A Simple yet Effective Training-free Prompt-free Approach
to Chinese Spelling Correction Based on Large Language Models

Anonymous ACL submission

Abstract

This work proposes a simple yet effective ap-
proach for leveraging large language models
(LLMs) in Chinese spelling correction (CSC)
task. Our approach consists of two compo-
nents: a LLM and a minimal distortion model.
At each decoding step, the LLM calculates the
probabilities of the next token based on the
preceding context. Then, the distortion model
adjusts these probabilities to penalize the gen-
eration of tokens that deviate too far from the
input. Different from the prior supervised fine-
tuning and prompt-based approaches, our ap-
proach enables efficient CSC without requir-
ing additional training or task-specific prompts.
To address practical challenges, we propose
a length reward strategy to mitigate the local
optima problem during beam search decoding,
and a faithfulness reward strategy to reduce
over-corrections. Comprehensive experiments
on five public datasets demonstrate that our
approach significantly improves LLM perfor-
mance, enabling them to compete with state-of-
the-art domain-general CSC models.'

1 Introduction

Spelling errors are common in Chinese text because
many Chinese characters have similar pronuncia-
tions or shapes. This similarity makes it difficult
for both humans to type and for machines to rec-
ognize the characters correctly. These errors may
cause misunderstandings, diminish the credibility,
or degrade the performance of downstream appli-
cations (Si et al., 2023). Therefore, the research on
Chinese Spelling Correction (CSC) has become ur-
gently necessary and attracted increasing attention
in recent years (Hong et al., 2019; Bao et al., 2020;
Xu et al., 2021; Li et al., 2022; Wu et al., 2023;
Dong et al., 2024, inter alia).

'Our anonymized code is available at https://anonymou
s.4open.science/r/simple-csc.
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Figure 1: An illustration of our approach. The correct
sentence should be “BA X3t Z B K T, T AR
A BEIRT . (Tomorrow is the weekend, allowing
for going out to play with friends again.).

Recently, researchers propose to leverage large
language models (LLMs) to improve CSC per-
formance. These approaches fall into two cate-
gories: prompt-based and supervised fine-tuning.
The prompt-based approaches, which are widely
used in the LLM era, feed CSC-related instructions
and the input sentence into an LLM, and expect
the LLM to output a corrected sentence. The ex-
periment setting is called few-shot if a few CSC
examples are included in the instructions, and zero-
shot if no examples are provided. Li et al. (2023a)
first investigate the prompt-based approach and
conduct extensive experiments under different set-
tings. Moreover, they propose different strategies
for selecting proper examples. Dong et al. (2024)
follow the work of Li et al. (2023a), and propose
to enrich the prompt with additional information,
such as pronunciation and glyph of characters. All
their experiments show that the prompt-based ap-
proach leads to unsatisfactory CSC performance,
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especially when compared to previous non-LLM
based approaches.

The second class of approaches are based on su-
pervised fine-tuning (SFT). The main difference
between the prompt-based and the SFT-based ap-
proaches is the latter fine-tunes the LLM over the
CSC training data. This SFT is performed one mini-
batch at a time, with output corrected sentences as
the training objective, in a teacher-forcing manner.
Li et al. (2023a) explore the SFT-based approach
under various settings and using different strategies.
They find that the SFT-based approach achieve bet-
ter performance than the prompt-based approach.
However, the performance still lags behind previ-
ous non-LLM results by large margin.

In contrast to both the prompt-based and SFT-
based approaches, we propose a simple prompt-
free and training-free framework to leverage LLMs
for the CSC task. As shown in Figure 1, our ap-
proach consists of two components: a LLM and
a distortion model. At each decoding step, the
LLM generates a token based on the current con-
text. Then a minimal distortion model determines
whether the generated token is deviated too far
from the input characters. In practice, we find that
the local optima problem of beam search decod-
ing and over-correction hinder the performance of
our approach. To address these issues, we propose
two straightforward rewards, the length reward and
faithfulness reward.

We conduct comprehensive experiments on five
public datasets from various domains and genres,
including more than 50,000 sentences. The re-
sults clearly show that our approach significantly
improves the performance of LLMs in the CSC
task. Our approach also demonstrates remark-
able domain generalization capabilities, outper-
forming state-of-the-art domain-general CSC mod-
els trained on extensive synthetic CSC data (ap-
proximately 34 million pairs) on most datasets.

In summary, our contributions are as follows:

e We propose a simple yet effective framework
to leverage LLMs for the CSC task, requiring nei-
ther additional training nor prompts.

e Two straightforward rewards, the length re-
ward and faithfulness reward, are introduced to ad-
dress the local optima problem and over-correction
issue, respectively.

¢ Comprehensive experiments demonstrate that
our approach significantly improves the perfor-
mance of LL.Ms in the CSC task, showcasing re-
markable domain generalization capabilities.

Type Example Proportion
Identical (D) 0.962
Same Pinyin ) 0.023
Similar Pinyin £ (g0 0.008
Similar Shape (zhdng) 0.004
Unrelated A& (néng) 0.003

Table 1: Examples of the different distortion types of
the corrected token “#L” (ji). The distribution of the
types is calculated from the development set.

2 Our Approach

Given an input sentence * = T1,Z2, ' ,Tp,
where x; denotes a character, a CSC model out-
puts a sentence of the same length, denoted as
Y = Y1,Y2, - ,Yn. Lhe key to the CSC task is
how to model the score of the input and output
sentence pair, i.e., score(x, y).

Under a perspective of probabilistic modeling,
the joint probability can be decomposed into two
parts:

p(z,y) =p(x | y) p(y)

(D
= pon(x | y) primn(y)

The first part corresponds to a distortion model,
which captures the relationships between  and
y. In other words, it interprets how spelling errors
transform y to . Another important function of
the distortion model is to make sure that y repre-
sents the same “meaning” as , i.e., faithfulness.

The second part corresponds to a large lan-
guage model, which makes sure that y is fluent
and correct from the language use perspective. In
this work, we employ generative LLMs, including
Baichuan2, Qwen1.5, and InternLM2.

Please note that our use of LLMs is prompt-
free. We do not provide CSC-related instructions
and examples as the prompt. More importantly,
we do not give the input sentence to LLMs. We
use LLMs as pure traditional language models for
evaluating next-token probabilities.

2.1 A Minimal Distortion Model

Our distortion model adopts character-level factor-
ization:

log pou( | y) = Y logpou(zi [ ;) ()

)

To further simplify the model, we do not com-
pute distortion probabilities for specific charac-
ter pairs, i.e., (¢1,c2). Instead, we first classify



(c1, c2) into one of five distortion types, denoted
as type(cy, c2). Then we use the probability of the
type as the distortion probability of the character
pair:

pou(cr | c2) = p(type(ct, c2)) 3)

Table 1 illustrates the distortion types. The pro-
portions are obtained from small subsets of popular
CSC training data, described later in §3.1. We
directly employ the proportions as the distortion
probabilities.

Please note that we claim our approach as
training-free, since the LLMs are used in an off-
the-shelf manner and the distortion model only re-
lies on several frequency values, which can be eas-
ily counted from a small dataset.

Given (c1,c2), we implement a simple rule-
based tool to decide the distortion type. Among
the five types, “Similar Pinyin” and “Similar
Shape” are more complex to handle. We give de-
tails in Appendix A, and release the tool, along
with other code in this work.

2.2 Next-token Probabilities from LLM

Typically, the output vocabulary of a LLM contains
both single- and multi-character tokens. In other
words, given a sentence y = y...Yn, there exists
many ways to segment it into a sequence of tokens.
We use t = t;...t,, to denote a specific token-level
segmentation of y, i.e., a path for the LLM to gen-
erate the character sequence, where t; = c1 ... ¢y
and k > 1. Then, the log probability of y can be
decomposed as:

log prun(y) = Y log pum(ty [ t<;)  (4)
j

After combining the distortion model, the proba-
bility of a partial output sentence is:

logp(z, t<;) = logp(z, t<;)
+ log prn(t; | t<j)
i ®)
+ 2 log pou(cr | Zi4r)
r=1
where k = ((t;) and | = {(t—;) are the lengths of
t; and t;, respectively.

2.3 Beam Search Decoding

During inference, the basic operation at step j is to
select a token ¢; and append it to the current partial
sequence t—j. We follow the standard practice,
and adopt beam search decoding, that only retains
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Figure 2: A real example of the decoding process for the
input sentence “%& R JF £ A2 2F . (Requesting the
master unit to ...). Here, “78. 1" (shigong, construction)
is misspelled as “JF 2" (shigong). Without the length
reward, the correct character “7&” is fail to be select into
the beam.

the top-K candidates at each decoding step for
computational efficiency.

