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Abstract

Extrapolative protein design is a crucial task for
automated drug discovery to design proteins with
higher fitness than what has been seen in train-
ing (eg. higher stability, tighter binding affinity,
etc.). The current state-of-the-art methods assume
that one can safely steer protein design in the ex-
trapolation region by learning from pairs alone.
We hypothesize that (1) noisy pairs do not accu-
rately approximate gradient to improve fitness (2)
it is challenging for the models to learn higher
order relationships among designs (triplets, etc)
from noisy pairs alone. Motivated by the suc-
cess of alignment in large language models, we
have developed an extrapolative protein design via
triplet-based preference learning for both better
approximation of gradient and directly modeling
ranks of triplets fitness. We evaluated our model’s
performance in designing AAV and GFP proteins
and demonstrated that the proposed framework
significantly improves the generative models’ ef-
fectiveness in extrapolation tasks.

1. Introduction
We focus on the challenging but crucial task of extrapola-
tive protein design (Chan et al., 2021; Padmakumar et al.,
2023; Lee et al., 2023) involving creation of novel sequences
with enhanced fitness that surpasses the training distribu-
tion for e.g. designing antibodies with greater stability or
stronger binding affinity. Extrapolation is challenging for
deep neural networks as they are primarily trained to recog-
nize patterns within the range of the training data (Xu et al.,
2020). Existing extrapolative protein design models learn
from the fitness ranking of protein pairs to extrapolate to
higher fitness beyond training data. The gradient direction
is approximated through differences in fitness between pro-
tein pairs. Current state-of-the-art models learn the ranking
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through contrastive discriminatory objective (Chan et al.,
2021), token-level machine translation (Padmakumar et al.,
2023) and Bradley-Terry (BT) model (Bradley & Terry,
1952) with maximum likelihood objective (Lee et al., 2023).
The primary limitations are that the noisy approximation of
gradient direction from pairs is not enough to steer protein
generation into extrapolation region and that higher order
ranking among protein sequences (triplets etc.) cannot be
easily learned from the noisy pairs.

To address these limitations, and drawing inspiration from
the recent success of human preference learning (Chris-
tiano et al., 2017; Rafailov et al., 2023) to guard LMs
against harmful and undesired text generation, we propose
a novel triplet-based preference learning method for extrap-
olative protein design, aiming to better approximate the
gradient direction through triplewise ordering. We have
approximated the triplewise relationship f(x1, x2, x3) ≈
g(x1, x2)− g(x3, x2) through Bradley-Terry (BT) similarly
as in direct preference optimization (DPO) (Rafailov et al.,
2023). Our main objectives are to improve the approxima-
tion of gradient direction using triplets and guide language
models towards higher fitness in the extrapolation region
while preventing the generation of lower fitness sequences
through preference learning. The proposed model follows
the “do no harm” principle during extrapolation and pro-
vides a simple yet effective method for modeling triplewise
relationships that can be readily applied to any extrapolative
biological design problem.

2. Related works
All existing extrapolative protein design models have an in-
herent underlying assumption that extrapolation can be suf-
ficiently learned through pairwise ranking of protein fitness.
(Chan et al., 2021) developed a contrastive approach of rank-
ing pairs using a discriminator of the latent space and extrap-
olating proteins by traversing through it. Padmakumar et al.
(2023) proposed a local editor for translating sequences with
low fitness to sequences with slightly higher fitness through
machine translation. Recently, (Lee et al., 2023) modeled
the ranked pairs through Bradley-Terry (BT) model via
maximum likelihood objective. Aligning language model’s
output with human feedback has improved their abilities
in following instructions (Ouyang et al., 2022) and trans-
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lation (Kreutzer et al., 2018). LLM alignment originated
from the seminal work (Christiano et al., 2017) through rein-
forcement learning with human feedback (RLHF). Training
RLHFs is challenging due to the training instabilities, re-
ward hacking and catastrophic forgetting (Peng et al., 2023).
Recently, there has been a momentum towards closed-form
and direct optimization of offline preferences such as di-
rect preference optimization (DPO) (Rafailov et al., 2023).
Direct preference models not only perform at par with RL-
HFs but also are simpler to implement and computationally
efficient given their single-stage training strategy.

