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ABSTRACT

This paper addresses the challenges in multi-target domain adaptive segmenta-
tion which aims at learning a single model that adapts to multiple diverse target
domains. Existing methods show limited performance as they only consider the
difference in visual appearance (style) while ignoring the contextual variations
among multiple target domains. In contrast, we propose a novel approach termed
Masking-augmented Collaborative Domain Congregation (MacDC) to handle the
style gap and contextual gap altogether. The proposed MacDC comprises two key
parts: collaborative domain congregation (CDC) and multi-context masking con-
sistency (MCMC). Our CDC handles the style and contextual gaps among target
domains by data mixing, which generates image-level and region-level intermedi-
ate domains among target domains. To further strengthen contextual alignment,
our MCMC applies a masking-based self-supervised augmentation consistency
that enforces the model’s understanding of diverse contexts together. MacDC di-
rectly learns a single model for multi-target domain adaptation without requir-
ing multiple network training and subsequent distillation. Despite its simplicity,
MacDC shows efficacy in mitigating the style and contextual gap among multiple
target domains and demonstrates superior performance on multi-target domain
adaptation for segmentation benchmarks compared to existing state-of-the-art ap-
proaches.

1 INTRODUCTION

Recent advancements in semantic segmentation owe much to large-scale datasets with manual an-
notations, which prove costly and time-intensive. One alternative is to utilize either existing labeled
datasets (Cordts et al., 2016; Varma et al., 2019) or synthetic datasets (Richter et al., 2016; Ros
et al., 2016) capable of automatic annotation generation. Nevertheless, the model trained on the
source dataset often experiences a performance degradation when applied to the target dataset due
to the source-target gap. Unsupervised domain adaptation (UDA) has been introduced to handle
this issue in semantic segmentation, typically focusing on one target domain. The most recent UDA
approaches employ self-supervised augmentation consistency, such as ClassMix (Tranheden et al.,
2021), to align the source-target gap. Despite this, these UDA methods are tailored for scenarios
with a single target domain, which can frequently be deviated from in practical applications. For
instance, the model deployed in autonomous driving systems has to be generalized in diverse target
domains. A significant gap arises within these domains, referred to as the target-target gap, due to
different visual appearances and scene contexts caused by variations in weather, driving scenes, and
lighting conditions.

Multi-target domain adaptation (MTDA) aims to adapt a single model to multiple target domains
by mitigating the source-target gap and the target-target gap altogether. Compared to the extensive
research in UDA, MTDA is less investigated with only a few studies on semantic segmentation
(Saporta et al., 2021; Isobe et al., 2021; Lee et al., 2022; Zhang et al., 2023). Existing MTDA
for semantic segmentation methods align the target-target gap by employing either explicit style
transfer in image space (Isobe et al., 2021; Lee et al., 2022) or implicit style transfer in feature space
(Zhang et al., 2023). However, the target-target gap does not solely arise from differences in visual
appearance (style) but also from contextual variations that are currently ignored by existing MTDA
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Figure 1: Illustration of the style gap and the con-
textual gap among the target domains.

Figure 2: The performance comparison of
CoaST, NDC, and MacDC.

approaches. For instance, Fig. 1 illustrates two target images from the Cityscapes (Cordts et al.,
2016) and the IDD dataset (Varma et al., 2019), respectively. The first image (from Cityscapes)
is collected in an urban scene with organized structures and concrete roads, whereas the second
image (from IDD) is collected in a rural scene with disorganized structures and unpaved roads. The
difference in terms of the buildings and roads may result in a significant contextual gap among these
images.

In this work, we present a novel MTDA framework named masking-augmented collaborative do-
main congregation (MacDC), which aims to mitigate the style gap and the contextual gap among
the multiple target domains altogether. The proposed MacDC framework learns robust domain in-
variant features by utilizing self-supervised augmentation consistency on multiple target domains.
It consists of two key components: collaborative domain congregation (CDC) and multi-context
masking consistency (MCMC).

CDC. Collaborative domain Congregation (CDC) aims to align the style gap and the contextual
gap by generating intermediate domains from the target domains. To bridge the style gap, CDC
employs an image-level domain interpolation to enable the interchange of image styles for multiple
target domains. Nevertheless, the image-level domain interpolation is unable to effectively handle
the contextual gap among the target domains. To cope with it, CDC applies region-level domain
interpolation to mingle diverse scene contexts from different target domains. The resulting images
by the region-level domain interpolation facilitate the model in exploring a more diverse range of
scene contexts.

