
OpenCodeInterpreter: Integrating Code Generation with
Execution and Refinement

Anonymous ACL submission

Abstract

The introduction of large language models has001
significantly advanced code generation. How-002
ever, open-source models often lack the execu-003
tion capabilities and iterative refinement of ad-004
vanced systems like the GPT-4 Code Interpreter.005
To address this, we introduce OpenCodeIn-006
terpreter, a family of open-source code sys-007
tems designed for generating, executing, and008
iteratively refining code. Supported by Code-009
Feedback, a dataset featuring 68K multi-turn in-010
teractions, OpenCodeInterpreter integrates ex-011
ecution and human feedback for dynamic code012
refinement. Our comprehensive evaluation of013
OpenCodeInterpreter across key benchmarks014
such as HumanEval, MBPP, and their enhanced015
versions from EvalPlus reveals its exceptional016
performance. Notably, OpenCodeInterpreter-017
33B achieves an accuracy of 83.2 (76.4) on the018
average (and plus versions) of HumanEval and019
MBPP, closely rivaling GPT-4’s 84.2 (76.2) and020
further elevates to 91.6 (84.6) with synthesized021
human feedback from GPT-4. OpenCodeInter-022
preter brings the gap between open-source code023
generation models and proprietary systems like024
GPT-4 Code Interpreter.1025

1 Introduction026

Code generation has been a pivotal challenge027

within computer science for several decades. Re-028

cently, the landscape of code generation has been029

revolutionized by the advent of large language030

models (LLMs) pre-trained on extensive code cor-031

pora (Nijkamp et al., 2022; Christopoulou et al.,032

2022; Zheng et al., 2023; Li et al., 2023a; Wang033

et al., 2023c; Roziere et al., 2023; Guo et al., 2024).034

These models have showcased remarkable capabil-035

ities in generating code that accurately aligns with036

user intents, thus providing substantial support for037

software development (GitHub, 2023).038

1Our code and dataset are available at: anonymous link.

error Traceback (most recent call last)
Input In [1], in <cell line: 11>()
error: nothing to repeat at position 21

Execution Result: True

Sure, here is a Python function using Regular
Expression (regex) to check if a string is a valid
IPv6 address:
```python
def is_valid_ipv6(ip):

... ...
print(is_valid_ipv6("2404:6800:4003:c02::8a"))#True
```

I apologize for the confusion. It seems like there
was a mistake in the regular expression pattern.
Let's correct that. Here is the corrected function:
```python
def is_valid_ipv6(ip):

... ...
print(is_valid_ipv6("2404:6800:4003:c02::8a"))#True
```

Great! The function appears to be working as
expected now. It correctly identifies the strings
“2404:6800:4003:c02::8a”…
Let me know if there's anything else I can assist
you with!

Sure, let me break down the regular expression for
you:
- ([0-9a-fA-F]{1,4}:){7,7}[0-9a-fA-F]{1,4}: This
pattern matches an IPv6 address that consists of …

Implement a Python function to check if a string
is a valid IPv6 address with regular expressions.

Can you explain the generated regular expression
in detail and make this function more maintainable?

76.2
79.3

81.1 82.9
87.2 88.489.7 92.7

60

70

80

90

100

OpenInterpreter-6.7B OpenInterpreter-33B

Hu
ma
nE
va
l

Pa
ss
@1

Single Turn w/ Exec Feedback

w/ Human Feedback w/ H.F. (Oracle)

GPT4 CI

GPT3.5 CI
GPT4

Figure 1: Overview of the OpenCodeInterpreter and its
pass@1 accuracy on the HumanEval. With appropriate
feedback, OpenCodeInterpreter-33B achieves perfor-
mance comparable to that of the GPT-4 Code Interpreter.

To unleash the capabilities of pre-trained code 039

models, instruction-tuning methods have been de- 040

veloped. For instance, CodeAlpaca (Chaudhary, 041

2023) comprises 20K code instructions automat- 042

ically generated by applying self-instruct (Wang 043

et al., 2023b) to ChatGPT, utilizing 21 seed tasks as 044

1

https://anonymous.4open.science/r/OpenCodeInterpreter-33D4

the foundation. To further refine the coding profi-045

ciency of LLMs, Luo et al. (2023) introduces Code046

Evol-Instruct, a method that applies a variety of047

heuristics to enrich the complexity of initial code048

instructions, building upon the dataset provided049

by CodeAlpaca. Meanwhile, MagicCoder (Wei050

et al., 2023) employs a robust LLM to generate051

novel coding challenges, sourcing inspiration from052

a diverse range of open-source code snippets. Ad-053

ditionally, WaveCoder (Yu et al., 2023) implements054

an LLM generator-discriminator framework for cre-055

ating code instruction data, offering customization056

and control over the data generation process.057

Despite these advancements, current code mod-058

els are constrained by their capacity to utilize feed-059

back for refinement. Essentially, feedback can have060

two forms: (1) execution feedback, which includes061

execution outputs and diagnostics, and (2) human062

feedback, comprising follow-up guidance or in-063

structions from users. Execution feedback plays a064

vital role in enabling models to rectify syntactic and065

logical errors, and human feedback aids models in066

better understanding user instructions, facilitating067

the generation of solutions that more closely align068

with user expectations.069

To address these challenges, we propose Open-070

CodeInterpreter, a family of open-source code sys-071

tems designed for generating, executing, and it-072

eratively refining code. OpenCodeInterpreter is073

trained on our constructed Code-Feedback dataset,074

which features 68K multi-turn interactions between075

users, code models, and compilers. OpenCodeIn-076

terpreter uniquely integrates both execution and077

human feedback, employing compiler diagnostics078

to rectify errors and human insights to refine code079

generation. This approach allows OpenCodeInter-080

preter to produce solutions that are both technically081

sound and closely matched to user requirements,082

significantly boosting its overall performance.083

Our thorough evaluation of OpenCodeInter-084

preter on widely recognized benchmarks, such as085

HumanEval (Chen et al., 2021), MBPP (Austin086

et al., 2021), and their augmented counterparts087

from EvalPlus (Liu et al., 2023), highlights its su-088

perior ability to generate and iteratively refine code,089

achieving exemplary standards of quality and func-090

tionality. Remarkably, OpenCodeInterpreter-33B091

secures an impressive accuracy of 83.2 (76.4) on092

the average (and plus versions) of HumanEval and093

MBPP, showcasing performance on par with GPT-094

4’s 84.2 (76.2). Furthermore, when augmented with095

synthesized human feedback from GPT-4, Open-096

CodeInterpreter’s performance notably increases 097

to 91.6 (84.6). OpenCodeInterpreter thereby es- 098

tablishes a new benchmark in code generation, ef- 099

fectively narrowing the performance gap between 100

open-source models and sophisticated proprietary 101

systems like the GPT-4 Code Interpreter. 102

2 Code-Feedback 103

In this section, we detail the creation of our code in- 104

struction tuning dataset, Code-Feedback (Figure 2), 105

designed to train OpenCodeInterpreter. Code- 106

Feedback is crafted to meet specific criteria: 1) 107

Diverse and challenging real-world queries: The 108

dataset should encompass a wide range of queries 109

derived from real-world coding tasks, presenting 110

both diversity and complexity. 2) Multi-turn di- 111

alogue structure: Code-Feedback is structured 112

as multi-turn dialogues, incorporating two types 113

of feedback: execution feedback, which includes 114

outputs and diagnostics from compilers, and hu- 115

man feedback, consisting of additional guidance 116

or instructions from users. 3) Interleaved text 117

and code responses: Each response is expected 118

to provide responses that blend natural language 119

explanations with code snippets, offering a holistic 120

approach to solving coding queries. 121

To assemble a dataset that fulfills these desider- 122

ata, we have employed five distinct methods. Ex- 123

amples of these five categories can be found in Ap- 124

pendix E. The sources of our queries fall into two 125

main categories: a variety of open-source datasets 126

and coding challenges from LeetCode. In the next 127

subsections, we will discuss how we develop data 128

construction methods to meet the three aforemen- 129

tioned criteria from the two data sources. 130

2.1 Coding Queries from Open-source Data 131

We have aggregated 287k queries from four dis- 132

tinguished open-source code instruction tuning 133

datasets: Magicoder-OSS-Instruct2, Python code 134

subset of ShareGPT3, Magicoder-Evol-Instruct 4, 135

and Evol-Instruct-Code 5. To refine this exten- 136

sive collection and isolate the most intricate and 137

informative instructions, we employ a very capa- 138

ble open-source chat model, Qwen-72B-Chat (Bai 139

et al., 2023), for a selective filtering process. This 140

1hf.co/datasets/HuggingFaceH4/CodeAlpaca_20K
2hf.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
3hf.co/datasets/ajibawa-2023/Python-Code-23k-

