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Abstract

While Chain-of-Thought prompting is popu-
lar in reasoning tasks, its application to Large
Language Models (LLMs) in Natural Language
Understanding (NLU) is under-explored. Moti-
vated by multi-step reasoning of LLMs, we pro-
pose Coarse-to-Fine Chain-of-Thought (CoF-
CoT) approach that breaks down NLU tasks
into multiple reasoning steps where LLMs can
learn to acquire and leverage essential con-
cepts to solve tasks from different granularities.
Moreover, we propose leveraging semantic-
based Abstract Meaning Representation (AMR)
structured knowledge as an intermediate step
to capture the nuances and diverse structures
of utterances, and to understand connections
between their varying levels of granularity. Our
proposed approach is demonstrated effective in
assisting the LLMs adapt to the multi-grained
NLU tasks under both zero-shot and few-shot
multi-domain settings 1.

1 Introduction
Natural Language Understanding (NLU) of Dia-
logue systems encompasses tasks from different
granularities. Specifically, while intent detection
requires understanding of coarse-grained sentence-
level semantics, slot filling requires fine-grained
token-level understanding. Moreover, Semantic
Parsing entails the comprehension of connections
between both token-level and sentence-level tasks.

Large Language Models (LLMs) possess logi-
cal reasoning capability and have yielded excep-
tional performance (Zoph et al., 2022; Zhao et al.,
2023b). However, they remain mostly restricted
to reasoning tasks. On the other hand, mutli-
step reasoning can take place when solving multi-
ple interconnected tasks in a sequential order. In
practical NLU systems, as coarse-grained tasks
are less challenging, they can be solved first be-
fore proceeding to fine-grained tasks. Therefore,
the coarse-grained tasks’ outcomes can provide

1https://github.com/nhhoang96/CoF-CoT

  

 Show me dates for music festivals in 2018

(c/ show-01
    :ARG1 (m /me)
    :ARG2 (d/ date-entity
       :mod (f/ music-festival)
        :year 2018))

Please display to me the dates for music festivals that occurred in 2018

show-01

m/me d/date-entity

f/music-festival 2018

:ARG1 :ARG2

:mod :year

 Intent (Coarse-grained): 
GET_EVENT

Slot (Fine-grained):
CATEGORY_EVENT music festivals

DATE_TIME in 2018

Figure 1: Illustration of Abstract Meaning Represen-
tation (AMR) of two structurally different but semanti-
cally similar utterances with the same fine-grained and
coarse-grained labels. Each colored node represents
an AMR concept matching the colored word or phrase
existent in the corresponding utterances.

valuable guidance towards subsequent fine-grained
tasks, allowing for deeper semantic understand-
ing of diverse utterances across different domains
within NLU systems (Firdaus et al., 2019; Weld
et al., 2022; Nguyen et al., 2023a). For instance,
consider the utterance “Remind John the meeting
time at 8am” under reminder domain, recogniz-
ing GET_REMINDER_DATE_TIME intent is
crucial for correctly understanding the existence
of PERSON_REMINDED slot type rather than
CONTACT or ATTENDEE slot type.

Chain-of-Thought (CoT) (Wei et al., 2022) pro-
vides an intuitive approach to elicit multi-step rea-
soning from LLMs automatically. However, there
remain two major challenges with the current CoT
approach: (1) LLMs entirely rely on their uncon-
trollable pre-trained knowledge to generate step-
by-step reasoning and could result in unexpected
hallucinations (Yao et al., 2022; Zhao et al., 2023a),
(2) Additional beneficial structured knowledge can-
not be injected into LLMs via the current CoT.

On the other hand, structured representation
demonstrates the effectiveness in enhancing the
capability of Pre-trained Language Models (PLMs)
(Xu et al., 2021; Bai et al., 2021; Shou et al., 2022).
In Dialogue systems, the dependencies among dif-
ferent dialogue elements together with the existent
diversely structured utterances necessitate the inte-

https://github.com/nhhoang96/CoF-CoT


  

Step 1: Generate AMR
Input: Sentence, Domain

Output: AMR

Step 2: Generate Intent
Input: Sentence, Intent Vocabulary, AMR, Domain

Output: Intent

Step 3: Generate Slot Values
Input: Sentence, AMR, Intent, Domain

Output: Slot Values

Step 4: Generate (Slot Value, Slot Type) pairs
Input: Sentence, AMR, Slot vocabulary, 

Slot Values, Intent, Domain
Output: (Slot Value, Slot Type) pairs

Step 5: Generate Logic Form
Input: Sentence, Intent, Domain,

(Slot Value, Slot Type) pairs
Output: Logic Form

 Show me dates for music festivals in 2018

[IN:GET_EVENT 
[SL:CATEGORY_EVENT music festivals ] 

[SL:DATE_TIME in 2018 ] ]

(c/ show-01
    :ARG1 (m /me)
    :ARG2 (d/ date-entity
       :mod (f/ music-festival)
        :year 2018))

GET_EVENT

Show me, dates, music festival, in 2018 

(Show me, O),(dates, O), 
(music festival, CATEGORY_EVENT), 
(in 2018, DATE_TIME) 

 

[IN:GET_DATE_TIME_EVENT
 [SL:TITLE_EVENT music festivals] 

[SL:DATE_TIME 2018]]

Figure 2: Illustration of CoF-CoT and its counterpart Direct Prompt approach. The left side illustrates the proposed
CoF-CoT. The right side illustrates the naive Direct Prompt approach. Red and Green represent sentence-level and
token-level annotations captured in the Logic Form respectively. For CoF-CoT, the prompt at each step starting
from Step 2 is conditioned on the relevant output predicted from the previous step(s).

gration of additional structured representation. For
instance, as observed in Figure 1, by leveraging Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013), it is possible to map multiple seman-
tically similar but structurally different utterances
with similar coarse-grained and fine-grained labels
into the same structured representation, allowing
for effective extraction of intents, slots, and their
interconnections within the Dialogue systems.

