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Abstract

Conventional federated learning (FL) assumes a closed world with a fixed total
number of clients. In contrast, new clients continuously join the FL process in
real-world scenarios, introducing new knowledge. This raises two critical demands:
detecting new knowledge, i.e., knowledge discovery, and integrating it into the
global model, i.e., knowledge adaptation. Existing research focuses on coarse-
grained knowledge discovery, and often sacrifices source domain performance and
adaptation efficiency. To this end, we propose a fine-grained federated domain
adaptation approach in open set (Gains). Gains splits the model into an encoder
and a classifier, empirically revealing features extracted by the encoder are sensitive
to domain shifts while classifier parameters are sensitive to class increments. Based
on this, we develop fine-grained knowledge discovery and contribution-driven
aggregation techniques to identify and incorporate new knowledge. Additionally,
an anti-forgetting mechanism is designed to preserve source domain performance,
ensuring balanced adaptation. Experimental results on multi-domain datasets across
three typical data-shift scenarios demonstrate that Gains significantly outperforms
other baselines in performance for both source-domain and target-domain clients.
Code is available at: https://github.com/Zhong-Zhengyi/Gains.

1 Introduction

As a typical distributed intelligent model training paradigm, federated learning (FL) [33, 11, 36, 67]
has garnered significant attention from researchers in recent years [15, 32, 39, 35, 45, 12, 66, 59, 19,
48]. Conventional FL is often studied in a setup with a fixed number of clients [33, 30], which limits
its applicability in a more realistic scenario when new clients, i.e., target domain, are allowed to join
the learning process. To scale FL effectively in such scenarios, we have to deal with heterogeneous
or evolving client data distributions, e.g., IoT networks, cross-device applications. This prompts
researchers to prioritize the study of two critical techniques in the field: (i) assessing whether the new
client contributes previously unseen knowledge [37], referred to as knowledge discovery; (ii) devising
strategies to integrate it into the global model for improving generalization under the updated domain
setting [18, 7], which we call knowledge adaptation.

Existing challenges: Though the practical demands and corresponding techniques are well specified,
bottlenecks still remain in achieving the deployment purpose (Fig. 1). Regarding knowledge discovery,
it is rarely investigated in FL, and existing strategies hardly process complicated scenarios. Take
the latest work, FOSDA [37], as an example; it facilitates the discovery of new classes, i.e., class
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increment, in the presence of an open set. However, when faced with domain increment, which is
more universal in life, FOSDA encounters the failure of dealing with new domain knowledge. Hence,
a more fine-grained knowledge discovery approach is required to discriminate class increment or
domain increment. As for knowledge adaptation, current methods primarily attempt to improve
the performance of the newly trained model on target domains. Technically, they often suffer from
performance degradation on the source domain while easily overlooking the efficiency of knowledge
adaptation [18]. Consequently, we need to introduce a mechanism for rapid and balanced knowledge
adaptation, securing seamless integration of new knowledge while consolidating original capabilities.
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Figure 1: Challenge discription.

Proposed solution: To this end, this
paper presents a fine-Grained federated
domain adaptation method in open set
(Gains), which aims at achieving fine-
grained knowledge discovery and rapid
adaptation without sacrificing the perfor-
mance on the source domain. Specifically,
we discover new knowledge and identify
its type (domain increment or class incre-
ment) from the changes in model parame-
ters and extracted features. Then, the feder-
ated aggregation process is optimized with
the guidance of the quantified parameter and feature’s contributions to the target domain, thereby
accelerating the integration of new knowledge into the global model. Meanwhile, an anti-forgetting
mechanism (AFM) is designed and used in the training process of the source-domain clients to
circumvent source-domain performance degradation, achieving a balance between the target and
source domains. To sum up, this work’s contribution is three-fold:

• Adaptation pipeline. We propose a novel training pipeline within FL that supports fine-grained
discovery and discrimination of new knowledge from client updates and efficient integration of
incremental knowledge into the global model.

• Practical solution. We present an efficient federated optimization method that enables contribution
evaluation of diverse components during knowledge adaptation and suppresses performance decline
on the source domain.

• Experimental validation. We conduct extensive experiments on typical multi-domain datasets
under various levels of knowledge shifts. Empirically, Gains achieves superior performance on
both target and source domain clients over other state-of-the-art methods.

2 Related work

Domain adaptation. Domain adaptation (DA) can be categorized based on the labeling status of
the target domain into unsupervised DA, semi-supervised DA, and supervised DA [47]. They can
also be divided based on whether the source domain data is involved into source-dependent DA and
source-free DA [24]. The distribution shift is a lasting challenge [52], and typical DA approaches
include adversarial learning-based methods and alignment-based methods. Adversarial learning-
based methods introduce adversarial networks (such as GANs) to align the feature distributions
between the source and target domains [8, 20, 4, 64, 13, 49]. Alignment-based methods achieve
alignment between the source and target domains by minimizing the differences in feature or data
distributions [23, 10, 54, 9]. Common alignment metrics include KL divergence [34], Maximum
Mean Discrepancy (MMD) [25], and Wasserstein distance [34]. In addition, other methods such as
self-training [38, 46] and meta-learning [21, 44, 50, 51] have also been applied in DA. Unlike most
DA work that considers adapting the source model to the new domain and continual learning that
considers catastrophic forgetting [29, 55, 56, 68, 65, 63], we focus on solving the problem of better
adaptation to the new domain while avoiding performance degradation in the source domain.

