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ABSTRACT

Adversarial training is a standard method to train deep neural networks to be robust
to adversarial perturbation. Similar to surprising clean generalization ability in the
standard deep learning setting, neural networks trained by adversarial training also
generalize well for unseen clean data. However, in constrast with clean general-
ization, while adversarial training method is able to achieve low robust training
error, there still exists a significant robust generalization gap, which promotes us
exploring what mechanism leads to both clean generalization and robust overfitting
(CGRO) during learning process. In this paper, we provide a theoretical under-
standing of this puzzling phenomenon (CGRO) through feature learning theory.
Specifically, we prove that, under our theoretical framework (patch-structured
dataset and one-hidden-layer CNN model) , a three-stage phase transition happens
from adversarial training dynamics, and the network learner provably partially
learns the true feature but exactly memorizes the spurious features from training-
adversarial examples, which thereby results in CGRO phenomenon. Besides, for
more general data assumption, we then show the efficiency of CGRO classifier
from the perspective of representation complexity. On the empirical side, we also
verify our theoretical analysis about learning process in real-world vision dataset.

1 INTRODUCTION

Nowadays, deep neural networks have achieved excellent performance in a variety of disciplines,
especially including in computer vision (Krizhevsky et al., 2012; Dosovitskiy et al., 2020; Kirillov
et al., 2023) and natural language process (Devlin et al., 2018; Brown et al., 2020; Ouyang et al.,
2022). However, it is well-known that small but adversarial perturbations to the natural data can
make well-trained classifiers confused (Biggio et al., 2013; Szegedy et al., 2013; Goodfellow et al.,
2014), which potentially gives rise to reliability and security problems in real-world applications and
promotes designing adversarial robust learning algorithms.

In practice, adversarial training methods (Goodfellow et al., 2014; Madry et al., 2017; Shafahi et al.,
2019; Zhang et al., 2019; Pang et al., 2022) are widely used to improve the robustness of models by
regarding perturbed data as training data. However, while these robust learning algorithms are able
to achieve high robust training accuracy (Gao et al., 2019), it still leads to a non-negligible robust
generalization gap (Raghunathan et al., 2019), which is also called robust overfitting (Rice et al.,
2020; Yu et al., 2022).

To explain this puzzling phenomenon, a series of works have attempted to provide theoretical
understandings from different perspectives. Despite these aforementioned works seem to provide
a series of convincing evidence from theoretical views in different settings, there still exists a gap
between theory and practice for at least two reasons.

First, although previous works have shown that adversarial robust generalization requires more data
and larger models (Schmidt et al., 2018; Gowal et al., 2021; Li et al., 2022; Bubeck & Sellke, 2023), it
is unclear that what mechanism, during adversarial training process, directly causes robust overfitting.
A line of work about uniform algorithmic stability (Xing et al., 2021; Xiao et al., 2022), under
Lipschitzian smoothness assumptions, also suggest that robust generalization gap increases when
training iteration is large. In other words, we know there is no robust generalization gap for a trivial
model that only guesses labels totally randomly (e.g. deep neural networks at random initialization),
which implies that we should take learning process into consideration to analyze robust generalization.
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Figure 1: The learning curves of adversarial
training on CIFAR 10 (Rice et al., 2020) .

Second and most importantly, while some works
(Tsipras et al., 2018; Zhang et al., 2019; Hassani &
Javanmard, 2022) point out that achieving robustness
may hurt clean test accuracy, in most of the cases, it
is observed that drop of robust test accuracy is much
higher than drop of clean test accuracy in adversar-
ial training (Madry et al., 2017; Schmidt et al., 2018;
Raghunathan et al., 2019) (see in Figure 1, where clean
test accuracy is more than 80% but robust test accuracy
only attains nearly 50%). Namely, a weak version of
benign overfitting (Zhang et al., 2017), which means
that overparameterized deep neural networks can both
fit random data powerfully and generalize well for un-
seen clean data, remains after adversarial training.

Therefore, it is natural to ask the following question:

What is the underlying mechanism that results in both Clean Generalization and
Robust Overfitting (CGRO) during adversarial training?

In this paper, we provide a theoretical understanding of this question. We propose a theoretical
framework of adversarial training under which we analyze feature learning process to explain why
deep neural networks trained by adversarial training have a good clean test performance but a poor
robust generalization at the same time.

First, we present the existence of CGRO classifiers that achieve both clean generalization and robust
overfitting in a general setting. Specifically, we assume that there exists a clean classifier fclean
that can perfectly classify the natural data but fails to classify the adversarially perturbed data,
which is consistent with the common practice that well-trained neural networks are vulnerable to
adversarial examples (Szegedy et al., 2013; Raghunathan et al., 2019). Besides, we also assume that
the supporting set of data distribution D is well-separated, which means half of the distance between
the positive data and negative data is larger than the ℓp perturbation radius δ (Yang et al., 2020; Li
et al., 2022). The training dataset S = {(X1, y1), (X2, y2), . . . , (XN , yN )} with N−samples are
randomly drawn from the data distribution D. Then, we consider the following function as

fS(X) = fclean(X)
(
1− I{X ∈ ∪N

i=1Bp(Xi, δ)}
)︸ ︷︷ ︸

clean classification on unseen test data

+

N∑
i=1

yiI{X ∈ Bp(Xi, δ)}︸ ︷︷ ︸
robust classification on training data

. (C)

where Bp(z, r) denotes the neighborhood of the center z with the ℓp−radius r and I{A} denotes the
standard indicator of the event A.

Indeed, it is clear that fS belongs to CGRO classifier, which perfectly clean classifies unseen test
data by the first summand and robustly memorizes training data by the second summand.

Theorefore, inspired by the intuition of the fS’s construction, we conjecture that neural networks
trained by adversarial training converge to the similarities of fS that can be decomposed into two
components, which correspond to clean generalization and robust overfitting respectively.

To further demonstrate our conjecture, we theoretically and empirically investigate the learning
process of adversarial training in this work. More precisely, we make the following contributions:

• In Section 3, we introduce a theoretical framework of adversarial training, where we leverage
patch-structured dataset as a simplification of real-world image data and choose non-linear
one-hidden-layer CNN model as the network learner .

• In Section 4, under our theoretical framework, we apply a signal-noise decomposition to
characterize the feature learning process. We then propose a novel three-stage analysis
technique to decouple the complicated training dynamics as follows.

– Stage I: First of all, the signal component increases quadratically at initialization, and
the model starts to learn partial true feature.
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– Stage II: Afterwards, the growth of signal component nearly stops updating since that
the increment of signal component is now mostly dominated by the noise component.

– Stage III: Eventually, by the quadratic increment of noise component, the model
exactly memorizes the data-wise spurious feature.

As a consequence, it leads the network learner to CGRO regime.

• In Section 5, with more general data assumptions, we study CGRO classifiers via the view of
representation complexity. We prove that achieving CGRO classifier only needs polynomial
complexity but robust classifier requires even exponential complexity in worst case.

• In Section 6, in order to verify our conjecture in real-world dataset, we empirically investigate
the dynamics of loss landscape over input during learning process on real-image datasets
MNIST and CIFAR10. The experiment results suggest that the model trained by adversarial
training tends to memorize data by approximating local robust indicators on training data.

Notations. In this work, we use lower case letters for scalars, lower case bold for vectors. We use
poly(·) to denote the polynomial order, and polylog(·) to denote the some polynomial in log order.
We useO(·),Ω(·) to hide absolute constants which do not depend on any problem parameter, and Õ(·)
to hide absolute constants and log factors. For a distribution D, the set of adversarial examples Sadv,
ℓp−perturbation radius δ and classifier f , we define the clean test error as E(X,y)∼D[I{yf(X) ≤ 0}],
the robust test error as E(X,y)∼D[max∥ξ∥p≤δ I{yf(X + ξ) ≤ 0}] and the robust training error as

1
|Sadv|

∑
(Xadv,y)∈Sadv I{yf(Xadv) ≤ 0}. ReLU activation function is defined as max(0, ·).

2 ADDITIONAL RELATED WORK

Empirical Works on Robust Overfitting. One surprising behavior of deep learning is that over-
parameterized neural networks can generalize well, which is also called benign overfitting that deep
models have not only the powerful memorization but a good performance for unseen data (Zhang
et al., 2017; Belkin et al., 2019). However, in contrast to the standard (non-robust) generalization, for
the robust setting, Rice et al. (2020) empirically investigates robust performance of models based on
adversarial training methods, which are used to improve adversarial robustness (Szegedy et al., 2013;
Madry et al., 2017), and the work shows that robust overfitting can be observed on multiple datasets.

Theoretical Works on Robust Overfitting. A list of works (Schmidt et al., 2018; Balaji et al.,
2019; Dan et al., 2020) study the sample complexity for adversarial robustness, and their works
manifest that adversarial robust generalization requires more data than the standard setting, which
gives an explanation of the robust generalization gap from the perspective of statistical learning
theory. And another line of works (Tsipras et al., 2018; Zhang et al., 2019) propose a principle called
the robustness-accuracy trade-off and have theoretically proven the principle in different setting,
which mainly explains the widely observed drop of robust test accuracy due to the trade-off between
adversarial robustness and clean accuracy. Recently, Li et al. (2022) investigates the robust expressive
ability of neural networks and shows that robust generalization requires exponentially large models.

Feature Learning Theory of Deep Learning. The feature learning theory of neural networks
(Allen-Zhu & Li, 2020a;b; 2022; Shen et al., 2022; Jelassi & Li, 2022; Jelassi et al., 2022; Chen
et al., 2022) is proposed to study how features are learned in deep learning tasks, which provide a
theoretical analysis paradigm beyond the neural tangent kernel (NTK) theory (Jacot et al., 2018; Du
et al., 2018; 2019; Allen-Zhu et al., 2019; Arora et al., 2019). In this work, we make a first step to
understand clean generalization and robust overfitting (CGRO) phenomenon in adversarial training
by analyzing feature learning process under our theoretical framework.