In our work, we explore the capability of LLMs
in NLU tasks from various granularities, namely
multi-grained NLU tasks. Motivated by CoT, we
propose an adaptation of CoT in solving multi-
grained NLU tasks with an integration of structured
knowledge from AMR Graph. Our contribution
can be summarized as follows:
• To the best of our knowledge, we conduct

the first preliminary study of LLMs’ capability in
multi-grained NLU tasks of the Dialogue systems.

• We propose leveraging a CoT-based approach
to solve multi-grained NLU tasks in a coarse-to-
fine-grained sequential reasoning order.
• We propose integrating structured knowledge

represented via AMR Graph in the multi-step rea-
soning to capture the shared semantics across di-
verse utterances within the Dialogue systems.

2 Related Work
Chain-of-Thought (CoT) CoT (Wei et al., 2022)
proposes leveraging intermediate steps to extracts
logical reasoning of LLMs and succeeds in vari-
ous reasoning tasks. Wang et al. (2022) enhances
CoT by selecting the most consistent output an-
swers via majority voting. Additionally, Fu et al.
(2022) argues majority consistency voting works

best among the most complex outputs. They pro-
pose complexity metrics and leverage them to se-
lect demonstration samples and decoding outputs.
Unlike previous CoT approaches, we leverage CoT
to solve multi-grained NLU tasks.

Structured Representation Structured Repre-
sentation has been widely incorporated in language
models to further enhance the capability across var-
ious NLP tasks (Bugliarello and Okazaki, 2020;
Zhang et al., 2020). Structured representation can
be either in the syntax-based structure (Bai et al.,
2021; Xu et al., 2021) such as Dependency Parsing
(DP) Graph, Constituency Parsing (CP) Graph or
semantic-based structure (Shou et al., 2022) such
as Abstract Meaning Representation (AMR) Graph
(Banarescu et al., 2013). Unlike previous works,
we aim at leveraging structured representation as
an intermediate step in the multi-step reasoning
approach to extract essential concepts from diverse
utterances in the multi-domain Dialogue systems.

3 Proposed Framework
In this section, we introduce our proposed Coarse-
to-Fine Chain-of-thought (CoF-CoT) approach for
NLU tasks as depicted in Figure 2. Specifically, we
propose a breakdown of multi-grained NLU tasks
into 5 sequential steps from coarse-grained to fine-
grained tasks. At each step, LLMs leverage the
information from the previous steps as a guidance
towards the current predictions. As domain name
could provide guidance to NLU tasks (Xie et al.,
2022; Zhou et al., 2023), at each step, we condition
the domain name of the given utterance in the input
prompt. The model’s output is in the format of
Logic Form (Kamath and Das) which encapsulates



Table 1: Experimental results on MTOP and MASSIVE under zero-shot and few-shot multi-domain settings.
MTOP

Model Zero-shot Few-shot
NLU Semantic Parsing NLU Semantic Parsing

Intent Acc Slot F1 Frame Acc Exact Match Intent Acc Slot F1 Frame Acc Exact Match
Direct Prompt 31.50 ± 1.80 21.84 ± 2.83 8.33 ± 1.44 6.00 ± 1.32 51.33 ± 3.40 28.35 ± 3.24 11.00 ± 1.80 8.33 ± 1.00

CoT 31.83 ± 2.02 22.40 ± 1.61 8.67 ± 0.35 6.33 ± 1.04 47.67 ± 5.20 28.46 ± 3.10 11.83 ± 1.53 8.50 ± 1.04
SC-CoT 32.50 ± 1.89 22.71 ± 2.44 10.05 ± 0.87 6.83 ± 0.76 53.50 ± 3.04 29.53 ± 1.99 12.50 ± 1.80 9.00 ± 0.87

ComplexCoT 32.67 ± 2.00 22.86 ± 3.17 10.83 ± 0.29 7.16 ± 0.58 48.83 ± 2.47 29.21 ± 2.65 13.17 ± 0.58 8.83 ± 2.89
Least-to-Most 45.67 ± 0.58 21.84 ± 1.91 14.50 ± 0.50 8.00 ± 0.50 49.83 ± 4.54 27.28 ± 2.41 16.00 ± 0.50 8.83 ± 0.76
Plan-and-Solve 45.00 ± 4.00 22.45 ± 2.28 9.50 ± 1.61 8.25 ± 2.25 – – – –