Federated domain adaptation. The FDA methods primarily include domain alignment-based,
data-based, learning-based, and aggregation optimization-based approaches [31]. Among them,
domain alignment consists of feature [53, 7] and gradient alignment [58, 17]. Besides, mixed training
approaches are also adopted. For instance, [60] uploads prototypes from different domains to the
server for fine-tuning. In data adjustment methods, data augmentation [40, 3, 22] and data generation
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[14, 27, 57] are commonly used. Chen et al. [3] generated data with other domain styles on a
single client through style transfer between clients. In learning-based approaches, common strategies
include adding alignment regularization terms [16], representation learning [1, 61], and transfer
learning [2]. For example, Craighero et al. [7] proposed SemiFDA, which trains local feature
extractors on clients to align them with the server. In aggregation optimization-based methods, the
primary focus is on optimizing aggregation weights [62], gradients [43], and aggregation strategies
[41, 6]. For example, FedHEAL [5] removes some less important updates from client models and
determines aggregation weights based on the distance between the global model and each local model.
AutoFedGP [18] calculates the distance between the source and target domains to derive a new
automatic weighting scheme. The aforementioned FDA works are primarily based on the assumption
of a closed environment. Currently, there is limited research on FDA in open environments. Even
exists, e.g., FOSDA [37], it is only applicable to class-incremental scenarios and does not consider
the impact on the source domain.

3 Methodology

This section starts with a motivation example and outlines the pipeline of our developed feder-
ated domain adaptation scheme, Gains. Subsequently, we elaborate on fine-grained knowledge
discrimination and contribution-driven knowledge adaptation as two key components in Gains.

Motivation. Without loss of generality, we use the LeNet model and MNIST dataset as an example,
considering a scenario where the first three new clients’ data is from the source domain, the fourth
introduces 1–4 new classes, and the fifth brings new domain data (details are shown in Appendix. A).
When new clients participate in training, the variations of the encoder, classifier, and extracted feature
are measured by the distance (e.g., Euclidean distance) before and after training in the target domain.
From Fig. 2, we have the following findings: (i) the variation of the encoder (i.e., DiffE) does not
show a clear fluctuation trend no matter in class or domain incremental scenarios; (ii) the changes in
the classifier parameters (i.e., DiffC) are more pronounced in the class-incremental scenario; (iii)
while both new classes and domain will bring obvious changes to the feature values (i.e., DiffF ),
it is more significant in the domain-incremental scenario. Therefore, it is reasonable to consider a
combined evaluation of DiffC and DiffF to determine whether the new client introduces new
knowledge and whether such knowledge is class- or domain-related.
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Figure 2: Differences in the encoder (left), classifier (middle), and extracted feature values (right)
when the new client carries different types of knowledge.

Framework. Inspired by the above empirical discoveries, we propose a fine-grained federated
domain adaptation framework in open set, Gains (shown in Fig. 3). Specifically, it consists of two
main components: knowledge discovery and knowledge adaptation. In the knowledge discovery stage,
the target domain performs local training based on the source model and uploads the updated version
back to the server. Then, the server uses public dataset to calculate the variations of DiffC and
DiffF , determining whether the new client introduces new knowledge and further discriminating
its type in fine grains. Based on the results of this differentiation, in the knowledge adaptation
stage, the contribution of different model components in each source model is calculated. After
that, the server executes contribution-driven aggregation to accelerate the speed of target domain
adaptation. Considering it may lead to an overemphasis on the target domain, potentially resulting in
the performance degradation of the source domain, an anti-forgetting mechanism is included in the
local training of the source client to balance the knowledge of the target and source domains.
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Figure 3: Gains consists of two phases: knowledge discovery (upper) and knowledge adaptation
(lower). The former works on identifying the type of new knowledge, while the latter attempts to
achieve rapid integration of new knowledge and strike a balance between new and old knowledge.

Notations. We denote the N client source domain dataset by DS
n = { (xn

j , y
n
j )
∣∣|DS

n |
j=0

}, n = 1, · · ·N .

The target domain dataset is DT = { (xj , yj)
∣∣|DT |
j=0

}. The server’s public data is DP = {(xp, yp)}.

The original pre-trained source domain model is WS , comprising an encoder ES and a classifier CS .
Similarly, we write the target domain trained model as WT , which includes ET and CT . I is the
total federated iteration and R is the local training epoch.

3.1 Fine-grained knowledge discrimination

When a new client enters, the server first distributes original source global model WS to the target
domain for local training Q times. The optimization process is as follows:

WT (q + 1) = WT (q)− η∇L(WT (q),DT ), q = 0, · · · , Q− 1, (1)

where η is learning rate, L(WT (q),DT ) is the loss in the q-th local training epoch, and the final target
model is WT = WT (Î). Once the target client finished the local training, WT will be uploaded
to the server. Then, DP is input into ES and ET to obtain the feature values FS = ES(xp) and
FT = ET (xp), respectively. According to the finding (iii) in the motivation, we first judge whether
the new client brings new knowledge based on the variation of DiffF . If DiffF is big enough, we
believe that the data distribution from the target domain is different from that of the source domain,
which means new knowledge is coming. Furthermore, according to finding (ii), we can determine
whether this new knowledge is related to a new class by calculating DiffC . Specifically, we use the
Manhattan distance and the Euclidean distance to calculate DiffF and DiffC , respectively.

