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Abstract

This paper introduces a benchmark for evaluat-
ing Indigenous language knowledge in large
language models using zero- and few-shot
prompting. The benchmark includes three
tasks: (1) language identification, (2) cloze
completion of Spanish sentences aided by
Indigenous-language translations, and (3) gram-
matical feature classification. We apply the
benchmark to 13 Indigenous languages, includ-
ing Bribri, Guarani, and Nahuatl, and evaluate
models from five major families (GPT, Gem-
ini, DeepSeek, Qwen, and LLaMA). Results
reveal large differences across both languages
and model families, with a small subset of
model-language combinations showing consis-
tently stronger performance across tasks, while
other combinations remain close to random
chance.

1 Introduction

Indigenous languages present structural properties
that challenge current language models. Many
are morphologically rich, with features such as
polysynthesis, complex agreement, or noun incor-
poration. Some lack standardized orthographies,
complicating tokenization and evaluation. Their
typological profiles differ substantially from high-
resource languages, and they are often underrep-
resented in pretraining data or evaluation settings
(Ponti et al., 2020; Mager et al., 2021). These fac-
tors make Indigenous languages a valuable test case
for evaluating model generalization.

Multilingual NLP benchmarks such as
XTREME (Hu et al., 2020) and XGLUE (Liang
et al., 2020) concentrate primarily on high- and
medium-resource languages with substantial
digital presence.More inclusive initiatives like
FLORES (Guzman et al., 2019) and the Ameri-
casNLP shared tasks (Mager et al., 2021) have
introduced datasets for machine translation involv-
ing Indigenous languages, enabling evaluation in
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Figure 1: Indigenous Language Identification Accuracy
on Open setting. Sorted by average performance.

specific translation contexts. Still, there remains a
gap in benchmarks that assess general language
understanding, such as lexical recognition, mor-
phosyntactic inference, or cross-lingual reasoning,
without task-specific training or fine-tuning.

To investigate how much Indigenous language
knowledge large language models may encode, we
introduce a probing-based benchmark designed for
zero-shot evaluation. The benchmark consists of
three tasks that target different aspects of linguistic
understanding. In the language identification task,
the model must select the correct language given
a word or sentence. In the cloze completion with
glosses task, the model is prompted with a Spanish
sentence containing a blank and a corresponding
translation or gloss in an Indigenous language, and
asked to predict the missing word. In the grammat-
ical feature identification task, the model is shown
a sentence in an Indigenous language and asked to
identify a specific morphosyntactic feature, such
as person, number, or tense. Together, these tasks
provide a targeted way to examine whether mod-
els exhibit consistent, interpretable behavior when
interacting with underrepresented languages.



2 Related Work

Probing LLMSs’ linguistic knowledge A com-
mon approach to probing linguistic knowledge
in LLMs is minimal-pair benchmarks such as
BLiMP (Warstadt et al., 2020). Recent extensions
include CLiMP for Chinese (Xiang et al., 2021),
JBIiMP for Japanese (Someya and Oseki, 2023),
RuBLiMP for Russian (Taktasheva et al., 2024),
and MultiBLIMP (Jumelet et al., 2025), which cov-
ers 101 languages. These controlled formats isolate
grammatical contrasts and are useful for evaluating
structural generalization.

Cloze and multiple-choice formats are also used
to probe model knowledge. LAMA (Petroni et al.,
2019), X-FACTR (Jiang et al., 2020), and Multilin-
gual LAMA (Kassner et al., 2021) evaluate factual
recall with cloze prompts. LM-PUB-QUIZ (Ploner
et al., 2025) converts these into multiple-choice
form. WDLMPro (Senel and Schiitze, 2021) ap-
plies this format to lexical and semantic knowledge.
Our grammatical feature task similarly uses natural
sentences and structured outputs to evaluate mod-
els’ ability to infer morphosyntactic properties.