CoF-CoT 57.67 ± 2.75 23.47 ± 4.09 14.33 ± 1.52 9.00 ± 1.00 61.50 ± 4.93 30.12 ± 3.93 15.00 ± 1.32 11.00 ± 1.61
MASSIVE

Direct Prompt 72.50 ± 4.58 33.24 ± 3.34 24.17 ± 3.79 20.67 ± 3.28 75.17 ± 0.58 42.36 ± 2.98 29.00 ±5.39 24.50 ± 4.07
CoT 71.83 ± 2.57 36.32 ± 1.94 24.50 ± 2.29 21.66 ± 3.40 76.83 ± 3.82 44.89 ± 2.50 31.33 ± 0.87 25.83 ± 2.25

SC-CoT 73.05 ± 1.27 37.06 ± 2.54 27.16 ±3.21 22.50 ± 2.65 77.33 ± 2.89 47.02 ± 4.60 34.00 ± 3.21 27.16 ± 3.50
ComplexCoT 73.66 ± 3.65 37.64 ± 3.51 25.83 ± 2.25 22.16 ± 2.51 77.83 ± 1.83 46.59 ± 2.43 36.50 ± 2.89 28.00 ± 3.69
Least-to-Most 72..83 ± 4.65 37.62 ± 1.69 31.50 ± 1.53 26.50 ± 1.26 77..00 ± 3.28 45.93 ± 3.99 32.50 ± 4.09 29.00 ± 5.11
Plan-and-Solve 69.33 ± 2.47 38.07 ± 2.07 32.00 ± 1.26 29.00 ± 1.26 – – – –

CoF-CoT 89.00 ± 2.29 38.66 ± 3.25 33.17 ± 4.04 25.50 ± 2.64 92.00 ±2.29 47.06 ± 4.63 37.50 ± 1.89 29.50 ± 3.12

coarse-grained intent label, fine-grained slot labels
and slot values. Further details of Logic Form’s
structure and its connections with multi-grained
NLU tasks are provided in the Appendix A.

Our multi-step reasoning is designed in the fol-
lowing sequential order:

1. Generate AMR: Given the input utterance,
LLMs generate the AMR structured representation
(Banarescu et al., 2013). The representation is pre-
served in the Neo-Davidsonian format as demon-
strated in Figure 1,2. Each node in AMR graph
refers to a concept, including entity, noun phrase,
pre-defined frameset or special keyword. Edges
connecting two nodes represent the relation types.

2. Generate Intent: In this step, LLMs generate
coarse-grained intent label prediction when con-
ditioned on the given input and its corresponding
AMR Graph. AMR concepts could provide addi-
tional contexts to ambiguous utterances, leading to
improved ability to recognize the correct intents.

3. Generate Slot Values: In this stage, to gen-
erate the fine-grained slot values existent in the in-
put utterance, besides the utterance itself, prompts
for LLMs are conditioned on the generated AMR
structure and predicted intent label. As AMR graph
captures the essential concepts existent in the ut-
terance while abstracting away syntactic idiosyn-
crasies of the utterance, it can help extract the im-
portant concepts mentioned in the utterances. In
order to further couple the connections between
slots and intents (Zhang et al., 2019; Wu et al.,
2020), predicted intents from the Step 2 are also
concatenated to construct input prompts for Step 3.

4. Generate Slot Value, Slot Type pairs: After
obtaining slot values, LLMs label each identified
slot value when given the slot vocabulary. Simi-

lar to Step 3, we condition the generated output
with the predictions from previous steps, including
AMR and intent. Both AMR and intent provide
additional contexts for slot type predictions of the
given slot values besides the input utterance.

5. Generate Logic Form: The last step involves
aggregating the predicted intents together with se-
quences of slot type and slot value pairs to construct
the final Logic Form predictions.

4 Experiments
4.1 Datasets & Preprocessing
We evaluate our proposed framework on two multi-
domain NLU datasets, namely MTOP (Li et al.,
2021) and MASSIVE (Bastianelli et al., 2020;
FitzGerald et al., 2022). As the innate capability of
language understanding is best represented via the
robustness across different domains, we evaluate
the frameworks under low-resource multi-domain
settings, including zero-shot and few-shot. Details
of both datasets are provided in Appendix B.

To provide a comprehensive evaluation for
coarse-grained, fine-grained NLU tasks, as well
as the interactions between the two, we conduct an
extensive study on both NLU and Semantic Pars-
ing metrics, including: Slot F1-score, Intent Accu-
racy, Frame Accuracy, Exact Match. Intent Accu-
racy assesses the performance on coarse-grained
sentence-level tasks, while Slot F1 metric evaluates
the performance on more fine-grained token-level
tasks. The computation of Frame Accuracy and
Exact Match captures the ability to establish the
accurate connections between sentence-level and
token-level elements. For more details of individ-
ual metric computation from the Logic Form, we
refer readers to (Li et al., 2021).

To conduct the evaluation with efficient API



calls, following (Khattab et al., 2022), we construct
test sets by randomly sampling 200 examples cover-
ing a set of selected domains, namely test domains.
We repeat the process with 3 different seeds to gen-
erate 3 corresponding test sets. Reported perfor-
mance is the average across 3 different seed test sets
with standard deviations. For few-shot settings, we
randomly select a fixed k samples from a disjoint
set of domains, namely train domains. These sam-
ples are manually annotated with individual step
labels as commonly conducted by other in-context
learning CoT approaches (Wei et al., 2022; Wang
et al., 2022). Additional implementation details as
well as the prompt design and sample outputs are
provided in Appendix C and D respectively.