We set TF and TC as thresholds for discovering new knowledge and determining the type of new
knowledge, respectively. When DiffF > TF , we conclude that the target domain has introduced
new knowledge. If DiffC > TC simultaneously, it indicates that the new knowledge corresponds to
a new class; otherwise, it is considered as new domain knowledge.

3.2 Contribution-driven knowledge adaptation

In the knowledge adaptation phase, two key issues need to be addressed: first, the rapid knowledge
adaptation to the target domain; and second, the balance between new and old knowledge. To
achieve the former one, we propose the contribution-driven aggregation strategy, which means
assigning greater weights to clients with higher contributions. As for the latter balance problem, an
anti-forgetting mechanism is presented.

Domain-incremental contribution-driven aggregation. In this paper, we believe that the more
similar the source domain client is to the target domain, the more beneficial it is for the fusion of new

4



knowledge. Then the greater the contribution is. In the domain-incremental scenario, the encoder
and the classifier adopt the feature-based and parameter-based contribution calculation methods,
respectively. In the feature-based calculation, the encoder contribution CDE

n (i) of the n-th source
client to the target domain during the i-th iteration is calculated as follows:

CDE
n (i) =

1

(1 +DiffF
n (i))×

∑N
n=1

(
1/
(1 +DiffF

n (i))

) × ∑N
n=1

∣∣DS
n

∣∣
|DT |+

∑N
n=1 |DS

n |
, (2)

where DiffF
n (i) is measured by the distance between FT (i) = ET (i)(xp) and FS

n (i) = ES
n (i)(x

p).
ET (i) is the encoder uploaded by the target domain in i-th iteration, while ES

n (i) is from the n-th
source client. Similarly, in parameter-based aggregation, the classifier contribution of n-th source
client CDC

n (i) is calculated as follows:

CDC
n (i) =

1

(1 +DiffC
n (i))×

∑N
n=1

(
1/
(1 +DiffC

n (i))

) × ∑N
n=1

∣∣DS
n

∣∣
|DT |+

∑N
n=1 |DS

n |
, (3)

where DiffC
n (i) is measured by the distance between CT (i) and CS

n (i). Ultimately, we obtain
the contribution lists {CDE

1 (i), CD
E
2 (i), · · · , CD

E
N (i)} and {CDC

1 (i), CD
C
2 (i), · · · , CD

C
N (i)} of the

source encoder and source classifier during the i-th iteration in the domain-incremental scenario. The
aggregation processes are as follows:

E(i) =
∑N

n=1
CDE

n (i)×ES
n (i) +

∣∣DT
∣∣

|DT |+
∑N

n=1 |DS
n |
× ET (i), (4)

C(i) =
∑N

n=1
CDC

n (i)×CS
n (i) +

∣∣DT
∣∣

|DT |+
∑N

n=1 |DS
n |
× CT (i). (5)

The aforementioned aggregation process facilitate the rapid adaptation of knowledge by dynamically
improving the contribution-based weights in each iteration.

Class-incremental contribution-driven aggregation. Similarly, in the class-incremental scenario,
for the encoder aggregation process, we adopt the same feature-based method to calculate the contri-
bution. The Encoder contribution of the n-th source client in i-th iteration is CCE

n (i). Then, the contri-
bution list of the encoder in class-incremental scenarios is obtained {CCE

1 (i), CC
E
2 (i), · · · , CC

E
N (i)}.

The aggregation process is as follows:

E(i) =
∑N

n=1
CCEn (i)×ES

n (i) +

∣∣DT
∣∣

|DT |+
∑N

n=1 |DS
n |
× ET (i). (6)

The aggregation of the classifier employs a channel-wise supplementation method. First, the
classifiers from the source domain are aggregated based on the amount of data from each

client, resulting in CS(i) =
∑N

n=1
|DS

n |∑N
n=1 |DS

n |×CS
n (i). Suppose there are KS classes in the

source domain and KT new classes added in the target domain. Consequently, the classifier has
KS + KT channels. The parameters of the classifier aggregated from the source domain are
denoted as CS(i) = [ChannelS1 , · · · , ChannelSKS , ChannelSKS+1, · · · , ChannelSKS+KT ],
and the parameters of the target domain classifier are denoted as CT (i) =
[ChannelT1 , · · · , ChannelTKs , ChannelTKs+1, · · · , ChannelTKs+KT ]. In the final aggregated
classifier, the channels corresponding to the source domain classes directly adopt the parameters from
CS(i), while the channels for the target domain classes retain the parameters from CT (i). That is,

C(i) =

[
ChannelS1 , · · · , ChannelSKS︸ ︷︷ ︸

SourceDomain

, ChannelTKS+1, · · · , ChannelTKS+KT︸ ︷︷ ︸
TargetDomain

]
. (7)

A theoretical convergence analysis of Gains is provided in the Appendix. F.

Anti-forgetting mechanism. The above aggregation may lead to a bias towards the target domain
knowledge in the aggregated model, potentially causing a decline in performance on the source
domain tasks. To mitigate this, we introduce an anti-forgetting mechanism for the source domain
clients during each round of local training. Specifically, we control the distance between the current
model WS

n (i, r) and the memory model WS
n (0, 0) in the local training to prevent the local model
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from excessively deviating from the historical model. Here, WS
n (0, 0) represents the local model

in the source domain before the new client enters. WS
n (i, r) is the n-th client model during the i-th

global iteration and r-th local training epoch. The local loss function for the source clients is defined
as follows:

L(WS
n (i, r),DS

n) = −
1

|DS
n |

|DS
n |∑

j=1

KS+KT∑
c=1

yn
j,c log(ŷ

n
j,c) + λ

∥∥∥WS
n (i, r)−WS

n (0, 0)
∥∥∥2

2
, (8)

where λ is a balance coefficient. Through the above training process, we can achieve rapid federated
domain adaptation while avoiding forgetting the source domain knowledge, thereby maintaining a
balance between new and old knowledge.