Low-resource language benchmarks Ameri-
casNLI (Kann et al., 2022) enables evaluation
of semantic inference in 10 Indigenous lan-
guages through translations of the XNLI corpus.
MasakhaNER (Adelani et al., 2021) and Masakha-
POS (Dione et al., 2023) benchmark named entity
and POS tagging for African languages and explore
cross-lingual transfer using multilingual and region-
specific models. XTREME-UP (Ruder et al., 2023)
introduces a broad benchmark spanning 88 under-
represented languages across multiple user-facing
tasks, enabling large-scale evaluation under low-
resource constraints.

3 Methodology

3.1 Linguistic Corpora

We use development data from the AmericasNLP
2025 Shared Task (De Gibert et al., 2025), cover-
ing 13 typologically diverse Indigenous languages
of Latin America. Speaker populations range
from 5,000 (Chatino) to over 7 million (Quechua),
with most languages spoken in Peru or Mexico.
Five have Wikipedias: Aymara, Guarani, Nahuatl,
Quechua, and Wayuu. An overview of the lan-
guages is in Table 4. Full language details are in
Appendix A.

3.2 Pre-trained Language Models

We evaluate ten large language models spanning
a range of architectures and sizes. These in-
clude GPT-4.1 (OpenAl et al., 2024), Gemini 2.0
Flash (Gemini et al., 2025), and DeepSeek-V3-
0324 (DeepSeek-Al et al., 2024), all of which
we access through the API. We also test open-
weight instruction-tuned models: LLaMA-3.1-8B,
LLaMA-3.2-3B (Touvron et al., 2023), and Qwen-
3B, 7B, and 14B (Bai et al., 2023)'. For API-based
models, we use a temperature of 0 to ensure deter-
ministic outputs. For open-weight models, we turn
off sampling. All prompts used in evaluation are
included in Appendix B.

3.3 Language Identification

We evaluate model accuracy on identifying the lan-
guage of sentences, using 459 sentences per lan-
guage across 13 Indigenous languages and Spanish.
To ensure enough signal for identification, all sen-
tences are at least five tokens long.

We test four prompting conditions, ranging in
difficulty:

1. Multiple Choice Easy: Prompted to choose
between four options (target + three high-
resource distractors like English or French).

2. Multiple Choice Hard: Distractors are other
Indigenous languages.

3. Multiple Choice Full: Prompted to choose
between all 14 languages.

4. Open: No choices provided; model must out-
put the language name.

Our main experiments are conducted under zero-
shot prompting. For the full setting, we also test
n-shot prompting, where n sentences from each of
the 14 languages are included as examples.

3.4 Cloze Translation Completion

To test whether LLMs can understand the Indige-
nous languages, we design a cloze task based on
aligned Spanish—Indigenous sentence pairs from
the AmericasNLP 2025 Shared Task.

We mask one content word in each Spanish sen-
tence, excluding proper nouns and punctuation. To
avoid trivial items, we filter out examples where

Inference for open-weight models was run on a single
RTX A6000 GPU, totaling approximately 75 GPU hours
across all tasks. API-based models were accessed via public
endpoints, with total usage costing around $50.
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Figure 2: Confusion Matrix (%) for GPT-4.1 in Zero-
shot setting. Vertical axis represents reference languages
while horizontal axis represents the predictions.

gpt-4o-mini correctly fills the blank. We then use
the same model to generate plausible distractors,
creating 4-option multiple-choice questions.

Each item includes a Spanish cloze sentence,
four candidate completions, and the Indigenous
translation of the Spanish. We test two settings:
Monolingual, only the Spanish cloze sentence is
shown, and Bilingual, the Spanish cloze and In-
digenous translation are shown.

We measure accuracy, comparing results be-
tween the two settings. Option order is fixed be-
tween settings to avoid position bias.

The final dataset contains 5,529 problems span-
ning 13 languages. Most languages contribute over
400 examples; full counts appear in Appendix C.