In particular, one technical detail is closely re-
lated with our length reward strategy and thus wor-
thy of further discussion. As discussed above, most
LLMs generate sentences at token-level and one
token may contain either a single character or mul-
tiple characters. This implies that the beam search
procedure is aligned according to token numbers
rather than character positions. In other words, at
any given inference step, candidates in the beam
may varies greatly in the number of characters gen-
erated so far. For instance, one candidate contains
5 characters, whereas another candidate contains 8
characters.

2.4 Length Reward

Our preliminary experiments show that the vanilla
approach, as described in Equation 5, produces un-
satisfactory results. Detailed analysis shows that
the paths explored in the beam search space are
dominated by single-character tokens, as shown in
Figure 2a. As we all know, multi-character tokens
are created by merging characters that frequently
occur together, capturing the most common pat-
terns in the language. LLMs are trained for and,
in turn, very good at generating multi-character to-
kens. Therefore, it is counter-intuitive to deprive
such capability from LLMs.
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Figure 3: A real example of the probabilities for the
next token, given the partial sequence “<J> 84 28 % from
the sentence /|~ #8 % 75 M (Xiaoming wants to go
to Suzhou, Anhui).

To handle the issue, we design a simple length
reward so that the model favors and keeps multi-
char tokens during beam search:

score(x, t<;) = score(x,t-;)
+log prun(ty | t<;)

k
(6)
+ Z log pom(cr | i4r)

r=1

+ax (0(t;)—1)

where o is a hyperparameter for balancing the
weight of the length reward, considering that
the other two components use log probabilities,
whereas the length reward uses numbers directly.
Please note that we use score(-) instead of p(-),
since the values are no longer probabilities.

As shown in Figure 2b, thanks to the length re-
ward, the correct token “#& L 345" (construction
unit) is now ranked within the top-K candidates.

2.5 Faithfulness Reward

Under our prompt-free use, the LLM component is
unaware of the input sentence, and only focuses on
the fluency and correctness of the output sentence
from the language use perspective.

We observe that our approach, even with the
length reward, tends to over-correct the input sen-
tence, i.e., changing its original meaning. Figure 3
gives an example. Given the partial output sen-
tence, i.e., “/I> A % (Xiaoming wants to go to),
the LLM component gives a probability of 0.0039
to “7 M (siizhou), which is a very famous city
in Jiangsu Province. In contrast, it gives a much
lower probability of 3 x 1070 to the original input
token, i.e., “78 M (siizhou), which is a less famous
city in Anhui Province. The distortion model fails
to remedy such great gap. As the result, our ap-
proach adopts the “correction”. However, under

such circumstances, it is better to reserve the origi-
nal tokens.

To mitigate this issue, we introduce a faithful-
ness reward:

score(x,t<;) = score(x,t;)
+ log prum(t; | t<j)

Zf:l longM(Cr | $l+7“)
+ (1 + Hypwy) x +
a X (E(tl) — 1)

(N
where Hppy) denote the entropy of next-token
probabilities.”> If the entropy is high, meaning
that the LLM is uncertain about the next token,
the distortion model, along with the length reward,
will play a more important role in deciding the
next token. From Table 1, we can see that the
“Identical” type has a much higher probability
than others. That is, the distortion model always
favors the original input tokens.

3 Experimental Setup

3.1 Datasets.

Pseudo development set Since there is no pub-
licly available, manually labeled, domain-general
development set for CSC, we have chosen to split a
small portion of the existing synthetic training data
for hyperparameter tuning, naming it Pseudo-Dev.
Specifically, we use 1,000 sentences each from the
synthetic training data of Hu et al. (2022) and Wang
et al. (2018) as our development set.

Real-world test sets We perform experiments
across five distinct CSC datasets: Sighans (Wu
et al., 2013; Yu et al., 2014; Tseng et al., 2015),
CSCD-IME (Hu et al., 2022), MCSCSet (Jiang
et al., 2022), ECSpell (Lv et al., 2023), and Lemon
(Wu et al., 2023), covering a broad spectrum of
domains and genres. The details and statistics of
these datasets can be found in Appendix B.1. For
Sighans, we utilize the revised versions released
by Yang et al. (2023b), which have been manu-
ally verified and corrected for errors of the original
datasets, and name them as rSighans for clarity.

Selected datasets for analyses Given the ab-
sence of a domain-general development set for
CSC and the potential limitations of the Pseudo-
Dev set in representing real-world data, we conduct

2Since LLMs have different output vocabularies V, we

divide the entropy by log |V|, which can be understood as the
maximum entropy, and the value will fall into [0, 1].



System rSighans CSCD-IME MCSCSet ECSpell Lemon
S-F' C-F' FPR/| S-F! C-F' FPR/| S-F! C-F' FPR/| S-F' C-F' FPR/| S-F' C-F' FPR
Domain-Specific SOTAs (Trained on in-domain gold-standard data of each dataset)
RealLiSef 69.3 80.7 10.1
Huetal. (2022) - - - |744 766 - | - - — | — - — | - - -
Jiang et al. (2022) - - - - - - 1809 - - - - - - - -
Livetal. (2023) - - - | - - — | - - - |87 - 54| - - -
Domain-General SOTAs (Trained on about 34M synthetic CSC data)
Finetuned BERT 47.5 57.5 16.9]52.0 53.9 257[35.3 485 7.5[57.1 649 6.4]48.0 493 13.1
Softmasked BERT47.7 57.4 15.1[51.0 53.4 28.5|353 485 8.1(57.6 662 7.6|47.2 488 13.1
RelM 473 569 9.6]49.5 51.6 293|378 50.2 6.8|59.3 684 8.6/50.2 51.3 11.8
LLMs (without CSC-specific training)
. ZSP 19.0 18.4 49.1]22.6 145 353|13.6 8.0 77.5|34.5 22.3 30.3|17.5 9.8 409
Bal(ﬁggjnz FSP 31.8 38.5 21.4(35.7 327 10.5|42.6 47.1 441|568 53.1 58351 252 9.5
OUR 59.1 70.9 10.4|63.2 66.2 16.5|66.0 769 1.7|84.5 89.8 4.9(53.2 562 9.1
TTOT 77T UUZSPT29.0 314 41.1[34.3 31.3 24.5]402 454 38[50.9 49.0 14.4]31.8 26.8 16.1
QV“(‘?Q;)E" FSP 34.3 37.9 262|429 387 104|405 443 3.1/59.0 582 5.9(372 302 9.9
OUR 54.4 68.0 17.2|52.6 57.7 25.8|61.1 72.6 3.1|81.6 882 6.5(46.3 50.8 14.1
T ZSP 31.0 304 57.3[349 292 40.6|19.0 12.5 80.5|45.2 37.5 31.6|32.8 265 27.8
I”t(ggQ)LMZ FSP 35.2 38.8 31.7(39.4 35.1 22.433.6 32.6 204|543 49.8 15.7(35.9 289 17.3
OUR 57.1 70.0 12.6|60.7 64.1 19.7|63.2 729 2.6|82.4 88.8 5.1|49.8 53.7 10.7

Table 2: Main Results. {: We reran the released code of RealLiSe (Xu et al., 2021), along with their released
models, to obtain the results. RealLiSe, was trained on the in-domain, gold-standard data of the Sighans dataset and

represents a SOTA model for it. The numbers in

in-depth analyses on three distinct datasets to cover
a broad spectrum of language use. These include
errors made by Chinese learners (rSighan /5), col-
loquial and diverse text from novels (Lemon Nov),
and formal and standard text from official docu-
ments (ECSpell Odw).

3.2 Evaluation Metrics.

We follow the convention to use the sentence-level
correction F; (S-F) score as the main evaluation
metric. Besides, we also report character-level
correction F} (C-F) and sentence-level false posi-
tive rate (FPR) to provide a more complete view
of the model performance.

3.3 Baselines

We compare our approach against prompt-based
method under two settings: zero-shot prompting
(ZSP) and few-shot prompting (FSP). For few-shot
settings, we select 10 examples from the Pseudo-
Dev. The details of the prompts can be found in
Appendix B.4, and the example selection strategy
is described in Appendix B.5. During inference,
we adopt the greedy decoding strategy.’

We do not compare against supervised fine-
tuning methods (SFT) in this study for two reasons.

