, complex agreement, or noun incor-024

poration. Some lack standardized orthographies,025

complicating tokenization and evaluation. Their026

typological profiles differ substantially from high-027

resource languages, and they are often underrep-028

resented in pretraining data or evaluation settings029

(Ponti et al., 2020; Mager et al., 2021). These fac-030

tors make Indigenous languages a valuable test case031

for evaluating model generalization.032

Multilingual NLP benchmarks such as033

XTREME (Hu et al., 2020) and XGLUE (Liang034

et al., 2020) concentrate primarily on high- and035

medium-resource languages with substantial036

digital presence.More inclusive initiatives like037

FLORES (Guzmán et al., 2019) and the Ameri-038

casNLP shared tasks (Mager et al., 2021) have039

introduced datasets for machine translation involv-040

ing Indigenous languages, enabling evaluation in041
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Figure 1: Indigenous Language Identification Accuracy
on Open setting. Sorted by average performance.

specific translation contexts. Still, there remains a 042

gap in benchmarks that assess general language 043

understanding, such as lexical recognition, mor- 044

phosyntactic inference, or cross-lingual reasoning, 045

without task-specific training or fine-tuning. 046

To investigate how much Indigenous language 047

knowledge large language models may encode, we 048

introduce a probing-based benchmark designed for 049

zero-shot evaluation. The benchmark consists of 050

three tasks that target different aspects of linguistic 051

understanding. In the language identification task, 052

the model must select the correct language given 053

a word or sentence. In the cloze completion with 054

glosses task, the model is prompted with a Spanish 055

sentence containing a blank and a corresponding 056

translation or gloss in an Indigenous language, and 057

asked to predict the missing word. In the grammat- 058

ical feature identification task, the model is shown 059

a sentence in an Indigenous language and asked to 060

identify a specific morphosyntactic feature, such 061

as person, number, or tense. Together, these tasks 062

provide a targeted way to examine whether mod- 063

els exhibit consistent, interpretable behavior when 064

interacting with underrepresented languages. 065
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2 Related Work066