3 A THEORETICAL FRAMEWORK OF ADVERSARIAL TRAINING

In this section, we introduce a theoretical framework of adversarial training under which we can
directly analyze the learning process to provide a theoretical explanation to CGRO phenomenon.
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3.1 STRUCTURED DATASET

The data’s patch structure that we leverage can be viewed as a simplification of real-world vision-
recognition datasets (Chen et al., 2021; Jelassi & Li, 2022; Jelassi et al., 2022; Kou et al., 2023).
Specifically, we consider the binary classification data with the following patch structure as

Patch Data Distribution. We define a data distribution D, in which each instance consists in an
input X ∈ RD and a label y ∈ {−1, 1} generated by

1. The label y is uniformly drawn from {−1, 1}.
2. The input X = (X[1], . . . ,X[P ]), where each patch X[j] ∈ Rd and P = D/d is the

number of patches (we assume that D/d is an integer and P = polylog(d)).
3. Meaningful Signal patch: for each instance, there exists one and only one meaningful patch

signal(X) ∈ [P ] satisfies X[signal(X)] = αyw∗, where α ∈ R+ is the norm of data and
w∗ ∈ Rd(∥w∗∥2 = 1) is the unit meaningful signal vector.

4. Noisy patches: X[j] ∼ N
(
0,
(
Id −w∗w∗⊤)σ2

)
, for j ∈ [P ]\{signal(X)}.

We assume α = d0.249 polylog(d), σ = d−0.509 to enable meaningful signal is stronger than noise.
Indeed, images are divided into signal patches that are meaningful for the classification such as the
whisker of a cat or the nose of a dog, and noisy patches like the uninformative background of a photo.

3.2 LEARNER NETWORK

To learn our synthetic dataset, we use a one-hidden layer convolutional neural network (CNN) (LeCun
et al., 1998; Krizhevsky et al., 2012) with non-linear activation as the learner network.

Simplified CNN Model. For a given input data X , the model outputs as

fW (X) =

m∑
r=1

P∑
j=1

σ (⟨wr,X[j]⟩) . (M)

The first layer weights are W ∈ Rm×d and the second layer is fixed to 1m. And we apply the cubic
activation function σ(z) = z3, as polynomial activations are standard in literatures of deep learning
theory (Kileel et al., 2019; Allen-Zhu & Li, 2020a;b; Jelassi & Li, 2022; Jelassi et al., 2022).

The Role of Non-linearity. Indeed, a series of recent theoretical works (Li et al., 2019; Chen et al.,
2021; Javanmard & Soltanolkotabi, 2022) show that linear model can achieve robust generalization
for adversarial training under certain settings, which but fails to explain the CGRO phenomenon
observed in practice. To mitigate this gap, we improve the expressive power of model by using
non-linear activation that can characterize the data structure and learning process more precisely.

3.3 ADVERSARIAL TRAINING

In adversarial training, with access to the training dataset S = {(X1, y1), (X2, y2), . . . , (XN , yN )}
(where we assumeN = poly(d)) randomly sampled from the data distribution D, we aim to minimize
the following adversarial loss that is a trade-off between natural risk and robust regularization.

Adversarial Loss. For a hyperparameter λ > 0, the adversarial loss is defined as

1

N

N∑
i=1

L (W ;Xi, yi)︸ ︷︷ ︸
natural risk

+λ · max
X̂i∈Bp(Xi,δ)

[
L
(
W ; X̂i, yi

)
− L (W ;Xi, yi)

]
︸ ︷︷ ︸

robust regularization

. (F)

where we use L(W ;X, y) to denote the single-point loss with respect to fW on (X, y), and assume
the ℓp−perturbation radius δ = α

(
1− 1√

d polylog(d)

)
.

This adversarial loss gives a general form of adversarial training methods (Goodfellow et al., 2014;
Madry et al., 2017; Zhang et al., 2019) for different values of hyperparameter λ, where we assume
λ ∈ [ 1

poly(d) , 1). Then, by using the logistic loss, we derive the following training objective.
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Training Objective. For a hyperparameter λ > 0, the training objective is defined as

L̂adv(W ) =
1

N

N∑
i=1

(1− λ) log
(
1 + e−yifW (Xi)

)
+ λ log

(
1 + e−yifW (Xadv

i )
)
. (O)

where we apply an adversarial attack method Attack(X, y; p, δ) to generate adversarial examples

Xadv
i = Attack(Xi, yi; p, δ) ∈ Bp(Xi, δ),

for i ∈ [N ], in order to approximate argmaxX̂i∈Bp(Xi,δ)
L(W ; X̂i, yi) in (F). To simplify our

analysis of learning process, we consider the following ℓ2−adversarial attack method.

Geometry-inspired Transferable Attack (GTA). For a given instance (X, y) and a target classifier
g, the algorithm outputs an adversarial example as

Xadv = X − γ
g(X)

∥∇Xg(X)∥2
∇Xg(X), (A)

where γ > 0 is a scalar to enable Xadv ∈ B2(X, δ).

Geometry-inspired adversarial attack is a computing-efficient and loss-free attack method (Moosavi-
Dezfooli et al., 2016; Tursynbek et al., 2022), which has a comparable adversarial performance
with FGSM (Goodfellow et al., 2014) and PGD (Kurakin et al., 2018). And we also leverage the
transferability of adversarial examples (Papernot et al., 2016; Charles et al., 2019; Ilyas et al., 2019)by
designing a target classifier g, which helps us focus on feature learning process of our CNN model.

Training Algorithm. To solve the minimization problem (O), we run gradient descent (GD) algorithm
to update our CNN weights W for T iterations, which is defined as

W (t+1) = W (t) − η∇W L̂adv

(
W (t)

)
, (T)

where η > 0 is the learning rate.

Next, we present the detailed parameterization setting in adversarial training.
Parameterization 3.1. For our CNN model (M), we set the width m = polylog(d) to ensure the
network is mildly over-parameterized. At initialization, we choose the weights w1,w2, . . . ,wm are
i.i.d sampled from the same Gaussian distribution N (0, σ2

0Id), where σ2
0 = polylog(d)

d . For learning
process, we set the target classifier g(X) = ⟨w∗,X[signal(X)]⟩, the scalar γ = 1− 1√

d polylog(d)

in (A) and the learning rate η = O(1) in (T).

Under Parameterization 3.1, we choose a linear model g(X) = ⟨w∗,X[signal(X)]⟩ as the target
classifier for GTA (A), which indeed implies a reasonable attack. Intuitively, when the model fW has
achieve mid-high clean test accuracy, the decision boundary of fW will have a significant correlation
with the separating plane of g, which thus makes adversarial examples generated by g transferable.

4 FEATURE LEARNING PROCESS UNDER OUR THEORETICAL FRAMEWORK

In this section, we analyze the feature learning process to understand CGRO in adversarial training.

4.1 FEATURE LEARNING

First, we provide an introduction to feature learning, which is widely applied in theoretical works
(Allen-Zhu & Li, 2020a;b; 2022; Shen et al., 2022; Jelassi & Li, 2022; Jelassi et al., 2022; Chen et al.,
2022) explore what and how neural networks learn in different tasks. In this work, we first leverage
feature learning theory to explain CGRO phenomenon in adversarial training. Specifically, for an
arbitrary clean training data-point (X, y) ∼ D and a given model fW , we focus on

• True Feature Learning. We project the weight W on the meaningful signal vector to
measure the correlation between the model and the true feature as

U :=

m∑
r=1

⟨wr,w
∗⟩3 .
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• Spurious Feature Learning. We project the weight W on the random noise to measure the
correlation between the model and the spurious feature as

V := y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩3 .

We then calculate the model’s classification correctness on certain clean data point as

yfW (X) = y

m∑
r=1

⟨wr,X[signal(X)]⟩3 + y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩3

= y

m∑
r=1

⟨wr, αyw
∗⟩3︸ ︷︷ ︸

α3U

+ y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩3

︸ ︷︷ ︸
V

.

Thus, the model correctly classify the data if and only if α3U + V ≥ 0, which holds in at least two
cases. Indeed, one is that the model learns the true feature and ignores the spurious features, where
U = Ω(1) ≫ |V|. Another is that the model doesn’t learn the true feature but memorizes the spurious
features, where |U| = o(1) and |V| = Ω(1) ≫ 0.

Therefore, this analysis tells us that the model will generalize well for unseen data if the model learns
true feature. But the model will overfit training data if the model only memorizes spurious features
since the data-specific random noises are independent for distinct instances, which means that, with
high probability, it holds that V = o(1) for unseen data (X, y).

We also calculate the model’s classification correctness on perturbed data point, where we use
geometry-inspired transferable attack proposed in (A) to generate adversarial example as

Xadv[j] = X[j]− γ
g(X)

∥∇Xg(X)∥2
∇Xg(X)[j] =

{
α(1− γ)yw∗, j = signal(X)
X[j], j ∈ [p] \ signal(X)

We then derive the correctness as

yfW (Xadv) = y

m∑
r=1

⟨wr, α(1− γ)yw∗⟩3︸ ︷︷ ︸
α3(1−γ)3U

+ y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩3

︸ ︷︷ ︸
V

.

Thus, the model correctly classify the perturbed data if and only if α3(1 − γ)3U + V ≥ 0, which
implies that we can analyze the perturbed data similarly.

4.2 MAIN RESULT

Now, we present our main result about feature learning process as the following theorem.
Theorem 4.1. Under Parameterization 3.1, we run the adversarial training algorithm to update the
weight of the simplified CNN model for T = Ω(poly(d)) iterations. Then, with high probability, it
holds that the CNN model

1. partially learns the true feature, i.e. U (T ) = Θ(α−3);

2. exactly memorizes the spurious feature, i.e. for each i ∈ [N ],V(T )
i = Θ(1),

where U (t) and V(t)
i is defined for i−th instance (Xi, yi) and t−th iteration as the same in (1)(1).

Consequently, the clean test error and robust training error are both smaller than o(1), but the robust
test error is at least 1

2 − o(1).