3.5 Grammatical Feature Classification

To evaluate whether models can identify gram-
matical features from Indigenous sentences, we
construct a classification task covering Bribri and
Nahuatl. Each question consists of an Indigenous
sentence, a target grammatical feature (e.g. person,
tense, mood), the correct answer, and all possible
alternative answers for that feature. Not all features
are equally represented, and not all appear in every
language. Data is adapted from the AmericasNLP
2025 Shared Task 2. A full list of tested features
appears in Appendix D.

4 Results

4.1 Language identification

Zero-shot The easy setting acted as a sanity
check, asking models to choose between the target

Example #

Language 0 1 2 3 4

Ashaninka 029 068 072 0.62 0.59
Aymara 1.00 1.00 1.00 1.00 1.00
Bribri 0.09 024 041 046 072
Nahuatl 1.00 1.00 1.00 1.00 1.00
Quechua 097 1.00 099 1.00 1.00
Shipibo-Konibo 035 0.48 0.52 0.64 0.78
Raramuri 0.05 0.12 020 020 0.18
Otom{ 043 070 0.79 0.74 0.71
Guarani 1.00 1.00 1.00 1.00 1.00
Spanish 1.00 1.00 1.00 1.00 1.00
Chatino 0.62 1.00 1.00 1.00 1.00
Wayuu 0.86 1.00 1.00 0.99 0.99
Wixarika 037 096 099 0.99 0.99
Awajtin 079 0.82 0.83 0.89 0.86

Table 1: Zero-shot and Few-shot accuracy per language
on GPT-4.1.

Indigenous language and unrelated high-resource
languages. All models performed well, confirm-
ing that the task and data were clear enough to
distinguish Indigenous from unrelated languages.

In contrast, performance dropped sharply in the
open setting. Figure 1 shows per-language accuracy
under this condition. Larger models performed
more consistently, but even the smallest models
correctly identified Quechua and Nahuatl, suggest-
ing these languages are relatively well represented
in pretraining data.

The most reliably identified languages (Quechua,
Guarani, Aymara, Nahuatl, and Wayuu) are the
six in our evaluation set with their own Wikipedia
editions. The Indigenous Wikipedias range in size
from 24,000 articles (Quechua) to just 681 articles
(Wayuu).

Figure 2 shows GPT-4.1°s confusion matrix in
the full multiple-choice setting. Confusions are
notably asymmetric: Rardmuri was rarely pre-
dicted and often confused with Bribri; Bribri sen-
tences were frequently mislabeled as Otomi. This
suggests some languages disproportionately domi-
nate model priors, producing directional confusion
rather than mutual ambiguity.

Few-shots To evaluate the impact of few-shot
prompting, we varied the number of examples per
language from 1 to 4. Most models benefited from
1-shot prompting, but additional examples yielded
diminishing returns. Smaller models showed little
improvement from additional shots.

We also examined few-shot effects per language.
Some languages showed substantial gains. For
example, Bribri accuracy increased from 8.8% to



Language Gemini-2.0 GPT-4.1 DeepSeek
Ashaninka 0.01 0.04 0.03
Aymara 0.31%%%* 0.22%** (.03
Awajiin 0.12%%%* 0.10%%*  (Q.11%%*
Bribri 0.04 0.07** 0.06*
Chatino 0.03 0.08 -0.01
Guarani 0.42%** 0.40%**  (.23%**
Nahuatl 0.39%#%* 0.26%#*  (.29%**
Otomi 0.10%* 0.07* 0.01
Quechua 0.45%** 0.34%*%x  (.36%***
Rardmuri -0.01 0.00 0.03
Shipibo-Konibo ~ 0.11%%* 0.08%* 0.11%**
Wayuunaiki 0.09%* 0.00 0.00
Wixarika 0.07* 0.05 0.06*

Table 2: Accuracy improvement (AAcc) for each lan-
guage on the cloze task when given the aligned Indige-
nous sentence. Significance levels from McNemar’s
test: *** p < 0.001, ** p < 0.01, * p < 0.05.