Probing LLMs’ linguistic knowledge A com-067

mon approach to probing linguistic knowledge068

in LLMs is minimal-pair benchmarks such as069

BLiMP (Warstadt et al., 2020). Recent extensions070

include CLiMP for Chinese (Xiang et al., 2021),071

JBliMP for Japanese (Someya and Oseki, 2023),072

RuBLiMP for Russian (Taktasheva et al., 2024),073

and MultiBLIMP (Jumelet et al., 2025), which cov-074

ers 101 languages. These controlled formats isolate075

grammatical contrasts and are useful for evaluating076

structural generalization.077

Cloze and multiple-choice formats are also used078

to probe model knowledge. LAMA (Petroni et al.,079

2019), X-FACTR (Jiang et al., 2020), and Multilin-080

gual LAMA (Kassner et al., 2021) evaluate factual081

recall with cloze prompts. LM-PUB-QUIZ (Ploner082

et al., 2025) converts these into multiple-choice083

form. WDLMPro (Senel and Schütze, 2021) ap-084

plies this format to lexical and semantic knowledge.085

Our grammatical feature task similarly uses natural086

sentences and structured outputs to evaluate mod-087

els’ ability to infer morphosyntactic properties.088

Low-resource language benchmarks Ameri-089

casNLI (Kann et al., 2022) enables evaluation090

of semantic inference in 10 Indigenous lan-091

guages through translations of the XNLI corpus.092

MasakhaNER (Adelani et al., 2021) and Masakha-093

POS (Dione et al., 2023) benchmark named entity094

and POS tagging for African languages and explore095

cross-lingual transfer using multilingual and region-096

specific models. XTREME-UP (Ruder et al., 2023)097

introduces a broad benchmark spanning 88 under-098

represented languages across multiple user-facing099

tasks, enabling large-scale evaluation under low-100

resource constraints.101

3 Methodology102

3.1 Linguistic Corpora103

We use development data from the AmericasNLP104

2025 Shared Task (De Gibert et al., 2025), cover-105

ing 13 typologically diverse Indigenous languages106

of Latin America. Speaker populations range107

from 5,000 (Chatino) to over 7 million (Quechua),108

with most languages spoken in Peru or Mexico.109

Five have Wikipedias: Aymara, Guarani, Nahuatl,110

Quechua, and Wayuu. An overview of the lan-111

guages is in Table 4. Full language details are in112

Appendix A.113

3.2 Pre-trained Language Models 114

We evaluate ten large language models spanning 115

a range of architectures and sizes. These in- 116

clude GPT-4.1 (OpenAI et al., 2024), Gemini 2.0 117

Flash (Gemini et al., 2025), and DeepSeek-V3- 118

0324 (DeepSeek-AI et al., 2024), all of which 119

we access through the API. We also test open- 120

weight instruction-tuned models: LLaMA-3.1-8B, 121

LLaMA-3.2-3B (Touvron et al., 2023), and Qwen- 122

3B, 7B, and 14B (Bai et al., 2023)1. For API-based 123

models, we use a temperature of 0 to ensure deter- 124

ministic outputs. For open-weight models, we turn 125

off sampling. All prompts used in evaluation are 126

included in Appendix B. 127

3.3 Language Identification 128

We evaluate model accuracy on identifying the lan- 129

guage of sentences, using 459 sentences per lan- 130

guage across 13 Indigenous languages and Spanish. 131

To ensure enough signal for identification, all sen- 132

tences are at least five tokens long. 133

We test four prompting conditions, ranging in 134

difficulty: 135

1. Multiple Choice Easy: Prompted to choose 136

between four options (target + three high- 137

resource distractors like English or French). 138

2. Multiple Choice Hard: Distractors are other 139

Indigenous languages. 140

3. Multiple Choice Full: Prompted to choose 141

between all 14 languages. 142

4. Open: No choices provided; model must out- 143

put the language name. 144

Our main experiments are conducted under zero- 145

shot prompting. For the full setting, we also test 146

n-shot prompting, where n sentences from each of 147

the 14 languages are included as examples. 148

3.4 Cloze Translation Completion 149

To test whether LLMs can understand the Indige- 150

nous languages, we design a cloze task based on 151

aligned Spanish–Indigenous sentence pairs from 152

the AmericasNLP 2025 Shared Task. 153

We mask one content word in each Spanish sen- 154

tence, excluding proper nouns and punctuation. To 155

avoid trivial items, we filter out examples where 156

1Inference for open-weight models was run on a single
RTX A6000 GPU, totaling approximately 75 GPU hours
across all tasks. API-based models were accessed via public
endpoints, with total usage costing around $50.
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Figure 2: Confusion Matrix (%) for GPT-4.1 in Zero-
shot setting. Vertical axis represents reference languages
while horizontal axis represents the predictions.