3.3 Algorithm

As shown in Alg. 1, when a new client joins, the server distributes the source global model WS to the
target domain for local training, getting WT . Subsequently, the server decomposes WS and WT into
an encoder and a classifier and derives the feature using the public dataset. Based on the differences
in the feature extracted by ES and ET , as well as the parameter differences between CS and CT ,
the algorithm discriminates the type of new knowledge and confirms its type. Then, we calculate
the contributions of the source clients to the target client in both encoders and classifiers. According
to knowledge types and model components, specific aggregation strategies are used to accelerate
knowledge adaptation. Furthermore, to prevent the aggregation process from overly favouring the
target client, the anti-forgetting mechanism is incorporated into the local update process of the source
clients. After all clients complete local training, they upload their models to the server for aggregation
based on their contributions. This process repeats until convergence. If no new knowledge is detected
at the outset, the original model is deployed directly on the newly joined clients for inference without
any further training.

4 Experimental verification

This section first explores the threshold for knowledge discovery and validates Gains under three
data shift scenarios. Then, to verify its scalability, we conduct experiments in more target domains
and a sequential FDA scenario. Finally, ablation studies reveal the necessity of the AFM component.

4.1 Experiment setting

Our experiments are conducted on a single NVIDIA RTX 4090 GPU. We construct a federated
learning framework that includes one server and 50 clients for validation. Following [7], we evaluate
Gains in three scenarios of target data shifts: mild, medium, and strong shifts. Specifically, under the
mild shift scenario, clients in both the source and target domains are drawn from the same sub-dataset
but contain different classes. Under the medium shift scenario, all clients in the source domain are
from one sub-dataset, while clients in the target domain are from another sub-dataset. Under the
strong shift scenario, different clients in the source domain contain different sub-datasets, and clients
in the target domain are from other sub-datasets. The main results are shown in Table 1.

Dataset. The datasets include the DigitFive (i.e., DF) for the digit classification and the Amazon
Review (i.e., AR) for the product review. DF comprises five sub-datasets: MNIST, MNIST-M, SVHN,
USPS, and SynthDigits. Each one contains 10 classes of digits from 0 to 9. The AR dataset records
user reviews of products on the Amazon website and includes four subdatasets: Books, DVDs,
Electronics, and Kitchen housewares. Each sub-dataset contains two classes.

Baselines. We include two categories of baselines. The first is to address the domain adaptation
problem, including FOSDA [37], SemiFDA [7], AutoFedGP [18] and FedHEAL [5]. The second
focuses on the heterogeneous problem, including FedAVG [33], FedProx [26], and FedProto [42].

Evaluations. (i) the accuracy of the target client (T-Acc); (ii) the average accuracy of the source
clients (S-Acc); (iii) the global accuracy (G-Acc).

4.2 New knowledge discovery

The key to discovering new knowledge lies in setting an appropriate threshold, i.e., TF and TC . In
Fig. 2, we observe that when new clients introduce unseen class or domain knowledge, the DiffF
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Algorithm 1: Gains
Input: Number of source clients N ; original source global modelWS and client model

{WS
1 (0, 0),WS

2 (0, 0), · · · ,WS
N (0, 0)}; number of iteration I; number of local training R; public

data DP = {(xp, yp)}
Output: Global modelW

1 Distribute original source modelWS to target client
2 WT ← Target client performs local updating based onWS

3 Target client UploadsWT to the server
4 //Knowledge Discovery
5 Split theWS into encoder ES and classifier CS , split theWT into ET and CT

6 FS ← ES(xp), FT ← ET (xp)

7 Calculating DiffC and DiffF

8 if DiffF >TF then
9 Target client brings new knowledge

10 if DiffC>TC then
11 Class Increment=True

12 else
13 Domain Increment=True

14 //Knowledge Adaptation
15 for iteration i = 0, · · · , I do
16 if Domain Increment=True then
17 Calculating encoder contributions {CDE

1 , CDE
2 , · · · , CDE

N} based on Eq. (2)
18 Calculating classifier contributions {CDC

1 , CDC
2 , · · · , CDC

N} based on Eq. (3)
19 Aggregating all clients’ parameters using Eq.(4) and Eq. (5)

20 if Class Increment=True then
21 Calculating encoder contributions {CCE1 , CCE2 , · · · , CCEN} based on Eq. (2)
22 Aggregating all clients’ parameters using Eq.(6) and Eq. (7)

23 Server distributes the aggregated model to all clients
24 for client n = 1, · · · , N do
25 Locally update model R rounds using Eq.(8)
26 UploadWS

n (i, R) to the server

27 Target client locally update model R rounds and upload to the server

28 else
29 Apply the original model to newly joined clients for inference tasks without training

increases significantly, with all values exceeding 1000. Furthermore, in the case of class increment,
the DiffC undergoes substantial changes. Even when only a new class is added to the target client,
the parameter change of the classifier is still greater than 0.25, which is significantly higher than that
of domain increment clients. Therefore, for the DigitFive dataset, we consider setting the threshold
TF to 1000 and the threshold TC to 0.25. For the Amazon Review dataset, given the limited number
of classes, we only conduct validation in the domain increment scenario. Taking DVDs as the source
domain data and Kitchen Hardware as the target domain data as an example, when the new client
does not introduce new data, the DiffF fluctuates between 50 and 150. However, when the new
nodes bring in new domain data, the change value increases to 534.76. Therefore, we consider setting
the threshold TF for the Amazon Review dataset to 400.