Theorem 4.1 states that, during adversarial training, the neural network partially learns the true feature
of objective classes and exactly memorizes the spurious features depending on specific training data,
which causes that the network learner is able to correctly classify clean data by partial meaningful
signal (clean generalization), but fails to classify the unseen perturbed data since it leverages only
data-wise random noise to memorize training adversarial examples (robust overfitting).
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4.3 ANALYSIS OF LEARNING PROCESS

Next, we provide a proof sketch of Theorem 4.1. To obtain a detailed analysis of learning process,
we consider the following objects that can be viewed as weight-wise version of U (t) and V(t)

i . For
r ∈ [m], i ∈ [N ] and j ∈ [P ] \ signal(Xi), we define u(t)r and v(t)i,j,r as

Signal Component. u(t)r :=
〈
w

(t)
r ,w∗

〉
, thus U (t) =

∑
r∈[m]

(
u
(t)
r

)3
.

Noise Component. v(t)i,j,r := yi

〈
w

(t)
r ,Xi[j]

〉
, thus V(t)

i =
∑

r∈[m]

∑
j∈[P ]\signal(Xi)

(
v
(t)
i,j,r

)3
.

Phase I: At the beginning, the signal component of lottery tickets winner maxr∈[m] u
(t)
r increases

quadratically (Lemma 4.2). At this point, the model starts to learn partial true feature.
Lemma 4.2. (Lower Bound of Signal Component Growth) For each r ∈ [m] and any t ≥ 0, the
signal component grows as

u(t+1)
r ≥ u(t)r +Θ(ηα3)

(
u(t)r

)2
ψ

α3
∑
k∈[m]

(
u
(t)
k

)3 ,

where we use ψ(·) to denote the negative sigmoid function ψ(z) = 1
1+ez as well as Lemma 4.3,4.4.

Lemma 4.2 manifests that the signal component increases quadratically at initialization. Therefore,
we know that, after T0 = Θ

(
1

ηα3σ0

)
iterations, the maximum signal component maxr∈[m] u

(T0)
r

attains the order Ω̃(α−1), which implies the model learns partial true feature.

Phase II: Once the maximum signal component maxr∈[m] u
(t)
r attains the order Ω̃(α−1), the

growth of signal component nearly stops updating since that the increment of signal component
is now mostly dominated by the noise component (Lemma 4.3).

Due to the property of the negative sigmoid function ϕ(z) = 1
1+ez , the growth of signal component

becomes very slow when ψ’s input attains the order Ω(1). This intuition can be formally represented
as follow.
Lemma 4.3. (Upper Bound of Signal Component Growth) For T0 = Θ

(
1

ηα3σ0

)
and any t ∈ [T0, T ],

the signal component is upper bounded as

max
r∈[m]

u(t)r ≤ Õ(α−1) + Õ

(
ηα3(1− γ)3

N

) t−1∑
s=T0

N∑
i=1

ψ

α3(1− γ)3
∑
k∈[m]

(
u
(s)
k

)3
+ V(s)

i

 .

Lemma 4.3 shows that, after partial true feature learning, the increment of signal component is mostly
dominated by the noise component V(t)

i , which thus implies that the growth of signal component will
converge when V(t)

i = Ω(1).

Phase III: After that, by the quadratic increment of noise component (Lemma 4.4), the total
noise V(t)

i eventually attains the order Ω(1), which implies the model memorizes the spurious
feature (data-wise noise) in final.
Lemma 4.4. (Lower Bound of Noise Component Growth) For each i ∈ [N ], r ∈ [m] and j ∈
[P ] \ signal(Xi) and any t ≥ 1, the noise component grows as

v
(t)
i,j,r ≥ v

(0)
i,j,r +Θ

(
ησ2d

N

) t−1∑
s=0

ψ(V(s)
i )

(
v
(s)
i,j,r

)2
− Õ(Pσ2α−1

√
d).

The practical implication of Lemma 4.4 is two-fold. First, by the quadratic increment of noise

component, we derive that, after T1 = Θ

(
N

ησ0σ3d
3
2

)
, the total noise memorization V(T )

i attains

the order Ω(1), which suggests that the model is able to robustly classify adversarial examples by
memorizing the data-wise noise. Second, combined with Lemma 4.3, the maximum signal component
maxr∈[m] u

(t)
r will maintain the order Θ(α−1), which implies the conclusion of Theorem 4.1.
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5 THE EFFICIENCY OF CGRO CLASSIFIER VIA REPRESENTATION
COMPLEXITY

In this section, under more general data assumption, we provide a theoretical understanding of CGRO
phenomenon from the view of representation complexity. We present the data assumption as follow.
Assumption 5.1. Let D be a D−dimensional data distribution such that

1. (Well-Separated) The supporting set supp(D) ∈ [0, 1]D can be divided into two disjoint set
A and B that correspond to the positive and negative classes respectively. And it holds that
distp(A,B) > 2δ, where δ is the ℓp adversarial perturbation radius.

2. (Neural-Separable) There exists a clean classifier that can be represented as a ReLU network
with poly(D) parameters, which means that, under the distribution D, the network achieves
zero clean test error but its robust test error is at least Ω(1).

Under Assumption 5.1, the above two conditions has been empirically observed in many practical
works, which is also discussed in Section 1. Then, we have the following result about CGRO classifier.
Theorem 5.2. (Polynomial Upper Bound for CGRO Classifier) Under Assumption 5.1, with
N−sample training dataset S = {(X1, y1), (X2, y2), . . . , (XN , yN )} drawn from the data dis-
tribution D, there exists a CGRO classifier that can be represented as a ReLU network with
poly(D) + Õ(ND) parameters, which means that, under the distribution D and dataset S, the
network achieves zero clean test and robust training errors but its robust test error is at least Ω(1).

Proof Sketch. The proof idea of Theorem 5.2 is to approximate the classifier fS proposed in (C) by
ReLU network. Indeed, the function fS can be rewritten as

fS(X) = fclean(X)︸ ︷︷ ︸
poly(D)

+

N∑
i=1

(yi − fclean(X))I{∥X −Xi∥p ≤ δ}︸ ︷︷ ︸
weighted sum of robust local indicators

.

Base on this, we use ReLU nets to approximate the distance function di(X) := ∥X − Xi∥p
efficiently, and it is noticed that the exact indicator I{·} can be approximated by a soft indicator
that is represented by two ReLU neurons. Combined with two above results, we know there exists
a ReLU net f with at most poly(D) + Õ(ND) parameters such that ∥f − fS∥ℓ∞([0,1]D) = o(1),
which immediately implies Theorem 5.2. □

However, to achieve robust generalization, higher complexity seems necessary. We generalize the
conclusion in Li et al. (2022) from linear-separable assumption to neural-separable assumption.
Theorem 5.3. (Exponential Lower Bound for Robust Classifer) Let FM be the family of function
represented by ReLU networks with at mostM parameters. There exists a numberMD = Ω(exp(D))
and a distribution D satisfying Assumption 5.1 such that, for any classifier in the family FMD

, under
the distribution D, the robust test error is at least Ω(1).

Therefore, we derive the following inequalities,

Representation Complexity: Clean Classifier︸ ︷︷ ︸
poly(D)

≲ CGRO Classifier︸ ︷︷ ︸
poly(D)+Õ(ND)

≪ Robust Classifier︸ ︷︷ ︸
Ω(exp(D))

.

This inequalities states that while CGRO classifiers have mildly higher representation complexity
than clean classifiers, adversarial robustness requires excessively higher complexity, which may lead
adversarial training to converge to CGRO regime under the general data assumption.

6 EXPERIMENTS

In this section, we demonstrate that adversarial training converges to similarities of the construction
fS of (C) on real image datasets, which results in CGRO. In fact, we need to verify models trained by
adversarial training tend to memorize data by approximating local robust indicators on training data.
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(a) MNIST: Grad (b) MNIST: Change (c) CIFAR10: Grad (d) CIFAR10: Change

(e) MNIST: Train (f) MNIST: Test (g) CIFAR10: Train (h) CIFAR10: Test

Figure 2: Experiment Results (ℓ∞ Perturbation Radius ϵ0 = 0.1 on MNIST, = 8/255 on CIFAR10).

Concretely, for given loss L(·, ·), instance (X, y) and model f , we use two measurements, maximum
gradient norm within the neighborhood of training data, max∥ξ∥∞≤δ ∥∇XL(f(X + ξ), y)∥1 and
maximum loss function value change max∥ξ∥∞≤δ[L(f(X + ξ), y) − L(f(X), y)]. The former
measures the δ−local flatness on (X, y), and the latter measures δ−local adversarial robustness on
(X, y), which both describe the key information of loss landscape over input.

Experiment Settings. In numerical experiments, we mainly focus on two common real-image
datasets, MNIST and CIFAR10. During adversarial training, we use cyclical learning rates and mixed
precision technique (Wong et al., 2020). On MNIST, we use a LeNet5 architecture and train total 20
epochs. On CIFAR10, we use a Resnet9 architecture and train total 15 epochs.

Numerical Results. First, we apply the adversarial training method to train models by a fixed
perturbation radius ϵ0, and then we compute empirical average of maximum gradient norm and
maximum loss change on training data within different perturbation radius ϵ. We can see numerical
results in Figure 2 (a∼d), and it shows that loss landscape has flatness within the training radius, but
is very sharp outside, which practically demonstrates our conjecture on real image datasets.

Learning Process. We also focus on the dynamics of loss landscape over input during the adversarial
learning process. Thus, we compute empirical average of maximum gradient norm within different
perturbation radius ϵ and in different training epochs. The numerical results are plotted in Figure 2
(e∼h). Both on MNIST and CIFAR10, with epochs increasing, it is observed that the training curve
descents within training perturbation radius, which implies models learn the local robust indicators to
robustly memorize training data. However, the test curve of CIFAR10 ascents within training radius
instead, which is consistent with our theoretical analysis in Section 4.