gpt-4o-mini correctly fills the blank. We then use157

the same model to generate plausible distractors,158

creating 4-option multiple-choice questions.159

Each item includes a Spanish cloze sentence,160

four candidate completions, and the Indigenous161

translation of the Spanish. We test two settings:162

Monolingual, only the Spanish cloze sentence is163

shown, and Bilingual, the Spanish cloze and In-164

digenous translation are shown.165

We measure accuracy, comparing results be-166

tween the two settings. Option order is fixed be-167

tween settings to avoid position bias.168

The final dataset contains 5,529 problems span-169

ning 13 languages. Most languages contribute over170

400 examples; full counts appear in Appendix C.171

3.5 Grammatical Feature Classification172

To evaluate whether models can identify gram-173

matical features from Indigenous sentences, we174

construct a classification task covering Bribri and175

Nahuatl. Each question consists of an Indigenous176

sentence, a target grammatical feature (e.g. person,177

tense, mood), the correct answer, and all possible178

alternative answers for that feature. Not all features179

are equally represented, and not all appear in every180

language. Data is adapted from the AmericasNLP181

2025 Shared Task 2. A full list of tested features182

appears in Appendix D.183

4 Results184

4.1 Language identification185

Zero-shot The easy setting acted as a sanity186

check, asking models to choose between the target187

Language Example #
0 1 2 3 4

Asháninka 0.29 0.68 0.72 0.62 0.59
Aymara 1.00 1.00 1.00 1.00 1.00
Bribri 0.09 0.24 0.41 0.46 0.72
Nahuatl 1.00 1.00 1.00 1.00 1.00
Quechua 0.97 1.00 0.99 1.00 1.00
Shipibo-Konibo 0.35 0.48 0.52 0.64 0.78
Rarámuri 0.05 0.12 0.20 0.20 0.18
Otomí 0.43 0.70 0.79 0.74 0.71
Guarani 1.00 1.00 1.00 1.00 1.00
Spanish 1.00 1.00 1.00 1.00 1.00
Chatino 0.62 1.00 1.00 1.00 1.00
Wayuu 0.86 1.00 1.00 0.99 0.99
Wixarika 0.37 0.96 0.99 0.99 0.99
Awajún 0.79 0.82 0.83 0.89 0.86

Table 1: Zero-shot and Few-shot accuracy per language
on GPT-4.1.

Indigenous language and unrelated high-resource 188

languages. All models performed well, confirm- 189

ing that the task and data were clear enough to 190

distinguish Indigenous from unrelated languages. 191

In contrast, performance dropped sharply in the 192

open setting. Figure 1 shows per-language accuracy 193

under this condition. Larger models performed 194

more consistently, but even the smallest models 195

correctly identified Quechua and Nahuatl, suggest- 196

ing these languages are relatively well represented 197

in pretraining data. 198

The most reliably identified languages (Quechua, 199

Guarani, Aymara, Nahuatl, and Wayuu) are the 200

six in our evaluation set with their own Wikipedia 201

editions. The Indigenous Wikipedias range in size 202

from 24,000 articles (Quechua) to just 681 articles 203

(Wayuu). 204

Figure 2 shows GPT-4.1’s confusion matrix in 205

the full multiple-choice setting. Confusions are 206

notably asymmetric: Rarámuri was rarely pre- 207

dicted and often confused with Bribri; Bribri sen- 208

tences were frequently mislabeled as Otomí. This 209

suggests some languages disproportionately domi- 210

nate model priors, producing directional confusion 211

rather than mutual ambiguity. 212

Few-shots To evaluate the impact of few-shot 213

prompting, we varied the number of examples per 214

language from 1 to 4. Most models benefited from 215

1-shot prompting, but additional examples yielded 216

diminishing returns. Smaller models showed little 217

improvement from additional shots. 218

We also examined few-shot effects per language. 219

Some languages showed substantial gains. For 220

example, Bribri accuracy increased from 8.8% to 221
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Language Gemini-2.0 GPT-4.1 DeepSeek

Asháninka 0.01 0.04 0.03
Aymara 0.31*** 0.22*** 0.03
Awajún 0.12*** 0.10*** 0.11***
Bribri 0.04 0.07** 0.06*
Chatino 0.03 0.08 –0.01
Guarani 0.42*** 0.40*** 0.23***
Nahuatl 0.39*** 0.26*** 0.29***
Otomí 0.10** 0.07* 0.01
Quechua 0.45*** 0.34*** 0.36***
Rarámuri –0.01 0.00 0.03
Shipibo-Konibo 0.11*** 0.08* 0.11***
Wayuunaiki 0.09** 0.00 0.00
Wixarika 0.07* 0.05 0.06*

Table 2: Accuracy improvement (∆Acc) for each lan-
guage on the cloze task when given the aligned Indige-
nous sentence. Significance levels from McNemar’s
test: *** p < 0.001, ** p < 0.01, * p < 0.05.