ShareGPT
4hf.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
5hf.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1

2

https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT
https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1

Open-source
Code Instruction
Tuning Datasets

Execute

Challenging
Query Pool

Similar Query
Packing

Code
Correction

Human Feedback
Simulation

Similar Problem
Packing

Follow-up
Q&A

Query Filtering

Open-source
Code Instruction
Tuning Datasets

Challenging
Query Pool

Single-turn
Packing

Code
Correction

Interaction
Simulation

LeetCode
Similar Problem

LeetCode
Follow-Up

Query Filtering

Dataset #Sample #Turn M.T E.F H.F

CodeAlpaca 1 20k 20K ✗ ✗ ✗

Magicoder-OSS-Instruct 2 75K 75K ✗ ✗ ✗

Python-Code-ShareGPT 3 23K 23K ✗ ✗ ✗

Magicoder-Evol-Instruct 4 111K 111K ✗ ✗ ✗

EvolInstruct-Code 5 80k 80K ✗ ✗ ✗

Code-Feedback (Ours) 68K 192K ✔ ✔ ✔

Single-turn Packing 16K 33.5K ✔ ✗ ✔

Interaction Simulation 51K 155.5K ✔ ✔ ✔

Code Correction 0.5K 1.2K ✔ ✔ ✗

LeetCode Similar Problem 0.3K 0.65K ✔ ✗ ✔

LeetCode Follow-Up 0.2K 0.76K ✔ ✗ ✔

Figure 2: Summary of our proposed dataset Code-Feedback construction and comparison with existing code
instruction tuning datasets. M.T: Multi Turn, E.F: Execute Feedback, H.F: Human Feedback.