3We observe that the improvement of beam search is
marginal and sometimes even detrimental.

represent the out-of-domain results for Real iSe.

First, our approach is training-free, making direct
comparisons with SFT unfair. Second, SFT are
computationally expensive and time-consuming,
particularly for LLMs.

To provide a more comprehensive compari-
son, we also present results from state-of-the-art
domain-general CSC models trained on 34 million
pairs of synthetic CSC data for reference. These
models include Finetuned BERT (Devlin et al.,
2019), Softmasked BERT (Zhang et al., 2020),
and ReLM (Liu et al., 2023).*

Additionally, for datasets that have in-domain
manually annotated data, we report results from
models specifically trained on it, serving as another
reference point.

3.4 Selection of LLMs

We conduct experiments on three open-source
LLMs: Baichuan2 (Yang et al., 2023a), Qwen1.5
(Bai et al., 2023), and InternLM2 (Cai et al., 2024).
For the main results, we select models with param-
eter sizes ranging from 10B to 20B to ensure that
the LLMs have sufficient zero-shot and few-shot
capabilities for meaningful comparisons. Addi-
tionally, we report the ZSP and FSP results of the

*The results of these models were obtained by running
the released code along with the corresponding checkpoints
provided at https://github.com/gingasan/lemon.git.
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System S-F! S-P! S-Rii C-F! C-P! C-RIFPR
rSighan /5 ! !
RelM 55.5 61.1 50.8/61.0 78.5 49.97 9.5

ZSP 42.0 41.7 42.3144.6 39.7 50.8.25.9
FSP 41.7 42.0 41.4145.4 41.7 49.9:23.4
ZSP 43.5 38.1 50.8'47.1 37.9 62.2147.5
FSP 48.7 44.2 54.4150.6 42.1 63.4!38.8
BC2 13B 1 59.6 66.5 54.0.67.3 78.3 59.0, 8.3
Q1.5 14B OUR 57.6 62.5 53.4166.0 74.1 59.4.10.2
IL2 20B ' 60.5 67.2 55.0:67.8 78.7 59.6: 8.3

Lemon Nov (1000) | |

RelLM 36.4 46.7 29.8:136.0 49.2 28.3114.3
GPT3.5 ZSP 19.2 20.8 17.9119.6 17.5 22.2:129.8

FSP 25.5 31.4 21.4/24.0 26.2 22.2:19.6
7GiP7T747 ~ ZSP 30.6 28.4 33.1,31.9 25.2 43.4/33.5

FSP 42.7 41.4 44.0142.2 38.1 47.31274
BC2 13B r— 45.3 53.7 39.1:149.1 57.0 43.2:113.1
Q1.5 14BOUR 38.2 41.7 35.3143.7 44.5 43.0:21.8
IL2 208 ' 42.8 49.9 37.5:46.4 52.8 41.415.3

ECSpell Odw ! !

ReLM 66.5 67.5 65.6/73.0 86.4 63.1! 7.1
ZSP 57.7 61.9 54.1,59.1 60.4 57.8] 4.9
FSP 59.3 64.1 55.2159.8 61.6 5821 2.4
777777 ZSP 73.1 73.0 73.3175.6 73.8 77.51 5.0
FSP 73.2 73.5 72.9:78.0 77.8 78.21 5.0
BC2 138 ) 92.0 94.4 89.7'93.8 95.6 92.1 0.4
Q1.5 14B OUR 87.4 88.6 86.3191.6 91.8 91.3! 2.9

IL2 20B “ 91.1 92.9 89.3193.8 959 91.8| 0.4

Table 3: The comparison to GPT family on the rSighan
15, Lemon Nov, and ECSpell Odw datasets. The
version of GPT3.5 is ‘gpt-3.5-turbo-0125’, GPT4 is
‘gpt-4-0613’. BC2 is short for Baichuan2, Q1.5 for
Qwen1.5, and IL2 for InternLM2.

widely recognized best-performing LLM family,
GPT, including GPT-3.5 and GPT-4.

To simplify the analysis, we select the Bai-
chuan? 7B as a representative model to investigate
the impact of components in our approach.

3.5 Hyperparameters of Our Approach

We use the “Base” version of each LLM family.
The distortion probabilities of distortion model
were derived from the statistics of the Pseudo-Dev
dataset. We tuned o on Baichuan2 7B using the
Pseudo-Dev dataset. Eventually, o was set to 2.5
for all experiments. During inference, we adopt
beam search with a beam size of 8.

4 Main Results

We present the main results in Table 2, and the
comparison to the GPT family in Table 3. Con-
ducting a comprehensive evaluation of the GPT
family is expensive, so we limit the comparison to

a small-scale study, focusing on the three datasets
mentioned in Section 3.17 Moreover, two quali-
tative examples are provided in Appendix C.2 to
illustrate the performance of our approach.

After applying our approach, all three LLM
families outperforms their zero-shot and few-shot
prompting counterparts on all five datasets by a
large margin.

Compared to the recent state-of-the-art domain-
general CSC models, which are trained on 34M
synthetic CSC data, our approach also achieves
competitive or even superior performance on most
datasets, especially on the MCSCSet and ECSpell
datasets. The results indicate that our approach
has a better generalization across different domains
and genres than the current domain-general SOTAs.
However, our approach still largely lags behind
the domain-specific SOTAs trained on the gold-
standard labeled data (from 1.2 to 21.8 on S-F
score) of each dataset.

Compared to the GPT family, our approach con-
sistently outperforms GPT3.5 on all three datasets,
and achieves better performance than GPT4 in most
cases. However, our approach may exhibit a lower
recall rate for character-level corrections compared
to GPT4, indicating that we might miss some errors
that GPT4 can successfully correct.

5 Discussion

5.1 Impact of the Size of the LLM

First, we investigate the impact of the LLM size on
the performance of our approach.

As shown in Table 4, in general, larger LLMs
tend to perform better than smaller ones within
the same model family. However, the Qwen1.5
model family is an exception: the performance
improvement becomes marginal when the model
size exceeds 1.8B parameters and even decreases
when the model size reaches 7B.

When comparing the performance of models of
the same size across different model families, we
find that the Baichuan2 family generally outper-
forms the other two model families.

5.2 Effectiveness of the Minimal Distortion
Model

To investigate the effectiveness of the minimal dis-
tortion model, we first remove the distortion model

SThe original Lemon-Nov dataset includes 6,000 sentences,
which is excessively large for our scope. Therefore, we se-
lected the first 1,000 sentences for this comparison.



Model Size rSighan /5 Lemon Nov ECSpell Odw
S-F' C-F' FPR'| S-F' C-F' FPR'| S-F' C-F' FPR!
Baichuan? 7B 59.8 682 8.0 | 432 477 136|897 93.0 1.3
13B 59.6 673 83 |43.5 479 13.0 | 920 938 04
0.5B 563 635 100|332 402 222|847 899 38
1.8B 583 653 103|356 423 199903 928 1.7
Qwen1.5 4B 584 66.8 10.0 | 359 423 21.1 | 884 91.1 34
7B 594 67.0 85 |39.0 447 19.0 | 87.1 914 34
14B 57.6 66.0 10.2 | 364 426 212|874 91.6 29
1.8B 553 64.0 122|332 40.1 226|883 91.0 2.1
InternLM2 7B 58.1 655 10.2|38.8 442 180 893 920 2.1
20B 60.5 67.8 83405 453 15.1 |91.1 938 04
Table 4: Ablation results of model size.
System S-F' S-P! S-RI' C-F' C-P C-RI| FPR' Next, we investigate the impact of the distortion
rSighan 15 ‘ ‘ type by treating three types of related but not identi-
CTG 6.7 53 91, 7.7 42 477, 90.0 . . . . .
oUR 508 660 547 683 778 €06 50 f:al distortions as a smgle distortion type. As shown
DT T T T 106 23917172157 T203 594 in the “~DT” column in Table 5, the performance
-pTf -12.3 -182 -75 : -9.8 -20.5 -1 23 +11.1 drops significantly but not as severely as when re-
Lemon Nov moving the distortion model. This performance
CTG 07 05 1.1, 14 07 225 962 drop is mainly due to a decrease in precision.
fofg%f - _‘S% - ;(23*;* Egg: :}1(7)(7)7 :g(sj?; f_%g : &gg We also exa.mine. th.e effectivene.ss of .our rule-
DTt =117 =205 -55' -97 -21.8 -1.6 +14.7 based tool for identifying related distortions. We
ECSpell Odw ‘ ‘ replace our rule-based tool with the confusion set
CTG 203 245 363, 214 124 795, 5290 from Wang et al. (2018) to identify the related dis-
OWR 897 916 8780 93.0 953 908! 13 tortion. The resultsin the “~ DT™” column in Table 5
-DT -40 -46 -34: -39 -58 -22: 0.0

-DT! =163 -169 -15.7:-12.7 -145 -10.9! +2.5

Table 5: Ablation results of distortion model on
Baichuan2 7B. “CTG” means constrained text gener-
ation. “-DT” represents that we do not distinguish
Same Pinyin, SimilarPinyin, and Similar Shape,
and treat them as Related distortion. “~DTT” represents
that using the confusion set from Wang et al. (2018) to
identify the Related distortion.

pov(z | y) from the decoding process. Alter-
natively, we adopt a constrained text generation
(CTG) approach to correct the input sentence. For
each step, we limit the vocabulary to tokens that
are related to the corresponding characters in the
input sentence® and let the model select the most
likely token from the constrained vocabulary. The
results are shown in the “CTG” column in Table 5.
We can see that the CTG performs poorly on all
datasets. This is because a Chinese character may
have many similar characters. Without the distor-
tion model, the model is prone to replacing the
original character with a higher-frequency similar
character, leading to a large number of errors.