72%, and Otomi from 43.4% to 71.1%. Shipibo-
Konibo and Wixarika also showed steady improve-
ment with more examples. Table 1 visualizes accu-
racy trends for different numbers of examples on
GPT-4.1.

4.2 Cloze translation completions

The cloze task tests whether models can use In-
digenous translations to resolve ambiguous Span-
ish sentences. Each example includes a masked
word and several plausible completions, filtered to
exclude trivial cases. Accuracy gains in the bilin-
gual condition suggest some understanding of the
Indigenous input.

All models improve when given the translation,
but gains are modest in smaller models and largest
in Gemini-2.0, GPT-4.1, and DeepSeek. As shown
in Table 2, these three models show statistically
significant improvements for Guarani, Quechua,
and Nahuatl, with Gemini outperforming the rest.
For most other languages, improvements were
smaller and often not significant. None of the mod-
els showed evidence of understanding Ashéninka,
Chatino, or Raramuri.

4.3 Grammatical Feature Identification

The grammatical feature identification task probes
a model’s ability to extract morphosyntactic infor-
mation from a sentence, such as tense, mood, or
person. This setting differs from the previous two
by requiring a deeper level of linguistic knowledge.

As shown in Table 3, model performance varies
widely by language. Accuracy on Nahuatl is
markedly higher than on Bribri across all models,

Model Bribri Nahuatl
GPT-4.1 0.27 0.55
DeepSeek-Chat 0.29 0.60
Gemini-2.0-flash 0.25 0.66
Qwen2.5-14B-Instruct ~ 0.27 0.31
Llama-3.1-8B-Instruct  0.27 0.31
Qwen2.5-7B-Instruct 0.19 0.25
Qwen2.5-3B-Instruct 0.24 0.28
Random 0.22 0.27

Table 3: Model Accuracy Summary for Grammatical
Feature Task

with Gemini-2.0-flash achieving 66%. In contrast,
all models struggled on Bribri, with scores barely
above chance.

This contrast aligns with trends observed in the
previous tasks. Bribri was rarely correctly identi-
fied in Task 1 and showed only modest gains in
Task 2, suggesting that models have limited usable
knowledge of the language. For the larger mod-
els, Nahuatl was consistently well-identified and
contributed to improved cloze performance, indi-
cating that LLMs have degree of familiarity with
the language.

5 Conclusion

We introduced a benchmark to evaluate Indige-
nous language knowledge in large language models
through three tasks: language identification, cloze
completion with bilingual context, and grammati-
cal feature classification. These tasks target differ-
ent levels of linguistic competence, from surface
recognition to morphosyntactic understanding.

Our results show that strong performance is con-
centrated in a small subset of languages, and only
the most capable models demonstrate reliable im-
provements across tasks. While successful lan-
guage identification can be a necessary condition
for deeper understanding, it is not sufficient on its
own. Even among the highest-performing mod-
els, meaningful gains are limited to languages with
relatively greater digital presence, such as Nahuatl.

This benchmark provides a starting point for
measuring and diagnosing model behavior in low-
resource and typologically diverse settings. Future
work will expand coverage to additional languages
and tasks to further explore the limits of current
models.



Limitations

This study is limited to a subset of 13 Indigenous
languages. While we include multiple language
families and typological profiles, the current bench-
mark does not represent the full diversity of Indige-
nous languages of the Americas.

Second, each task relies on prompting strategies
which means that performance may be affected by
prompt sensitivity, and results should be interpreted
in that context.

Our grammatical feature classification task is
limited to just two languages and a fixed set of
features derived from existing annotations, which
may not generalize to other grammatical systems.

Finally, we do not perform fine-tuning or adap-
tation, focusing instead on zero-shot and few-shot
capabilities. This design choice reflects current
deployment patterns for LLMs, but it leaves open
questions about how models could be improved
with modest supervision in these languages.