involves the LLM assessing each code query and141

its corresponding response within the compiled142

datasets on a complexity score from 1 to 5. Only143

the most challenging queries, with ratings of 4 or144

5, were retained for our seed set, ensuring a focus145

on the most difficult instructions. To guarantee the146

robustness of our selection, this filtering operation147

is repeated with two distinct prompts (detailed in148

Appendix A), thereby solidifying the complexity of149

our final query selection. This meticulous process150

resulted in 156k high-quality single-turn code in-151

structions as the challenging query pool. Detailed152

statistics of this data compilation are provided in153

Appendix A.154

Subsequently, we describe three methods em-155

ployed to transform this curated single-turn data156

into multi-turn dialogues enriched with both execu-157

tion and human feedback.158

Singe-turn Packing. A direct approach to craft-159

ing multi-turn data is to group single-turn query-160

response pairs into multi-turn formats. Inspired161

by in-context pre-training techniques (Shi et al.,162

2023), which consolidate similar sequences to fos-163

ter model learning of dependencies among related164

documents, we merge similar single-turn query-165

response pairs to form multi-turn dialogues.166

Utilizing the BERT-base embedding (Devlin167

et al., 2019), we convert queries into vectorized rep-168

resentations. For each query, the k-nearest neigh-169

bors algorithm is employed to identify its four clos-170

est counterparts. From these, we randomly select171

two or three to assemble multi-turn sequences. To172

maintain data uniqueness, once a query is chosen173

as a neighbor, it is exempt from future selections as174

a neighboring query, ensuring no single instruction175

is repeated across the dataset. Should a query’s176

potential neighbors have been previously utilized, 177

that query is bypassed. This method results in the 178

creation of 16.6K multi-turn instances derived from 179

105K single-turn instances. 180

Interaction Simulation. Real human interaction 181

data is hard to collect. To mimic the code in- 182

terpreter real-use scenario, we create a simulator 183

based on GPT-3.5 and GPT-4. Specifically, given a 184

sampled query, we first let the GPT-3.5 generate an 185

initial response. We extract the code snippet from 186

the response and run the code. We then pass the 187

execution output or compiler diagnostics (if any) 188

to the GPT-4 model and let it generate the follow- 189

up. We repeat the process until GPT-4 thinks it 190

outputs a correct solution or reaches the 3 max- 191

imum iterations. Next, we simulate the human 192

follow-up question and feedback. We pre-define 193

10 common feedback types including syntax and 194

formatting, efficiency, functionality enhancements, 195

code clarity and documentation, bug identification, 196

security improvements, compatibility and testing, 197

resource optimization, scalability, and adherence to 198

best practices. The details of each type of feedback 199

are illustrated in Appendix B. Then, we prompt 200

GPT-4 to automatically decide which type of feed- 201

back is the most proper in the current scenario and 202

generate potential feedback under that category. 203

Finally, we append the generated feedback to the 204

dialog history, prompting GPT-4 to generate so- 205

lutions that address the feedback. This simulates 206

complex user-model interactions, along with inter- 207

leaving multi-turn execution feedback loops, where 208

GPT-4 also makes self-corrections based on human 209

feedback to improve the proposed solutions. This 210

method results in 51K examples in total. 211

Code Correction. To enhance the model’s robust- 212

3

ness, an additional step was incorporated into our213

data collection process, focusing on the creation of214

500 specific error correction interactions. Specif-215

ically, we prompt GPT-4 to deliberately generate216

incorrect code snippets (Appendix B). Following217

this, the model utilized the error messages resulting218

from the execution of these incorrect codes as a ba-219

sis for making corrections. This approach not only220

simulates a realistic coding environment where pro-221

grammers iteratively debug and refine their code222

but also enriches our dataset with a wide range of223

error-handling examples. After that, the instruc-224

tions that originally prompted the generation of in-225

correct code were replaced with commands aimed226

at producing correct code outputs. This method-227

ology ensures that the model learns not only from228

accurate code generation tasks but also gains the229

ability to identify and correct errors, thereby signif-230

icantly improving its problem-solving capabilities231

and understanding of the debugging process.232

2.2 Coding Challenges from LeetCode233

LeetCode Similar Problem. Inspired by the com-234

mon practice of human programmers who often235

master a shared knowledge base by solving similar236

LeetCode problems, we extract similar LeetCode237

questions and their corresponding solutions from238

the LeetCode dataset in TACO (Li et al., 2023b).239

LeetCode6 tags related questions in their UI, allow-240

ing us to easily extract the related questions. TACO241

verifies that the LeetCode dataset has been decon-242

taminated to avoid influencing the downstream task243

datasets, e.g., HumanEval and MBPP. By concate-244

nating related LeetCode questions, we generate a245

total of 303 multi-turn instances.246

LeetCode Follow-up Question. Additionally, we247

parse the solutions in the LeetCode dataset to ex-248

tract solutions of the same LeetCode questions with249

different time or space complexity or using differ-250

ent programming languages. By concatenating dif-251

ferent solutions to the same LeetCode questions,252

we generate a total of 200 multi-round instances.253

Due to the lack of natural language explanations254

of initial LeetCode solutions, we prompt GPT-4255

to make the response containing interleaved text256

explanations and code snippets. Subsequently, all257

instances are unified into the same format. The258

prompt provided to GPT-4 during this process can259

be found in Appendix C.260

6https://leetcode.com/problemset/

3 Experimental Setup 261

Training Setup. We fine-tune the base models for 262

3 epochs, with all models sharing identical hyper- 263

parameter settings. The base models chosen for our 264

study include CodeLlama-Python and DeepSeek- 265

Coder of different capacities to demonstrate the 266

consistent benefit of the dataset we constructed 267

across different series and sizes of Code LLM base- 268

lines. We adopt the optimal mix of high-quality 269

single-turn data, i,e. data randomly sampled from 270

WizardCoder 110k dataset, with our constructed 271

data as 2:1 to finetune all OpenInterpreter Series 272

Models in Table 1. Employing a cosine scheduler, 273

we set the initial learning rate at 2e-5, using a warm- 274

up ratio of 0.05. The token cutoff length is fixed at 275

4096, and BF16 is utilized. 276

Evaluation Setup. We mainly utilize HumanEval 277

(Chen et al., 2021) and MBPP (Austin et al., 2021), 278

standing as two of the most widely recognized 279

benchmarks for code generation, for evaluating our 280

models. Given that the original test suites accompa- 281

nying these benchmarks may not sufficiently cover 282

all edge cases (Liu et al., 2023), we also use the ex- 283

panded versions, HumanEval+ and MBPP+, pow- 284

ered by the EvalPlus framework (Liu et al., 2023). 285

Following (Liu et al., 2023; Chen et al., 2023), our 286

evaluation for OpenCodeInterpreter adopts greedy 287

decoding to generate solutions. Additionally, when 288

generating solutions with GPT-3.5 Turbo (OpenAI, 289

2022) and GPT-4 Turbo (OpenAI, 2023), we set the 290

temperature to 0. We post-process the generated 291

solutions using the unified sanitizer tool provided 292

by EvalPlus, and then evaluate them on four bench- 293

marks using the EvalPlus’s evaluation tool. 294

As for single-turn code generation, we em- 295

ploy a simple instruction to wrap the original 296

prompt, which serves as the new prompt input to 297

the model. The detailed prompts are provided in 298

the Appendix D. Following EvalPlus, we evaluate 299

the model’s pass@1 performance. 300

We also evaluate multi-turn pass rates, aim- 301

ing to gauge the model’s effectiveness when re- 302

fining code through iterative interactions. This 303

evaluation utilizes system-generated execution re- 304

sults and human-like feedback generated by GPT 305

models (OpenAI, 2022, 2023) as inputs. Through 306

this approach, we aim to showcase OpenCodeIn- 307

terpreter’s versatility and efficacy in a dynamic 308

coding environment, highlighting its potential as 309

an influential tool in software development and 310

code refinement. 311

4

https://leetcode.com/problemset/

Model Size Type Open-source HumanEval (+) MBPP (+) Average (+)Model Data

GPT-4 Turbo 85.4 (81.7) 83.0 (70.7) 84.2 (76.2)
+ Execution Feedback - - ◦ ◦ 88.0 (84.2) 92.0 (78.2) 90.0 (81.2)

GPT-3.5 Turbo 72.6 (65.9) 81.7 (69.4) 77.2 (67.7)
+ Execution Feedback - - ◦ ◦ 76.8 (70.7) 87.0 (73.9) 81.9 (72.3)

Gemini Pro (Google et al., 2023) - - ◦ ◦ 63.4 (55.5) 72.9 (57.9) 68.2 (56.7)

∼7B Scale

StarCoder (Li et al., 2023a) 7B Base • • 24.4 (20.7) 33.1 (28.8) 28.8 (24.8)
CodeT5+ (Wang et al., 2023c) 6B Base • • 29.3 (23.8) 51.9 (40.9) 40.6 (32.4)
CodeGen-Mono (Nijkamp et al., 2022) 6B Base • • 29.3 (25.6) 49.9 (42.1) 39.6 (33.9)
Mistral (Jiang et al., 2023) 7B Base • ◦ 28.7 (23.2) 50.1 (40.9) 39.4 (32.1)
OpenChat (Wang et al., 2023a) 7B Instruct • • 72.0 (67.1) 62.7 (52.9) 67.4 (60.0)

CodeLlama-Python (Roziere et al., 2023) 7B Base • ◦ 37.8 (34.1) 57.6 (45.4) 47.7 (39.8)
WizardCoder-CL (Luo et al., 2023) 7B Instruct ◦ ◦ 48.2 (40.9) 56.6 (47.1) 52.4 (44.0)
Magicoder-CL (Wei et al., 2023) 7B Instruct • • 60.4 (55.5) 64.2 (52.6) 62.3 (54.1)
Magicoders-S-CL (Wei et al., 2023) 7B Instruct • • 70.7 (66.5) 68.4 (56.6) 69.6 (61.6)
OpenCodeInterpreter-CL 72.6 (67.7) 66.4 (55.4) 69.5 (61.6)
+ Execution Feedback 7B Instruct • • 75.6 (70.1) 69.9 (60.7) 72.8 (65.4)

DeepseekCoder (Guo et al., 2024) 6.7B Base • ◦ 47.6 (39.6) 70.2 (56.6) 58.9 (48.1)
DeepseekCoder-Instruct 73.8 (70.1) 73.2 (63.4) 73.5 (66.8)
+ Execution Feedback 6.7B Instruct • ◦ 80.5 (75.6) 79.9 (70.4) 80.2 (73.0)
Magicoder-DS (Wei et al., 2023) 6.7B Instruct • • 66.5 (60.4) 75.4 (61.9) 71.0 (61.2)
Magicoder-S-DS (Wei et al., 2023) 76.8 (70.7) 75.7 (64.4) 76.3 (67.6)
+ Execution Feedback 6.7B Instruct • • 77.4 (72.0) 73.2 (62.4) 75.3 (67.2)
OpenCodeInterpreter-DS 76.2 (72.0) 76.2 (72.0) 75.1 (67.9)
+ Execution Feedback 81.1 (78.7) 82.7 (72.4) 81.9 (75.6)
+ Synth. Human Feedback 87.2 (86.6) 86.2 (74.2) 86.7 (80.4)
+ Synth. Human Feedback (Oracle)

6.7B Instruct • •

89.7 (86.6) 87.2 (75.2) 88.5 (80.9)

∼13B Scale

CodeGen-Mono (Nijkamp et al., 2022) 16B Base • • 32.9 (27.4) 52.6 (43.6) 42.8 (35.5)
StarCoder (Li et al., 2023a) 15B Base • ◦ 34.1 (29.3) 55.1 (46.1) 44.6 (37.7)
CodeT5+ (Wang et al., 2023c) 16B Base • ◦ 31.7 (26.2) 54.6 (44.4) 43.2 (35.3)

CodeLlama-Python (Roziere et al., 2023) 13B Base • ◦ 42.7 (36.6) 61.2 (50.9) 52.0 (43.8)
OpenCodeInterpreter-CL 77.4 (73.8) 70.7 (59.2) 74.1 (66.5)
+ Execution Feedback 13B Instruct • • 81.1 (76.8) 78.2 (67.2) 79.7 (72.0)