Robust Generalization Bound. Moreover, we prove a robust generalization bound based on global
flatness of loss landscape (see in Appendix E). We show that, while adversarial training achieves local
flatness by robust memorization, the model lacks global flatness, which causes robust overfitting.

7 CONCLUSION AND FUTURE WORK

In this paper, we present a theoretical understanding of clean generalization and robust overfitting
(CGRO) phenomenon in adversarial training. Our main contribution is that, under our theoretical
framework, we prove that neural network trained by adversarial training partially learns the true
feature but memorizes the random noise in training data, which leads to CGRO phenomenon. In
all, we believe that our work provides some theoretical insights into existing adversarial training
methods. An important future work is to generalize our analysis of feature learning process to deep
CNN models with other adversarial-example generative algorithms, such as FGSM and PGD attacks.
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A PRELIMINARIES

First, we present a technique called Tensor Power Method proposed by Allen-Zhu & Li (2020a;b).

Lemma A.1. Let
{
z(t)
}T
t=0

be a positive sequence defined by the following recursions{
z(t+1) ≥ z(t) +m

(
z(t)
)2

z(t+1) ≤ z(t) +M
(
z(t)
)2 ,

where z(0) > 0 is the initialization and m,M > 0. Let v > 0 such that z(0) ≤ v. Then, the time t0
such that zt ≥ v for all t ≥ t0 is:

t0 =
3

mz(0)
+

8M

m

⌈
log (v/z0)

log(2)

⌉
.

Lemma A.2. Let
{
z(t)
}T
t=0

be a positive sequence defined by the following recursion{
z(t) ≥ z(0) +A

∑t−1
s=0

(
z(s)
)2 − C

z(t) ≤ z(0) +A
∑t−1

s=0

(
z(s)
)2

+ C

where A,C > 0 and z(0) > 0 is the initialization. Assume that C ≤ z(0)/2. Let v > 0 such that
z(0) ≤ v. Then, the time t such that z(t) ≥ v is upper bounded as:

t0 = 8

⌈
log (v/z0)

log(2)

⌉
+

21(
z(0)

)
A
.

Lemma A.3. Let T ≥ 0. Let (zt)t>T be a non-negative sequence that satisfies the recursion:

z(t+1) ≤ z(t) −A
(
z(t)
)2

, for A > 0. Then, it is bounded at a time t > T as

z(t) ≤ 1

A(t− T )
.

Then, we provide a probability inequality proved by Jelassi & Li (2022).
Lemma A.4. Let {vr}mr=1 be vectors in Rd such that there exist a unit norm vector x that satisfies∣∣∣∑m

r=1 ⟨vr,x⟩3
∣∣∣ ≥ 1. Then, for ξ1, . . . , ξk ∼ N

(
0, σ2Id

)
i.i.d., we have:

P

∣∣∣∣∣∣
P∑

j=1

m∑
r=1

⟨vr, ξj⟩3
∣∣∣∣∣∣ ≥ Ω̃

(
σ3
) ≥ 1− O(d)

21/d
.

Next, we introduce some concepts about learning theory.
Definition A.5 (growth function). Let F be a class of functions from X ⊂ Rd to {−1,+1}. For any
integer m ≥ 0, we define the growth function of F to be

ΠF (m) = max
xi∈X ,1≤i≤m

|{(f(x1), f(x2), · · · , f(xm)) : f ∈ F}| .

In particular, if |{(f(x1), f(x2), · · · , f(xm)) : f ∈ F}| = 2m, then (x1, x2, · · · , xm) is said to be
shattered by F .
Definition A.6 (Vapnik-Chervonenkis dimension). Let F be a class of functions from X ⊂ RD

to {−1,+1}. The VC-dimension of F , denoted by VC-dim(F), is defined as the largest integer
m ≥ 0 such that ΠF (m) = 2m. For real-value function class H, we define VC-dim(H) :=
VC-dim(sgn(H)).

The following result gives a nearly-tight upper bound on the VC-dimension of neural networks.
Lemma A.7. (Bartlett et al., 2019, Theorem 6) Consider a ReLU network with L layers and W
total parameters. Let F be the set of (real-valued) functions computed by this network. Then we have
VC-dim(F ) = O(WL log(W )).

The growth function is connected to the VC-dimension via the following lemma; see e.g. (Anthony
et al., 1999, Theorem 7.6).
Lemma A.8. Suppose that VC-dim(F) = k, then Πm(F) ≤

∑k
i=0

(
m
i

)
. In particular, we have

Πm(F) ≤ (em/k)
k for all m > k + 1.
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B FEATURE LEARNING

In this section, we provide a full introduction to feature learning, which is widely applied in theoretical
works (Allen-Zhu & Li, 2020a;b; 2022; Shen et al., 2022; Jelassi & Li, 2022; Jelassi et al., 2022;
Chen et al., 2022) explore what and how neural networks learn in different tasks. In this work, we first
leverage feature learning theory to explain CGRO phenomenon in adversarial training. Specifically,
for an arbitrary clean training data-point (X, y) ∼ D and a given model fW , we focus on

• True Feature Learning. We project the weight W on the meaningful signal vector to
measure the correlation between the model and the true feature as

U :=

m∑
r=1

⟨wr,w
∗⟩3 .

• Spurious Feature Learning. We project the weight W on the random noise to measure the
correlation between the model and the spurious feature as

V := y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩3 .

We then calculate the model’s classification correctness on certain clean data point as

yfW (X) = y

m∑
r=1

⟨wr,X[signal(X)]⟩3 + y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩3

= y

m∑
r=1

⟨wr, αyw
∗⟩3︸ ︷︷ ︸

α3U

+ y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩3

︸ ︷︷ ︸
V

.

Thus, the model correctly classify the data if and only if α3U + V ≥ 0, which holds in at least two
cases. Indeed, one is that the model learns the true feature and ignores the spurious features, where
U = Ω(1) ≫ |V|. Another is that the model doesn’t learn the true feature but memorizes the spurious
features, where |U| = o(1) and |V| = Ω(1) ≫ 0.

Therefore, this analysis tells us that the model will generalize well for unseen data if the model learns
true feature learning. But the model will overfit training data if the model only memorizes spurious
features since the data-specific random noises are independent for distinct instances, which means
that, with high probability, it holds that V = o(1) for unseen data (X, y).

We also calculate the model’s classification correctness on perturbed data point, where we use
geometry-inspired transferable attack proposed in (A) to generate adversarial example as

Xadv[j] = X[j]− γ
g(X)

∥∇Xg(X)∥2
∇Xg(X)[j]

= X[j]− γ
⟨w∗,X[signal(X)]⟩

∥w∗∥2
∇X ⟨w∗,X[signal(X)]⟩ [j]

=

{
α(1− γ)yw∗, j = signal(X)
X[j], j ∈ [p] \ signal(X)

We then derive the correctness as

yfW (Xadv) = y

m∑
r=1

〈
wr,X

adv[signal(X)]
〉3

+ y

m∑
r=1

∑
j∈[P ]\signal(X)

〈
wr,X

adv[j]
〉3

= y

m∑
r=1

⟨wr, α(1− γ)yw∗⟩3︸ ︷︷ ︸
α3(1−γ)3U

+ y

m∑
r=1

∑
j∈[P ]\signal(X)

⟨wr,X[j]⟩3

︸ ︷︷ ︸
V

.

Thus, the model correctly classify the perturbed data if and only if α3(1 − γ)3U + V ≥ 0, which
implies that We can analyze the perturbed data similarly.
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C PROOF FOR SECTION 4

In this section, we present the full proof for Section 4. First, we give detailed proofs of Lemma 4.2,
Lemma 4.3 and Lemma 4.4. Then, we prove Theorem 4.1 base on the above lemmas.

We prove our main results using an induction. More specifically, we make the following assumptions
for each iteration t < T .

Hypothesis C.1. Throughout the learning process using the adversarial training update for t < T ,
we maintain that:

• (Uniform Bound for Signal Component) For each r ∈ [m], we assume u(t)r ≤ Õ(α−1).

• (Uniform Bound for Noise Component) For each r ∈ [m], i ∈ [N ] and j ∈ [P ]\ signal(Xi),
we assume |v(t)i,j,r| ≤ Õ(1).

In what follows, we assume these induction hypotheses for t < T to prove our main results. We then
prove these hypotheses for iteration t = T in Lemma C.11.

Now, we first give proof details about Lemma 4.2.

Theorem C.2. (Restatement of Lemma 4.2) For each r ∈ [m] and any t ≥ 0, the signal component
grows as

u(t+1)
r ≥ u(t)r +Θ(ηα3)

(
u(t)r

)2
ψ

α3
∑
k∈[m]

(
u
(t)
k

)3 ,

where we use ψ(·) to denote the negative sigmoid function ψ(z) = 1
1+ez as well as Lemma 4.3,4.4.

Proof. First, we calculate the gradient of adversarial loss with respect to wr(r ∈ [m]) as

∇wr L̂adv(W
(t)) = − 3

N

N∑
i=1

P∑
j=1

 (1− λ)yi

〈
w

(t)
r ,Xi[j]

〉2
1 + exp (yifW (t) (Xi))

Xi[j] +
λyi

〈
w

(t)
r ,Xadv

i [j]
〉2

1 + exp
(
yifW (t)

(
Xadv

i

))Xadv
i [j]


= − 3

N

((
u(t)r

)2( N∑
i=1

(1− λ)α3ψ(yifW (t)(Xi)) + λα3(1− γ)3ψ(yifW (t)(Xadv
i ))

)
w∗

+

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2 (
(1− λ)ψ(yifW (t)(Xi)) + λψ(yifW (t)(Xadv

i ))
)
Xi[j]

 .