%Classified as Identical, Same Pinyin, Similar Pinyin,
or Similar Shape.

show that the confusion set from Wang et al. (2018)
is less effective than our rule-based tool, leading to
more severe performance degradation.

Moreover, considering that the estimated distor-
tion probabilities may differ from the true ones, an
analysis to verify the effectiveness of the estimated
distortion model is provided in Appendix D.2.

5.3 Impact of two Rewards

In this work, we propose two rewards to optimize
the decoding process: the length reward and the
faithfulness reward. The ablation study results of
the two rewards are shown in Table 6.

The results show that the length reward signifi-
cantly improves performance on all three datasets.
This improvement can be attributed to increases in
both precision and recall, indicating that the length
reward is crucial to our approach.

The results demonstrate that the faithfulness re-
ward can effectively improve precision, although it
may slightly reduce recall. Overall, the faithfulness
reward balances the trade-off between precision
and recall, leading to a higher correction F score.

The combination of the two rewards can achieve
better performance than using them separately,
especially when the datasets contain less formal



System S-F S-P' S-R'' C-F C-P! C-RI' FPR
rSighan /5

Vanilla 180 159 20.6, 20.7 143 37.6, 529
TW/LR T #39.4 #4344 +35.01+43.7 +53.37+23.91-38.4
Ww/FR 438 +62 +0.8 +54 +83
w/Both +41.9 +50.1 +34.11+47.4 +63.5 +23.01-44.8

Lemon Nov

Vanilla 194 18.0 20.9: 23.6 17.1 383 385
TW/LR T #171 ¥193 +14.61+19.0 +21.9° +8.6 =137
w/ FR +9.0 +13.5 +4.71 +85 +13.5 -4.5.-18.8

w/Both +23.9 +34.2 +16.03+24.1 +38.4

ECSpell Odw
Vanilla 65.3 65.3

65.31 704

w/FR  +47 +11.2 -0.8: +7.5 +19.7 . -6.
w/Both +24.4 +26.4 +22.51422.6 +29.9 +14.6! -8.8

Table 6: Ablation results of Baichuan2 7B. “LR” and
“FR” represent “length reward” and “faithfulness reward”
respectively. “Both” means using both length reward
and faithfulness reward.

text, more colloquial expressions, and more diverse
named entities, such as the rSighan-15 and Lemon-
Nov datasets.

6 Related Works

6.1 Chinese Spelling Check

Previous research on the CSC task can be divided
into three eras, accompanied with paradigm shift.

The Early Unsupervised Era Early CSC ap-
proaches mainly utilized unsupervised pipeline sys-
tems (Yeh et al., 2013; Yu et al., 2014; Yu and Li,
2014; Huang et al., 2014; Xie et al., 2015). These
systems typicaly act in three main steps: error de-
tection, candidate correction generation from a con-
fusion set, and candidate ranking using a statistical
n-gram language model.

The Supervised Learning Era By 2018, the ad-
vent of techniques for automatically generating
pseudo-labeled data had begun to address the chal-
lenge of data scarcity in CSC (Wang et al., 2018),
marking a shift in the paradigm of CSC research to-
wards a supervised learning era dominated by deep
neural networks. This era saw researchers explor-
ing various avenues to enhance CSC performance.
Some focused on finding better model architectures
(Zhang et al., 2020; Zhu et al., 2022), while oth-
ers delved into more effective training strategies
(Liu et al., 2022; Wu et al., 2023; Liu et al., 2023).
Additionally, there was an effort to enrich models
with information beyond text, such as phonetic or

visual features (Cheng et al., 2020; Xu et al., 2021;
Li et al., 2022; Liang et al., 2023).

Similar to our work, Wu et al. (2023) also decom-
posed p(x | y) into two parts to improve CSC per-
formance. However, they achieved this by adding
an auxiliary training loss. Our work stands out by
using an off-the-shelf LLM as the backbone and
a minimal distortion model to achieve good CSC
performance without any additional training.

The LLM Era Our work represents an initial
foray into what could be considered the third era of
CSC research: the LLM era. This phase explores
the potential of LLMs in addressing the CSC task.
As mentioned in the introduction, related studies
in this era fall into two categories: prompt-based
and supervised fine-tuning. In contrast to these
methods, our approach requires neither additional
training nor prompts.

6.2 Decoding Methods of LL.Ms

Intervening in the decoding process is a common
approach to improve LLMs’ task-specific perfor-
mance. There are two popular approaches in this
category: Contrastive decoding and Constrained
decoding. Contrastive decoding (Li et al., 2023b)
refines the output probabilities by comparing the
output probabilities of expert and amateur mod-
els (O’Brien and Lewis, 2023; Shi et al., 2023).
Constrained decoding, on the other hand, uses con-
straints to guide the decoding process, making the
output more aligned with the task-specific require-
ments (Wang et al., 2023; Geng et al., 2023).

Our work is closely related to the constrained
decoding approaches, where a distortion model is
used to influence the LLM decoding process.

7 Conclusion

In this work, we propose a simple, training-free,
and prompt-free approach to leverage LLMs for
the CSC task. Two components, a large language
model and a minimal distortion model, co-operate
to correct spelling errors. We alleviate the local
optima problem and over-correction issue, with
two simple strategies, length reward and faithful-
ness reward, respectively. Our comprehensive
experiments have shown that our approach sig-
nificantly improves LLM performance. Through
our approach, LLMs demonstrate remarkable do-
main generalization capabilities, surpassing SOTA
domain-general CSC models, that are trained on
extensive synthetic CSC data, on most datasets.



Limitations

The scope of this study is limited to the task of
Chinese spelling correction, which is a subset of
text error correction. Most of our design choices
are tailored to the characteristics of Chinese and
the specific requirements of the CSC task.

However, our approach has the potential to be
directly applied to some other languages. For ex-
ample, in Japanese and Korean, we can also cate-
gorize errors into phonetic similarities, such as (<2,
ya)-(7%, na) in Japanese or (&, hu)-(4-, bu) in Ko-
rean, and shape similarities, like ( =, yu)-( T, e) in
Japanese. For languages using a phonetic writing
system, like English, minor adjustments such as
adding INSERT, DELETE, and REORDER operations
will be sufficient to make it work.

Comparatively, handling complex text errors that
involve grammar, semantics, or pragmatics, are
more challenging. To tackle these errors, one could
design an appropriate distortion model, though it
might necessitate the adoption of more intricate
rules or the implementation of a model based on
neural networks. In our future work, we aim to
explore ways that would allow our approach to
handle these complex errors.
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A Implement of Distortion Model

A.1 Standard of Transformation Types

Identical Transformations An identical distor-
tion occurs when the input character is the same as
the correct character.

Same Pinyin Characters that share the same pro-
nunciation, disregarding tone, undergo a “Same
Pinyin” distortion. Due to the existence of het-
eronyms in Chinese, such as “4#”, which can be
pronounced in multiple ways including “hé”, “he”,
“huo”, “huo”, and “hi”, we classify two charac-
ters as undergoing a same pinyin distortion if they
share at least one pronunciation. The pypinyin’
library is utilized to determine character pronun-
ciations, with the ktghz2013 and large_pinyin
from pypinyin-dict.® providing a more accurate
pronunciation for these determinations.