We use data released for the AmericasNLP
2025 Shared Task, which is publicly available via
GitHub. As of writing, the repository does not spec-
ify a license. We do not currently redistribute the
data, but we plan to seek permission from the orig-
inal organizers to provide a version of the bench-
mark formatted for our evaluation tasks.

Ethical Considerations

While this benchmark is designed to evaluate and
promote understanding of Indigenous languages
in LLMs, Indigenous languages are not public
resources in the same way as high-resource lan-
guages. Though our benchmark uses publicly avail-
able data, care must be taken to respect community
ownership and avoid exploiting linguistic data with-
out engagement or consent from language commu-
nities.

We restrict our benchmark to data that is al-
ready publicly available through shared tasks and
prior publications, such as the AmericasNLP 2025
shared tasks. By working only with curated and
previously released datasets, we aim to respect
community ownership of linguistic resources and
avoid introducing new risks related to consent or
provenance. Our results are intended to highlight
limitations and gaps in current model performance,
not to promote deployment or commercial use.

We used some generative assistance in coding
and surface-level editing of the paper. All edits

to code and paper were thoroughly vetted by the
authors.
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A Languages

Ash’aninka is an Arawakan language of Peru
and Brazil with about 70,000 speakers. It is ag-
glutinative and polysynthetic, featuring complex
morphology including gender, realis/irrealis, and
classifier systems.

Awaj’un (Aguaruna) is a Chicham language spo-
ken by 53,000 people in northern Peru. It has rich
agglutinative morphology and SOV word order, en-
coding spatial and aspectual distinctions.

Aymara is spoken by 1.7 million people in Bo-
livia, Peru, and Chile. It is agglutinative with SOV
word order, evidentiality, and a unique temporal-
spatial metaphor.

Bribri is a tonal Chibchan language spoken in
southern Costa Rica by 7,000 people. It features
morphological ergativity, SOV word order, and gen-
dered speech registers (Constenla Umaiia et al.,
1998).

Chatino is a Zapotecan language group in Oax-
aca, Mexico. The San Juan Quiahije variant has
around 5,000 speakers. It is tonal with complex
inflection and variable word order.

Guarani is a Tupi—Guarani language spoken by
4-6.5 million people, mainly in Paraguay. It is
agglutinative with nasal harmony, active—stative
alignment, and flexible SVO order.

Nahuatl is a Uto-Aztecan language family with
1.6 million speakers in Mexico. It is agglutinative,
polysynthetic, and features pronominal affixes and
flexible word order.

Otom’i is spoken by about 300,000 people in
central Mexico. We focus on the Ixtenco variety. It
is tonal, SVO, and morphophonologically complex.

Quechua is an agglutinative language family
with over 7 million speakers across the Andes. It
features SOV word order, evidentiality, and rich
suffixation. We use the Ayacucho variant.

Rar’amuri (Tarahumara) is spoken in northern
Mexico by about 70,000 people. It is SOV, aggluti-
native, and polysynthetic, with noun incorporation
and postpositions.

Shipibo-Konibo is a Panoan language of 26,000
speakers in Peru. It uses SOV word order, suffixal
morphology, and evidential markers.

Wayuunaiki is an Arawakan language with
420,000 speakers in Colombia and Venezuela. It is
SOV, agglutinative, and actively transmitted.

Wixarika (Huichol) is a Uto-Aztecan language
spoken by 35,000 people in Mexico. It is polysyn-
thetic, agglutinative, and SOV, with noun incorpo-
ration and vowel harmony.