Then, we project the gradient descent algorithm equation W (t+1) = W (t) − η∇W L̂adv
(
W (t)

)
on

the signal vector w∗. We derive the following result due to Xi[j] ⊥ w∗ for j ∈ [P ] \ signal(Xi).

u(t+1)
r = u(t)r +

3η

N

(
u(t)r

)2 N∑
i=1

(
(1− λ)α3ψ(yifW (t)(Xi)) + λα3(1− γ)3ψ(yifW (t)(Xadv

i ))
)

≥ u(t)r +
3ηα3(1− λ)

N

(
u(t)r

)2 N∑
i=1

ψ(yifW (t)(Xi))

≥ u(t)r +Θ(ηα3)
(
u(t)r

)2
ψ

α3
∑
k∈[m]

(
u
(t)
k

)3 ,

where we derive last inequality by using ψ(yifW (t)(Xi)) = Θ(1)ψ

(
α3
∑

k∈[m]

(
u
(t)
k

)3)
, which

is obtained due to Hypothesis C.1.
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Consequently, we have the following result that shows the order of maximum signal component.

Lemma C.3. During adversarial training, with high probability, it holds that, after T0 = Θ̃
(

1
ηα3σ0

)
iterations, for all t ∈ [T0, T ], we have maxr∈[m] u

(t)
r ≥ Ω̃(α−1).

Proof. From the proof of Theorem C.2, we know that

u(t+1)
r − u(t)r =

3η

N

(
u(t)r

)2 N∑
i=1

(
(1− λ)α3ψ(yifW (t)(Xi)) + λα3(1− γ)3ψ(yifW (t)(Xadv

i ))
)
.

By applying Hypothesis C.1, we can simplify the above equation to the following inequalities. u
(t+1)
r ≤ u

(t)
r +A

(
u
(t)
r

)2
u
(t+1)
r ≥ u

(t)
r +B

(
u
(t)
r

)2
where A and B are respectively defined as:

A := Θ̃(η)
(
(1− λ)α3 + λα3(1− γ)3

)
B := Θ̃(η)(1− λ)α3.

At initialization, since we choose the weights w
(0)
r ∼ N

(
0, σ2

0Id
)
, we know the initial signal

components u(0)r are i.i.d. zero-mean Gaussian random variables, which implies that the probability
that at least one of the u(0)r is non-negative is 1−

(
1
2

)m
= 1− o(1).

Thus, with high probability, there exists an initial signal component u(0)r′ ≥ 0. By using Tensor Power
Method (Lemma A.1) and setting v = Θ̃(α−1), we have the threshold iteration T0 as

T0 =
Θ̃(1)

ηα3σ0
+

Θ̃(1)
(
(1− λ)α3 + λβ3

)
(1− λ)α3


− log

(
Θ̃ (σ0α)

)
log(2)

 .

Next, we prove Lemma 4.3 to give an upper bound of signal components’ growth.

Theorem C.4. (Restatement of Lemma 4.3) For T0 = Θ
(

1
ηα3σ0

)
and any t ∈ [T0, T ], the signal

component is upper bounded as

max
r∈[m]

u(t)r ≤ Õ(α−1) + Õ

(
ηα3(1− γ)3

N

) t−1∑
s=T0

N∑
i=1

ψ

α3(1− γ)3
∑
k∈[m]

(
u
(s)
k

)3
+ V(s)

i

 .

Proof. First, we analyze the upper bound of derivative generated by clean data. By following the
proof of Theorem C.2, we know that, for each r ∈ [m],

max
r∈[m]

u(t+1)
r ≥ max

r∈[m]
u(t)r +

3ηα3(1− λ)

N

(
max
r∈[m]

u(t)r

)2 N∑
i=1

ψ(yifW (t)(Xi))

≥ max
r∈[m]

u(t)r + Ω̃(ηα)
1− λ

N

N∑
i=1

ψ(yifW (t)(Xi)),

where we obtain the first inequality by the definition of maxr∈[m] u
(t)
r ,maxr∈[m] u

(t+1)
r , and we use

maxr∈[m] u
(t)
r ≥ Ω̃(α−1) derived by Lemma C.3 in the last inequality. Thus, we then have

1− λ

N

N∑
i=1

ψ(yifW (t)(Xi)) ≤ Õ(η−1α−1)

(
max
r∈[m]

u(t+1)
r − max

r∈[m]
u(t)r

)
.
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Now, we focus on maxr∈[m] u
(t+1)
r −maxr∈[m] u

(t)
r . By the non-decreasing property of u(t)r , we

have

max
r∈[m]

u(t+1)
r − max

r∈[m]
u(t)r ≤

∑
r∈[m]

(
u(t+1)
r − u(t)r

)

≤ (1− λ)Θ(ηα)ψ

α3
∑
r∈[m]

(
u(t)r

)3 ∑
r∈[m]

(
αu(t)r

)2
+ λΘ

(
ηα3(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i ))

≤ (1− λ)Õ(ηα2)ϕ

α3
∑
r∈[m]

(
u(t)r

)3+ λΘ

(
ηα3(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i )),

where we use ϕ(·) to denote the logistics function defined as ϕ(z) = log(1 + exp(−z)) and we
derive the last inequality by Hypothesis C.1. Then, we know

1− λ

N

N∑
i=1

ψ(yifW (t)(Xi)) ≤ (1− λ)Õ(α)ϕ

α3
∑
r∈[m]

(
u(t)r

)3
+ λΘ

(
α2(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i )).

Then, we derive the following result by Hypothesis C.1 and the above inequality.

max
r∈[m]

u(t+1)
r ≤ max

r∈[m]
u(t)r +

3η

N

(
max
r∈[m]

u(t)r

)2 N∑
i=1

(
(1− λ)α3ψ(yifW (t)(Xi))

+ λα3(1− γ)3ψ(yifW (t)(Xadv
i ))

)
≤ max

r∈[m]
u(t)r + Θ̃(ηα)

1− λ

N

N∑
i=1

ψ(yifW (t)(Xi)) + Θ̃

(
ηα(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i ))

≤ max
r∈[m]

u(t)r + (1− λ)Õ(ηα2)ϕ

α3
∑
r∈[m]

(
u(t)r

)3+ Θ̃

(
ηα3(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i ))

≤ max
r∈[m]

u(t)r +
(1− λ)Õ(ηα2)

1 + exp

(
α3
∑

r∈[m]

(
u
(t)
r

)3) + Θ̃

(
ηα3(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i ))

≤ max
r∈[m]

u(t)r +
(1− λ)Õ(ηα2)

1 + exp
(
Ω̃(1)

) + Θ̃

(
ηα3(1− γ)3

N

) N∑
i=1

ψ(yifW (t)(Xadv
i )).

By summing up iteration s = T0, . . . , t− 1, we have the following result as

max
r∈[m]

u(t)r ≤ max
r∈[m]

u(T0)
r +

t−1∑
s=T0

(1− λ)Õ(ηα2)

1 + exp
(
Ω̃(1)

) +

(
ηα3(1− γ)3

N

) t−1∑
s=T0

N∑
i=1

ψ(yifW (s)(Xadv
i ))

≤ Õ(α−1) + Õ

(
ηα3(1− γ)3

N

) t−1∑
s=T0

N∑
i=1

ψ

α3(1− γ)3
∑
k∈[m]

(
u
(s)
k

)3
+ V(s)

i

 .

Therefore, we derive the conclusion of Theorem C.4.

Next, we prove the following theorem about the update of noise components.
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Lemma C.5. For each r ∈ [m], i ∈ [N ] and j ∈ [P ] \ signal(Xi), any iterationt0, t such that
t0 < t ≤ T , with high probability, it holds that∣∣∣∣∣v(t)i,j,r − v

(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2∣∣∣∣∣ ≤ Õ

(
ληα3(1− γ)3

N

) t−1∑
s=t0

N∑
i=1

ψ(yifW (s)(Xadv
i ))

+ Õ(Pσ2α−1
√
d),

where we use the notation ψ̃(s)
i to denote (1− λ)ψ(yifW (s)(Xi)) + λψ(yifW (s)(Xadv

i )).

Proof. To obtain Lemma C.5, we prove the following stronger result by induction w.r.t. iteration t.∣∣∣∣v(t)i,j,r − v
(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2∣∣∣∣∣ ≤ Õ(Pσ2α−1
√
d)
(
1 + λαη +

α

σ2d

) t−t0−1∑
q=0

(P−1
√
d)−q

+ Õ

(
ληα3(1− γ)3

N

) t−t0−1∑
q=0

t−q∑
s=t0

N∑
i=1

(P−1
√
d)−qψ(yifW (s)(Xadv

i ))

(1)

First, we project the training update on noise patch Xi[j] to verify the above inequality when
t = t0 + 1 as∣∣∣∣v(t0+1)

i,j,r − v
(t0)
i,j,r −Θ

(
ησ2d

N

)
ψ̃
(t0)
i

(
v
(s)
i,j,r

)2∣∣∣∣ ≤ Θ

(
ησ2d

N

) N∑
a=1

∑
b̸=signal(Xa)

ψ̃(t0)
a

(
v
(t0)
a,b,r

)2
≤ Θ(ηPσ2

√
d)

1− λ

N

N∑
i=1

ψ(yifW (t0)(Xi))

+ Θ(ηPσ2
√
d)
λ

N

N∑
i=1

ψ(yifW (t0)(Xadv
i ))

≤ Õ(Pσ2α−1
√
d)
(
1 + λαη +

α

σ2d

)
,

where we apply 1−λ
N

∑N
i=1 ψ(yifW (t0)(Xi)) ≤ Õ(η−1α−1)

(
maxr∈[m] u

(t0+1)
r −maxr∈[m] u

(t0)
r

)
≤

Õ(η−1α−2) and
∑N

i=1 ψ(yifW (t0)(Xadv
i )) ≤ Õ(1) to derive the last inequality.

Next, we assume that the stronger result holds for iteration t, and then we prove the result for iteration
t+ 1 as follow.∣∣∣v(t+1)

i,j,r − v
(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2∣∣∣∣∣ ≤ Θ

(
ησ2d

N

) t−1∑
s=t0

N∑
a=1

∑
b̸=signal(Xa)

ψ̃(s)
a

(
v
(s)
a,b,r

)2
+Θ(ηPσ2

√
d)

1− λ

N

N∑
i=1

ψ(yifW (t)(Xi)) + Θ(ηPσ2
√
d)
λ

N

N∑
i=1

ψ(yifW (t)(Xadv
i )).