4.2 Baseline
Chain-of-Thought (CoT) Approach Compari-
son We compare our proposed method with the
current relevant state-of-the-art CoT approaches:
• Direct Prompt: Naive prompting to generate the
Logic Form given the intent and slot vocabulary.
• CoT (Wei et al., 2022): Automatic generation of
series of intermediate reasoning steps from LLMs
• SC-CoT (Wang et al., 2022): Enhanced CoT via
majority voting among multiple reasoning paths.
• Complex-CoT (Fu et al., 2022) : Enhanced CoT
by selecting and measuring the consistency of the
most complex samples. In our case, we leverage
the longest output as the complexity measure.
• Least-to-Most (Zhou et al., 2022) : Enhanced
CoT by first automatically decomposing the in-
hand problems into series of simpler sub-problems,
and then solving each sub-problem sequentially.
• Plan-and-Solve (Wang et al., 2023) : Enhanced
CoT by guiding LLMs to devise the plan before
solving the problems by prompting “Let’s first un-
derstand the problem and devise a plan to solve the
problem. Then, let’s carry out the plan and solve
the problem step by step.”

Fine-tuning (FT) Approach Comparison As
one of the early studies in leveraging LLM for
NLU tasks, we also conduct additional compar-
isons with traditional FT approaches. Specifically,
we leverage RoBERTa PLM (Zhuang et al., 2021)
with joint Slot Filling and Intent Detection objec-
tives (Li et al., 2021) as the FT model. Unlike LLM,
traditional FT operates under closed-world assump-
tion which requires sufficient data to learn domain-
specific and domain-agnostic feature extraction in
multi-domain settings. For a fair comparison with
LLM, we impose an essential constraint that there

Table 2: Comparison between FT and LLM approaches
on MTOP dataset.

Method Assumption Intent Acc Slot F1 Frame Acc Exact Match
RoBERTa FT Supervised 67.19 ± 2.90 75.17 ± 1.08 43.57± 4.18 36.10 ± 1.08
RoBERTa FT ZSL 0 12.68 ± 1.25 0 0
RoBERTa FT FSL 0 13.75 ± 1.22 0 0

CoF-CoT ZSL 57.67 ± 2.75 23.47 ± 4.09 14.33 ± 1.52 9.00 ± 1.00
CoF-CoT FSL 61.50 ± 4.93 30.12 ± 3.93 15.00 ± 1.32 11.00 ± 1.61

Table 3: Ablation study on the effectiveness of differ-
ent structured representations on MTOP dataset under
zero-shot settings. CP, DP, AMR denote Constituency
Parsing, Dependency Parsing and Abstract Meaning
Representation respectively.

Intent Acc Slot F1 Frame Acc Exact Match
CoT (w/o structure) 57.16 ± 3.69 17.50 ± 2.92 12.16 ± 1.61 4.67 ± 3.33

CP-CoT 57.33 ± 3.25 19.34 ± 3.34 13.16 ± 1.04 5.50 ± 1.32
DP-CoT 57.50 ± 3.01 17.83 ± 2.53 12.67 ± 1.04 5.83 ± 2.08

AMR-CoT 57.67 ± 2.75 23.47 ± 4.09 14.33 ± 1.52 9.00 ± 1.00

exist no overlapping domains between train and
test domains under ZSL and FSL setting for both
FT and CoT approaches. This leads to 3 different
scenarios for FT approaches, including:
• Fully Supervised: Samples sharing similar do-
mains with test sets are used for training.
• ZSL: We utilize samples from domains different
from test domains for training.
• FSL: We leverage samples from domains differ-
ent from test domains in conjunction with a fixed
number of k-shot test domain samples.

5 Result & Discussion
As observed in Table 1, our proposed CoF-CoT
achieves state-of-the-art performance across differ-
ent evaluation metrics on MASSIVE and MTOP
datasets under both zero-shot and few-shot settings.
The performance gain over the most competitive
baseline is more significant in terms of Intent Ac-
curacy (25% and 15.34% improvements on MTOP
and MASSIVE respectively in zero-shot settings).
Additional case studies presented in Appendix E
further demonstrate the effectiveness of CoF-CoT.

In addition, we observe consistent improvements
of different CoT variants over the Direct Prompt.
It implies that CoT prompting allows the model
to reason over multiple steps and learn the connec-
tions between different NLU tasks more effectively.

In comparison with MASSIVE, performance of
all methods is significantly lower on MTOP. It is
mainly due to the more complex Logic Form struc-
tures existent in MTOP. It is noticeable that MAS-
SIVE datasets contain samples of fewer average
number of slots, leading to significantly better per-
formance on Semantic Parsing tasks (i.e. Frame
Accuracy and Exact Match).

Our CoF-CoT shares certain degrees of similari-
ties with Least-to-Most (Zhou et al., 2022), Plan-
and-Solve prompting (Wang et al., 2023). How-



Table 4: Ablation study of step ordering on MASSIVE dataset. CoF and FoC denote Coarse-to-Fine-grained and
Fine-to-Coarse-grained order respectively.