MCMC. To effectively promote the alignment of the contextual gap among target domains, we
present multi-context masking consistency (MCMC). Previously, Hoyer et al. (2023) utilizes mask-
ing-based self-supervised augmentation consistency to learn image contexts, by enforcing predic-
tion consistency between a masked image and its corresponding complete image. The model is then
prompted to make semantic predictions of the masked-out patches with reference to their surround-
ing context within the image. We extend it and propose MCMC for the interpolated images mingled
with different scene contexts from the target domains. MCMC effectively reinforces the model’s
learning of the diverse contexts from different target domains together.

Our Contribution. (1) To the best of our knowledge, we are the first to handle the contextual
gap among the multiple target domains. (2) We propose a novel MTDA framework called MacDC
which contains two key parts namely CDC and MCMC, to effectively mitigate both the style gap
and the contextual gap altogether for MTDA in semantic segmnetation. (3) Despite its simplicity,
our MacDC outperforms existing state-of-the-art approaches on MTDA for semantic segmentation
benchmarks.

2 RELATED WORK

Unsupervised Domain Adaptation with Masking. UDA has been extensively studied in various
computer vision tasks such as image classification (Zhang et al., 2018; Prabhu et al., 2021; Pan et al.,
2019), object detection (Wu et al., 2021; Li et al., 2022a;b), and semantic segmentation (Vu et al.,
2019; Pan et al., 2020; Hoyer et al., 2022). Existing UDA approaches for semantic segmentation
adopt adversarial training, self-training, and self-supervised augmentation consistency. In adver-
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sarial training, the model is optimized with a discriminator to learn domain-invariant features by
aligning the gap in the input space (Hoffman et al., 2018; Pan et al., 2022), feature space (Vu et al.,
2019), and output space (Tsai et al., 2018; Pan et al., 2020). Self-training involves a training loop
that relies on target pseudo-labels generated with confidence thresholds (Shin et al., 2020) or cate-
gory prototypes (Zhang et al., 2021). To enhance the self-training stability, (Tranheden et al., 2021)
present a mixing-based self-supervised augmentation consistency named ClassMix. (Hoyer et al.,
2023) exploits a masking-based self-supervised augmentation consistency to improve the model’s
contextual understanding of the target domain. Nevertheless, these approaches are restricted to sce-
narios with a single target domain. In this paper, we consider the multi-target scenario, where the
model is trained to adapt to multiple target domains.

Multi-target Domain Adaptation (MTDA). MTDA proposes to adapt a single model to multiple
target domains altogether. In comparison to UDA, MTDA has received relatively little attention,
with few studies on image classification (Yu et al., 2018; Nguyen-Meidine et al., 2021), object
detection (Kiran et al., 2022), and semantic segmentation (Saporta et al., 2021; Isobe et al., 2021;
Lee et al., 2022; Zhang et al., 2023). Currently, MTDA methods for semantic segmentation typically
involve an initial stage of learning multiple teacher networks using adversarial training followed
by distilling knowledge to a single student network. Saporta et al. (2021) introduce an MTDA
framework that employs adversarial training on a generator and multiple discriminators to adapt to
different target domains. In addition, Isobe et al. (2021) and Lee et al. (2022) combine adversarial
training with explicit style transfer in the image space to align the style discrepancies among the
target domains. Zhang et al. (2023) further presents implicit style transfer in feature space to improve
training robustness. Nonetheless, existing MTDA approaches concentrate solely on the style gap
while ignoring the contextual variations among multiple target domains. We present a new MTDA
framework using self-supervised augmentation consistency to mitigate both the style gap and the
contextual gap across target domains altogether.

Domain Interpolation. Compared to directly adapting to the target domain, existing UDA methods
attempt to generate intermediate domains for a smoother adaptation process from the source domain
to the target domain. Gong et al. (2019) proposes to generate a flow of numerous intermediate
domains based on the image styles. Tranheden et al. (2021) employs a class-based data mixing
technique to generate intermediate domains by mingling the data from the source and the target
domain. Chen et al. (2022) adopts several data mixing techniques together to generate intermediate
domains. However, these works are designed for domain interpolation between a source and a target
domain. In this work, we apply domain interpolation to generate intermediate domains among
multiple target domains, which is used to mitigate the style gap and the contextual gap in the MTDA
setting.