Then, we bound the first term in the right of the above inequality by our induction hypothesis for t,
and we can derive∣∣∣v(t+1)

i,j,r − v
(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2∣∣∣∣∣ ≤ Õ(Pσ2α−1
√
d)
(
1 + λαη +

α

σ2d

) t−t0−1∑
q=0

(P−1
√
d)−q

+ Õ

(
ληα3(1− γ)3

N

) t−t0−1∑
q=0

t−q∑
s=t0

N∑
i=1

(P−1
√
d)−qψ(yifW (s)(Xadv

i ))

+ Õ(Pσ2α−1
√
d)
(
1 + λαη +

α

σ2d

)
+Θ(ηPσ2

√
d)
λ

N

N∑
i=1

ψ(yifW (t)(Xadv
i )).
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By summing up the terms, we proved the stronger result for t+ 1.

Finally, we simplify the form of stronger result by using
∑∞

q=0(P
−1

√
d)−q = (1 − P/

√
d)−1 =

Θ(1), which implies the conclusion of Lemma C.5.

Now, we prove Lemma 4.4 based on Lemma C.5 as follow.
Theorem C.6. (Restatement of Lemma 4.4) For each i ∈ [N ], r ∈ [m] and j ∈ [P ] \ signal(Xi)
and any t ≥ 1, the signal component grows as

v
(t)
i,j,r ≥ v

(0)
i,j,r +Θ

(
ησ2d

N

) t−1∑
s=0

ψ(V(s)
i )

(
v
(s)
i,j,r

)2
− Õ(Pσ2α−1

√
d).

Proof. By applying the one-side inequality of Lemma C.5, we have

v
(t)
i,j,r − v

(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2
≥ −Õ

(
ληα3(1− γ)3

N

) t−1∑
s=t0

N∑
i=1

ψ(yifW (s)(Xadv
i ))

− Õ(Pσ2α−1
√
d).

Thus, we obtain Theorem C.6 by using Õ
(

ληα3(1−γ)3

N

)∑t−1
s=t0

∑N
i=1 ψ(yifW (s)(Xadv

i )) ≤

Õ(ληTα3(1− γ)3) ≤ Õ(Pσ2α−1
√
d) and ψ̃(s)

i = Θ(1)ψ(V(s)
i ) derived by Hypothesis C.1.

Consequently, we derive the upper bound of total noise components as follow.
Lemma C.7. During adversarial training, with high probability, it holds that, after T1 =

Θ

(
N

ησ0σ3d
3
2

)
iterations, for all t ∈ [T1, T ] and each i ∈ [N ], we have V(t)

i ≥ Õ(1).

Proof. By applying Lemma C.5 as the same in the proof of Theorem C.6, we know that∣∣∣∣∣v(t)i,j,r − v
(t0)
i,j,r −Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2∣∣∣∣∣ ≤ Õ(Pσ2α−1
√
d),

which implies that, for any iteration t ≤ T , we have v
(t)
i,j,r ≥ v

(0)
i,j,r +A

∑t−1
s=0

(
v
(s)
i,j,r

)2
− C

v
(t)
i,j,r ≤ v

(0)
i,j,r +A

∑t−1
s=0

(
v
(s)
i,j,r

)2
+ C

,

where A,C > 0 are constants defined as

A =
Θ̃
(
ησ2d

)
N

, C = Õ(Pσ2α−1
√
d).

At initialization, since we choose the weights w(0)
r ∼ N

(
0, σ2

0Id
)

and Xi[j] ∼ N
(
0, σ2Id

)
, we

know the initial noise components v(0)i,j,r are i.i.d. zero-mean Gaussian random variables, which

implies that, with high probability, there exists at least one index r′ such that v(0)i,j,r ≥ Ω̃(Pσ2α−1
√
d).

By using Tensor Power Method (Lemma A.2) and setting v = Θ̃(1), we have the threshold iteration
T1 as

T1 =
21N

Θ̃ (ησ2d) v
(0)
i,j,r

+
8N

Θ̃ (ησ2d)
(
v
(0)
i,j,r

)

log

(
Õ(1)

v
(0)
i,j,r

)
log(2)

 .
Therefore, we get T1 = Θ

(
N

ησ0σ3d
3
2

)
, and we use V(t)

i =
∑

r∈[m]

∑
j∈∈[P ]\signal(Xi)

(
v
(t)
i,j,r

)3
to

derive V(t)
i ≥ Ω̃(1).
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Indeed, our aimed loss function L̂adv (W ) is non-convex due to the non-linearity of our CNN model
fW . To analyze the convergence of gradient algorithm, we need to prove the following condition that
is used to show non-convexly global convergence (Karimi et al., 2016; Li et al., 2019).

Lemma C.8. (Lojasiewicz Inequality for Non-convex Optimization) During adversarial training,

with high probability, it holds that, after T1 = Θ

(
N

ησ0σ3d
3
2

)
iterations, for all t ∈ [T1, T ], we have

∥∥∥∇W L̂adv

(
W (t)

)∥∥∥
2
≥ Ω̃(1)L̂adv

(
W (t)

)
.

Proof. To prove Lojasiewicz Inequality, we first recall the gradient w.r.t. wr as

∇wr
L̂adv(W

(t)) = − 3

N

((
u(t)r

)2( N∑
i=1

(1− λ)α3ψ(yifW (t)(Xi)) + λα3(1− γ)3ψ(yifW (t)(Xadv
i ))

)
w∗

+

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2 (
(1− λ)ψ(yifW (t)(Xi)) + λψ(yifW (t)(Xadv

i ))
)
Xi[j]

 .

Then, we project the gradient on the signal direction and total noise, respectively.

For the signal component, we have∥∥∥∇wr
L̂adv(W

(t))
∥∥∥2
2
≥
〈
∇wr

L̂adv(W
(t)),w∗

〉2
≥ Ω̃(1)

(1− λ)α3
(
u(t)r

)2
ψ

α3
∑
k∈[m]

(
u
(t)
k

)32

.

For the total noise component, we have

∥∥∥∇wr L̂adv(W
(t))
∥∥∥2
2
≥

〈
∇wr L̂adv(W

(t)),

∑N
i=1

∑
j ̸=signal(Xi)

Xi[j]∥∥∥∑N
i=1

∑
j ̸=signal(Xi)

Xi[j]
∥∥∥
2

〉2

=

〈
− 3

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
((1− λ)ψ(yifW (t)(Xi)) + λψ(yifW (t)(Xadv

i ))
)
Xi[j],

∑N
a=1

∑
b̸=signal(Xa)

Xa[b]∥∥∥∑N
a=1

∑
b ̸=signal(Xa)

Xa[b]
∥∥∥
2

〉2

=

〈− 3

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
(1− λ)ψ(yifW (t)(Xi))Xi[j] ,

∑N
a=1

∑
b̸=signal(Xa)

Xa[b]∥∥∥∑N
a=1

∑
b ̸=signal(Xa)

Xa[b]
∥∥∥
2

〉

+

〈
− 3

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
λψ(yifW (t)(Xadv

i ))Xi[j],

∑N
a=1

∑
b̸=signal(Xa)

Xa[b]∥∥∥∑N
a=1

∑
b ̸=signal(Xa)

Xa[b]
∥∥∥
2

〉2

.

For the first term, with high probability, it holds that〈
− 3

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
(1− λ)ψ(yifW (t)(Xi))Xi[j],

∑N
a=1

∑
b̸=signal(Xa)

Xa[b]∥∥∥∑N
a=1

∑
b ̸=signal(Xa)

Xa[b]
∥∥∥
2

〉

≥ − Õ(σ)(1− λ)

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
(1− λ)ψ(yifW (t)(Xi)),
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where we use that
〈
Xi[j],

∑N
a=1

∑
b ̸=signal(Xa) Xa[b]

∥∑N
a=1

∑
b ̸=signal(Xa) Xa[b]∥

2

〉
is a sub-Gaussian random variable of pa-

rameter σ, which implies w.h.p.
∣∣∣∣〈Xi[j],

∑N
a=1

∑
b ̸=signal(Xa) Xa[b]

∥∑N
a=1

∑
b ̸=signal(Xa) Xa[b]∥

2

〉∣∣∣∣ ≤ Õ(σ).

For the second term, with high probability, it holds that〈
3

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
λψ(yifW (t)(Xadv

i ))Xi[j],

∑N
a=1

∑
b ̸=signal(Xa)

Xa[b]∥∥∥∑N
a=1

∑
b̸=signal(Xa)

Xa[b]
∥∥∥
2

〉

=
Θ(1)

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
λψ(yifW (t)(Xadv

i ))
∥Xi[j]∥22∥∥∥∑N

a=1

∑
b̸=signal(Xa)

Xa[b]
∥∥∥
2

=
Θ(σ

√
d)

N

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
λψ(yifW (t)(Xadv

i )),

where we use w.h.p. ⟨Xi[j],Xi′ [j
′]⟩

∥∑N
a=1

∑
b ̸=signal(Xa) Xa[b]∥

2

≤
Θ
(

1√
d

)
∥Xi[j]∥2

2

∥∑N
a=1

∑
b ̸=signal(Xa) Xa[b]∥

2

for (i, j) ̸= (i′, j′).