3. Methods
3.1. Problem Definition

Let’s assume there is a supervised dataset D =
{(xn, yn)}Nn=1 with N samples where xn = (xn

1 , · · · , xn
L)

is nth protein sequence with length L and yn is its cor-
responding fitness value (i.e. stability, binding affinity,
etc). Let’s assume the fitness value y in dataset D is
bounded y ∈ [ymin, ymax]. We define this region as train-
ing region and try to generate sequences with fitness value
ygen > ymax or ygen < ymin which is defined as extrapola-
tion region.

3.2. Overview

The core concept behind the proposed method is to gradually
learn the higher order relationships among ranked proteins.
Starting with an auto-regressive unconditional pLM such
as Prot-T5-XL (Elnaggar et al., 2021) that is trained on un-
supervised data to model x ∼ Pθ(.) where x is generated
protein sequence. Inspired by ICE model (Padmakumar
et al., 2023), we trained a local editor with the desired di-
rection (e.g. increasing the binding affinity) to learn the
first order relationship among ranked proteins (approximat-
ing desired gradient direction through pairs). The model
learns to generate x2 ∼ Pθ(.|x1) where the fitness of x2

(designed sequence) is expected to be better than x1 (start-
ing sequence). Inspired by direct preference optimization
(DPO) (Rafailov et al., 2023) we aligned the models based
on triplets by directly optimizing on newly created prefer-
ences. With this alignment, the model updates its belief of
gradient direction from triplewise relationships. The overall
schematic of the proposed method is illustrated in Figure 1.

3.3. Local editing through pairs

Given a supervised dataset D, we trained an scorer function
fs to predict the fitness of a query sequence. We expect fs to
perform well on training region and perform poorly on the
extrapolation region since it has not seen these fitness during
its training. Then, following (Padmakumar et al., 2023) we
generated perturbed sequences by masking-infilling start-

ing from the training sequences (seeds). Scorer function
fs is utilized to assess whether the newly generated pair
(seed, sequence) has small but meaningful improvement
toward desired direction. Dataset Dpair = {(xm, zm)}Mm=1

with M samples where fs(x
m) < fs(z

m) if increasing
fitness is desired and vice versa. Finally, we fine-tuned
Prot-T5-XL model (Elnaggar et al., 2021) through MLE in
an auto-regressive manner to predict the next amino acid:
Ppair(z|x) =

∏L
i=1 P(zi|z<i,x).

3.4. Preference learning through triplets

To better approximate the gradient direction toward im-
proved fitness in the extrapolation region and directly model
higher order relationship among proteins, we created a
preference dataset of size K based on triplets Dtriplet =
{(xkprompt, xk

w, xkl )}Kk=1 where xprompt is seed sequence, xw
is the desired response and xl is the undesired response. We
are interested in increasing fitness by moving from xprompt

toward xw where fs(xprompt) < fs(xw) while guarding it
against sequences with same or worse finesses (undesired
ones). Therefore, we would create the following prefer-
ence datasets (i) Don’t go backward: triplets should satisfy
the following order fs(xl) < fs(xprompt) < fs(xw) (ii)
Don’t get stuck at the same fitness: triplets should satisfy
the following order fs(xl) ≈ fs(xprompt) < fs(xw).

Inspired by DPO (Rafailov et al., 2023), we model triplewise
relationship among proteins via Bradley-Terry (BT) model
(Bradley & Terry, 1952). Formally, for a given triplet of
(xprompt, xw, xl), BT assumes the following distribution:

P∗
triplet(xw ≻ xl|xprompt) =

exp(r∗(xw, xprompt))∑
y∈{xl,xw} exp(r

∗(y, xprompt))

(1)

where r∗ is the optimal latent reward model which generated
the preferences and P∗

triplet is the optimal preference distri-
bution. Through re-parameterization tricks (Rafailov et al.,
2023) proposed to directly optimize the preference learning
and bypassing the need to learn the reward explicitly. The
final loss can be formulized as:

LR = −E(xprompt,xw,xl)∼Dtriplet

[
log σ

(
β log(

Pθ(xw|xprompt)

Ppair(xw|xprompt)
))

− β log(
Pθ(xl|xprompt)

Ppair(xl|xprompt)
)

)]
(2)

where Pθ is the parameterized model to learn the preferences
and Ppair is the model trained on pairs in previous stage
for local editing and will be considered as fixed reference
distribution.