3 METHODOLOGY

In this section, we present a new framework named masking-augmented collaborative domain con-
gregation (MacDC) for MTDA in semantic segmentation. First, we introduce the MTDA setting
(Sec. 3.1) and present naive domain congregation (Sec. 3.2). Then, we propose collaborative do-
main congregation to bridge the style gap and the contextual gap among target domains (Sec. 3.3).
Furthermore, we present multi-contextual masking consistency to further mitigate the contextual
gap in target domains (Sec. 3.4). Our loss function to optimize MacDC is shown in the last.

3.1 PROBLEM DEFINITION

The task of multi-target domain adaptation (MTDA) is learning a single model to adapt from a
source domain to multiple target domains. Let the source domain be denoted as S = {xSn, ySn}N

S

n=1
which contains NS labeled instances. Each instance consists of an RGB image xS ∈ RH,W,3 and
the corresponding one-hot ground truth label yS ∈ BH,W,C . In addition, there are K unlabeled
target domains {T1,T2, . . . ,TK}, where the target domain Ti = {xTi

n }NTi
n=1 contains NTi unlabeled

images, and xTi ∈ RH′,W ′,3 denotes an RGB image from Ti. Note that C represents the total
number of categories, (H,W ) and (H ′,W ′) represent the height and the width of the source and
the target images, respectively. The target-target gap exist among these target domains due to the
style and contextual discrepancies.
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Figure 3: Overview of the proposed MacDC framework. Our MacDC framework consists of two
novel parts: collaborative domain congregation and multi-context masking consistency. During
training, the weights of the EMA teacher gθ′ get updated from the weights of the segmentation
network gθ. After training, gθ is used for evaluation on multiple target domains. Note that ⊛ is the
operator of data augmentation using ClassMix.

3.2 NAIVE DOMAIN CONGREGATION

Given the unlabeled target domains {T1,T2, . . . ,TK}, naive domain congregation (NDC) is to sim-
ply merge the data of all the target domains together into a target superdomain T† which is formu-
lated by

T† =

K⋃
i=1

Ti. (1)

By implementing NDC, the MTDA setting is transformed into a standard unsupervised domain
adaptation (UDA) setting: one source and one target domain. Intuitively, it is possible to apply
existing UDA approaches to learn a single model adapting from S to T†. Tranheden et al. (2021)
present a mixing-based self-supervised augmentation consistency, named ClassMix, as a simple and
effective method for UDA in semantic segmentation. Inspired by this, we aim to directly learn a
single MTDA model that can adapt from S to T† with ClassMix.

Given a source image and its corresponding label {xS, yS}, we train the segmentation network gθ
with a supervised loss LS defined by

LS = C(gθ(xS), yS),

C(ŷS, yS) = −
H,W∑
h,w

C∑
c

yS(h,w,c) log(ŷ
S
(h,w,c)),

(2)

where C represents the cross-entropy loss function. Given a randomly sampled image xTi from Ti,
we also generate it’s semantic segmentation map ŷTi = gθ′(xTi), where gθ′ is an EMA teacher of
gθ and its weights θ′ were updated by θ with EMA (Tarvainen & Valpola, 2017). Then, we take
{xS, yS, xTi , ŷTi} as the input and send them into classmix to generate the augmented image xTi

A

and the corresponding pseudo-label ŷTi

A . These augmented images along with the corresponding
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pseudo-labels are used to train gθ with

LTi

A = F
(
gθ(x

Ti

A )
)
C
(
gθ(x

Ti

A ), ŷTi

A

)
, (3)

where F(·) is to evaluate the quality of the segmentation predictions. Following Tranheden et al.
(2021), F(·) is defined by the ratio of pixel predictions surpassing a pre-defined threshold ξ

F
(
y) =

∑H,W
h,w 1{maxc′ y(h,w,c′) > ξ}

H ·W
, (4)

where 1{·} is an indicator function. The loss function L† for training NDC is denoted by

L† = LS + λA

K∑
i

LTi

A . (5)