Method Assumption Intent Acc Slot F1 Frame Acc Exact Match
Random-CoT Random Order 80.67 ±3.60 27.14 ± 2.47 26.50 ±1.80 16.50 ± 1.04
FoC-CoT FoC order 83.00 ± 2.88 32.11 ± 2.50 28.50 ± 3.21 18.00 ± 3.50
CoF-CoT (w/o step 1) No AMR 81.50 ± 4.36 33.68 ± 2.40 27.50 ± 2.65 18.00 ± 0.76
CoF-CoT (w/o step 2) No intent 78.17 ± 4.80 27.66 ± 1.93 23.50 ± 2.78 14.50 ± 2.25
CoF-CoT (w/o step 3) No separate KP 82.33 ± 1.04 34.63 ± 3.10 32.83 ± 2.47 23.00 ± 1.80
CoF-CoT (w/o step 4) No separate slot prediction for KP 79.17 ± 4.01 32.92 ± 5.02 31.50 ± 3.50 21.83 ± 3.17
CoF-CoT (w/o step 3+4) No separate slot prediction 81.33 ± 4.19 31.31 ±3.77 27.67 ± 5.34 21.00 ± 4.92
CoF-CoT CoF order (Full) 89.00 ± 2.29 38.66 ± 3.25 33.17 ± 4.04 25.50 ± 2.64

- Conditioning No domain 84.50 ± 2.75 36.80 ± 2.08 32.50 ± 1.73 24.83 ± 0.58

ever, unlike the two aforementioned baselines that
rely heavily on the existent pre-trained knowledge
of LLMs, CoF-CoT provides a controllable num-
ber of sequential steps and conditioning inputs for
each step, allowing for flexible adaptations and cus-
tomizations to future downstream tasks that LLMs
might not be familiar with.

Comparison with FT Under ZSL and FSL set-
tings, the FT model suffers from the aforemen-
tioned domain gap issues. Specifically, as observed
in Table 2, since there exist minimal overlapping
intent labels between train and test domains, with-
out sufficient data in ZSL and FSL settings, the FT
approaches are unable to learn transferable multi-
domain features, leading to 0 performance in Intent
Accuracy. This behavior also results in 0 perfor-
mance for both Frame Acc and Exact Match as
the correct intents are the prerequisites for correct
semantic frame and exact match metrics. On the
other hand, Fully supervised FT approach acquires
domain-specific knowledge of target domains from
training data and performs the best across differ-
ent evaluation metrics. However, this assumption
does not directly match ZSL/FSL settings in which
LLMs are currently evaluated.

Impact of Structured Representation Besides
AMR Graph, there exist other structured represen-
tations that directly link to semantic and syntactic
understanding of utterances, including DP,CP. Our
empirical study presented in Table 3 reveals that
AMR-CoT unanimously achieves the best perfor-
mance, demonstrating its effectiveness in capturing
the diversity of input utterances when compared
with other structured representations.

Impact of Step Order To further understand
the importance of the designed CoF step or-
der, we conduct additional ablation studies on
3 different scenarios: (1) random ordering (step
3→1→2→4→5), (2) Fine-to-Coarse (FoC) order-
ing (step 1→3→4→2→5), and (3) CoF ordering

with hypothetical individual step removal. Table 4
demonstrates CoF logical ordering yields the best
performance with significant improvements on the
challenging Exact Match metrics (9.00 and 7.50
points of improvement over random and FoC re-
spectively). Random, FoC ordering together with
CoF ordering with missing individual steps ne-
glect the natural connections of problem-solving
from high-level (coarse-grained) to low-level (fine-
grained) tasks, leading to worse performance across
different metrics. For CoF-CoT, when step 1 or step
2 is removed (no AMR or intent information), we
observe the most significant performance decrease,
implying the essence of coarse-grained knowledge
for LLMs to solve the later sequential steps.

Impact of Conditioning The major advantage
of our multi-step reasoning is the ability to explic-
itly condition the prior predictions in later steps.
As observed in Table 4, conditioning prior knowl-
edge in multi-step reasoning improves the overall
performance of CoF-CoT across different metrics
with the most significant gain in Intent Accuracy
(+4.50%). This observation implies the importance
of conditioning the appropriate information on CoT
for an improved performance of LLMs under chal-
lenging zero-shot multi-domain settings.

6 Conclusion
In this work, we conduct a preliminary study of
LLMs’ capability in multi-grained NLU tasks of Di-
alogue systems. Moreover, motivated by CoT, we
propose a novel CoF-CoT approach aiming to break
down NLU tasks into multiple reasoning steps
where (1) LLMs can learn to acquire and lever-
age concepts from different granularities of NLU
tasks, (2) additional AMR structured representa-
tion can be integrated and leveraged throughout the
multi-step reasoning. We empirically demonstrate
the effectiveness of CoF-CoT in improving LLMs
capability in multi-grained NLU tasks under both
zero-shot and few-shot multi-domain settings.