Similar Pinyin We categorize distortions as
“Similar Pinyin” when two characters have pro-
nunciation that is recognized as similar by prede-
fined rules, which are based on Yang et al. (2023b).
For instance, ‘qi”” and “ji”” are considered similar
due to the common mispronunciation of the con-
sonant “g” as “j”. A list of consonants and vowels
considered similar can be found in Tables 7 and 8,
respectively.

Similar Shape The similarity in the shape of
characters is evaluated by combining their four-
corner code with their radical and component infor-
mation. For example, the characters “#L” and “L.”
have the four-corner codes “47910” and “27210”,
respectively. Given that the last digit primarily
serves to distinguish characters with identical pre-
ceding digits and that “#.” and “YL” share two of
these digits, their four-corner code similarity is cal-
culated as 2 x % = 0.5. Considering their radical
and component (“A, JL” for “#.” and “A., JL” for
“f1.), which share the component “JL” but differ
in radicals, their similarity is 1 x % = 0.5. Thus,
the overall similarity is averaged to 0.5. With a
similarity threshold set at 0.45, these characters are
considered to undergo a similar shape distortion.
Furthermore, character pairs where one is a radical
or component of the other, such as “#U” and “JL”,
are also classified under similar shape distortions.

All non-Chinese characters are only allowed to

"https://github.com/mozillazg/python-pinyin
8h’ctps ://github.com/mozillazg/pypinyin-dict
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Corrected — Input

j - q x z

qg — J x ¢

x — jgq

z — ] c zh

c — q z s ch

s — zZ c sh
h — Z ch sh
ch — c zh sh
sh — s zh ch

r — [

I — r n d t

n — l d t

d — [ n t b

t - [ n d p

b — d p m

p - t b

m — b p

g — k h

k — g h

h — g k f

f - h

Table 7: Consonants with similar pronunciation.

Corrected — Input

an — ang uan uang ian

ang — an uan uang iang
uan — an ang uang ian
uang — an ang uan iang
ian — an uan iang
iang — ang uang ian

en — eng un

eng — en

un — en ong

ong — un

in — ing

ing — in

0 — uo

uo — 0

/] — u

u —

Table 8: Vowels with similar pronunciation.

be transformed into themselves.

A.2 Type Priority

In scenarios where a character can be classified un-
der multiple distortion types, for example, “HU” (ji)
and “¥JL” (ji), which can be classified as both having


https://github.com/mozillazg/python-pinyin
https://github.com/mozillazg/pypinyin-dict

Datasets rSighans CSCD | MCSC ECSpell
Subsets Y13 Y14 Y15 | Test Test | Law Med Odw
#Sentence 1,000 1,062 1,100 | 5,000 | 19,650 | 500 500 500
Erroneous Sentence Ratio 97.70 56.69 56.18 | 46.06 | 50.00 |51.00 45.20 52.40
Average Length 74.33 50.01 30.64 | 57.63 | 1091 |29.74 49.60 40.51
Average Error/Sentence 148 0.88 0.78| 0.51 093 | 078 0.71 0.81
Distortion Type Proportion (%)

Identical 98.01 98.25 97.45] 99.12 | 91.47 |97.38 98.56 98.01
~ Same Pinyin  1.62 130 183| 074 | 6.60 | 1.82 1.15 1.55
Similar Pinyin 0.28 040 0.66| 0.13 1.05 | 051 0.19 0.28
Similar Shape 0.05 0.01 0.03| 0.00 0.39 | 025 0.08 0.13
~ Unrelated 0.04 0.04 0.02]| 000 | 045 | 004 001 002
Recall Upper Bound 97.24 97.18 98.71 | 99.70 | 90.82 | 97.65 98.67 98.47
Datasets Lemon Pseudo-Dev

Subsets Car Cot Enc Gam Med New Nov -
#Sentence 3,410 1,026 3,434 400 2,090 5,892 6,000 2,000
Erroneous Sentence Ratio 51.09 46.20 50.99 38.75 50.38 50.00 50.23 93.55
Average Length 4344 40.12 39.83 3299 39.28 25.16 36.24 36.94
Average Error/Sentence 056 047 052 041 049 055 057 1.42
Distortion Type Proportion (%)
Identical 98.64 98.78 98.63 98.73 98.64 97.80 98.43 96.15
~ Same Pinyin 090 075 093 089 094 150 095] 234
Similar Pinyin 0.31 025 028 026 027 051 043 0.78
Similar Shape 0.02 0.07 006 001 0.02 0.05 0.02 0.40
~ Unrelated 0.12 0.14 0.09 011 012 013 0.16] 031
Recall Upper Bound 91.38 89.34 94.28 90.54 92.82 93.98 89.08 88.03

Table 9: The statistics of the datasets used in the experiments. Recall Upper Bound represents the sentence-level
upper bound of the recall under the distortion model that we use in this work.

the same pinyin and a similar shape, we prioritize
the distortion type according to the following or-
der: 1) Identical; 2) Same Pinyin; 3) Similar
Pinyin; 4) Similar Shape; 5) Unrelated.

A.3 Using an Inverted Index for Efficient
Distortion Model Calculation

During each decoding step, the distortion model
calculates the probability of transforming the input
sequence z,. into a candidate token ¢;:

k
gz, ti) = > logpou(er | i4s),

r=1

®)

where the function g(z, ¢;) must be computed for
each candidate token ¢; in the vocabulary V), result-
ing in a huge computational cost.

To address this challenge, we propose the use
of an inverted index to reduce the calculation pro-
cess, by only considering relevant tokens, and ig-
noring irrelevant tokens. For a token, we can pre-
construct indexed entries to represent it, such as
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<0,ji,SamePinyin>, <1,kou,SimilarPinyin>,
and <0, 1L, SimilarShape> for “HL49” (ji gou).
Upon receiving an input sequence, the index en-
ables rapid retrieval of relevant tokens, thereby lim-
iting probability calculations exclusively to these
tokens. As the subset of relevant tokens is sub-
stantially smaller than the complete token set, em-
ploying an inverted index considerably reduces the
computational burden.

A.4 Small Tricks for Distortion Model

We adopt three small tricks to enhance our distor-
tion model. First, for character pairs commonly
misused in everyday writing, such as “#97, “3”,
and “#+”, we categorize these as “Identical” dis-
tortions, allowing the model to correct these errors
with lower difficulty.

Second, we found that, although the previously
described rules adequately cover most similar re-
lationships between characters, a few exceptions,

approximately 0.01% of total character pairs, still



System and User Prompts for baselines

System Prompt:

% o
User Prompt:

RE—AMRFOF IHBEAHEEY, PIHBAUABRAEFELEAFPAANGTTOHEH

HEBRAFAER LA TP TROBIFHBBEANG T, 2 EMLARIER
A G F L ME K, £ E 4 F T 6 R BT AR Y R 4 T 89 23 (R R e 3 oM s A
5, RAEMISGFE, TMBSANE). AREAARNENGTF, RERIfE LR
BRI . RO TAARNT, AR BFHARRAG T,

Figure 4: Prompt templates used in our FSP and ZSP baselines.

persist. To identify these outliers, we leveraged
tools from previous studies (Wu et al., 2023; Hu
et al., 2022) by incorporating their structure con-
fusion sets and spelling similarity matrices. We
classify character pairs found within the structure
confusion set or those with a spelling similarity
matrix distance of less than 1 as “Other Similar”
distortions.

Finally, we have chosen not to entirely exclude
unrelated distortions. Instead, we allow each token
to possess up to one unrelated character distortion,
to which we assign a very low probability.

Employing these tricks has led to marginal yet
consistent improvements in our approach’s perfor-
mance.

B Details of Experiments

B.1 Details of Real-world Test Sets

This section details the test sets used in our study,
providing insights into their composition and rele-
vance to real-world Chinese text.