We compare the performance of NDC with the existing best MTDA for segmentation method CoaST
(Zhang et al., 2023) under the MTDA benchmark: GTA5 → Cityscapes + IDD in Fig. 2. Despite
its simpleness, NDC presents 49.7% mIoU on IDD and 53.0% mIoU on Cityscapes, outperforming
CoaST on both two target domains shown in Fig. 2. However, there exists a performance gap be-
tween Cityscapes and IDD in NDC, as NDC does not consider the style and contextual discrepancies
among the target domains (called the style gap and contextual gap). We postulate that mitigating
the style and contextual gap would further contribute to the model’s effective adaptation to multiple
target domains.

3.3 COLLABORATIVE DOMAIN CONGREGATION

To bridge the style gap and the contextual gap among target domains, we present collaborative do-
main congregation (CDC) to connect target domains by generating intermediate domains among
themselves. Specifically, our CDC incorporates image-level interpolation to bridge the style gap
and region-level domain interpolation to alleviate the contextual gap simultaneously. On this ba-
sis, a target superdomain T‡ is generated by assembling all the target domains and the generated
intermediate domains.

Image-level Domain Interpolation. To bridge the style gap, our image-level domain interpola-
tion adopts style transfer to create the intermediate domains by blending different target domain
styles. Common style transfer methods for image-level domain interpolation are categorized into
GAN-based methods (Lee et al., 2021; Zhu et al., 2017) and ColorTransfer (Reinhard et al., 2001).
Regardless of the technical differences of these methods, we want to present the image-level do-
main interpolation in a uniform formulation. Suppose we have two samples xTi and xTi which are
randomly selected from Tj and Tj , our image-level domain interpolation is represented by

x
Ti,j

I = G(xTi , xTj ). (6)

Here G(xTi , xTj ) represents the translation function from Ti to Tj , and xTi,j

I is the translated image
that shares the content of xTi and the style of xTj . Similarly, xTj,i

I is the translated image that
shares the content of xTj and the style of xTi . Based on the translated images, our image-level
domain interpolation generates the image-level intermediate domains TI

i,j = {xTi,j

I,n }NTi
n=1 and TI

j,i =

{xTj,i

I,n }N
Tj

n=1 between Ti and Tj .

Region-level Domain Interpolation. In spite of the intermediate domains generated by image-
level domain interpolation, a significant target-target gap still exists due to the contextual discrep-
ancies from target domains. For example, one target domain contains urban street scenes with
well-structured buildings and paved roads, while another target domain might include rural scenes
with unstructured houses and dirt roads. To bridge the contextual gap among the target domains,
our region-level domain interpolation generates the intermediate domains by utilizing data mixing
on different target image regions. The common data mixing approaches for region-level domain
interpolation include CowMix (French et al., 2020), FMix (Harris et al., 2020), and CutMix (Yun
et al., 2019). Regardless of their technical differences, let R indicate a binary matrix designating
which pixel to copy from one target domain and paste onto the other target domain, and let 1 denote
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the mask which is filled with one and shares the same spatial size with R. Given the data xTi and
xTj randomly sampled from Ti and Tj , we have

x
Ti,j

R = R⊙ xTi + (1−R)⊙ xTj , (7)

where xTi,j

R is the augmented data by mixing the regions of images randomly selected from Ti and
Tj , and ⊙ is Hadmard product. The pseudo labels of xTi,j

R represented by ŷTi,j

R is formulated by

ŷ
Ti,j

R = R⊙ ŷTi + (1−R)⊙ ŷTj , (8)

where ŷTi and ŷTj are the pseudo labels of xTi and xTj generated from the EMA teacher gθ′ .
Based on the mixed images, our region-level domain interpolation builds a region-level intermediate
domain TR

i,j = {xTi,j

R,n}N
Ti,j

n=1 between Ti and Tj .