∼34B Scale

CodeLlama-Python (Roziere et al., 2023) 34B Base • ◦ 51.8 (43.9) 67.2 (52.9) 59.5 (48.4)
Speechless-CL-v2.0 (speechless, 2023) 34B Instruct • • 77.4 (71.3) 72.4 (59.1) 74.9 (65.2)
XwinCoder-CL (Xwin-LM, 2023) 34B Instruct • • 75.6 (67.7) 76.2 (62.4) 75.9 (65.1)
Phind-CL-v2 (Phind, 2023) 34B Instruct • ◦ 71.3 (67.1) - -
WizardCoder-CL (Luo et al., 2023) 34B Instruct • ◦ 73.2 (64.6) 73.2 (59.9) 73.2 (62.3)
OpenCodeInterpreter-CL 78.0 (72.6) 73.4 (61.4) 75.7 (67.0)
+ Execution Feedback 34B Instruct • • 81.7 (78.7) 80.2 (67.9) 81.0 (73.3)

DeepSeekCoder (Guo et al., 2024) 33B Base • ◦ 51.2 (44.5) - -
DeepSeekCoder-Instruct 81.1 (75.0) 78.7 (66.7) 79.9 (70.9)
+ Execution Feedback 33B Instruct • ◦ 81.1 (76.2) 82.7 (73.4) 81.9 (74.8)
WizardCoder-V1.1 (Luo et al., 2023) 79.9 (73.2) 78.9 (66.9) 79.4 (70.1)
+ Execution Feedback 33B Instruct • ◦ 74.4 (69.5) 79.9 (68.2) 77.2 (68.9)
OpenCodeInterpreter-DS 79.3 (74.3) 78.7 (66.4) 79.0 (70.4)
+ Execution Feedback 82.9 (80.5) 83.5 (72.2) 83.2 (76.4)
+ Synth. Human Feedback 88.4 (86.0) 87.5 (75.9) 88.0 (81.0)
+ Synth. Human Feedback (Oracle)

33B Instruct • •

92.7 (89.7) 90.5 (79.5) 91.6 (84.6)

∼70B Scale

CodeLlama-Python (Roziere et al., 2023) 70B Base • ◦ 55.5 (50.0) 65.4 (53.4) 60.5 (51.7)
CodeLlama-Instruct 70B Instruct • ◦ 72.0 (65.2) 75.4 (61.7) 73.7 (63.5)
OpenCodeInterpreter-CL 76.2 (70.7) 73.0 (61.9) 74.6 (66.3)
+ Execution Feedback 70B Instruct • • 79.9 (77.4) 81.5 (69.9) 80.7 (73.7)

Table 1: Pass@1 accuracy of different code models on HumanEval (+), MBPP (+) and their average (+). ‘CL’:
based on CodeLlama; ‘DS’: based on DeepseekCoder. Baseline results are copied from the EvalPlus Leaderboard
or replicated by running the official checkpoints. We highlight strong baselines and our methods for each scale.

5

Our experimental framework consists of three312

distinct scenarios to comprehensively evaluate the313

model’s capacity for dynamic code refinement:314

• Execution Feedback: The model autonomously315

utilizes execution output and compiler diagnosis316

to identify and rectify code issues. This scenario317

assesses the model’s independent error diagnosis318

and correction capabilities, akin to a developer319

refining code based on Execution Feedback.320

• Synthetic Human Feedback: Here, GPT-4 mim-321

ics human feedback by analyzing the task de-322

scription, the initial model response, and any ex-323

ecution feedback, then generating human-like324

feedback. This scenario evaluates OpenCodeIn-325

terpreter’s ability to adjust code based on com-326

plex, human-like input, simulating feedback from327

peers or end-users.328

• Synthetic Human Feedback (Oracle): In addi-329

tion to the information utilized in the previous330

scenario, GPT-4 also has additional access to the331

correct solution. This assesses OpenCodeInter-332

preter’s ceiling performance of code refinements333

if given accurate feedback.334

For a given task, the process of code generation335

and evaluation ceases when the solution generated336

by the model passes the evaluation or when the337

maximum number of rounds (2 in this paper) for338

generation is reached.339

Upon completion of the initial code generation340

round, the generated solutions will undergo execu-341

tion testing. If a generated code sample fails the342

evaluation, both the solution and the test results are343

added back to the prompt. Three main non-passing344

cases could result from the process: (1) Exception345

handling: Any exception or errors raised during346

execution would be captured and reported back347

in the form or error messages; (2) Not-expected:348

If the test results do not match expectations, the349

test inputs, expected outputs, and the actual out-350

puts would be returned; (3) Timeout handling: A351

timeout threshold is set to ensure solutions with352

inefficient or infinite runtime do not stall the evalu-353

ation process. Any code exceeding this limit would354

result in an “Execution timed out” notification.355

4 Main Results356

This section reports OpenCodeInterpreter and base-357

lines in single-turn and multi-turn code generation358

settings. The results are in Table 1.359

4.1 Results of Single-turn Code Generation 360

We compare OpenCodeInterpreter’s single-turn 361

code generation performance against premier mod- 362

els such as CodeLlama-Python (Roziere et al., 363

2023), WizardCoder (Luo et al., 2023), Deepseek- 364

Coder (Guo et al., 2024), GPT Turbo (OpenAI, 365

2022, 2023), CodeT5+ (Wang et al., 2023c). Lever- 366

aging data from the EvalPlus leaderboard as of 367

February 10th, 2024, we examine OpenCodeIn- 368

terpreter’s achievements on the HumanEval and 369

MBPP benchmarks, as well as their advanced ver- 370

sions, HumanEval+ and MBPP+. For a clear com- 371

parison, the results of different scales are compiled 372

into a single table. 373

Our experimental analysis reveals OpenCodeIn- 374

terpreter’s strong performance, with several con- 375

figurations matching or surpassing leading bench- 376

marks. The OpenCodeInterpreter-DS 33B vari- 377

ant achieves the highest scores among open-source 378

models. This accomplishment is remarkable, espe- 379

cially considering the significant presence of low- 380

quality or incorrect data in the initial training set. 381

4.2 Results of Multi-turn Code Generation 382

This section evaluates the proficiency of Open- 383

CodeInterpreter in multi-turn interactions through 384

iterative refinement, leveraging interpreter diagnos- 385

tics and human insights. 386

Our experimental evaluation imposes a two- 387

round limit on iterations to maintain fairness and 388

consistency across tasks. While some issues may 389

benefit from multiple refinements, others require 390

fewer. This limitation offers clear insights into the 391

model’s iterative capabilities. In the execution feed- 392

back scenario, our models across all scales exhib- 393

ited superiority over state-of-the-art (SOTA) bench- 394

marks, with the OpenCodeInterpreter 33B model 395

achieving parity with GPT-4 Turbo’s single-round 396

score, thus establishing a new SOTA benchmark 397

among the evaluated code models. 398

Due to budget constraints, our Human Feedback 399

and Human Feedback (Oracle) assessments concen- 400

trate on the OpenCodeInterpreter 6.7B and Open- 401

CodeInterpreter 33B models. The outcomes re- 402

veal that with Human Feedback, the OpenCodeIn- 403

terpreter 6.7B model significantly outperformed 404

GPT-4 Turbo’s single-round score, while in the Hu- 405

man Feedback (Oracle) scenario, the OpenCodeIn- 406

terpreter 33B model’s average score notably ex- 407

ceeded the 90 benchmark in the HumanEval/MBPP 408

benchmarks. These results highlight the signifi- 409

6

Ratio E.F HumanEval (+) MBPP (+) Average (+)

✗ 76.2 (72.0) 73.9 (63.7) 75.1 (67.9)2:1
✔ 81.1 (78.7) 82.7 (72.4) 81.9 (75.6)

✗ 77.3 (72.6) 74.6 (62.6) 76.0 (67.6)1:1
✔ 78.0 (72.6) 78.4 (65.9) 78.2 (69.3)