3.5. Inference and evaluation

During inference, the model starts with an initial seed se-
quence, iteratively edits and is expected to improve its fit-
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Figure 1. Schematic overview of extrapolative protein design through triplet preference learning.

ness. At iteration t given the seed sequence xt−1 and the
trained extrapolative protein design model Ptriplet(.|x), one
would sample xt ∼ Ptriplet(.|xt−1) until t reaches T (i.e.
10) predefined iterations. In practice, we start with set of ini-
tial sequences with their fitness very close to wild-type. For
each initial seed sequence, we sample N (i.e. 10 for AAV
and 2 for GFP) sequences using combination of top-k and
top-p sampling with k = 10, p = 0.95 and a temperature
of 0.7. At the end of each iteration, we randomly select K
(i.e. 10,000 for AAV and 2,000 for GFP) samples from all
generated sequences and use them as seeds for next iteration.
At the last T th iteration, we evaluate the final K samples.
For in-silico evaluation of GFP and AAV datasets, we used
evaluators trained by (Kirjner et al., 2023).

4. Experiments
4.1. Datasets

In order to assess the extrapolation ability of models on both
sequence and fitness landscape, we have utilized the Adeno-
associated virus (AAV) and Aequorea victoria GFP (avGFP)
datasets processed by Kirjner et al. (2023). They proposed
mutational gap as minimum number of mutations required
from the training set to achieve the optimal fitness as a way
to measure extrapolation ability of protein design models.
We used the medium difficulty datasets with mutational gap
of 6 between any sequence in the training set to any high-
fitness sequence in the 99th percentile. The training region
for GFP dataset maps to a fitness range of [1.31, 3.04] and
the extrapolation region maps to fitness values exceeding

> 3.04. The training region and extrapolation region for
AAV dataset refer to fitness in the range of [0, 7] and > 7
respectively.

4.2. Benchmarked models

We compared our proposed method to (i) Sampling: uncon-
ditional protein design through Prot-T5-XL (Elnaggar et al.,
2021) (ii) Iterative Controlled Extrapolation (ICE): extrapo-
lation through learning a local editor by translating proteins
with lower fitness to slightly better fitness (Padmakumar
et al., 2023) (iii) Align-plm: extrapolation via Bradley-Terry
(BT) model of ranked proteins with big enough distances
(Lee et al., 2023). We could not compare our method against
Genhance (Chan et al., 2021) as we couldn’t run their code.
For preference learning models, we focused only on the
DPO model (Rafailov et al., 2023).

4.3. Implementation details

We used the CNN models trained by (Kirjner et al., 2023)
and (Dallago et al., 2021) on smoothed fitness landscape
of training regions of GFP and AAV datasets respectively
and utilized them as scorer functions fs. Following (Pad-
makumar et al., 2023), we created the pairs dataset Dpairs =
{(xi

1,x
i
2)}Mi=1 with M = 900K(100K) training (valida-

tion) samples where they follow |fs(x1) − fs(x2)| < 0.5.
We trained the local editor model on Dpairs for 10 epochs
with the AdamW optimizer (Loshchilov & Hutter, 2017), a
learning rate of 1e-4 and batch size of 384.

3



Extrapolative Protein Design through Triplet-based Preference Learning

Next, we created the preference dataset for both pro-
teins following the principles of (i) Don’t go backward
and (ii) Don’t get stuck at the same fitness. For
GFP, we binned sequences based on their fitness
to buckets of [0, 0.25, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25]
(smooth fitness range is different from the actual
fitness measured from wet lab). For AAV, we
binned sequences based on their fitness buckets of
[−100,−6,−5.5,−5,−4.5,−4,−3.5,−3,−2.5,−2,−1.5,−1].
In total, we created 100K and 10K training and validation
samples respectively. We further fine-tuned the local editor
model based on triplet-based preference learning through
DPO for 1 epoch with batch size of 32, learning rate of
5e-7, β = 0.1 and the AdamW optimizer (Loshchilov &
Hutter, 2017).