¢ Sighan series: This series of datasets is one
of the most widely used benchmark datasets for
Chinese spelling correction (Wu et al., 2013; Yu
et al., 2014; Tseng et al., 2015). However, it faces
criticism for two main reasons: firstly, it consists
of essays written by Chinese learners, which may
not accurately represent typical Chinese texts. Sec-
ondly, its limited diversity could hinder the eval-
uation of models’ generalization capabilities. De-
spite these concerns, we include it in our evaluation
to allow for comparison with prior studies. How-
ever, we utilize the revised version by Yang et al.
(2023b), which has manually verified and corrected
the errors in the original dataset.

o CSCD-IME: A real-world Chinese social me-
dia corpus collected and annotated by Hu et al.
(2022). It can better represent the variety of texts
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found in real-world settings and includes a broad
spectrum of errors.

o MCSCSet: A large-scale corpus from the
medical domain, collected and annotated by Jiang
et al. (2022). It features numerous errors specific
to medical terminology, making it an excellent re-
source for evaluating models’ generalization capa-
bilities in this area.

o ECSpell: A small-scale, multi-domain corpus
annotated by Lv et al. (2023). It encompasses three
domains: legal documents, medical treatments, and
official document writing.

e Lemon: The most recent and largest multi-
domain corpus to date, collected and annotated by
Wu et al. (2023). It spans seven domains: law,
medicine, encyclopedia, gaming, automotive, con-
tracts, news, and novels. The original dataset also
includes sighan 15 as a subset, which we have con-
sidered as a part of the Sighan series and excluded
from Lemon.

The detailed statistics of these datasets are shown
in Table 9.

The recall upper bound in the statistics is ob-
tained by calculating the number of sentences
that can potentially be fully corrected out of the
total number of sentences in the dataset. A
sentence has the potential to be fully corrected
if all the distortion types between each pair of
source and target characters can be categorized into
Identical, SamePinyin, SimilarPinyin, and
Similar Shape.

B.2 Evaluation Details

During evaluation, we convert all full-width punc-
tuation to half-width and remove all whitespaces
from the input and output sentences to guarantee
a fair comparison. When evaluating the Lemon
dataset, we ignore all sentences where the input



and output sentence lengths do not match, follow-
ing the dataset’s convention.

B.3 Levenshtein Alignment for
Character-Level Evaluation

Traditional point-wise evaluation methods fall short
when models insert or delete characters, as they can
inaccurately mark all subsequent characters as in-
correct due to a single addition or deletion. To over-
come this, we implement Levenshtein algorithm
to align the model output with the target sentence.
This approach allows us to calculate character-level
metrics based on the aligned results, providing a
more reasonable evaluation of character-level per-
formance.

B.4 Implementation Details of Prompt-based
Method

In this work, we use the prompt-based method to
activate the CSC ability of the baseline LLMs. The
task-specific instructions are adopted from Li et al.
(2023a). The prompt used for the baselines are
shown in Table 4. We disable the sampling mecha-
nism and set the temperature to 0.0 to ensure deter-
ministic decoding. For few-shot prompting meth-
ods, where the example selection strategy involves
random selection, we conduct three runs and report
the average results. The only exception is the GPT4
model, which we run only once due to the high cost
of using the model.

B.5 Few-shot Examples Selection Strategy for
Baselines

Li et al. (2023a) proposed three selection strategies
for CSC few-shot prompting methods: 1) Random:
randomly select m examples; 2) Balanced: ran-
domly select m examples with a balanced distribu-
tion of correct and error examples; 3) Similarity:
select the m most similar in-context examples for
each input sentence using the BM25 and Rouge sim-
ilarity metrics.

They found that the performance of few-shot
prompting depends on the selection of in-context
examples. Different selection strategies may lead
to distinct results. Among the three strategies,
Similarity was found to be the most effective.

However, the Similarity strategy is not always
the optimal choice. In preliminary experiments,
we observed that this strategy sometimes causes
GPT family models to perform worse than the zero-
shot prompting method. Upon analyzing the re-
sults, we found that GPT models are particularly
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Model Version  Strategy
Baichuan2 13B Base Similariy
Qwen1.5 14B Base Balanced
InternLM2 20B Chat Similariy
"GPT3.5 - Balanced
GPT4 - Balanced

Table 10: The model version and examples selection
strategy we used for few-shot baseline.

sensitive to discrepancies in the proportion of erro-
neous sentences between the few-shot prompting
examples and the target data. The examples se-
lected using the Similarity strategy tend to have
a similar proportion of erroneous sentences as the
dataset used for selection. In our work, we use
Pseudo-Dev dataset to select few-shot prompting
examples, which contains a higher proportion of
erroneous sentences (87%—-94%) compared to the
target data (50%—-56%). This discrepancy causes
the GPT models to be more aggressive in correcting
errors.

To ensure the effectiveness of the few-shot
prompting method, we conducted experiments to
determine the optimal strategy for each LLM we
used. For open-source LLLMs, which include both
‘Base’ and ‘Chat’ versions, we experimented with
both versions and selected the best one for each
LLM. The final choice of selection strategy is
shown in Table 10.

B.6 Pre- & Post-processing for Baselines

In this study, we employ several pre- and post-
processing techniques to mitigate the errors intro-
duced by the limitations of baseline systems. This
ensures a fair comparison between our approach
and the baselines.

BERT-based baselines Most current CSC mod-
els utilize BERT as the backbone. However,
BERT presents challenges that can degrade per-
formance during evaluation: 1) Full-width Punctu-
ation: BERT’s tokenization process may normalize
full-width punctuation to half-width, leading to nu-
merous unnecessary punctuation replacements. To
counter this, we prevent the model from modify-
ing the original punctuation; 2) Special Tokens:
BERT-based models may predict a special ‘[UNK]*
token in some cases, resulting in the removal of
the original character. In these instances, we retain
the original character when a special token is pre-
dicted; 3) Input Length Limitation: BERT-based



Datasets rSighans ECSpell Lemon
Subsets Y13 Y14 Y15 |Law Med Odw | Car Cot Enc Gam Med New Nov
Domain-Specific SOTAs (Trained on in-domain gold-standard data of each dataset)
RealiSe 70.1 64.0 73.9
Liu et al. (2023) - - - |91.2 824 836 | - - - - - - -
Domain-General SOTAs (Trained on about 34M synthetic CSC data)
Finetuned BERT 50.6 40.4 51.6|58.5 47.8 65.1 |52.0 63.1 453 328 50.7 56.1 35.8
Softmasked BERT 51.6 40.2 51.3|58.5 48.5 659|523 63.8 44.1 283 489 556 37.7
RelLM 45.8 40.6 55.5|604 509 66.5|53.3 66.7 47.7 33.7 53.8 58.8 37.1
LLMs (without CSC-specific training)
) ZSP 264 12.0 18.5|37.6 23.0 430|153 149 240 127 21.6 19.8 14.1
Bal(ﬁgg)anz FSP 41.1 23.1 31.3[60.2 504 60.0|32.2 453 389 24.6 39.0 39.7 264
OUR 63.6 54.1 59.6 |82.6 789 92.0 |52.7 629 519 37.1 60.1 63.9 43.5
77777777777 ZSP 41.6 17.4 281|533 389 60.7 [28.5 42.0 338 205 353 373 253
QW(?Q;f FSP 459 254 31.6|61.4 49.1 66.5|350 47.6 434 279 386 387 292
OUR 56.9 48.6 57.6 |84.1 73.2 87.4 |46.0 59.9 44.6 28.3 529 55.8 36.4
77777777777 ZSP 423 209 29.7 477 31.9 559 (298 42.6 343 212 400 347 272
I”t(eng)LMz FSP 559 27.7 32.9|459 382 653|313 467 37.1 254 434 379 293
OUR 57.8 53.1 60.5|83.9 723 91.1 |49.7 59.0 48.2 31.8 55.9 63.3 40.5
Table 11: The detailed sentence level correction F} score.
Datasets rSighans ECSpell Lemon
Subsets Y13 Y14 Y15 |Law Med Odw | Car Cot Enc Gam Med New Nov
Domain-Specific SOTAs (Trained on in-domain gold-standard data of each dataset)
RealiSe 85.0 76.3 80.9\
Domain-General SOTAs (Trained on about 34M synthetic CSC data)
Finetuned BERT 64.3 51.0 572|663 59.0 69.5|53.0 64.1 46.0 35.6 523 57.5 36.3
Softmasked BERT 65.6 49.3 57.3|67.2 61.3 70.0 |53.6 63.3 454 31.6 51.0 579 38.5
RelM 58.6 51.1 61.0|68.3 639 73.0 544 66.1 48.2 37.5 55.1 60.5 37.1
LLMs (without CSC-specific training)
) ZSP 29.6 11.2 145|205 166 298 | 7.8 74 125 4.1 119 142 10.6
Bal(ﬁg‘g)anz FSP 51.8 29.7 34.0 (549 525 518|140 353 230 9.5 29.5 39.0 262
OUR 79.1 66.3 67.3|88.8 86.7 93.8 |57.5 64.0 56.5 39.6 61.7 66.2 47.9
77777777777 ZSP 488 189 26.5|53.5 354 581 [27.1 268 320 127 321 351 215
Qs> FSP 510 295 332633 444 669|227 39.8 347 143 349 365 284
OUR 75.2 62.8 66.0 | 88.6 84.5 91.6 |52.4 62.9 49.6 343 54.6 59.5 42.6
77777777777 ZSP 46.0 18.1 27.3|40.5 22.8 493 [24.7 319 29.7 123 31.0 292 266
InternM> Fsp 468 255 334567 400 663|245 342 304 104 409 329 289
OUR 76.8 65.5 67.8|88.9 83.6 93.8 |54.6 62.0 53.1 36.7 579 659 453

Table 12: The detailed character level correction F} score.

models show limited generalization beyond their
maximum training length. We truncate inputs to a
maximum length of 128 characters and concatenate
the remaining characters to the output.