Limitations

Our empirical study is restricted to English NLU
data. It is partially due to the existent English-
bias of Abstract Meaning Representation (AMR)
structure (Banarescu et al., 2013). We leave the
adaptation of the CoF-CoT to multilingual settings
(Nguyen and Rohrbaugh, 2019; Qin et al., 2022;
Nguyen et al., 2023b) as future directions for our
work.

Our work is empirically studied on the Flat Logic
Form representation. In other words, Logic Form
only includes one intent followed by a set of slot
sequences. There are two major rationales for our
empirical scope. Firstly, as the early preliminary
study on multi-grained NLU tasks which unify both
Semantic Parsing and NLU perspectives, we de-
sign a small and controllable scope for the experi-
ments. Secondly, as most NLU datasets including
MASSIVE (FitzGerald et al., 2022) are restricted
to single-intent utterances, Flat Logic Form is a
viable candidate reconciliating between traditional
NLU and Semantic Parsing evaluations. We leave
explorations on the more challenging Nested Logic
Form where utterances might contain multiple in-
tents for future work.
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Table 5: Details of MTOP and MASSIVE datasets

Dataset MTOP MASSIVE
# Domains 11 18

# Train Domains 8 14
# Test Domains 3 4

# Intents 117 60
# Slots 78 55

Sentence Length 6.14 ± 2.30 6.34 ± 2.94
# Slots per sample 1.87 ± 0.81 0.73 ± 0.63

A Connections between Semantic Parsing
and NLU Tasks via Logic Form

Logic Form not only captures the coarse-grained
intent labels and fine-grained slot labels of the ut-
terances but also encapsulates the implicit connec-
tions between slots and intents.

As observed in Table 7, Logic Form is con-
structed as the flattened representation of the depen-
dency structure between intents and slot sequences.
Semantic Frame constructed as intent type(s) fol-
lowed by a sequence of slot types can be directly
extracted from the Logic Form. In addition, via
the Logic Form, the coarse-grained intent label
CREATE_REMINDER, fine-grained slot TODO,
DATE_TIME labels together the respective slot
values (message Mike, at 7pm tonight) can all be
extracted and converted to appropriate format (i.e.
BIO format as the traditional sequence labeling
ground truths (Zhang et al., 2019)). Therefore,
Logic Form can be considered the unified label for-
mat to bridge the gap between Semantic Parsing (Li
et al., 2021; Xie et al., 2022) and traditional Intent
Detection and Slot Filling tasks in NLU systems
(Xia et al., 2020; Nguyen et al., 2020; Casanueva
et al., 2022).

B Dataset Details

We provide the details of MTOP and MASSIVE
datasets in Table 5. As compared to MASSIVE,
MTOP dataset not only contains more slot types
and intent types but also tends to cover more slot
types per sample in the Logic Form. This chal-
lenging characteristic explains the consistent lower
performance across all methods on MTOP when
compared to MASSIVE as observed in Section 5.

C Implementation Details

As the proposed step-by-step reasoning can be ap-
plied to any LLMs, our proposed method is LLM-
agnostic which is empirically studied in Appendix
F. For simplicity and consistency, in our main em-
pirical study, we leverage gpt-3.5-turbo from Ope-
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nAI as the base LLM model. Following (Wang
et al., 2022), we set the decoding temperature T=0.7
and number of outputs n=10.

As domain names provide essential clues for lan-
guage models in multi-domain settings for multi-
grained NLU tasks (Zhou et al., 2023), to safe-
guard the fairness in baseline comparisons, we
consistently include the domain name in the input
prompts for all baselines unless stated otherwise.
Specifically, the only exception is presented in Ta-
ble 4 for CoF-CoT(CoF order)-Conditioning.

For few-shot (i.e. k-shot) learning settings, we
randomly sample k examples and manually prepare
the necessary labels for different baseline variants.
We experiment with k=5 in our empirical study.

Domains of Demonstration Samples To repli-
cate a more realistic scenario where the domains
of k-shot demonstration samples are generally un-
known, we assume that k-shot demonstration sam-
ples come from different domains from the test
samples. The relaxation of constraints on the as-
sumption regarding the domain similarity between
demonstration samples and test samples allows for
broader applications and encourages LLMs to ac-
cumulate and extract the true semantic knowledge
from k-shot demonstrations and avoid overfitting
any specific domains. For completeness, we also
conduct additional empirical studies to compare
the FSL performance of CoF-CoT under both sce-
narios: (1) k demonstration samples are from the
same domain as test samples, (2) k demonstrations
are drawn from different domains from the test
samples. As observed in Table 6, additional con-
straint of similar domains between k-shot demon-
stration samples and test samples leads to improve-
ments in the evaluation performance across NLU
and Semantic Parsing tasks. This might be intuitive
since LLMs can extract domain-relevant informa-
tion from the given k domain-similar samples to
assist with inference process on test samples.

D Prompt Design

Prompts for individual steps of our CoF-CoT are
presented in Figure 3. Additional output samples
are also provided in Figure 4.

E Qualitative Case Study

We present additional Qualitative Case Study com-
paring the outputs between different baseline meth-
ods and our proposed CoF-CoT in Figure 5.