Now, combine the above bounds, we derive

m∑
r=1

∥∥∥∇wr L̂adv(W
(t))
∥∥∥2
2
≥

m∑
r=1

〈
∇wr L̂adv(W

(t)),w∗
〉2

+

m∑
r=1

〈
∇wr L̂adv(W

(t)),

∑N
i=1

∑
j ̸=signal(Xi)

Xi[j]∥∥∥∑N
i=1

∑
j ̸=signal(Xi)

Xi[j]
∥∥∥
2

〉2

≥ Ω

(
1

m

)(1− λ)α3
m∑
r=1

(
u(t)r

)2
ψ

α3
∑
k∈[m]

(
u
(t)
k

)3
+

Θ(σ
√
d)

N

m∑
r=1

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
λψ(yifW (t)(Xadv

i ))

− Õ(σ)(1− λ)

N

m∑
r=1

N∑
i=1

∑
j ̸=signal(Xi)

(
v
(t)
i,j,r

)2
(1− λ)ψ(yifW (t)(Xi))

2

≥ Ω̃(1)

(1− λ)ϕ

α3
∑
r∈[m]

(
u(t)r

)3+
λ

N

N∑
i=1

ϕ
(
V(t)
i

)2

≥ Ω̃(1)
(
L̂adv

(
W (t)

))2
.

Consequently, we derive the following sub-linear convergence result by applying Lojasiewicz In-
equality.

Lemma C.9. (Sub-linear Convergence for Adversarial Training) During adversarial training, with

high probability, it holds that, after T1 = Θ

(
N

ησ0σ3d
3
2

)
iterations, the adversarial training loss

sub-linearly converges to zero as

L̂adv

(
W (t)

)
≤ Õ(1)

η(t− T1 + 1)
.
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Proof. Due to the smoothness of loss function L̂adv (W ) and learning rate η = Õ(1), we have

L̂adv

(
W (t+1)

)
≤ L̂adv

(
W (t)

)
− η

2

∥∥∥∇W L̂adv

(
W (t)

)∥∥∥
2

≤ L̂adv

(
W (t)

)
− Ω̃(η)

(
L̂adv

(
W (t)

))2
,

where we use Lojasiewicz Inequality in the last inequality. Then, by applying Tensor Power Method
(Lemma A.3), we obtain the sub-linear convergence rate.

Now, we present the following result to bound the derivative generated by training-adversarial
examples.
Lemma C.10. During adversarial training, with high probability, it holds that, after T1 =

Θ

(
N

ησ0σ3d
3
2

)
iterations, we have λ

N

∑t
s=0

∑N
i=1 ψ(yifW (s)(Xadv

i )) ≤ Õ(η−1σ−1
0 ).

Proof. First, we bound the total derivative during iteration s = T1, . . . , t. By applying the conclusion
of Lemma C.5, we have

λ

N

t∑
s=T1

N∑
i=1

ψ(yifW (s)(Xadv
i )) ≤ Õ(1)

N

t−1∑
s=T1

N∑
i=1

ψ̃
(s)
i

(
v
(s)
i,j,r

)2
+ Õ

(
λα3(1− γ)3

Nσ2d

) t−1∑
s=T1

N∑
i=1

ψ(yifW (s)(Xadv
i )) + Õ

(
P

ηα
√
d

)
.

Due to Õ
(

α3(1−γ)3

σ2d

)
≪ 1, we know

λ

N

t∑
s=T1

N∑
i=1

ψ(yifW (s)(Xadv
i )) ≤ Õ(1)

N

t−1∑
s=T1

N∑
i=1

ψ̃
(s)
i

(
v
(s)
i,j,r

)2
+ Õ

(
P

ηα
√
d

)

≤ Õ(1)

N

t−1∑
s=T1

N∑
i=1

ϕ
(
V(s)
i

)
+ Õ

(
P

ηα
√
d

)

≤ Õ(1)

t−1∑
s=T1

L̂adv

(
W (t)

)
+ Õ

(
P

ηα
√
d

)

≤ Õ(1)

t−1∑
s=T1

Õ(1)

η(t− T1 + 1)
+ Õ

(
P

ηα
√
d

)
≤ Õ(η−1).

Thus, we obtain λ
N

∑t
s=0

∑N
i=1 ψ(yifW (s)(Xadv

i )) ≤ Õ(σ−1
0 ) + Õ(η−1) ≤ Õ(η−1σ−1

0 ).

Consequently, we have the following lemma that verifies Hypothesis C.1 for t = T .
Lemma C.11. During adversarial training, with high probability, it holds that, for any t ≤ T , we
have maxr∈[m] u

(t)
r ≤ Õ(α−1) and |v(t)i,j,r| ≤ Õ(1) for each r ∈ [m], i ∈ [N ], j ∈ [P ] \ signal(Xi).

Proof. Combined with Theorem C.4 and Lemma C.10, we can derive maxr∈[m] u
(T )
r ≤ Õ(α−1).

By applying Lemma C.5, we have

|v(T )
i,j,r| ≤ |v(0)i,j,r|+Θ

(
ησ2d

N

) t−1∑
s=t0

ψ̃
(s)
i

(
v
(s)
i,j,r

)2
+ Õ

(
ληα3(1− γ)3

N

) t−1∑
s=t0

N∑
i=1

ψ(yifW (s)(Xadv
i )) + Õ(Pσ2α−1

√
d)

≤ Õ(1) + Õ(σ2d) + Õ(α3(1− γ)3σ−1
0 ) + Õ(Pσ2α−1

√
d) ≤ Õ(1).

Therefore, our Hypothesis C.1 holds for iteration t = T .
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Finally, we prove our main result as follow.
Theorem C.12. (Restatement of Theorem 4.1) Under Parameterization 3.1, we run the adversarial
training algorithm to update the weight of the simplified CNN model for T = Ω(poly(d)) iterations.
Then, with high probability, it holds that the CNN model

1. partially learns the true feature, i.e. U (T ) = Θ(α−3);

2. exactly memorizes the spurious feature, i.e. for each i ∈ [N ],V(T )
i = Θ(1),

where U (t) and V(t)
i is defined for i−th instance (Xi, yi) and t−th iteration as the same in (1)(1).

Consequently, the clean test error and robust training error are both smaller than o(1), but the robust
test error is at least 1

2 − o(1).

Proof. First, by applying Lemma C.3, Lemma C.7 and Lemma C.11, we know for any i ∈ [N ]

U (T ) =
∑
r∈[m]

(
u(T )
r

)3
= Θ(α−3)

V(T )
i =

∑
r∈[m]

∑
j ̸=signal(Xi)

(
v
(T )
i,j,r

)3
= Θ(1).

Then, since adversarial loss sub-linearly converges to zero i.e. L̂adv
(
W (T )

)
≤ Õ(1)

η(T−T1+1) ≤

Õ
(

1
poly(d)

)
= o(1), the robust training error is also at most o(1).

To analyze test errors, we decompose w
(T )
r into w

(T )
r = µ

(T )
r w∗ + β

(T )
r for each r ∈ [m], where

β
(T )
r ∈ (span(w∗))

⊥. Due to V(T )
i = Θ(1), we know ∥β(T )

r ∥2 = Θ(1).

For the clean test error, we have

P(X,y)∼D [yfW (T )(X) < 0] = P(X,y)∼D

α3
m∑
r=1

(
u(T )
r

)3
+ y

m∑
r=1

∑
j∈[P ]\signal(X)

〈
w(T )

r ,X[j]
〉3

< 0


≤ P(X,y)∼D

 m∑
r=1

∑
j∈[P ]\signal(X)

〈
β(T )
r ,X[j]

〉3
≥ Ω̃(1)


≤ exp

(
− Ω̃(1)

σ6
∑m

r=1 ∥β
(T )
r ∥62

)
≤ O

(
1

poly(d)

)
= o(1),

where we use the fact that
∑m

r=1

∑
j∈[P ]\signal(X)

〈
β
(T )
r ,X[j]

〉3
is a sub-Gaussian random variable

with parameter σ3

√
(P − 1)

∑m
r=1 ∥β

(T )
r ∥62.

For the robust test error, we use A(·) to denote geometry-inspired transferable attack (GTA) in (A),
and then we derive

P(X,y)∼D

[
min

∥ξ∥2≤δ
yfW (T )(X + ξ) < 0

]
≥ P(X,y)∼D [yfW (T )(A(X)) < 0]

= P(X,y)∼D

α3
m∑
r=1

(
u(T )
r

)3
(1− γ)3 + y

m∑
r=1

∑
j∈[P ]\signal(X)

〈
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r ,X[j]
〉3

< 0


≥ 1

2
P(X,y)∼D

∣∣∣∣∣∣
m∑
r=1

∑
j∈[P ]\signal(X)

〈
β(T )
r ,X[j]

〉3∣∣∣∣∣∣ ≥ Ω̃
(
(1− γ)3

) ≥ 1

2

(
1− Õ(d)

2d

)
=

1

2
− o(1),

where we use Lemma A.4 in the last inequality.
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D PROOF FOR SECTION 5

We prove Theorem 5.2 by using ReLU network to approximate fS proposed in Section 1.

Theorem D.1. (Restatement of Theorem 5.2) Under Assumption 5.1, withN−sample training dataset
S = {(X1, y1), (X2, y2), . . . , (XN , yN )} drawn from the data distribution D, there exists a CGRO
classifier that can be represented as a ReLU network with poly(D) + Õ(ND) parameters, which
means that, under the distribution D and dataset S, the network achieves zero clean test and robust
training errors but its robust test error is at least Ω(1).

Proof. First, we give the following useful results about function approximation by ReLU nets.

Lemma D.2. (Yarotsky, 2017, Proposition 2) The function f(x) = x2 on the segment [0, 1] can be
approximated with any error ϵ > 0 by a ReLU network having the depth and the number of weights
and computation units O(log(1/ϵ)).

Lemma D.3. (Yarotsky, 2017, Proposition 3) Let ϵ > 0, 0 < a < b and B ≥ 1 be given. There exists
a function ×̃ : [0, B]2 → [0, B2] computed by a ReLU network with O

(
log2

(
ϵ−1B

))
parameters

such that
sup

x,y∈[0,B]

∣∣×̃(x, y)− xy
∣∣ ≤ ϵ,

and ×̃(x, y) = 0 if xy = 0.