With the help of image-level domain interpolation and region-level domain interpolation, our CDC
congregates all the unlabeled target domains and the generated intermediate domains into a target
superdomain T‡ by

T‡ =

K⋃
1≤(i,j)≤K,i̸=j

(
Ti ∪ TI

i,j ∪ TR
i,j

)
. (9)

To bridge the style gap and contextual gap among target domains, we apply mixing-based self-
supervised augmentation consistency to optimize the network gθ with the losses formulated by

LTi,j

I = F
(
gθ(x

Ti,j

I )
)
C
(
gθ(x

Ti,j

I ), ŷTi
)
,

LTi,j

R = F
(
gθ(x

Ti,j

R )
)
C(gθ(x

Ti,j

R ), ŷ
Ti,j

R ).
(10)

3.4 MULTI-CONTEXT MASKING CONSISTENCY

Despite training with mixing-based self-supervised augmentation consistency losses in Eq. 10, we
want to enforce further alignment of the contextual gap among target domains. Hoyer et al. (2023)
propose to improve the model’s learning of image contexts with masking-based self-supervised aug-
mentation consistency, which enforces consistency between the prediction of a masked image and its
corresponding complete image. In this way, the model is encouraged to make semantic predictions
of the masked patches based on their contextual surroundings within the image. We extend this idea
and propose multi-contextual masking consistency (MCMC) to align the contextual gap among the
target domains. Our MCMC applies masking consistency onto TR

i,j to reinforce the model’s learning
of the diverse contexts of different target domains together.

Given a mixed image xTi,j

R , we randomly mask out some patches of xTi,j

R with a patch mask P. The
patch mask is generated by using a uniform distribution with

P(h,w) = 1{µ > η},
αψ ≤ h < (α+ 1)ψ, βψ ≤ w < (β + 1)ψ,

(11)

where µ is sampled from a uniform distribution U(0, 1), η is the masking ratio, 1 is the indicator
function, ψ is the patch size, and α ∈ [0, . . . ,H/ψ − 1] and β ∈ [0, . . . ,W/ψ − 1] represent the
patch indices. Then we conduct element-wise multiplication of mask and image to generate the
masked image xTi,j

M by
x
Ti,j

M = P⊙ x
Ti,j

R . (12)

The segmentation network gθ takes xTi,j

M as input and is enforced to generate the consistent predic-
tions with the pseudo label ŷTi,j

R (Eq. 8). The loss function LTi,j

M for masking-based self-supervised
augmentation consistency is denoted as

LTi,j

M = F
(
gθ(x

Ti,j

M )
)
C
(
gθ(x

Ti,j

M ), ŷ
Ti,j

R

)
(13)

In this way, gθ is encouraged to learn the diverse contexts from Ti and Tj together to predict the
correct labels for the masked out patches.

We present an overview of our MacDC framework in Fig. 3. The final loss function L‡ for training
MacDC is formulated by

L‡ = LS +

K∑
i,j(i̸=j)

(λALTi

A + λIL
Ti,j

I + λRL
Ti,j

R + λMLTi,j

M ). (14)
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Table 1: Comparison of syn-to-real MTDA performance under 19 categories on adapting from GTA5
(G) to Cityscapes (C) and IDD (I).

GTA5 −→ Cityscapes + IDD

Method Trg Road Side Buil Wall Fence Pole TL TS Vege Terr Sky Pers Rider Car Truck Bus Train Motor Bike mIoU Avg

MTKT C 88.8 23.8 81.5 27.7 27.3 31.7 33.2 22.9 83.1 27.0 76.4 58.5 28.9 84.3 30.0 36.8 0.3 27.7 33.1 43.3 43.5I 94.1 24.4 66.1 31.3 22.0 25.4 9.3 26.7 80.0 31.4 93.5 48.7 43.8 71.4 49.4 28.5 0.0 48.7 34.3 43.6

CCL C 90.3 34.0 82.5 26.2 26.6 33.6 35.4 21.5 84.7 39.8 81.1 58.4 25.8 84.5 31.4 45.4 0.0 29.9 24.7 45.0 45.5I 95.0 30.5 65.6 29.4 23.4 29.2 12.0 37.8 77.3 31.3 91.9 52.4 48.3 74.9 50.1 36.6 0.0 56.1 32.4 46.0

ADAS C - - - - - - - - - - - - - - - - - - - 45.8 46.1I - - - - - - - - - - - - - - - - - - - 46.3

CoaST C 81.7 38.3 71.0 33.3 30.7 35.1 38.2 37.6 86.4 46.9 81.9 63.4 27.4 84.5 29.4 45.6 0.3 32.6 31.3 47.1 48.2I 85.7 36.1 65.1 33.2 23.7 32.8 19.0 62.9 82.5 29.5 91.8 52.1 55.3 83.4 62.9 46.1 0.0 55.5 18.5 49.3