72%, and Otomí from 43.4% to 71.1%. Shipibo-222

Konibo and Wixarika also showed steady improve-223

ment with more examples. Table 1 visualizes accu-224

racy trends for different numbers of examples on225

GPT-4.1.226

4.2 Cloze translation completions227

The cloze task tests whether models can use In-228

digenous translations to resolve ambiguous Span-229

ish sentences. Each example includes a masked230

word and several plausible completions, filtered to231

exclude trivial cases. Accuracy gains in the bilin-232

gual condition suggest some understanding of the233

Indigenous input.234

All models improve when given the translation,235

but gains are modest in smaller models and largest236

in Gemini-2.0, GPT-4.1, and DeepSeek. As shown237

in Table 2, these three models show statistically238

significant improvements for Guarani, Quechua,239

and Nahuatl, with Gemini outperforming the rest.240

For most other languages, improvements were241

smaller and often not significant. None of the mod-242

els showed evidence of understanding Asháninka,243

Chatino, or Rarámuri.244

4.3 Grammatical Feature Identification245

The grammatical feature identification task probes246

a model’s ability to extract morphosyntactic infor-247

mation from a sentence, such as tense, mood, or248

person. This setting differs from the previous two249

by requiring a deeper level of linguistic knowledge.250

As shown in Table 3, model performance varies251

widely by language. Accuracy on Nahuatl is252

markedly higher than on Bribri across all models,253

Model Bribri Nahuatl

GPT-4.1 0.27 0.55
DeepSeek-Chat 0.29 0.60
Gemini-2.0-flash 0.25 0.66
Qwen2.5-14B-Instruct 0.27 0.31
Llama-3.1-8B-Instruct 0.27 0.31
Qwen2.5-7B-Instruct 0.19 0.25
Qwen2.5-3B-Instruct 0.24 0.28