4.4. Results

Figure 2 shows that for both GFP (top) and AAV (bottom)
datasets, the triplet-based preference learning approach out-
performs baseline models in generating sequences with fit-
ness in the extrapolation region. The align-plm model has
higher mean fitness in comparison to ICE model, but its
top 100 generated sequences perform worse than ICE. The
top 100 generated sequences from the DPO model for GFP
have an average fitness of 3.66, compared to ICE and align-
plm, which have averages of 2.39 and 2.12, respectively.
Similarly, for the AAV dataset, the top 100 sequences gen-
erated by the DPO model have an average fitness of 11.13,
whereas ICE and align-plm have averages of 9.50 and 8.70,
respectively.

5. Mutational analysis
We analyzed the sequences generated by triplet-based prefer-
ence learning (DPO) in comparison to baselines. We utilized
the ProstT5 model (Heinzinger et al., 2023) trained in multi-
modal fashion (sequence and structure) to embed unique
sequences generated by each method. Two dimensional vi-
sualization of embeddings through t-SNE (Van der Maaten
& Hinton, 2008) in Figure 3 highlights that triplet-based
preference learning rejects several regions with low fitness
in embedding space and focuses more on specific regions
with higher fitness, especially in the extrapolation region.
Similarly, as shown in Figure 19, the sequences generated
by the DPO and ICE models are located in different parts
of the embedding space compared to align-plm. Logo plots
of generated sequences for baselines and DPO are shown in
Figures 20 for AAV and 20 for GFP. We further showed that
(i) triplet-based preference learning (DPO) magnifies the
mutation rate of several residues and pushes the rest of them
to lower values compared to ICE (Figures 21 for AAV and
10 for GFP) and (ii) the differences between the log proba-
bility of desired (chosen) sequences vs undesired (rejected)

Figure 2. Comparison of in-silico fitness evaluation for baselines
and proposed method (top) GFP dataset (bottom) AAV dataset.

ones and accuracy of correctly distinguishing them increase
for the validation set (Figures 3 and 17 respectively), which
indicates that the model would be guarded against generat-
ing undesired sequences dramatically as expected.

6. Ablation studies
6.1. Effect of scorer

We assessed the effect of scorer in inference for baselines
(ICE and Prot-T5-XL) and preference learning-based extrap-
olative models. Based on distribution of fitness shown in
Figure 4 for AAV dataset, preference learning with triplets
outperforms baselines with a large margin. As expected,
scorers can enhance the performance of extrapolative mod-
els in comparison to versions without scorers (ICE + scorer
vs ICE 15, DPO + scorer vs DPO 16).
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Figure 3. (top) t-SNE visualization (2 dimensions) of generated se-
quences for ICE vs DPO based on ProstT5 embedding (Heinzinger
et al., 2023) (bottom) Log probability of validation set’s desired vs
undesired sequences for DPO model.

6.2. Number of iterations

We assess the effect of number of iterations on both ICE
model and our proposed triplet-based preference learning
approach (DPO). Based on the results presented in Figures
22 and 14 for the AAV and GFP datasets, we observed that
triplet-based preference learning actually benefits consid-
erably from 10 iterations. For the triplet-based preference
learning model on the AAV dataset, in the first iteration
it had an average fitness of 5.11 and in the fifth and tenth
iterations the average fitness moved to 6.10 and 6.73 re-
spectively. Additionally, the average fitness of the top 100
candidates proposed in the fifth and tenth iterations were
10.69 and 11.13 respectively.

Figure 4. Comparison of in-silico fitness evaluation of generated
sequences for baselines and proposed method with scorer (top)
GFP dataset (bottom) AAV dataset.

7. Conclusion
We presented a triplet-based preference learning framework
for extrapolative protein design. Our framework signifi-
cantly outperforms baseline models that learn only from
pairwise relationships on designing sequences with higher
fitness for both AAV and GFP datasets where the model
needed to extrapolate both on sequence and fitness spaces.
Potential future directions include (1) assessing the effect of
higher order relationship (quadruples etc.) through Plackett-
Luce ranking models (Plackett, 1975; Luce, 2005) on extrap-
olation, (2) benchmarking of recently proposed preference
learning methods such as Kahneman-Tversky Optimization
(KTO) (Ethayarajh et al., 2024) and Identity-mapping pref-
erence optimization (IPO) (Azar et al., 2023) against DPO,
(3) utilizing reasoning approaches such as tree of thoughts
(Yao et al., 2024) to boost performance of the proposed
extrapolative protein design model.
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A. GFP experiments
A.1. Effect of Scorer
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Figure 5. Comparison of in-silico fitness evaluation of generated sequences for ICE vs ICE with scorer.
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Figure 6. Comparison of in-silico fitness evaluation of generated sequences for DPO vs DPO with scorer.
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A.2. Mutational analysis

Figure 7. t-SNE visualization of generated sequences for different models based on ProstT5 embedding (Heinzinger et al., 2023).