C 94.8 62.1 87.2 36.0 33.1 38.3 48.7 48.9 86.9 39.9 88.9 61.6 16.4 89.4 57.6 63.1 0.0 15.0 39.6 53.0Ours (NDC) I 95.5 48.6 59.9 37.1 25.5 21.6 16.8 60.2 80.6 43.8 93.8 48.7 47.8 69.8 66.8 50.1 0.0 59.7 17.8 49.7 51.4

C 95.3 70.3 89.2 39.4 35.0 38.1 53.2 50.3 87.8 40.2 90.2 71.2 46.4 91.4 61.0 67.3 0.0 18.7 45.2 57.4Ours (MacDC) I 97.2 61.9 67.8 45.5 26.8 28.6 20.4 71.2 82.8 44.3 92.7 58.5 56.8 75.2 78.3 64.5 0.0 64.4 13.6 55.3 56.3

Table 2: Comparison of syn-to-real MTDA performance un-
der 7 categories on adapting from GTA5 (5) to Cityscapes
(G) and IDD (I).

GTA5 −→ Cityscapes + IDD

Method Trg Flat Const Obje Nature Sky Human vehicle mIoU Avg

MTKT C 94.5 82.0 23.7 80.1 84.0 51.0 77.6 70.4 68.2I 91.4 56.6 13.2 77.3 91.4 51.4 79.9 65.9

ADAS C 95.1 82.6 39.8 84.6 81.2 63.6 80.7 75.4 71.2I 90.5 63.0 22.2 73.7 87.9 54.3 76.9 66.9

CoaST C 94.7 82.9 25.4 82.2 88.2 54.4 80.5 72.6 71.3I 94.2 61.5 20.0 82.7 93.4 55.5 82.6 70.0

C 94.8 84.8 31.3 85.5 81.6 63.2 84.7 75.1Ours (NDC) I 94.1 60.7 21.7 82.8 90.4 57.4 85.1 70.3 72.7

C 95.4 85.7 33.8 88.4 81.5 68.7 89.4 77.6Ours (MacDC) I 94.3 62.4 24.9 86.3 92.1 66.2 88.3 73.5 75.5

Table 3: Summary of real-to-real
MTDA performance under 19 cat-
egories with Cityscapes (C), IDD
(I), and Mapillary (M).

Methods mIoU mIoU
C I M Avg

CCL - 53.6 51.4 52.5
ADAS - 48.3 53.6 50.5
CoaST - 50.8 52.7 51.7

C
�

I,M

Ours (MacDC) - 56.2 55.4 55.8
CCL 46.8 - 49.8 48.3

ADAS 49.1 - 50.8 50.0
CoaST 48.9 - 53.4 51.2

I�
C

,M

Ours (MacDC) 54.3 - 55.6 55.0
CCL 58.5 54.1 - 56.3

ADAS 58.7 54.1 - 56.4
CoaST 59.3 57.4 - 58.3

M
�

C
,I

Ours (MacDC) 63.3 59.4 - 61.4

4 EXPERIMENTS

Datasets. To ensure a fair comparison with existing MTDA approaches (Zhang et al., 2023; Isobe
et al., 2021; Lee et al., 2022; Saporta et al., 2021), we conduct experiments involving four datasets
with distinct scene structures and visual appearances. The datasets include one synthetic dataset
used as the source domain and three real-world datasets used as the target domains. GTA5 (Richter
et al., 2016) is a synthetic dataset of densely annotated driving images from a video game simulator.
Cityscapes (Cordts et al., 2016) is an urban driving data set from Europe in clear weather. Mapillary
(Neuhold et al., 2017) is a large-scale driving scene dataset collected from multiple regions around
the world under various weather, season and daytime conditions. IDD (Varma et al., 2019) is an
Indian driving scene dataset. Its scene structures differ from those in Mapillary and Cityscapes,
resulting in unique challenges in less structured driving environments.