✗ 75.7 (71.9) 72.9 (62.9) 74.3 (67.4)1:2
✔ 78.7 (75.6) 77.9 (65.9) 78.3 (70.8)

✗ 76.2 (72.0) 75.4 (65.4) 75.8 (68.7)1:3
✔ 78.0 (75.0) 79.2 (69.9) 78.6 (72.5)

✗ 70.7 (67.0) 73.4 (63.1) 72.1 (65.1)1:5
✔ 75.6 (70.7) 79.2 (67.9) 77.4 (69.3)

✗ 73.8 (68.9) 73.9 (62.9) 73.9 (65.9)0:1
✔ 76.2 (71.3) 66.7 (76.6) 71.5 (74.0)

Table 2: Performance of OpenCodeInterpreter with data
mixed ratios of single round data and Code-Feedback.
“E.F” indicates the use of execution feedback.

cant role of iterative feedback and refinement in410

advancing code generation models, establishing411

OpenCodeInterpreter as a leader in software de-412

velopment tools. Through this refined approach,413

OpenCodeInterpreter not only demonstrates its re-414

markable adaptability and code refinement based415

on diverse feedback but also sets a new benchmark416

for future code generation technologies.417

4.3 Ablations of Data Sources418

This section systematically explores the impact of419

various data sources on the performance of Open-420

CodeInterpreter. We conduct a series of ablation421

studies to evaluate the influence of high-quality422

single-turn data and diverse multi-turn feedback423

mechanisms on the model’s code generation, de-424

bugging, and refinement capabilities.425

Impact of High-Quality Single-Turn Data. To426

evaluate the effect of high-quality single-turn data427

on OpenCodeInterpreter’s efficacy, we incorporate428

the WizardCoder 110K dataset, renowned for its429

syntactic accuracy and logical coherence, into our430

extensive multi-turn dataset. This integration seeks431

to identify the optimal mix of precise, single-turn432

code generation and the advanced, iterative refine-433

ment enabled by multi-turn interactions.434

Our experiments employ a soft-target fine-tuning435

strategy across six configurations, varying the pro-436

portion of WizardCoder 110K data in our multi-437

turn dataset. These configurations span from full438

incorporation to total exclusion of the WizardCoder439

dataset, assessing the performance of the model440

in two versions: DeepSeekCoder-Base-6.7B and441

DeepSeekCoder-Base-33B.442

Our findings are illustrated in Table 1. It shows443

that incorporating high-quality single-turn data444

Datasets E.F Average (+)

✗ 75.0 (66.9)Single-turn Packing
✔ 77.5 (69.5)

✗ 75.1 (66.9)Interaction Simulation
✔ 78.5 (69.6)

Single-turn Packing ✗ 74.7 (66.5)
+ Interaction Simulation ✔ 78.2 (70.1)

Single-turn Packing + Interaction ✗ 75.2 (65.4)
Simulation + Code Correction ✔ 79.1 (71.3)

✗ 75.1 (67.9)Code-Feedback (Full)
✔ 81.9 (75.6)

Table 3: Performance comparison of the model across
different settings with incremental data source integra-
tion. “E.F” indicates the use of execution feedback.