4.3 Knowledge adaptation

Mild data shift. Under the mild data shift scenario, we experiment using the MNIST data from
the DigitFive dataset, assuming that the target domain contains data labeled as {1, 5}, while the
source domain consists of {0, 2, 3, 4, 6, 7, 8, 9}. Gains achieves 99.34% new client accuracy
(T-Acc) while maintaining 93.21% source client accuracy (S-Acc) and 94.44% global accuracy (G-
Acc). This demonstrates Gains’s effectiveness in class-incremental scenarios. The feature-based
contribution calculation and channel-wise classifier aggregation allow seamless integration of new
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Table 1: Main results. The bold font represents the optimal result.

Scenario Metric
Federated Domain Adaptation Heter-FL

Ours FOSDA
[TNNLS’24]

SemiFDA
[ICDM’24]

AutoFedGP
[ICLR’24]

FedHEAL
[CVPR’24]

FedAVG
[AISTATS’17]

FedProx
[MLSys’20]

FedProto
[AAAI’22]

DigitFive

Mild

T-Acc 99.34 0.00 0.00 68.11 22.60 55.73 72.35 77.61
S-Acc 93.21 12.72 13.53 0.00 99.29 0.36 99.53 0.16
G-Acc 94.44 10.18 10.83 13.62 83.95 11.44 94.09 62.12

Medium

T-Acc 97.91 11.29 7.91 9.78 93.68 90.79 94.88 45.66
S-Acc 90.09 19.46 19.44 6.22 88.71 76.20 86.50 33.56
G-Acc 91.65 17.82 17.14 6.93 89.70 79.12 88.18 43.23

Strong

T-Acc 98.98 11.29 31.14 10.37 96.98 85.80 85.29 31.28
S-Acc 93.18 13.60 14.21 11.60 83.32 43.90 43.32 62.23
G-Acc 94.34 13.13 17.60 11.35 86.05 52.28 51.72 37.47

Amazon Review

Medium

T-Acc 84.60 49.55 50.45 50.50 50.56 66.74 74.55 50.11
S-Acc 82.81 49.55 49.33 50.50 50.56 67.19 74.44 50.11
G-Acc 83.09 49.82 49.82 50.58 50.48 67.38 74.12 50.01

Strong

T-Acc 80.54 50.48 55.41 50.03 83.34 51.20 53.73 50.10
S-Acc 84.95 50.27 59.25 50.02 86.54 51.36 53.95 50.11
G-Acc 83.85 50.33 58.29 50.02 85.74 51.32 53.89 50.10

classes. Meanwhile, the anti-forgetting mechanism further ensures stable source performance by
constraining parameter drift during local updates.

Medium data shift. For a more complex scenario, medium data shift, we conduct validation using
DigitFive and Amazon Review datasets. As for DigitFive, the source domain data is derived from
SVHN, while the target domain’s data is from MNIST. For Amazon Review, the corresponding data
are DVDs and Books, respectively. In Table 1, Gains achieves 97.91% T-Acc and 90.09% S-Acc in
DigitFive, outperforming all baselines. Notably, FedHEAL achieves competitive T-Acc (93.68%)
but exhibits unstable source performance (S-Acc=88.71%). A similar phenomenon can be observed
in the Amazon Review dataset. This validates the effect of Gains in domain-incremental scenarios:
leveraging feature gap in the encoder and parameter variation in the classifier to dynamically prioritize
source clients with higher contributions.

Strong data shift. In extreme cases, each client in source and target domains may come from
different domains, which refer to as strong data shift. For DigitFive, we assume that the target domain
client data is from MNIST, and the source domain consists of four clients, each holding MNIST-M,
SVHN, USPS, and SynthDigits datasets, respectively. For the Amazon Review, the target domain is
Books, and source-domain clients are from the DVDs, Electronics, and Kitchen Housewares datasets.
In Table 1, Gains achieves 98.98% T-Acc and 93.18% S-Acc in DigitFive, demonstrating robustness
to extreme heterogeneity. Similarly, Gains achieves 80.54% T-Acc, 84.95% S-Acc and 83.85% G-Acc
in Amonzon Review, showing significant advantages over other methods.

Adaptation speed. The above content illustrates that the Gains method can improve learning
performance in the source and target domains. To further demonstrate its advantage in domain
adaptation speed, we visualize the training process of DigitFive under different methods in Fig. 4,
where the vertical axis represents the global accuracy and the horizontal axis represents the number of
epochs. It can be seen that our method not only achieves the highest accuracy but also has the fastest
convergence speed, enabling it to reach better results more quickly. This is because we optimize
the aggregation process of the encoder and classifier based on their respective contributions, which
allows for more efficient adaptation of new knowledge on the basis of the source domain model. The
convergence process diagram for the Amazon Review dataset is provided in the Appendix. C.