Random 0.22 0.27

Table 3: Model Accuracy Summary for Grammatical
Feature Task

with Gemini-2.0-flash achieving 66%. In contrast, 254

all models struggled on Bribri, with scores barely 255

above chance. 256

This contrast aligns with trends observed in the 257

previous tasks. Bribri was rarely correctly identi- 258

fied in Task 1 and showed only modest gains in 259

Task 2, suggesting that models have limited usable 260

knowledge of the language. For the larger mod- 261

els, Nahuatl was consistently well-identified and 262

contributed to improved cloze performance, indi- 263

cating that LLMs have degree of familiarity with 264

the language. 265

5 Conclusion 266

We introduced a benchmark to evaluate Indige- 267

nous language knowledge in large language models 268

through three tasks: language identification, cloze 269

completion with bilingual context, and grammati- 270

cal feature classification. These tasks target differ- 271

ent levels of linguistic competence, from surface 272

recognition to morphosyntactic understanding. 273

Our results show that strong performance is con- 274

centrated in a small subset of languages, and only 275

the most capable models demonstrate reliable im- 276

provements across tasks. While successful lan- 277

guage identification can be a necessary condition 278

for deeper understanding, it is not sufficient on its 279

own. Even among the highest-performing mod- 280

els, meaningful gains are limited to languages with 281

relatively greater digital presence, such as Nahuatl. 282

This benchmark provides a starting point for 283

measuring and diagnosing model behavior in low- 284

resource and typologically diverse settings. Future 285

work will expand coverage to additional languages 286

and tasks to further explore the limits of current 287

models. 288
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Limitations289

This study is limited to a subset of 13 Indigenous290

languages. While we include multiple language291

families and typological profiles, the current bench-292

mark does not represent the full diversity of Indige-293

nous languages of the Americas.294

Second, each task relies on prompting strategies295

which means that performance may be affected by296

prompt sensitivity, and results should be interpreted297

in that context.298

Our grammatical feature classification task is299

limited to just two languages and a fixed set of300

features derived from existing annotations, which301

may not generalize to other grammatical systems.302

Finally, we do not perform fine-tuning or adap-303

tation, focusing instead on zero-shot and few-shot304

capabilities. This design choice reflects current305

deployment patterns for LLMs, but it leaves open306

questions about how models could be improved307

with modest supervision in these languages.308

We use data released for the AmericasNLP309

2025 Shared Task, which is publicly available via310

GitHub. As of writing, the repository does not spec-311

ify a license. We do not currently redistribute the312

data, but we plan to seek permission from the orig-313

inal organizers to provide a version of the bench-314

mark formatted for our evaluation tasks.315

Ethical Considerations316

While this benchmark is designed to evaluate and317

promote understanding of Indigenous languages318

in LLMs, Indigenous languages are not public319

resources in the same way as high-resource lan-320

guages. Though our benchmark uses publicly avail-321

able data, care must be taken to respect community322

ownership and avoid exploiting linguistic data with-323

out engagement or consent from language commu-324

nities.325

We restrict our benchmark to data that is al-326

ready publicly available through shared tasks and327

prior publications, such as the AmericasNLP 2025328

shared tasks. By working only with curated and329

previously released datasets, we aim to respect330

community ownership of linguistic resources and331

avoid introducing new risks related to consent or332

provenance. Our results are intended to highlight333

limitations and gaps in current model performance,334

not to promote deployment or commercial use.335

We used some generative assistance in coding336

and surface-level editing of the paper. All edits337

to code and paper were thoroughly vetted by the 338

authors. 339
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A Languages555

Ash’aninka is an Arawakan language of Peru556

and Brazil with about 70,000 speakers. It is ag-557

glutinative and polysynthetic, featuring complex558

morphology including gender, realis/irrealis, and559

classifier systems.560

Awaj’un (Aguaruna) is a Chicham language spo-561

ken by 53,000 people in northern Peru. It has rich562

agglutinative morphology and SOV word order, en-563

coding spatial and aspectual distinctions.564

Aymara is spoken by 1.7 million people in Bo- 565

livia, Peru, and Chile. It is agglutinative with SOV 566

word order, evidentiality, and a unique temporal- 567

spatial metaphor. 568

Bribri is a tonal Chibchan language spoken in 569

southern Costa Rica by 7,000 people. It features 570

morphological ergativity, SOV word order, and gen- 571

dered speech registers (Constenla Umaña et al., 572

1998). 573

Chatino is a Zapotecan language group in Oax- 574

aca, Mexico. The San Juan Quiahije variant has 575

around 5,000 speakers. It is tonal with complex 576

inflection and variable word order. 577

Guarani is a Tupi–Guarani language spoken by 578

4–6.5 million people, mainly in Paraguay. It is 579

agglutinative with nasal harmony, active–stative 580

alignment, and flexible SVO order. 581

Nahuatl is a Uto-Aztecan language family with 582

1.6 million speakers in Mexico. It is agglutinative, 583

polysynthetic, and features pronominal affixes and 584

flexible word order. 585

Otom’i is spoken by about 300,000 people in 586

central Mexico. We focus on the Ixtenco variety. It 587

is tonal, SVO, and morphophonologically complex. 588

Quechua is an agglutinative language family 589

with over 7 million speakers across the Andes. It 590

features SOV word order, evidentiality, and rich 591

suffixation. We use the Ayacucho variant. 592

Rar’amuri (Tarahumara) is spoken in northern 593

Mexico by about 70,000 people. It is SOV, aggluti- 594

native, and polysynthetic, with noun incorporation 595

and postpositions. 596

Shipibo-Konibo is a Panoan language of 26,000 597

speakers in Peru. It uses SOV word order, suffixal 598

morphology, and evidential markers. 599

Wayuunaiki is an Arawakan language with 600

420,000 speakers in Colombia and Venezuela. It is 601

SOV, agglutinative, and actively transmitted. 602

Wixarika (Huichol) is a Uto-Aztecan language 603

spoken by 35,000 people in Mexico. It is polysyn- 604

thetic, agglutinative, and SOV, with noun incorpo- 605

ration and vowel harmony. 606

B Prompts 607

Below are the prompts used for each of the tasks. 608

The italics represent the parts that change for each 609

instance. 610
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Language Family Approx. Speakers Location Wikipedia?