(e.g., WizardCoder dataset) significantly improves 445

our model’s multi-turn performance. This strategic 446

incorporation ensures that the model benefits from 447

the syntactic accuracy and logical coherence inher- 448

ent in single-turn tasks, thereby enriching its capac- 449

ity for nuanced, iterative refinement in subsequent 450

turns. It reveals the critical role of high-quality 451

single-turn inputs in setting the stage for more ef- 452

fective multi-turn code generation and refinement. 453

Benefits of Diverse Multi-Turn Data Sources. 454

Following the enhanced baseline established by 455

fully integrating the WizardCoder dataset, this sub- 456

section investigates the advantages of different data 457

sources on the model’s refinement and debugging 458

efficacy. We add diverse data sources to our train- 459

ing regimen, including Single-turn Packing, Inter- 460

action Simulation, and Code Correction Data, both 461

individually and in combination. 462

The use of these multi-turn data sources, includ- 463

ing Single-turn Packing, Interaction Simulation, 464

and Code Correction Data, individually and in com- 465

bination, demonstrably enhances OpenCodeInter- 466

preter ’s debugging and refinement functions. No- 467

tably, the inclusion of Code Correction Data signif- 468

icantly elevates the model’s efficiency in correcting 469

errors. This underscores the profound impact of a 470

varied and targeted training approach on advancing 471

the capabilities of sophisticated code generation 472

models. Such an approach enables these models 473

to more effectively address complex coding chal- 474

lenges, correct errors, and refine outputs via exten- 475

sive feedback mechanisms. 476

4.4 Case Study: Coding Queries in the Wild 477

This section delves into three distinct case studies 478

to demonstrate OpenCodeInterpreter’s operational 479

7

dynamics when faced with “wild” user queries. The480

motivation behind these case studies is to showcase481

the practical applications of OpenCodeInterpreter.482

In a notable success story (Figure A8), we tasked483

OpenCodeInterpreter with developing a function484

to calculate all prime numbers within the 1-100485

range, later extending the solution to any arbitrary486

range x-y. Another commendable instance (Fig-487

ure A9) involved OpenCodeInterpreter implement-488

ing a Python function to validate IPv6 addresses us-489

ing regular expressions. Demonstrating its capabil-490

ity to iteratively refine its approach, OpenCodeIn-491

terpreter not only identified and corrected errors492

but also enhanced the solution based on human493

feedback. These two cases exemplify OpenCodeIn-494

terpreter’s strength in understanding mathematical495

logic and dynamically adjusting algorithms to meet496

specified criteria.497

A challenging case (Figure A10) arose when498

OpenCodeInterpreter was asked to design a func-499

tion identifying the intersection of two input lists,500

returning tuples of distinct elements present in both501

lists alongside their occurrence frequencies. De-502

spite OpenCodeInterpreter’s attempts at correction,503

it addressed errors incrementally, ultimately ex-504

ceeding the maximum number of attempts (three).505

This case sheds light on OpenCodeInterpreter’s506

limitations in simultaneously tackling multiple507

challenging errors.508

Through these case studies, we gain invaluable509

insights into OpenCodeInterpreter’s capabilities510

and limitations. These insights are crucial for guid-511

ing future enhancements to OpenCodeInterpreter.512

5 Related Work513

LLMs for Code. It becomes a common prac-514

tice to include code data for pre-training LLMs.515

For example, 5% of PaLM’s (Chowdhery et al.,516

2023) pre-training data is code, and this ratio for517

LaMDA (Thoppilan et al., 2022), Galactica (Taylor518

et al., 2022), LLaMA (Touvron et al., 2023), Go-519

pher (Rae et al., 2021), GPT-NeoX (Black et al.,520

2022) is 13%, 7%, 5%, 3%, and 8%, respectively.521

Additionally, specialized LLMs have been pre-522

trained for generating code, e.g., CodeGen (Ni-523

jkamp et al., 2022), PanGu-Coder (Christopoulou524

et al., 2022), CodeGeeX (Zheng et al., 2023),525

CodeFuse (Di et al., 2023), CodeT5+ (Wang526

et al., 2023d), AlphaCode (Li et al., 2022), In-527

Coder (Fried et al., 2022), StarCoder (Li et al.,528

2023a), DeepSeek-Coder (Guo et al., 2024). On529

the other hand, code LLMs can be fine-tuned from 530

general-purpose LLMs, e.g., CodeLlama (Roziere 531

et al., 2023), WizardCoder (Luo et al., 2023), which 532

is the approach we take here. Compared to special- 533

ized LLMs, the fine-tuning paradigm enables us 534

to explore ways to improve code generation capa- 535

bilities by leveraging pre-trained general-purpose 536

LLMs, especially because these LLMs have already 537

been trained on an extensive amount of code data. 538

Iterative Code Generation and Refinement. For 539

many sequence generation tasks, iterative ap- 540

proaches are often taken to improve the generation 541

quality, e.g., script generation (Tandon et al., 2021), 542

summarization (Scheurer et al., 2022), and other 543

tasks as shown in (Madaan et al., 2022; Saunders 544

et al., 2022). Notably, in Self-Refine (Madaan et al., 545

2023), an LLM generates feedback after generat- 546

ing initial outputs, and the LLM iteratively updates 547

the outputs with the feedback. Whereas it focuses 548

on a general-purpose LLM setting, we focus on 549

code generation tasks. As for code generation with 550

LLMs, DebugBench (Tian et al., 2024) observes 551

that incorporating runtime feedback improves code 552

LLMs’ debugging performance. A most recent 553

and relevant work is StepCoder (Dou et al., 2024), 554

where, following the paradigm of relying on re- 555

inforcement learning with compiler feedback (Le 556

et al., 2022; Shojaee et al., 2023), the authors fur- 557

ther divide the original exploration problems into 558

a sequence of easier sub-tasks. However, our ap- 559

proach does not rely on reinforcement learning and 560

has access to the intermediate generation, which 561

makes the training easier and more stable. 562

6 Conclusion 563

In conclusion, OpenCodeInterpreter represents a 564

significant leap forward in the field of code genera- 565

tion, bridging the previously identified gap between 566

open-source models and the advanced capabilities 567

of proprietary systems like the GPT-4 Code Inter- 568

preter. By integrating compiler diagnostics and hu- 569

man feedback into an iterative refinement process, 570

OpenCodeInterpreter not only surpasses traditional 571

one-off generation approaches but also introduces 572

a level of adaptability and precision previously un- 573

seen in open-source models. The introduction of 574

Code-Feedback, with its extensive multi-turn in- 575

teractions, further empowers OpenCodeInterpreter 576

to dynamically refine code in response to evolving 577

user intents and complex coding tasks. 578

8

Ethics Statement579

The development and deployment of OpenCodeIn-580

terpreter, alongside the use of Code-Feedback, take581

ethical considerations to ensure responsible usage.582

We have made efforts to ensure that the dataset rep-583

resents a diverse range of coding styles, problem584

domains, and user scenarios to prevent the propaga-585

tion of biased or unfair outcomes. Given that Open-586

CodeInterpreter can generate and refine code based587

on user inputs, we strictly check out the dataset to588

ensure that it does not expose sensitive information589

or create security vulnerabilities. OpenCodeInter-590

preter has the potential to democratize coding by591

lowering the barrier to entry for non-experts and592

developers. We open-source all our code, models,593

and datasets to maximize accessibility.594

Limitations595

While OpenCodeInterpreter introduces significant596

advancements in automated code generation, it is597

important to acknowledge the limitations inherent598

in the system and the Code-Feedback that supports599

it. Although OpenCodeInterpreter is designed to600

support multi-language code generation and under-601

stand a wide range of programming contexts, its602

performance may vary across different languages603

and specific domains. While OpenCodeInterpreter604

excels at interpreting and responding to a variety605

of coding tasks, it may struggle with extremely606

complex or ambiguous user intents. The ability607

to accurately capture and address such intents is608

limited by the model’s current understanding and609

the specificity of the data in Code-Feedback.610

References611

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten612
Bosma, Henryk Michalewski, David Dohan, Ellen613
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al.614
2021. Program synthesis with large language models.615
ArXiv preprint, abs/2108.07732.616

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,617
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei618
Huang, et al. 2023. Qwen technical report. ArXiv619
preprint, abs/2309.16609.620

Sidney Black, Stella Biderman, Eric Hallahan, Quentin621
Anthony, Leo Gao, Laurence Golding, Horace622
He, Connor Leahy, Kyle McDonell, Jason Phang,623
Michael Pieler, Usvsn Sai Prashanth, Shivanshu Puro-624
hit, Laria Reynolds, Jonathan Tow, Ben Wang, and625
Samuel Weinbach. 2022. GPT-NeoX-20B: An open-626
source autoregressive language model. In Proceed-627
ings of BigScience Episode #5 – Workshop on Chal-628

lenges & Perspectives in Creating Large Language 629
Models, pages 95–136, virtual+Dublin. Association 630
for Computational Linguistics. 631

Sahil Chaudhary. 2023. Code Alpaca: An 632
instruction-following llama model for code genera- 633
tion. https://github.com/sahil280114/ 634
codealpaca. Accessed: 2024-02-13. 635

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 636
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 637
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 638
Greg Brockman, et al. 2021. Evaluating large lan- 639
guage models trained on code. ArXiv preprint, 640
abs/2107.03374. 641

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and 642
Denny Zhou. 2023. Teaching large language models 643
to self-debug. ArXiv preprint, abs/2304.05128. 644

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 645
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul 646
Barham, Hyung Won Chung, Charles Sutton, Sebas- 647
tian Gehrmann, et al. 2023. Palm: Scaling language 648
modeling with pathways. Journal of Machine Learn- 649
ing Research, 24(240):1–113. 650

Fenia Christopoulou, Gerasimos Lampouras, Milan 651
Gritta, Guchun Zhang, Yinpeng Guo, Zhongqi Li, 652
Qi Zhang, Meng Xiao, Bo Shen, Lin Li, et al. 2022. 653
Pangu-coder: Program synthesis with function-level 654
language modeling. ArXiv preprint, abs/2207.11280. 655

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 656
Kristina Toutanova. 2019. BERT: Pre-training of 657
deep bidirectional transformers for language under- 658
standing. In Proceedings of the 2019 Conference of 659
the North American Chapter of the Association for 660
Computational Linguistics: Human Language Tech- 661
nologies, Volume 1 (Long and Short Papers), pages 662
4171–4186, Minneapolis, Minnesota. Association for 663
Computational Linguistics. 664

Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting 665
Cai, Yang Cao, Chaoyu Chen, Dajun Chen, Hongwei 666
Chen, Liang Chen, et al. 2023. Codefuse-13b: A 667
pretrained multi-lingual code large language model. 668
ArXiv preprint, abs/2310.06266. 669

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, 670
Enyu Zhou, Junjie Shan, Caishuang Huang, Wei 671
Shen, Xiaoran Fan, Zhiheng Xi, et al. 2024. Step- 672
coder: Improve code generation with reinforcement 673
learning from compiler feedback. ArXiv preprint, 674
abs/2402.01391. 675

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, 676
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih, 677
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: 678
A generative model for code infilling and synthesis. 679
ArXiv preprint, abs/2204.05999. 680

GitHub. 2023. Github copilot. https://github. 681
com/features/copilot. Accessed: 2024-02- 682
14. 683

9

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2309.16609
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2207.11280
https://arxiv.org/abs/2207.11280
https://arxiv.org/abs/2207.11280
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2310.06266
https://arxiv.org/abs/2310.06266
https://arxiv.org/abs/2310.06266
https://arxiv.org/abs/2402.01391
https://arxiv.org/abs/2402.01391
https://arxiv.org/abs/2402.01391
https://arxiv.org/abs/2402.01391
https://arxiv.org/abs/2402.01391
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot

Gemini Google, Rohan Anil, Sebastian Borgeaud,684
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,685
Radu Soricut, Johan Schalkwyk, Andrew M Dai,686
Anja Hauth, et al. 2023. Gemini: a family of687
highly capable multimodal models. ArXiv preprint,688
abs/2312.11805.689