Benchmarks. We compare our proposed MacDC with existing MTDA approaches including MTKT
(Saporta et al., 2021), CCL (Isobe et al., 2021), ADAS (Lee et al., 2022), and CoaST (Zhang et al.,
2023). We present two MTDA schemes including synthetic-to-real adaptation and real-to-real adap-
tation. Following the setting of existing MTDA approaches, we conduct experiments under two cat-
egory settings: 19 categories and 7 categories. The performance in each target domain is presented
in the metric of mIoU (%). The Avg is to take the average over the multiple target domains’ mIoU.

Implementation Details. Like other MTDA approaches, our model leverages a DeepLab-v2 net-
work (Chen et al., 2017) with ResNet101 backbone (He et al., 2016). We optimize the model using
SGD with a weight decay of 5×10−4 and a momentum of 0.9. The initial learning rate is 2.4×10−4.
We set the quality evaluation threshold ξ = 0.986. The source images and target images are first
resized to 1280×720 and 1024×512 respectively, and then cropped into 512×512. We adopt color
augmentation including brightness, blur, saturation, and contrast. For the multi-contextual masking
consistency, we set a patch size ψ = 64 and a masking ratio of η = 0.7. The training process takes
40, 000 iterations with a batch size of 4. The loss weights λA, λI , λR, λM are all set with 1. Our
model is trained on a GeForce RTX 3090 GPU.
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Table 4: Summary of syn-to-real MTDA per-
formance under 19 categories with GTA5 (G),
Cityscapes (C), IDD (I), and Mapillary (M).

Methods mIoU mIoU
C I M Avg

CCL 45.0 46.0 - 45.5
ADAS 45.8 46.3 - 46.1
CoaST 47.1 49.3 - 48.2

G
�

C
,I

Ours (MacDC) 57.4 55.3 - 56.3
CCL 45.1 - 48.8 47.0

ADAS 45.8 - 49.2 47.5
CoaST 47.9 - 51.8 49.9

G
�

C
,M

Ours (MacDC) 57.1 - 56.4 56.8
CCL - 44.5 46.4 45.5

ADAS - 46.1 47.6 46.9
CoaST - 49.5 51.6 50.6

G
�

I,M

Ours (MacDC) - 53.6 55.3 54.4
CCL 46.7 47.0 49.9 47.9

ADAS 46.9 47.7 51.1 48.6
CoaST 47.2 48.7 51.4 49.1

G
�

C
,I,

M

Ours (MacDC) 56.2 53.3 54.6 54.7

Table 5: Ablation study on image-level
domain interpolation methods.

Method mIoU

NDC 51.4
NDC + CycleGAN (Ti ↔ Tj) 52.9 ± 0.5
NDC + ColorTransfer (Ti ↔ Tj) 53.3 ± 1.1

Table 6: Ablation study on region-level
domain interpolation methods.

Method mIoU

NDC 51.4
NDC + CowMix (Ti ↔ Tj) 52.2 ± 0.2
NDC + FMix (Ti ↔ Tj) 51.8 ± 0.3
NDC + CutMix (Ti ↔ Tj) 52.5 ± 0.3

Table 7: Ablation study of each component of MacDC on
adapting GTA5 to Cityscapes and IDD in 19 categories.

Configuration LTi

A LTi,j

I LTi,j

R LTi,j

M Avg Gain

Naive Domain Congregation (NDC) ✓ 51.4 -
NDC + Image-level Domain Interp. ✓ ✓ 53.3 +1.9
NDC + Region-level Domain Interp. ✓ ✓ 52.5 +1.2
NDC + Multi-context. Mask. Consis. ✓ ✓ ✓ 54.5 +3.2
Collabora. Domain Congregation ✓ ✓ ✓ 53.7 +2.4
Full Framework ✓ ✓ ✓ ✓ 56.3 +4.9

Table 8: Training time and mem-
ory consumption analysis.