Asháninka Arawakan 74,500 Peru, Brazil
Awajun Chicham 53,400 Northern Peru
Aymara Aymaran 1,700,000 Bolivia, Peru ✓
Bribri Chibchan 7,000 Southern Costa Rica
Chatino Oto-Manguean 5,000 Oaxaca, Mexico
Guarani Tupi–Guarani 6,500,000 Paraguay, Bolivia, Argentina, Brazil ✓
Nahuatl Uto-Aztecan 1,600,000 Mexico, Central America ✓
Otomí Oto-Manguean 300,000 Central Mexico
Quechua Quechuan 7,200,000 Andean regions ✓
Rarámuri Uto-Aztecan 70,000 Northern Mexico
Shipibo-Konibo Panoan 26,000 Peru
Wayuu Arawakan 420,000 Colombia, Venezuela ✓
Wixarika Uto-Aztecan 35,000 Mexico

Table 4: Overview of languages

1. Language Identification (hard) 2611

612

You are a language identification model. You613

are given a sentence and you must identify the614

language it is written in. You will be given a615

number of choices, respond with the number of the616

correct choice.617

618

What language is this sentence written in?619

Only give the number of the correct choice.620

A ni machiyé mapu ke suwiníba je’ná jípi rokóo.621

622

1. Aymara623

2. Wixarika624

3. Rarámuri625

4. Guarani626

627

The correct choice is:628

629

2. Language Identification (open)630

631

You are a language identification model. You632

are given a sentence and you must identify the633

language it is written in. Respond with the634

language name.635

636

What language is this sentence written in?637

(language name only)638

A ni machiyé mapu ke suwiníba je’ná jípi rokóo.639

640

Language:641

642

2Easy uses the same prompt but with incorrect options En-
glish, German, French. Full includes the full list of languages
as options

3. Cloze-task (monolingual) 643

644

Selecciona la mejor opción para completar 645

esta oración: 646

Solo ___ una semana. 647

648

1. pasó 649

2. fue 650

3. dura 651

4. tiene 652

653

Solo responde con el número de la opción 654

correcta. 655

656

4. Cloze-task (bilingual) 657

658

Oración en Aymara: 659

Mä simanakiw 660

Selecciona la mejor opción para completar esta 661

traducción: 662

Solo ___ una semana. 663

664

1. pasó 665

2. fue 666

3. dura 667

4. tiene 668

669

Solo responde con el número de la opción 670

correcta. 671

672

5. Grammatical Feature Identification 673

674

You are a language expert who can identify 675

grammatical features of a sentence in Bribri. You 676

will be given a sentence, a category of grammatical 677

feature (e.g., tense, mood, aspect), and a list of 678
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Language Language
Identification

Cloze
Translation

Grammatical
Feature

Asháninka 459 461 -
Awajun 459 445 -
Aymara 459 435 -
Bribri 459 468 1,111
Chatino 459 165 -
Guarani 459 449 -
Nahuatl 459 417 1,949
Otomí 459 452 -
Quechua 459 432 -
Rarámuri 459 444 -
Shipibo-Konibo 459 426 -
Wayuunaiki 459 492 -
Wixarika 459 443 -

Table 5: Number of instances per task per language.

options. You must select the option that best679

matches the grammatical feature of the sentence.680

681

Pûs kapóulur682

683

What is the tense of this sentence?684

685

1. continuous imperfect686

2. past perfect687

3. continuous perfect688

4. potential future689

...690

691

Only respond with the number of the cor-692

rect option.693

694

C Dataset Statistics695

Table 5 reports the number of instances per lan-696

guage for each task. While all 13 Indigenous lan-697

guages are represented in the language identifica-698

tion and cloze tasks, the grammatical feature clas-699

sification task is currently limited to Bribri and700

Nahuatl. Most languages contribute over 400 ex-701

amples per task.702

D Grammatical Feature Identification703

Table 6 lists the grammatical features included in704

the classification task and the number of instances705

per feature for each language. While both Bribri706

and Nahuatl share categories such as tense and per-707

son, others, such as honorific, are language specific.708

Grammatical Feature Bribri Nahuatl

Aspect 310 193
Honorific - 119
Mode 79 -
Mood - 122
Number of absolutive 86 -
Person 220 937
Polarity - 224
Tense 416 354

Total 1111 1949

Table 6: Instances of grammatical features per language
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