Since for ∀X0 ∈ [0, 1]D, the ℓ2−distance function ∥X −X0∥2 =
∑D

i=1 |X(i) −X
(i)
0 |2, by using

Lemma D.2, there exists a function ϕ1 computed by a ReLU network with O
(
D log

(
ϵ−1
1 D

))
parameters such that supX∈[0,1]D

∣∣ϕ1(X)− ∥X −X0∥2
∣∣ ≤ ϵ1.

Return to our main proof back, indeed, functions computed by ReLU networks are piecewise linear
but the indicator functions are not continuous, so we need to relax the indicator such that Îsoft(x) = 1

for x ≤ δ + ϵ0, Îsoft(x) = 0 for x ≥ R − δϵ0 and Îsoft is linear in (δ + ϵ0, R − δϵ0) by using only
two ReLU neurons, where ϵ0 is sufficient small for approximation.

Now, we notice that the constructed function fS can be re-written as

fS(X) = fclean(X)
(
1− I{X ∈ ∪N

i=1B2(Xi, δ)}
)
+

N∑
i=1

yiI{X ∈ B2(Xi, δ)}

= fclean(X) +

N∑
i=1

(yi − fclean(X))I{∥X −Xi∥22 ≤ δ2}.

Combined with Lemma D.2, Lemma D.3 and the relaxed indicator, we know that there exists a
ReLU net h with at most poly(D) + Õ(ND) parameters such that |h − fS | = o(1) for all input
X ∈ [0, 1]D. Thus, it is easy to check that h belongs to CGRO classifiers.

Next, we prove Theorem 5.3 by using the VC-dimension theory.

Theorem D.4. (Restatement of Theorem 5.3) Let FM be the family of function represented by ReLU
networks with at most M parameters. There exists a number MD = Ω(exp(D)) and a distribution
D satisfying Assumption 5.1 such that, for any classifier in the family FMD

, under the distribution D,
the robust test error is at least Ω(1).

Proof. Now, we notice that ReLU networks are piece-wise linear functions. Montufar et al. (2014)
study the number of local linear regions, which provides the following result.

Proposition D.5. The maximal number of linear regions of the functions computed by any ReLU
network with a total of n hidden units is bounded from above by 2n.
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Thus, for a given clean classifier fclean represented by a ReLU net with poly(D) parameters, we know
there exists at least a local region V such that decision boundary of fclean is linear hyperplane in V .
And we assume that the hyperplane is X(D) = 1

2 .

Then, let V ′ be the projection of V on the decision boundary of fclean, and P be an 2δ-packing of V ′.
Since the packing number P(V ′, ∥ · ∥, 2δ) ≥ C(V ′, ∥ · ∥2, 2δ) = exp(Ω(D)), where C(Θ, ∥ · ∥, δ) is
the δ-covering number of a set Θ. For any ϵ0 ∈ (0, 1), we can consider the construction

Sϕ =

{(
x,

1

2
+ ϵ0 · ϕ(x)

)
: x ∈ P

}
,

where ϕ : P → {−1,+1} is an arbitrary mapping. It’s easy to see that all points in Sϕ with first
D − 1 components satisfying ∥x∥2 ≤

√
1− ϵ20 are in V ′, so that by choosing ϵ0 sufficiently small,

we can guarantee that |Sϕ ∩ V | = exp(Ω(D)). For convenience we just replace Sϕ with Sϕ ∩ V
from now on.

Let Aϕ = Sϕ ∩
{
X ∈ V : x(D) > 1

2

}
, Bϕ = Sϕ − Aϕ. It’s easy to see that for arbitrary ϕ, the

construction is linear-separable and satisfies 2δ-separability.

Assume that for any choices of ϕ, the induced sets Aϕ and Bϕ can always be robustly classified with
(O(δ), 1− µ)-accuracy by a ReLU network with at most M parameters. Then, we can construct an
enveloping network Fθ with M − 1 hidden layers, M neurons per layer and at most M3 parameters
such that any network with size ≤M can be embedded into this envelope network. As a result, Fθ is
capable of (O(δ), 1− µ)-robustly classify any sets Aϕ, Bϕ induced by arbitrary choices of ϕ. We
use Rϕ to denote the subset of Sϕ = Aϕ ∪ Bϕ satisfying |Rϕ| = (1− µ) |Sϕ| = exp(Ω(D)) such
that Rϕ can be O(δ)-robustly classified.

Next, we estimate the lower and upper bounds for the cardinal number of the vector set

R := {(f(x))x∈P |f ∈ FMD
}.

Let n denote |P|, then we have

R = {(f(x1), f(x2), ...f(xn))|f ∈ FMD
},

where P = {x1,x2, ...,xn}.

On one hand, we know that for any u ∈ {−1, 1}n, there exists a v ∈ R such that dH(u, v) ≤ αn,
where dH(·, ·) denotes the Hamming distance, then we have

|R| ≥ N ({−1, 1}n, dH , µn) ≥
2n∑µn

i=0

(
n
i

) .
On the other hand, by applying Lemma A.8, we have

2n∑µn
i=1

(
n
i

) ≤ |R| ≤ ΠFMD
(n) ≤

l∑
j=0

(
n

j

)
.

where l is the VC-dimension of FMD
. In fact, we can derive l = Ω(n) when µ is a small constant.

Assume that l < n− 1 , then we have
∑l

j=0

(
n
j

)
≤ (en/l)l and

∑µn
i=1

(
n
i

)
≤ (e/µ)µn, so

2n

(e/µ)
µn ≤ |R| ≤ (en/l)l.

We define a function h(x) as h(x) = (e/x)x, then we derive

2 ≤
(
e

µ

)µ(
e

l/n

)l/n

= h(µ)h(l/n).

When µ is sufficient small, l/n ≥ C(µ) that is a constant only depending on µ, which implies l =
Ω(n). Finally, by using Lemma A.7 and n = |P| = exp(Ω(D)), we know MD = exp(Ω(D)).
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(a) (b)

Figure 3: Left: Local and Global Flatness During Adversarial Training on CIFAR10; Right: The
Relation Between Robust Generalization Gap and Global Flatness on CIFAR10.

E ROBUST GENERALIZATION BOUND BASED ON GLOBAL FLATNESS

In this section, we prove a novel robust generalization bound that mainly depends on global flatness
of loss landscape. We consider ℓp−adversarial robustness with perturbation radius δ and we use
Lclean, Ladv(f) and L̂adv(f) to denote the clean test risk, the adversarial test risk and the adversarial
empirical risk w.r.t. the model f , respectively. We also assume 1

p + 1
q = 1 for the next results.

Theorem E.1. (Robust Generalization Bound) Let D be the underlying distribution with a smooth
density function, and N−sample training dataset S = {(X1, y1), (X2, y2), . . . , (XN , yN )} is i.i.d.
drawn from D. Then, with high probability, it holds that,

Ladv(f) ≤ L̂adv(f) +N− 1
D+2O

E(X,y)∼D

[
max

∥ξ∥p≤δ
∥∇XL(f(X + ξ), y)∥q

]
︸ ︷︷ ︸

global flatness

 .

This generalization bound shows that robust generalization gap can be dominated by global flatness
of loss landscape. And we also have the lower bound of robust generalization gap stated as follow.
Proposition E.2. Let D be the underlying distribution with a smooth density function, then we have

Ladv(f)− Lclean(f) = Ω
(
δE(X,y)∼D [∥∇XL(f(X), y)∥q]

)
.

Theorem E.1 and Proposition E.2 manifest that robust generalization gap is very related to global
flatness. However, although adversarial training achieves good local flatness by robust memorization
on training data, the model lacks global flatness, which leads to robust overfitting.

This point is also verified by numerical experiment on CIFAR10 (see results in Figure 3). First, global
flatness grows much faster than local flatness in practice. Second, with global flatness increasing
during training process, it causes an increase of robust generalization gap.
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F PROOF FOR SECTION E

Theorem F.1. (Restatement of Theorem E.1) Let D be the underlying distribution with a smooth
density function, and N−sample training dataset S = {(X1, y1), (X2, y2), . . . , (XN , yN )} is i.i.d.
drawn from D. Then, with high probability, it holds that,

Ladv(f) ≤ L̂adv(f) +N− 1
D+2O

E(X,y)∼D

[
max

∥ξ∥p≤δ
∥∇XL(f(X + ξ), y)∥q

]
︸ ︷︷ ︸

global flatness

 .

Proof. Indeed, we notice the following loss decomposition,

Ladv(f)− L̂adv(f) =
(
Lclean(f)− L̂adv(f)

)
+ (Ladv(f)− Lclean(f)) .

To bound the first term, by applying λi to denote kernel density estimation (KDE) proposed in Petzka
et al. (2020), then we derive

Lclean(f)− L̂adv(f) = E(X,y)∼D[L(f(X), y)]− 1

N

N∑
i=1

max
∥ξ∥p≤δ

L(f(Xi + ξ, yi))

≤ E(X,y)∼D[L(f(X), y)]− 1

N

N∑
i=1

Eξ∼λi
[L(f(Xi + ξ), yi)]

=

∫
X

pD(X)L(f(X), y)dX −
∫
X

pS(X)L(f(X), y)dX

≤
∣∣∣∣∫

X

(pD(X)− ES [pS(X)])L(f(X), y(X))dX

∣∣∣∣︸ ︷︷ ︸
(I)

+

∣∣∣∣∫
X

(ES [pS(X)]− pS(X))L(f(X), y(X))dX

∣∣∣∣︸ ︷︷ ︸
(II)

,

where pD(X) is the density function of the distribution D, and pS(X) is the KDE of point X .

With the smoothness of density function of D and Silverman (2018), we know that (I) = O(δ2).

For (II), by using Chebychef inequality and Silverman (2018), with probability 1−∆, we have

(II) = O(∆− 1
2N− 1

2 δ−
D
2 +N−2).

On the other hand, by Taylor expansion, we know

Ladv(f)− Lclean(f) ≤ O(δ)E(X,y)∼D

[
max

∥ξ∥p≤δ
∥∇XL(f(X + ξ), y)∥q

]
.

Combined with the bounds for (I) and (II), we can derive Theorem E.1.
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