Method Train Time GPU

MTKT 39.7 hr 13.2 GB
CoaST 105.3 hr 17.5 GB
Ours (NDC) 32.1 hr 16.3 GB
Ours (MacDC) 32.5 hr 16.8 GB

4.1 COMPARISON WITH STATE-OF-THE-ART METHODS

Synthetic-to-Real Adaptation. We conduct experiments in the setting of synthetic-to-real adapta-
tion setting following the existing MTDA methods. The source domain is GTA5, and the multiple
target domains are Cityscapes, IDD, and Mapillary. The results are presented in a comprehensive
comparison with existing MTDA methods on adapting GTA5 to Cityscapes and IDD under 19 cat-
egories in Table 1 and 7 categories in Table 2. Note that Avg is to take the average over all target
domains’ mIoU. Despite its simplicity, our NDC outperforms state-of-the-art MTDA methods. This
is owing to the usage of ClassMix as data augmentation in NDC in comparison to adversarial training
in existing MTDA methods. In addition, our MacDC is present to mitigate the style and contextual
gaps among target domains and further improve the performance of NDC. We further summarize
the synthetic-to-real MTDA performance with various combinations of target domains in Table 4.
Our MacDC demonstrates persistent superior performance against existing methods. The qualitative
results of our MacDC are shown in Fig. 4.

Real-to-Real Adaptation. We further study the scalability of our approach through the setting of
real-to-real adaptation scheme. Given the three datasets Cityscapes, IDD, and Mapillary, we take
one as the source domain and the other two as the target domains. We conduct experiments on
real-to-real adaptation in 19 categories and summarize the results in Table 3. Note that Avg is to
take the average over all target domains’ mIoU. Overall the cases in real-to-real adaptation, our
MacDC advances the performance in comparison with existing methods CCL, ADAS, and CoaST.
It shows that our MacDC as a simple and effective MTDA approach, can be used in not only the
synthetic-to-real but also the real-to-real adaptation setting.

4.2 ABLATION STUDY

NDC. We compare the performance of naive domain congregation (NDC) with state-of-the-art
MTDA methods. The ablation study is conducted on GTA5 to Cityscapes and IDD. NDC out-
performs current best MTDA CoaST by 3.2% mIoU in 19 categories (Table 1) and 1.4% mIoU in 7
categories (Table 2). For the MTDA semantic segmentation task, this ablation study indicates that
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Figure 4: Qualitative results of CoaST and our MacDC for adapting GTA5 to Cityscapes and IDD
under 19 categories.

self-supervised augmentation consistency, such as ClassMix, is more effective than the adversarial
learning adopted in CoaST.

CDC and MCMC. The ablation study on the effectiveness of collaborative domain congregation
(CDC) and multi-context masking consistency (MCMC) is illustrated in Table 7. While using only
image-level domain interpolation, the model achieves 1.9% higher in mIoU compared with NDC.
Similarly, using only region-level domain interpolation brings 1.2% boost. The usage of CDC which
combines image-level and region-level domain interpolation gives an improvement of 2.4%. In
contrast, utilizing MCMC delivers 3.2% performance gain as MCMC can effectively promote the
model’s understanding of diverse contextual information among the target domains.

Domain Interpolation Methods. We also conduct ablation study on different domain interpolation
methods for collaborative domain congregation. We first compare the performance of utilizing Cy-
cleGAN and ColorTranfer in image-level domain interpolation shown in Table 5. Furthermore, we
compare CowMix, FMix, and CutMix in region-level domain interpolation presented in Table 6. We
adopt ColorTransfer for image-level interpolation and CutMix for region-level interpolation as they
perform slightly better than their counterparts.

Training Time and Memory Consumption. The ablation study of training time and memory re-
quirement is illustrated in Table 8. Though MTKT requires moderate training time and less GPU
memory, it delivers limited performance in MTDA for segmentation. While CoaST presents higher
scores compared with MTKT, it requires much longer time for training (multiple stages). In com-
parison, our MacDC requires moderate GPU memory and much less training time, at the same time
delivering superior performance against CoaST and MTKT.

5 CONCLUSION

This paper addresses the challenges in multi-target domain adaptation for semantic segmentation
task. Existing methods shows limited performance as they only consider the style difference while
ignoring the contextual variations among these target domains. In contrast, we propose a novel ap-
proach named masking-augmented collaborative domain congregation to address the style gap and
the contextual gap altogether. We handle the style and contextual gaps among target domains by
data mixing, which generates image-level and region-level intermediate domains among target do-
mains. We further enforces the model’s understanding of diverse contexts together with a masking
consistency. Our proposed MacDC effectively mitigates style and contextual gaps among multiple
target domains by directly learning a single model for multi-target domain adaptation without re-
quiring multiple network training and subsequent distillation. The experimental results on MTDA
for segmentation benchmarks highlight the effectiveness of our approach.
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