LLM baselines The outputs of LLMs some-
times fail to align with evaluation, primarily due
to their inadequate instruction-following capabil-
ity. To address this, we apply specific rules for

post-processing: 1) Redundant Phrases: We re-
move redundant phrases such as “f§ 2 g 4] ¢]
F & : 7 (The corrected sentence is:), identified
through common patterns input in the model out-
put; 2) Redundant Punctuation: Many sentences
in the dataset lack terminal periods, yet some mod-
els inappropriately add them. To prevent incorrect
evaluations due to this discrepancy, we remove any
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Datasets rSighans ECSpell Lemon

Subsets Y13 Y14 YI15|Law Med Odw | Car Cot Enc Gam Med New Nov

Domain-Specific SOTAs (Trained on in-domain gold-standard data of each dataset)

RealLiSe 13.0 9.6 7.7

Liu et al. (2023) - - - 74 65 22| - - - - - - -

Domain-General SOTAs (Trained on about 34M synthetic CSC data)

Finetuned BERT 21.7 16.5 125| 49 113 29123 83 139 225 83 94 173

Softmasked BERT 13.0 17.6 14.5| 6.1 11.7 5.0|124 7.1 148 204 9.6 10.6 16.6

RelLM 44 150 95| 7.8 11.0 7.1 (121 5.6 126 208 57 84 175

LLMs (without CSC-specific training)

. ZSP 34.8 583 544|269 43.1 21.040.6 542 359 41.6 354 41.1 37.6

Bal(ﬁg‘g)a”z FSP 21.7 194 232| 78 91 04| 83 74 102 200 46 83 177
OUR 87 141 83| 45 99 04| 59 69 89 192 39 57 13.0

77777777777 ZSP 34.8 544 342| 57 354 21185 158 13.5 184 11.8 140 207

QW(?Q;)S FSP 159 309 31.7| 53 11.6 08| 89 127 10.1 147 95 78 55
OUR 21.7 19.6 10.2| 49 11.7 29112 6.3 148 294 54 10.1 212

77777777777 ZSP 65.2 58.0 488|265 50.7 17.728.8 23.7 30.0 30.6 23.0 340 242

Intern'® FsP 217 398 336|139 307 25|182 123 181 237 100 224 16.1
OUR 13.0 165 83| 25 124 04| 85 69 122 225 37 6.1 151

Table 13: The detailed sentence level false positive rate.

Input AEHAk, 11AKRTR C.2 Qualitative Examples

Reference ~ ® %3 %k, 11AKRTAR

RelM AEFER 11ARTR

BC213B ZSP 7 Fafadm. 11 ak We provide two qualitative examples to illustrate

BC2 13B FSP 7 #2F B Al 11/ J& Ak the performance of our approach in Table 14.

'BC2 13B OUR 7 éﬂii% TNHARTR

o RRENNT A IR & In the first case (“Led by the Ministry of Com-

Reference ifb R LA TR A merce, to be completed by the end of November”),

I RAMIFHR T2 4

BC2 13B ZSP JLIAE & A AR A £ L a1t 2
BC2 13B FSP EHER E# AH K T L te 214t 4

BC2 13B OUR ¥534B L AR A T a1t 4

b

Table 14: Qualitative examples of our approach and the
baselines. Corrections marked in “Blue” are correct or
suggested by the reference, while those in “Red” are
incorrect.

added terminal period if the original sentence did
not have one.

C More Results

C.1 Detailed Results

Due to the space limitation, we only present the
average results of each dataset in the main text.
The detailed results of each dataset are shown in
Table 11, Table 12, and Table 13.
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the word “# 3k (giantdu, led by) is misspelled as
“RI 3k (gidntdu, front) in the input sentence. Both
the ZSP and FSP baselines mistakenly put their at-
tention on the character “#” (front) and incorrectly
correct “HI 3k to “ B A" (a few days ago) and “ Al
" (front), respectively. Such corrections are not
only implausible but also linguistically awkward.
In contrast, the domain-general model ReLM and

our approach successfully correct the misspelling.

In the second case (“What are the main functions
of Solifenacin Succinate Tablets”), the name of the
drug “3%20 8 & #| A8 #7 K > (Solifenacin Succinate
Tablets) is misspelled. To correct the misspelling,
the knowledge of the medical domain is required.
In this case, the ReLM model fails to correct the
misspelling, while the zero-shot prompting base-
line and our approach successfully correct it. It is
worth noting that the few-shot prompting baseline
also fails to correct the misspelling, which indicates
that the inclusion of inappropriate examples may
lead to worse performance.



" rSighan /5 | Lemon Nov 100[ | " ECSpell Odw | =
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Figure 5: The scores of Baichuan2 7B with different beam sizes. The solid lines represent the results of our
approach, and the dashed lines represent the results of the few-shot baseline. We can observe that larger beam sizes
may lead to worse C-F scores in few-shot settings.

rSighan /5 Lemon Nov ECSpell Odw
Dev  True | Dev True | Dev True
Distortion Model: 1og ppy
Idt. -0.04 -0.03|-0.04 -0.02|-0.04 -0.02
Sa.P. -3.75 -4.00|-3.75 -4.66|-3.75 -4.17
Si.P. -4.85 -5.02|-4.85 -545|-4.85 -5.87
Si.S. -5.40 -8.63|-540 -8.04|-5.40 -6.66
S-F! 59.8 +0.9 | 432 00| 8.7 -0.8
C-F! 68.2 +14 | 477 +0.2 | 93.0 -0.3
FPR/ 81 00| 136 +0.3 1.3 00

Table 15: The impact of distortion model on the per-
formance of Baichuan2 7B. “True” denotes that the
distortion model is derived from the true distortion dis-
tribution of each dataset. “Dev” represents the distortion
model from the Pseudo-Dev.

D More Discussions

D.1 Influence of Beam Size

During searching the most likely correction se-
quence, the beam search algorithm is used to avoid
the exponential growth of the search space and the
local minimum caused by greedy search. Knowing
the impact of the beam size on the performance
helps researchers to choose a proper beam size to
balance the trade-off between the performance and
the computational cost. The results are shown in
Figure 5. Though the larger beam size consistently
leads to better performance, the improvement be-
comes marginal when the beam size is larger than 6.

D.2 Effectiveness of the Estimated Distortion
Model

The distortion model is a key component in our
approach. In this work, we utilize a minimal dis-
tortion model and directly estimate the distortion
probabilities from the statistics of the Pseudo-Dev
dataset. Obviously, this estimation will be different
from the true probabilities.

To verify the effectiveness of the estimated dis-
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Inference Speed (ms)

System per Sent. per Char.

ReLM 14.4 04
ZSP 899.8 222

Baichuan2 13B FSP  1,057.4 26.1
OUR  1,541.0 38.0

Table 16: The inference speed of different models.

tortion model, we conduct experiments comparing
the estimated distortion model with the true distor-
tion model. The results are presented in Table 15.
The upper part of the table shows the difference
between the estimated distortion model and the
true distortion model. We can see that the esti-
mated one is quite close to the true one, except for
the Similar Shape distortion type. The lower part
shows that the difference between the performance
is marginal, indicating that the estimated distortion
model is sufficient for our approach to achieve a
good performance, and has good generalization
ability across different datasets.

D.3 Inference Speed

We conducted a brief runtime analysis to evaluate
the inference speed of our approach. The analysis
was performed using a single NVIDIA A100 40GB
GPU with an Intel Xeon Gold 6248R (3.00GHz)
CPU. The batch size was set to 1 for all models,
and other hyperparameters were set to the same
values as in the main experiments.