Figure 8. t-SNE visualization of generated sequences for ICE vs DPO based on ProstT5 embedding (Heinzinger et al., 2023).

8



Extrapolative Protein Design through Triplet-based Preference Learning

0.0

0.5

1.0
Seeds - GFP

0

1
align-plm - GFP

0

1
ICE - GFP

4 36 47 51 65 70 80 91 10
0

10
6

11
6

12
3

13
8

14
1

14
3

14
8

15
2

16
0

21
1

21
3

22
1

22
2

23
2

23
7

0.0

0.5

1.0
DPO - GFP

Amino acid position

Pr
ob
ab
ilit
y

Figure 9. Amino acid logo plot of generated sequences from various extrapolative models (For positions with at least 10% mutation in
population of any method).

S1 L6 V1
1

E1
6

V2
1

F2
6

E3
1

A3
6

L4
1

I4
6

K5
1

W
56 T6
1

G
66 S7
1

H
76

D
81 A8
6

Y9
1

T9
6

D
10
1

K1
06

V1
11

D
11
6

R1
21

G
12
6

E1
31

L1
36

E1
41

S1
46

I1
51

Q
15
6

K1
61

I1
66

E1
71

Q
17
6

Y1
81

P1
86

P1
91

D
19
6

S2
01

L2
06

N
21
1

H
21
6

E2
21

A2
26

G
23
1

Y2
36

Residues

0

20

40

60

80

100

M
ut
at
io
n 
ra
te
 (%

)

Mutational rate of generated sequences - GFP
align-plm
ICE
DPO

Figure 10. Mutational rate of generated sequences from DPO, align-plm and ICE.

9



Extrapolative Protein Design through Triplet-based Preference Learning

A.3. Accuracy of predicting desired vs undesired sequences
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Figure 11. Comparison of distinguishing desired vs undesired pairs for DPO vs ICE model.

A.4. Log probability of desired vs undesired sequences
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Figure 12. Log probability of training set’s desired vs undesired sequences for DPO model.
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Figure 13. Log probability of validation set’s desired vs undesired sequences for DPO model.
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Figure 14. Comparison of in-silico fitness evaluation of generated sequences for ICE (top) and DPO (bottom) for different iterations.
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B. AAV experiments
B.1. Effect of scorer
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Figure 15. Comparison of in-silico fitness evaluation of generated sequences for ICE vs ICE with scorer.
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Figure 16. Comparison of in-silico fitness evaluation of generated sequences for DPO vs DPO with scorer.
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B.2. Accuracy of predicting desired vs undesired sequences
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Figure 17. Comparison of distinguishing desired vs undesired pairs for DPO vs ICE model.

B.3. Log probability of desired vs undesired sequences
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Figure 18. Log probability of training set’s desired vs undesired sequences for DPO model.
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B.4. Mutational analysis

Figure 19. t-SNE visualization of generated sequences for different models based on ProstT5 embedding (Heinzinger et al., 2023).
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Figure 20. Amino acid logo plot of generated sequences from various extrapolative models.

14



Extrapolative Protein Design through Triplet-based Preference Learning

D
1 E2 E3 E4 I5 R6 T7 T8 N
9

P1
0

V1
1

A1
2

T1
3

E1
4

Q
15 Y1
6

G
17 S1
8

V1
9

S2
0

T2
1

N
22 L2
3

Q
24 R2
5

G
26

N
27 R2
8

Residues

0

20

40

60

80

100

M
ut
at
io
n 
ra
te
 (%

)
Mutational rate of generated sequences - AAV

align-plm
ICE
DPO

Figure 21. Mutational rate of generated sequences from DPO, align-plm and ICE.
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Figure 22. Comparison of in-silico fitness evaluation of generated sequences for ICE (top) and DPO (bottom) for different iterations.
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