As observed in Figure 5, our CoF-CoT provides
the predictions closest to the ground truth while
other baselines struggle to (1) generate the correct
intent type (i.e. GET_DATE_TIME_EVENT in-
tent type from Direct Prompt in comparison with
GET_EVENT intent from ground truth) (2) iden-
tify the correct slot values (i.e. everything slot
value generated from CoT), (3) generate the cor-
rect slot type for the corresponding slot values.
(i.e. EVENT_TYPE slot type for music festivals
slot values from Complex-CoT instead of CATE-
GORY_EVENT slot type).

F LLM-Agnostic Capability

Our proposed CoF-CoT is LLM-agnostic since the
focus of the work is on the prompt design, which
can be applied to any LLMs. As most LLMs rely
on the high quality of the designed prompts, our
proposed CoF-CoT prompt design can be used as
input to any LLMs for zero-shot and in-context
learning settings. This is also similarly observed
in CoT (Wei et al., 2022), SC-CoT (Wang et al.,
2022) and other comparable CoT methods. For
further clarification, we report additional empirical
results of our proposed CoF-CoT applied to both
of the backbone PaLM (Chowdhery et al., 2022)
and GPT3.5 LLMs on the MTOP dataset under
both ZSL and FSL settings in Table 8. As observed
in Table 8, CoF-CoT prompting consistently out-
performs the two backbone LLMs across all NLU
and Semantic Parsing tasks, demonstrating both
the effectiveness and LLM-agnostic capability of
our proposed CoF-CoT.



Table 6: FSL Results of CoF-CoT with k-shot demonstration samples selected from different and similar domains in
comparison with domains of test samples on MTOP dataset.

Method Assumption Intent Acc Slot F1 Frame Acc Exact Match
CoF-CoT k domain-different samples 61.50 ± 4.93 30.12 ± 3.93 15.00 ±1.32 11.0 ± 1.61
CoF-CoT k domain-similar samples 70.00 ± 1.33 38.16 ± 5.42 20.50 ± 2.00 15.00 ± 1.00

Table 7: Sample utterance with its Logic Form under both Semantic Parsing and NLU tasks’ metrics. // denotes the
separation between tokens of the given utterance.

Metric Granularity Level Format Ground Truth
Input Sentence – – – Set // up// a // reminder // to // message // mike // at // 7pm // tonight

Logic Form – – – [IN:CREATE_REMINDER [SL:TODO: message mike] [SL:DATE_TIME: at 7pm tonight]]

NLU Tasks
Intent Accuracy Coarse-grained Intent Label IN:CREATE_REMINDER

Slot F1 Fine-grained BIO Slot Sequence O // O // O // O // O // B-TODO // I-TODO // B-DATE_TIME // I-DATE_TIME // I-DATE_TIME

Semantic Parsing Tasks
Frame Accuracy Both Logic Form IN:CREATE_REMINDER-SL:TODO-SL:DATE_TIME

Exact Match Both Logic Form [IN:CREATE_REMINDER [SL:TODO: message mike] [SL:DATE_TIME: at 7pm tonight]]

  

Step 1: Given the utterance and its domain, generate a single corresponding Abstract Meaning Representation (AMR) Graph in the Neo-Davidsonian format. The format involves :ARG and :op relations.

Utterance: {utterance}
Domain: {domain}

AMR Graph: {AMR}
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Step 2: Given the utterance and its domain, and its AMR Graph, select one of the following in the Intent Vocabulary as the intent type for the utterance.  

Utterance: {utterance}
Domain: {domain}
AMR Graph: {AMR}]
Intent Vocabulary: {intent_vocab}

Intent:{intent}
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Step 3: Based on the utterance, domain, its AMR Graph and its intent, generate key phrases for the utterance. Key phrases can be made up from multiple AMR concepts. 
Each word in key phrases must exist in the given utterance. Each word in the utterance appears in only one key phrase. Key phrases need to contain consecutive words in the given utterance. 
Key phrases do not need to cover all words in the utterance. Return a list of key phrases separated by commas.

Utterance: {utterance}
Domain: {domain}
AMR Graph: {AMR}
Intent: {intent}

Key phrases: {key_phrase}
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Step 4:  Given the slot vocabulary, utterance, its domain, its AMR Graph and its intent, identify the corresponding slot type as one of the types in the slot vocabulary for each key phrase. 
Return the list of key phrases and their corresponding slot types in the following format: (key_phrase, slot_type) separated by commas. 
If none of the slot types in the vocabulary fits, return the slot type as O.

Slot Vocabulary: {slot_vocab}
Utterance: {utterance}
Domain: {domain}
AMR Graph: {AMR}
Intent: {intent}

(Key phrase, Slot Type) pairs: {slot_pair}
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Step 5:  Given the utterance, domain, its intent type, its slot type and slot value pairs in (slot_type, slot_value) format, 
generate logic form of the utterance in the format of [IN:___ [SL:____] [SL:___]] where IN: is followed by an intent type and SL: is followed by a slot type and slot value pair separated by white space. 
The number of [SL: ] is unlimited. The number of [IN: ] is limited to 1.

Utterance: {utterance}
Domain: {domain}
Intent: {intent}
(Key phrase, Slot Type) pairs: {slot_pair}

Logic Form: {lf}

Figure 3: CoF-CoT Prompt Design Template. {.} denotes the placeholder argument.

Table 8: Experimental results on MTOP dataset under zero-shot few-shot multi-domain settings with different LLM
backbone architectures (PaLM (Chowdhery et al., 2022) and GPT3.5).