The average inference speed of each model on
the ECSpell-Odw dataset is shown in Table 16. Due
to the large model size and the autoregressive de-
coding process, LLMs are significantly slower than
the BERT-based ReLM model. Compared to the
ZSP and FSP baselines, our approach is slower
(1.71x and 1.45x, respectively), primarily due
to our immature implementation of the distortion
model, which can be further optimized to improve



inference speed.

D.4 Does Our Approach Work Well on
Simpler LMs?

Though we mainly focus on the performance of
our approach on LLMs, the language model part
of Equation 1 can be replaced by other simpler
models, such as n-gram, masked language model,
or small-scale causal language model. In this sub-
section, we investigate the performance of our ap-
proach on simpler LMs.

Though our primary focus is on the performance
of our approach on LLMs, the language model
term of Equation 1 can be substituted with simpler
models, such as n-gram models, masked language
models, or small-scale causal language models. In
this subsection, we investigate the performance of
our approach using these simpler language models.

The LMs we investigate include:

e n-gram LM: KLM,? a 5-gram language model
trained on the Chinese Gigaword corpus.

e Masked LM: BERT,'° a bidirectional lan-
guage model pre-trained using the mask filling task
and next sentence prediction task.

e Small causal LM: GPT2,'! a small-scale
causal language model (about 102M parameters)
trained on the CLUECorpusSmall dataset (about
5B characters).

The results are shown in Table 17. From these
results, we can see that our approach also works
with simpler LMs. In the ECSpell-Odw dataset, our
approach enables simpler language models (LMs)
to achieve sentence- and character-level correction
F1 scores higher than 50% and 60%, respectively.
However, the performance of our approach on sim-
pler LMs still lags significantly behind that of the
large language models (LLMs), highlighting the
importance of the scale of pre-training data and
model size.

D.5 Impact of the Pre-training Data

There are two main factors that differentiate LLMs
from simpler LMs: the scale of pre-training data
and the model size. The impact of model size on
the performance of LLMs has been discussed in
§5.1. In this subsection, we aim to investigate the
impact of pre-training data on the performance of
our approach.

gshibing624/chinese—kenlm—klm
Ybert-base-chinese
"uer/gpt2-chinese-cluecorpussmall
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We compare Qwen1.5, a recent LLM family,
with GPT2, which also has a causal LM (decoder-
only) architecture. The GPT2 model family par-
tially overlaps in model size with the Qwen1.5
model family, but it was trained on a much smaller
dataset, CLUECorpusSmall. The CLUECorpusS-
mall dataset contains only about 5 billion characters
and has limited diversity in text sources, including
only news, Wikipedia, forums, and comments.

As shown in Table 18, when the model sizes
are similar, the Qwen1.5 model family outperforms
the GPT2 model family on all three datasets. The
largest performance gap is observed on the Lemon-
Nov dataset, where a smaller 463M Qwen1 .5 model
even outperforms a larger 1.5B GPT2 model by
7.1% in the sentence-level correction F} score.
This is because the Lemon-Nov dataset contains
texts from the novel domain, which is not included
in the CLUECorpusSmall dataset. These results
indicate that the scale and diversity of the pre-
training data are crucial for the performance of
our approach.

D.6 Comparison to the Supervised
Fine-tuning Method

In this subsection, we compare our approach with
the supervised fine-tuning method.

However, we did not fine-tune the LLMs our-
selves, as fine-tuning an LLM on the 34M synthetic
CSC data would be extremely time-consuming and
computationally expensive. Additionally, the super-
vised fine-tuning method typically requires careful
hyperparameter tuning to achieve the best perfor-
mance, further increasing the computational cost.

Instead, we leverage the findings from Li et al.
(2023a), who fine-tuned the Baichuan2 7B and
GPT2 models on the ECSpell dataset.

The results are shown in Table 19. Compared
to the ReLM model, the supervised fine-tuning
method is less effective in improving the perfor-
mance of causal LMs like GPT2 and recent LLMs
such as Baichuan2. In some cases, our training-
free approach even outperforms the supervised fine-
tuning counterpart.

This phenomenon can be attributed to the charac-
teristics of the ECSpell dataset, which, as pointed
out by Wu et al. (2023), contains a high proportion
(more than 70%) of error-correction pairs that never
appeared in the training data. The supervised fine-
tuning method is not effective in handling these un-
seen error-correction pairs, whereas our approach
can still correct them.



System rSighan /5 Lemon Nov ECSpell Odw
S-F' C-F' FPR'| S-F' C-F' FPR'| S-F' C-F' FPR
KLM 293 389 338 | 58 94 658|583 653 235
BERT 110M 313 340 02133 125 06591 636 0.0
GPT2 102M 550 647 81261 30.8 284|786 850 54
Baichuan2 13B 59.6 67.3 83 |435 479 13.0|92.0 938 04
Qwen1.5 14B 576 66.0 102|364 426 212|874 916 29
InternLM2 20B 60.5 67.8 8.3 | 40.5 453 15.1 |91.1 938 04
Table 17: Results of applying our approach to different models.
System Data rSighan /5 Lemon Nov ECSpell Odw
Amount | S.F' C-F' FPR'| S-F' C-F' FPR'| S-F' C-F' FPR
GPT2 1.5B  Small | 56.6 644 104 |26.1 31.8 314|828 858 5.5
“Qwenl.5 463M Large 1563 635 10.0 [ 332 402 222|847 899 3.8
Qwen1.5 1.8B 583 653 103|356 423 199|903 928 1.7
Table 18: A brief comparison of the performance of LLMs of different sizes and pre-training data amounts on three
datasets.
Model Method Law Med Odw formation as new knowledge into our approach. We
ReLM 34M-ft  60.4 509 66.5 chose the MCSCSet dataset for this experiment, as
777777777777777 Id-ft 912 824 83.6  the sentences in this dataset share a common char-
GPT2 110M Id-ft 712 356 538 acteristic: they are questions from patients. We can
,,,,,,,,,,,,,,, I,gu,i, . gg% , ,g,g;g _ gg;g, _ introduce this knowledge into the LLM by adding a
. -t . . . : : _ o« B g o e e .
Baichuan2 7B OUR 1 797 897 simple input prefix k BN 7 (“A patient

Table 19: The sentence-level correction Fj scores of
models supervised fine-tuned on in-domain training data
and our approach on ECSpell datasets. Id-ft denotes
the model fine-tuned on the training data of ECSpell.

D.7 How to Introduce New Knowledge into
Our Approach?

The LLM part of our approach offers a straightfor-
ward way to incorporate new knowledge without
the need for further training, by adding some
text that describes the new knowledge as an in-
put prefix.

Given the new knowledge k, Equation 1 can be
adjusted from p(x,y) to p(x,y | k). We then
have:

p(z,y | k) =plz |y, k)p(y| k)

9
~ pon(@ | 9) pun(y | K),

where, by assuming « and k are conditionally in-
dependent given y, we approximate p(x | y, k) as
pov(x | y). The second term, py w(y | k), can be
calculated by the LLM using the input prefix k.
To illustrate this point, we conducted a simple
experiment introducing domain and text format in-
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asks:”).

The results in Table 20 demonstrate that intro-
ducing new knowledge into the LLM by merely
modifying the input prefix can significantly im-
prove the model’s performance on the CSC task.
Notably, this simple method also works well on the
BERT-based baselines, yielding improvements of
0.7% to 1.2% in the sentence-level F; score and
1.7% to 2.1% in the character-level F} score, al-
though the improvements are not as significant as
those observed with the LLMs.

We provide a real case from the MCSCSet
dataset to explain why this method works.

Consider the sentence “A&4& 1] J&” (wei ai qidn
zhao, “without being near any prior warnings”),
which should be corrected to “ B /% A Ik (wei i
qidn zhao, “early symptoms of stomach cancer’)
in the medical domain. This sentence contains
only four characters, insufficient to provide enough
context for accurate spelling correction, even for
humans.

CSC models often fail to correct this sentence
or suggest incorrect corrections, such as “K 3%
Al JK” (wei ti qidn zhdo, “did not provide prior
warnings”) or “A&4% AT JL” (wei an qidn zhdo, “not



MCSCSet
S-F' C-F' FPR
ORI 353 485 75

System

Finetuned BERT

InternLM2 20B

Table 20: The results of introducing new knowledge
by adding a prefix k to the input. “ORI” denotes the
original input without any prefix.

according to the prior warnings”). However, if we
add the prefix “&H 4219 . ” (“A patient asks:”),
which provides the knowledge that the sentence is
a patient’s question about a medical condition, the
model can make the correct correction to “ & #& A]
Ik
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