B Prompts

Below are the prompts used for each of the tasks.
The italics represent the parts that change for each
instance.
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Language Family Approx. Speakers  Location Wikipedia?
Ashaninka Arawakan 74,500  Peru, Brazil

Awajun Chicham 53,400 Northern Peru

Aymara Aymaran 1,700,000  Bolivia, Peru v
Bribri Chibchan 7,000  Southern Costa Rica

Chatino Oto-Manguean 5,000 Oaxaca, Mexico

Guarani Tupi—Guarani 6,500,000  Paraguay, Bolivia, Argentina, Brazil v
Nahuatl Uto-Aztecan 1,600,000 Mexico, Central America v
Otomi Oto-Manguean 300,000 Central Mexico

Quechua Quechuan 7,200,000  Andean regions v
Raramuri Uto-Aztecan 70,000 Northern Mexico

Shipibo-Konibo  Panoan 26,000 Peru

Wayuu Arawakan 420,000 Colombia, Venezuela v
Wixarika Uto-Aztecan 35,000 Mexico

Table 4: Overview of languages

1. Language Identification (hard)

You are a language identification model. You
are given a sentence and you must identify the
language it is written in. You will be given a
number of choices, respond with the number of the
correct choice.

What language is this sentence written in?
Only give the number of the correct choice.
A ni machiyé mapu ke suwiniba je’nd jipi rokoo.

1. Aymara
2. Wixarika
3. Rardamuri
4. Guarani

The correct choice is:

2. Language Identification (open)

You are a language identification model. You
are given a sentence and you must identify the
language it is written in. Respond with the
language name.

What language is this sentence written in?
(language name only)
A ni machiyé mapu ke suwiniba je 'nd jipi rokoo.

Language:
2Easy uses the same prompt but with incorrect options En-

glish, German, French. Full includes the full list of languages
as options

3. Cloze-task (monolingual)

Selecciona la mejor opcidn
esta oracion:

para completar
Solo una semand.

1. paso
2. fue

3. dura
4. tiene

Solo responde con el nimero de la opcién
correcta.

4. Cloze-task (bilingual)

Oracién en Aymara:

M simanakiw

Selecciona la mejor opcién para completar esta
traduccion:

Solo ____ una semana.

1. paso
2. fue

3. dura
4. tiene

Solo responde con el nimero de la opcién
correcta.

5. Grammatical Feature Identification

You are a language expert who can identify
grammatical features of a sentence in Bribri. You
will be given a sentence, a category of grammatical
feature (e.g., tense, mood, aspect), and a list of



Language Idtzg%léZ%izn Trffils‘;ztei on Gr‘ll:?;l;rtéc .
Ashéninka 459 461 B
Awajun 459 445 ;
Aymara 459 435 _
Bribri 459 468 1,111
Chatino 459 165 )
Guarani 459 449 -
Nahuatl 459 417 1,949
Otom{ 459 452 -
Quechua 459 432 _
Rardmuri 459 444 -
Shipibo-Konibo 459 426 -
Wayuunaiki 459 492 -
Wixarika 459 443 -

Table 5: Number of instances per task per language.

options. You must select the option that best
matches the grammatical feature of the sentence.

Piis kapoulur
What is the tense of this sentence?

1. continuous imperfect
2. past perfect

3. continuous perfect
4. potential future

Only respond with the number of the cor-
rect option.

C Dataset Statistics

Table 5 reports the number of instances per lan-
guage for each task. While all 13 Indigenous lan-
guages are represented in the language identifica-
tion and cloze tasks, the grammatical feature clas-
sification task is currently limited to Bribri and
Nahuatl. Most languages contribute over 400 ex-
amples per task.

D Grammatical Feature Identification

Table 6 lists the grammatical features included in
the classification task and the number of instances
per feature for each language. While both Bribri
and Nahuatl share categories such as tense and per-
son, others, such as honorific, are language specific.

Grammatical Feature = Bribri  Nahuatl
Aspect 310 193
Honorific - 119
Mode 79 -
Mood - 122
Number of absolutive 86 -
Person 220 937
Polarity - 224
Tense 416 354
Total 1111 1949

Table 6: Instances of grammatical features per language
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