Generalization verification. In Table 1, we only validate some cases under the mild (Mi), medium
(Me), and strong (St) data shift scenarios. To further verify the generalization ability of Gains, we
change the source/target domain datasets and test the DF and AR datasets under above three scenarios,
and the results are shown in Table 2. Here, {1,5} indicates that the target domain data labels are 1
and 5. “SV-MT” represents the scenario where the source domain is SVHN and the target domain is
MNIST under the Me data shift. MTM, BK, DD, and KC are the abbreviations for the MNISTM,
Book, DVDs, and Kitchen datasets, respectively. As shown in Table 2, under the same multi-domain
dataset, our method still maintains a comparable level when the target domain is different, indicating
strong generalization capabilities of Gains. Please refer to Appendix. D for more validations on the
generalization.
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(a) mild data shift. (b) medium data shift. (c) strong data shift.

Figure 4: Training process of DigitFive under different data shift scenarios.
Table 2: Generalization verification.

{1,5} {6,9} {0,1,5}

Mi-DF
TA 99.34 94.42 99.59
SA 93.21 96.03 87.16
GA 94.44 95.71 89.64

SV-MT MT-MTM SYN-MTM

Me-DF
TA 97.91 94.46 90.49
SA 90.09 99.56 98.57
GA 91.65 98.54 96.95

MT SV MTM

St-DF
TA 98.98 91.67 93.94
SA 93.18 97.58 96.20
GA 94.34 96.40 95.75

DD-BK BK-DD ET-KC

Me-AR
TA 84.60 82.01 86.59
SA 82.81 86.85 89.93
GA 83.09 85.88 89.26

BK DD KC

St-AR
TA 80.54 78.22 85.38
SA 84.95 88.90 87.73
GA 83.85 86.23 87.14

Table 3: The performance of sequential FDA.

{4,5} {6,7} {8,9}

Mi
TA 99.88 91.35 96.89
SA 93.53 99.43 99.35
GA 96.82 98.08 99.00

MNIST MNISTM SYN

Me
TA 95.27 83.53 93.53
SA 87.91 90.05 89.66
GA 89.38 88.96 90.21

Table 4: Ablation study of AFM.

Mild Medium Strong
AFM 99.05 90.09 94.77

w/o AFM 9.24 84.35 92.46

Sequential FDA. In the previous experiments, we
primarily focus on the scenario where only a single
new client joins in FL. In this part, we take DigitFive
as an example to verify the performance when contin-
uous new clients arrival (i.e., sequential FDA). In the
class-incremental scenario, we assume that the source
domain classes are {0,1,2,3}, and subsequently, three
clients carrying {4,5}, {6,7}, and {8,9} join the FL
process. In the domain-incremental scenario, the
source domain is the SVHN, and the target domains
include MNIST, MNIST-M, and SynthDigits, respec-
tively. Table 3 shows the results after incorporating
different target domain data into the training process.
It can be observed that Gains still exhibits strong
robustness in sequential FDA.

Ablation study. This part examine the role of the
Anti-forgetting Mechanism in Gains using DigitFive
dataset. As shown in Table 4, the absence of the AFM
indeed causes significant performance degradation
for the source clients across all scenarios, illuminat-
ing the effectiveness of this component. Moreover,
the performance drop is most pronounced in the class-
incremental scenario (i.e., mild data shift). This is
consistent with our observations in the motivation,
as the changes to the model parameters are most sig-
nificant during class increment. Without AFM, in
the mild data shift scenario, the client model deviates
most severely from its original parameters, resulting
in the greatest performance decline.

4.4 Computing complexity analysis.

Compared with traditional federated learning, Gains
mainly increases the computational load during the server-side contribution calculation. Its complexity
is O(N · P · d), where N is the number of source domain clients, P is the size of the public dataset,
and d is the number of model parameters. Inevitably, extra computational costs occur during the
above process. However, by calculating the weights based on contribution, more efficient aggregation
can be achieved, thereby significantly reducing the number of federated iterations and reducing the
overall training time. Taking the DigitFive dataset in the mild shift scenario as an example, the
consumed computing resources and the number of iterations are as shown in Table 5.

4.5 Sensitivity analysis of the thresholds

Although the thresholds are manually set, the model exhibits strong robustness to threshold variations.
As can be seen from Figure 2, the changes in DiffF and DiffC are very significant, which means
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that the thresholds can take values over a wide range, with DiffF ranging from 700 to 3400 and
DiffC from 0.05 to 0.27. We also conduct experiment tests on various thresholds using the mild
shift scenario in the DigitFive dataset as an example. Assuming the source domain data is MNIST-M
and the target domain data is MNIST, with TF ∈ 800, 1000, 1200 and TC ∈ 0.20, 0.25, 0.27. The
experimental results obtained are shown in Table and Table...From the above two tables, it can be
seen that the model performance remains stable when parameters fluctuate within reasonable ranges
(performance variation < 1%).

5 Conclusion and discussion

Table 5: Convergence Comparison of
Different Methods.

Method Converge Round Time
Gains 5 807.45
FedHEAL 40 1368.4
FedAVG 20 1977.20
FedProx 40 6880.80
FedProto 32 9519.68

Table 6: Accuracy Results for Different
TF Values.

TF T-Acc S-Acc G-Acc
800 99.62 92.01 93.15

1000 99.34 93.21 94.44
1200 99.24 93.06 93.91

Table 7: Accuracy values for different
TC settings.