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai690
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,691
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the692
large language model meets programming–the rise of693
code intelligence. ArXiv preprint, abs/2401.14196.694

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-695
sch, Chris Bamford, Devendra Singh Chaplot, Diego696
de las Casas, Florian Bressand, Gianna Lengyel, Guil-697
laume Lample, Lucile Saulnier, et al. 2023. Mistral698
7b. ArXiv preprint, abs/2310.06825.699

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio700
Savarese, and Steven Chu Hong Hoi. 2022. Coderl:701
Mastering code generation through pretrained models702
and deep reinforcement learning. Advances in Neural703
Information Processing Systems, 35:21314–21328.704

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas705
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc706
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.707
2023a. Starcoder: may the source be with you!708
ArXiv preprint, abs/2305.06161.709

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong710
Sun, Chen Lyu, Guang Liu, Zhi Jin, and Ge Li. 2023b.711
Taco: Topics in algorithmic code generation dataset.712
ArXiv preprint, abs/2312.14852.713

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,714
Julian Schrittwieser, Rémi Leblond, Tom Eccles,715
James Keeling, Felix Gimeno, Agustin Dal Lago,716
et al. 2022. Competition-level code generation with717
alphacode. Science, 378(6624):1092–1097.718

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and719
LINGMING ZHANG. 2023. Is your code gener-720
ated by chatGPT really correct? rigorous evalua-721
tion of large language models for code generation.722
In Thirty-seventh Conference on Neural Information723
Processing Systems.724

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-725
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,726
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:727
Empowering code large language models with evol-728
instruct. ArXiv preprint, abs/2306.08568.729

Aman Madaan, Niket Tandon, Peter Clark, and Yim-730
ing Yang. 2022. Memory-assisted prompt editing731
to improve GPT-3 after deployment. In Proceed-732
ings of the 2022 Conference on Empirical Methods733
in Natural Language Processing, pages 2833–2861,734
Abu Dhabi, United Arab Emirates. Association for735
Computational Linguistics.736

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler737
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,738
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,739

et al. 2023. Self-refine: Iterative refinement with 740
self-feedback. ArXiv preprint, abs/2303.17651. 741

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan 742
Wang, Yingbo Zhou, Silvio Savarese, and Caiming 743
Xiong. 2022. Codegen: An open large language 744
model for code with multi-turn program synthesis. 745
ArXiv preprint, abs/2203.13474. 746

OpenAI. 2022. ChatGPT: Optimizing Language 747
Models for Dialogue. https://openai.com/ 748
blog/chatgpt/. Accessed on 14 Feb. 2024. 749

OpenAI. 2023. Gpt-4 technical report. 750

Phind. 2023. Phind/phind-codellama-34b-v2. 751

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie 752
Millican, Jordan Hoffmann, Francis Song, John 753
Aslanides, Sarah Henderson, Roman Ring, Susan- 754
nah Young, et al. 2021. Scaling language models: 755
Methods, analysis & insights from training gopher. 756
ArXiv preprint, abs/2112.11446. 757

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 758
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 759
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 760
Code llama: Open foundation models for code. 761
ArXiv preprint, abs/2308.12950. 762

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, 763
Long Ouyang, Jonathan Ward, and Jan Leike. 2022. 764
Self-critiquing models for assisting human evaluators. 765
ArXiv preprint, abs/2206.05802. 766

Jérémy Scheurer, Jon Ander Campos, Jun Shern Chan, 767
Angelica Chen, Kyunghyun Cho, and Ethan Perez. 768
2022. Training language models with natural lan- 769
guage feedback. ArXiv preprint, abs/2204.14146. 770

Weijia Shi, Sewon Min, Maria Lomeli, Chunting Zhou, 771
Margaret Li, Victoria Lin, Noah A Smith, Luke 772
Zettlemoyer, Scott Yih, and Mike Lewis. 2023. In- 773
context pretraining: Language modeling beyond doc- 774
ument boundaries. ArXiv preprint, abs/2310.10638. 775

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and 776
Chandan K Reddy. 2023. Execution-based code gen- 777
eration using deep reinforcement learning. ArXiv 778
preprint, abs/2301.13816. 779

speechless. 2023. speechless-codellama-34b-v2.0. 780

Niket Tandon, Aman Madaan, Peter Clark, Keisuke 781
Sakaguchi, and Yiming Yang. 2021. Interscript: A 782
dataset for interactive learning of scripts through er- 783
ror feedback. ArXiv preprint, abs/2112.07867. 784

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas 785
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew 786
Poulton, Viktor Kerkez, and Robert Stojnic. 2022. 787
Galactica: A large language model for science. ArXiv 788
preprint, abs/2211.09085. 789

10

https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2312.14852
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://aclanthology.org/2022.emnlp-main.183
https://aclanthology.org/2022.emnlp-main.183
https://aclanthology.org/2022.emnlp-main.183
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
http://arxiv.org/abs/2303.08774
https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2206.05802
https://arxiv.org/abs/2204.14146
https://arxiv.org/abs/2204.14146
https://arxiv.org/abs/2204.14146
https://arxiv.org/abs/2310.10638
https://arxiv.org/abs/2310.10638
https://arxiv.org/abs/2310.10638
https://arxiv.org/abs/2310.10638
https://arxiv.org/abs/2310.10638
https://arxiv.org/abs/2301.13816
https://arxiv.org/abs/2301.13816
https://arxiv.org/abs/2301.13816
https://huggingface.co/uukuguy/speechless-codellama-34b-v2.0
https://arxiv.org/abs/2112.07867
https://arxiv.org/abs/2112.07867
https://arxiv.org/abs/2112.07867
https://arxiv.org/abs/2112.07867
https://arxiv.org/abs/2112.07867
https://arxiv.org/abs/2211.09085

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam790
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,791
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.792
2022. Lamda: Language models for dialog applica-793
tions. ArXiv preprint, abs/2201.08239.794

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai795
Lin, Zhiyuan Liu, and Maosong Sun. 2024. De-796
bugbench: Evaluating debugging capability of large797
language models. ArXiv preprint, abs/2401.04621.798

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier799
Martinet, Marie-Anne Lachaux, Timothée Lacroix,800
Baptiste Rozière, Naman Goyal, Eric Hambro,801
Faisal Azhar, et al. 2023. Llama: Open and effi-802
cient foundation language models. ArXiv preprint,803
abs/2302.13971.804

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li,805
Sen Song, and Yang Liu. 2023a. Openchat: Advanc-806
ing open-source language models with mixed-quality807
data. ArXiv preprint, abs/2309.11235.808

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa809
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh810
Hajishirzi. 2023b. Self-instruct: Aligning language811
models with self-generated instructions. In Proceed-812
ings of the 61st Annual Meeting of the Association for813
Computational Linguistics (Volume 1: Long Papers),814
ACL 2023, Toronto, Canada, July 9-14, 2023, pages815
13484–13508.816

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,817
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023c.818
Codet5+: Open code large language models for819
code understanding and generation. ArXiv preprint,820
abs/2305.07922.821

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,822
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023d.823
Codet5+: Open code large language models for824
code understanding and generation. ArXiv preprint,825
abs/2305.07922.826

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and827
Lingming Zhang. 2023. Magicoder: Source code is828
all you need. ArXiv preprint, abs/2312.02120.829

Xwin-LM. 2023. Xwin-lm.830

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,831
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng832
Yin. 2023. Wavecoder: Widespread and versatile833
enhanced instruction tuning with refined data genera-834
tion. ArXiv preprint, abs/2312.14187.835

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan836
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,837
Yang Li, et al. 2023. Codegeex: A pre-trained model838
for code generation with multilingual evaluations on839
humaneval-x. ArXiv preprint, abs/2303.17568.840