MTOP
Model Zero-shot Few-shot

NLU Semantic Parsing NLU Semantic Parsing
Intent Acc Slot F1 Frame Acc Exact Match Intent Acc Slot F1 Frame Acc Exact Match

PaLM 16.67 ± 2.52 7.24 ± 1.00 3.17 ± 0.76 1.17 ± 0.76 48.83 ± 4.54 14.24 ± 1.58 4.17 ± 2.02 2.33 ± 0.76
PaLM + CoF-CoT 42.33 ± 3.33 13.73± 2.88 4.01 ± 0.15 3.50 ± 1.32 57.17 ± 3.79 21.47 ± 3.79 10.33 ± 3.06 6.67 ± 2.75

GPT3.5 31.50 ± 1.80 21.84 ± 2.83 8.33 ± 1.44 6.00 ± 1.32 51.33 ± 3.40 28.35 ± 3.24 11.00 ± 1.80 8.33 ± 1.00
GPT3.5 + CoF-CoT 57.67 ± 2.75 23.47 ± 4.09 14.33 ± 1.52 9.00 ± 1.00 61.50 ± 4.93 30.12 ± 3.93 15.00 ± 1.32 11.00 ± 1.61



  

Sample 1:
{utterance} =  show me dates for music festivals in 2018
{ground_truth} = [IN:GET_EVENT [SL:CATEGORY_EVENT music festivals ] [SL:DATE_TIME in 2018 ]]
{domain} = event

{AMR} = (c/ show-01
    :ARG1 (m /me)
    :ARG2 (d/ date-entity
       :mod (f/ music-festival)
        :year 2018))
{intent} = GET_EVENT
{key phrase} = Show me, dates, music fesitval, in 2018
{Key phrase, Slot Type} = (Show me: O), (dates: O), (music festival: CATEGORY_EVENT), (in 2018: DATE_TIME)
{lf} = [IN:GET_EVENT [SL:CATEGORY_EVENT music festivals ] [SL:DATE_TIME in 2018 ]]
---------------------------------------------------------------------------------------------------------------------------------------------------------------
Sample 2:
{utterance} =  Set my timer for my tabata workout.
{ground_truth} = [IN:CREATE_TIMER [SL:METHOD_TIMER timer ] [SL:TIMER_NAME tabata workout ] ]
{domain} = timer

{AMR} = (set-01
     :ARG0 (I)
     :ARG1 (timer-02
          :ARG0 (my-03)
              :op1 (workout-05
                   :ARG0 (my-04)
                   :ARG1 (tabata-06))))
{intent} = CREATE_TIMER
{key phrase} = Set my timer, tabata workout
{Key phrase, Slot Type} = (Set my timer: METHOD_TIMER), (tabata workout: TIMER_NAME)
{lf} = [IN:CREATE_TIMER [SL:METHOD_TIMER Set my timer ] [SL:TIMER_NAME tabata workout ]]

Figure 4: Sample output from our CoF-CoT. {.} denotes the placeholder corresponding to template in Figure 3.

  

Utterance 1: Show me dates for music festivals in 2018
Ground Truth:        [IN:GET_EVENT [SL:CATEGORY_EVENT music festivals ] [SL:DATE_TIME in 2018 ]]
--------------------------------------------------------------------------------------------------------------------------------------------------
Direct Prompt: [IN:GET_DATE_TIME_EVENT [SL:TITLE_EVENT music festivals ] [SL:DATE_TIME:2018 ]]
CoT: [IN:GET_EVENT [SL:DATE_TIME 2018 ] [SL:TITLE_EVENT music festivals ]]
SC-CoT: [IN:GET_EVENT [SL:DATE_TIME 2018 ] [SL:TITLE_EVENT music festivals ]]
Complex-CoT: IN:GET_DATE_TIME_EVENT [SL:EVENT_TYPE music festivals ] [SL:EVENT_YEAR 2018 ]]
--------------------------------------------------------------------------------------------------------------------------------------------------
CoF-CoT: [IN:GET_EVENT [SL:CATEGORY_EVENT music festivals ] [SL:DATE_TIME in 2018 ]] 

Utterance 2: I want to know everything that breaks about the dam breaking in california
Ground Truth:        [IN:NEWS_QUERY [SL:PLACE_NAME california ]]
--------------------------------------------------------------------------------------------------------------------------------------------------
Direct Prompt: [IN: WEATHER_QUERY] [SL: PLACE_NAME california ] [SL: EVENT_NAME dam breaking ]]
CoT: IN: NEWS_QUERY [SL: WEATHER_DESCRIPTOR everything ] [SL: PLACE_NAME california ]]
SC-CoT: [IN:NEWS_QUERY [SL:NEWS_TOPIC dam breaking in california ]]
Complex-CoT: [IN:NEWS_QUERY [SL:NEWS_TOPIC dam breaking in california ]]
--------------------------------------------------------------------------------------------------------------------------------------------------
CoF-CoT: [IN: NEWS_QUERY [SL: PLACE_NAME california ]] 

Figure 5: Qualitative Case Study among baseline variants and the proposed CoF-CoT. Ground Truth is shown in red.