TC T-Acc S-Acc G-Acc
0.20 99.75 92.34 93.29
0.25 99.34 93.21 94.44
0.27 99.86 92.71 93.01

Conclusion. This paper presents a novel fine-grained fed-
erated domain adaptation framework in open set (Gains)
that addresses the challenges of fine-grained knowledge
discovery and rapid and balanced knowledge adaptation.
By splitting the model into an encoder and a classifier,
Gains effectively identifies the type new knowledge based
on the variations in extracted features and model param-
eters, enabling more precise knowledge adaptation. The
proposed contribution-driven aggregation strategy accel-
erates the integration of new knowledge into the global
model, while the anti-forgetting mechanism ensures the
preservation of source domain performance. Extensive
experiments on multiple datasets demonstrate that Gains
can achieve balanced adaptation and rapid convergence
under various data shift scenarios.

Discussion. This paper proposes a fine-grained do-
main adaptation framework in FL. Although the pipeline
achieves satisfactory results, some limitations still exist.
First, in the knowledge discovery phase, it still relies on
manually set thresholds, and achieving automatic knowl-
edge discovery remains a significant challenge. Second,
in the knowledge identification phase, we consider do-
main increment and class increment. However, for more
complex scenarios, such as task increment or scenarios
involving both class increment and domain increment, further exploration is needed. In addition, it’s
worth noting Gains is significantly different from traditional federated continual learning. First, the
settings are different. FCL primarily focuses on scenarios where existing clients encounter new data,
while FDA focuses on cases where new clients join and bring unseen data. Second, the objectives are
different. FCL primarily addresses the catastrophic forgetting caused by new data in existing clients.
In contrast, Gains focuses on rapidly adapting to the new domain while preventing performance
degradation of the source domain clients, achieving efficient and balanced domain adaptation.
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• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the experiment details, including the code link, in the experiment
section and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The data used in this paper is public data, and we have provided the download
link in the appendix. We also provide an anonymous GitHub code link in section 4. All the
details of the experiments are shown in section 4 and the appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the data split details in section 4.3: mild data shift, medium data
shift and shift. More details like hyperparameters and optimizer are shown in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Following the standard experimental setup, we repeat each experiment over 3
random seeds and report the mean of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the computing resources in the experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We reviewed and followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide the potential broader impacts in the Appendix. E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original papers that produced the code package and datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The provided Python code cannot be used without the authors’ permission.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Motivation experiment settings

In the motivation experiments, we treat the last layer of LeNet as the classifier and the remaining
layers as the encoder. In the class-incremental scenario, the source domain data contains classes {3, 4,
6, 7, 8, 9}. After source-domain training is completed, we sequentially introduce new clients, where
the first three are from the source domain, the fourth contains new classes, and the fifth is from a new
domain. Under the class-incremental setting, we consider the target client data classes to be {5}, {1,
5}, {0, 1, 5}, and {0, 1, 2, 5}, corresponding to the addition of 1, 2, 3, and 4 classes, respectively. In
the domain-incremental scenario, the target domain is the SVHN dataset.

B Experimental details

During the experiment, the model used for the DigitFive 1 dataset is a CNN model, while the model
used for the Amazon Review dataset 2 is an LSTM. The corresponding hyperparameters for the two
datasets are as follows:

Table 8: Hyperparameter setting.
Learning Rate Optimizer Batch Size

DigitFive 0.005 SGD 128
Amazon Review 0.5 SGD 64

The public dataset used by the server for new knowledge discovery is collected from open sources
and typically includes various types of globally known data. Under the scenarios of mild data shift
and medium data shift, after determining the data classes contained in the source domain clients, we
split the data using the Dirichlet distribution with a hyperparameter of 0.1.

C Adaptation speed of Amazon Review

Fig. 5 presents the training process of Gains and other baselines on the Amazon Review dataset
under the medium data shift and strong data shift scenarios. As shown in the figure, Gains achieves
convergence in global performance with only a small number of epochs. This further indicates that
Gains can accelerate the target domain adaptation process and more rapidly integrate target domain
knowledge into the global model.

(a) Amazon Review, medium data shift. (b) Amazon Review, strong data shift.

Figure 5: Training process of Amazon Review under different data shift scenarios.

1https://ai.bu.edu/M3SDA
2https://nijianmo.github.io/amazon/index.html
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D More validations on generalization

In the main manuscript, we validated the effectiveness of Gains on part of the cases under three data
shift scenarios. In this part, we will verify all the cases under medium data shift and strong data shift,
further supporting the generalization capability of Gains. Table 9 and Table 11 show the results under
different data shift scenarios for the DigitFive dataset, while Table 10 and Table 12 present the results
for the Amazon Review dataset under similar conditions. It can be observed that for the DigitFive
dataset, the T-Acc, S-Acc, and G-Acc all exceed 90% across all scenarios. Similarly, for the Amazon
Review dataset, the T-Acc, S-Acc, and G-Acc are mostly above 80%.

Table 9: DigitFive, medium data shift.
Source domain Target domain T-Acc S-Acc G-Acc

MNIST-M USPS 93.39 96.48 95.86
MNIST USPS 92.10 99.50 98.02

SynthDigits USPS 98.55 98.30 98.35
SVHN USPS 90.16 90.78 90.65
USPS MNIST-M 93.42 99.25 98.08

MNIST MNIST-M 94.46 99.56 98.54
SynthDigits MNIST-M 90.49 98.57 96.95

SVHN MNIST-M 90.97 92.38 91.30
USPS MNIST 98.99 99.41 99.33

MNIST-M MNIST 99.07 97.89 98.12
SynthDigits MNIST 98.89 98.59 98.65

SVHN MNIST 97.91 90.09 91.65
USPS SynthDigits 94.16 99.30 98.27

MNIST-M SynthDigits 92.76 97.38 96.45
MNIST SynthDigits 92.23 99.53 98.07
SVHN SynthDigits 92.69 91.10 91.42
USPS SVHN 92.19 99.20 95.79

MNIST-M SVHN 92.52 96.94 94.06
MNIST SVHN 93.25 99.30 95.68

SynthDigits SVHN 91.69 98.79 97.37

Table 10: Amazon Review, medium data shift.
Source domain Target domain T-Acc S-Acc G-Acc

Books Kitchen 82.22 86.43 85.59
DVDs Kitchen 83.16 86.36 85.72

Electronics Kitchen 86.59 89.93 89.26
Kitchen Books 77.54 88.97 86.68
DVDs Books 80.13 83.83 83.09

Electronics Books 76.37 88.36 85.97
Kitchen DVDs 77.36 89.94 87.42
Books DVDs 82.01 86.85 85.88

Electronics DVDs 77.50 88.65 86.42
Kitchen Electronics 85.55 89.67 88.85
Books Electronics 77.66 87.95 85.89
DVDs Electronics 82.75 87.40 86.47

Table 11: DigitFive, strong data shift.
Source domain Target domain T-Acc S-Acc G-Acc

MNIST-M, MNIST, SynthDigits, SVHN USPS 98.49 95.56 96.14
USPS, MNIST, SynthDigits, SVHN MNIST-M 93.94 96.20 95.75

USPS, MNIST-M, SynthDigits, SVHN MNIST 98.98 93.18 94.34
USPS, MNIST-M, MNIST, SVHN SynthDigits 97.02 95.96 96.17

USPS, MNIST-M, MNIST, SynthDigits SVHN 91.67 97.58 96.40
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Table 12: Amazon Review, strong data shift.
Source domain Target domain T-Acc S-Acc G-Acc

Books, DVDs, Electronics Kitchen 85.38 87.73 87.14
Kitchen, DVDs, Electronics Books 80.54 84.95 83.85
Kitchen, Books, Electronics DVDs 78.22 88.90 86.23

Kitchen, Books, DVDs Electronics 86.32 85.61 85.79

E Broader impact

This paper is the first to propose a fine-grained knowledge discovery and integration pipeline in
the FDA. It can significantly enhance the autonomous evolution capabilities of distributed nodes in
open environments without human intervention. Additionally, we have open-sourced our code for
reference in future work.

F Theoretical analysis

In this subsection, we will analyze the convergence of Gains using domain-increment as an example.
The following assumptions are made:
Assumption 1 (Smoothness and Strong Convexity). The local loss function convex and M-smooth.
Then, we have:

• M-smoothness: ∀WS
n (i, e+ 1),WS

n (i, e),

L(WS
n (i, r + 1))− L(WS

n (i, r))−
〈
∇L(WS

n (i, r)),WS
n (i, r + 1)−WS

n (i, r)
〉

≤ M
2

∥∥WS
n (i, r)−WS

n (i, r + 1)
∥∥2
2

.
Assumption 2 (Smoothness and Strong Convexity). As the number of iterations increases, the
contributions of each source domain client to the target domain gradually become stable.

The other assumptions are the same as those in Reference [28]. We first analyze the convergence of
the Encoder. During each round of global update, the global parameters are:

W (i+ 1) = W (i)− η

( N∑
n=1

CDE
n (i)∇L

(
WS

n (i, R)
)
+ β(i)∇L

(
WT (i, R)

))
.

Under the smoothness assumption, if the local loss functions of the clients are convex and M-smooth,
then the global loss function is also convex and M-smooth, yielding the following result:

L(W(i+ 1))− L(W(i))− ⟨∇L(W(i)),W(i+ 1)−W(i)⟩ ≤ M

2
∥W(i)−W(i+ 1)∥22 .

Let W(i) = −η

( N∑
n=1

CDE
n (i)∇L

(
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n (i, R)
)
+ β(i)∇L

(
WT (i, R)

))
= −η∇L(W(i)) where

β(i) =
|DT |

|DT |+
∑N

n=1 |DS
n | , we can get:

L(W(i+ 1))− L(W(i)) + η ⟨∇L(W(i)),∇L(W(i))⟩ ≤ Mη2

2
∥∇L(W(i))∥22 .

For simplicity,

L(W(i+ 1))− L(W(i)) ≤ Mη2

2
∥∇L(W(i))∥22 − η ∥∇L(W(i))∥22 .

From the above equation, it can be derived that to ensure the total loss value decreases with each
iteration, η − Mη2

2 > 0 must be satisfied. Therefore, after I times of iterations, we get:
I∑

i=0

∥∇L(W(i))∥22 ≤ L(W(0))− L(W(I))(
Mη2

2 − η
) .
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Since L(W(I)) > 0, the following conclusion is obtained:

1

I

I∑
i=0

∥∇L(W(i))∥22 ≤ 2L(W(0))

I (Mη2 − 2η)
.

Then when I → ∞,

lim
I→∞

1

I

I∑
i=0

∥∇L(W(i))∥22 = 0.

This indicates that as the number of iterations increases, the global gradient norm tends towards zero,
thereby ensuring the convergence of the algorithm. The convergence analysis of the Classifier is
similar to that of the Encoder and will not be reiterated here.
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