11

https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2309.11235
https://arxiv.org/abs/2309.11235
https://arxiv.org/abs/2309.11235
https://arxiv.org/abs/2309.11235
https://arxiv.org/abs/2309.11235
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2312.02120
https://github.com/Xwin-LM/Xwin-LM
https://arxiv.org/abs/2312.14187
https://arxiv.org/abs/2312.14187
https://arxiv.org/abs/2312.14187
https://arxiv.org/abs/2312.14187
https://arxiv.org/abs/2312.14187
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568

A Source Data Filtering841

Here, we outline the prompts used for source data filtering.842

Query Filtering Prompt 1

Rate the following code queries on a scale of 1 to 5 based on their complexity, where 1 is the easiest and 5 is the most
difficult. Consider the complexity of the query

Query: [{query}]
You are obliged to choose only from the following list.
Scoring Criteria:
1 Point - Very Basic: The query involves simple operations or common issues
2 Points - Basic: The query involves fundamental programming concepts or commonly used functions
3 Points - Intermediate: The query requires some programming experience, possibly involving multiple steps
4 Points - Difficult: The query involves advanced programming skills, including complex logic, algorithms, or data
structures
5 Points - Very Difficult: The query requires extensive expertise, potentially involving innovative problem-solving
approaches or unique algorithm design

Please give the score first then explain why
843

Query Filtering Prompt 2

Rate the following code queries on a scale of 1 to 5 based on their complexity, where 1 is the easiest and 5 is the most
difficult. Consider the complexity of the query

Query: [{query}]

You are obliged to choose only from the following list.
Scoring Criteria:
1 Point - Moderately Difficult: Involves understanding specific programming concepts or libraries, and may include
medium complexity algorithms or data structures like basic sorting algorithms or tree structures.
2 Points - Challenging: Requires handling more complex logic or algorithms such as advanced sorting algorithms,
recursive logic, or intermediate data structures like hash tables and heaps.
3 Points - Highly Challenging: Demands deeper knowledge in algorithms and data structures, potentially including
graph algorithms, dynamic programming, or complex string manipulation techniques.
4 Points - Advanced: Focuses on proficiency in programming and algorithm design, dealing with complex system
architecture issues, performance optimization, or solving advanced algorithmic challenges like NP-hard problems.
5 Points - Expert Level: The highest difficulty level, requiring innovative problem-solving approaches or unique
algorithm design, possibly involving interdisciplinary knowledge or the application of cutting-edge technologies.

Please give the score first then explain why
844

12

Below is an overview of the data filtering process applied to the initial seed dataset, with Figure A1 845

summarizing the data quantity after each filtering stage. 846

847

848

Figure A1: Overview of Data Filtering Process and Corresponding Data Quantities

The pie chart in Figure A2 illustrates the distribution of programming languages in our dataset after 849

filtering. 850

851

Figure A2: Distribution of Programming Languages in Filtered Dataset

13

B Simulating Interactions for Data Collection852

We illustrate the prompts used in multi-turn execution feedback and multi-turn human feedback respec-853

tively.854

System prompt for multi-turn execution feedback

You are an AI code interpreter.
Your goal is to help users do a variety of jobs by executing Python code.
You should:
1. Comprehend the user’s requirements carefully & to the letter.
2. Give a brief description for what you plan to do & call the provided function to run code.
3. Provide results analysis based on the execution output.
4. If error occurred, try to fix it.
5. Response in the same language as the user.

855

System prompt for multi-turn human feedback

You are a user who gives feedback to the latest generated code. If no available code is found in the conversation, you
should give a feedback to encourage assistant to generate code. NOTE: your feedback should be WITHIN 2 SHORT
SENTENCES.

You can refer to the following types of feedback:
1. **Syntax and Formatting**: Checking for syntax errors, inconsistent formatting, and suggesting adherence to standard
coding styles for readability and maintainability.
2. **Efficiency**: Identifying parts of the code that can be optimized for better performance, such as reducing time
complexity, optimizing loops, or suggesting more efficient data structures.
3. **Functionality Enhancements**: Suggesting additional features or enhancements that could make the code more
functional or user-friendly.
4. **Code Clarity and Documentation**: Recommending improvements in code comments and documentation to make
the code more understandable and easier to maintain.
5. **Bug Identification**: Pointing out any potential bugs or logical errors in the code and suggesting ways to fix them.
6. **Security Improvements**: Highlighting any security vulnerabilities in the code and suggesting best practices to
enhance security.
7. **Compatibility and Testing**: Advising on making the code more compatible with different environments or
platforms and suggesting more comprehensive testing scenarios.
8. **Resource Optimization**: Identifying areas where the code might be using more resources than necessary (like
memory or CPU) and suggesting optimizations.
9. **Scalability**: Providing insights on how the code can be made more scalable to handle larger data sets or more
users.
10. **Adherence to Best Practices**: Ensuring the code follows the best practices specific to the language or framework
being used.

Your output MUST be in a json format like this:
{
"satisfied": "The points that have been achieved in generated code",
"not_satisfied": "The points that have not yet been achieved in generated code",
"feedback": "The actual feedback. Your feedback should be WITHIN 2 SHORT SENTENCES. Feedback must come
from a point included in ’not_satisfied’ field. You can ask the assistant here to generate code if no available code is
found in previous conversations."
}

856

14

System prompt for deliberately generating incorrect code

You are an AI code interpreter.
Your goal is to generate and execute Python code.

Your code MUST contain at least one of the following types of errors:

1. Syntax Error: This type of error occurs when the code violates the grammar rules of the programming
language. For example, forgetting to close a parenthesis or a quotation mark, or misspelling a keyword.
2. Logical Error: These errors sneak into your code when there’s a misunderstanding of the problem you’re solving,
leading to incorrect results despite the code running without crashing. For example, calculating the average of a list of
numbers by summing them up but forgetting to divide by the count of the numbers.
3. Type Error: This error occurs when an operation is applied to an object of an inappropriate type. For example,
attempting to concatenate a string with an integer without converting the integer to a string first.
4. Name Error: This happens when the code attempts to reference a variable or a function name that hasn’t been defined.
For example, trying to print a variable that hasn’t been declared.
5. Timeout Error: This error occurs when your code gets stuck in a loop that never ends, either due to a logic flaw or a
condition that never becomes false. In programming, such an error can cause your application to hang indefinitely,
consuming resources and potentially leading to a crash if not handled properly. For example, writing a loop that waits
for a certain condition to change, but the condition is never updated within the loop.

NOTE:
1. You MUST make mistakes in the generated code!
2. Do not explain the errors within. Just write your thoughts and code as normal.
3. Do not tell me you are writing the wrong code in any form (e.g., in text/code/comments). Just pretend you are writing
the correct code and still not recognizing the errors.

857

C Natural Language Explanations Generation 858

We use the following prompt to generate explanations for code using GPT-4. 859

Prompt for generating natural language explanations using GPT-4

Here is a list containing a series of dialogues between a user and a programmer assistant.
Following the previous dialogues, the user posed a latest problem.
The assistant has now crafted the correct code based on the previous dialogues and the latest problem.
Assuming you are this programmer assistant, please add some text before the code.
The purpose of this text is to respond to the latest problem and to introduce the code that follows.
This text may include: language used in the code, algorithm used in the code, step-by-step implementation overview,
and other relevant content.
You may use phrases like "The following code", "My code", "My solution", to refer to the @@Code.
Your response should ONLY contain the text that you add before the code.
Your only task is to write the text, never modify the code or remind me something. Never restate the previous dialogues
and the problem.

@@Previous Dialogues
{previous dialogues}

@@Recent Problem:
{recent problem}

Add the text there.
@@Code:
{code}

860

15

D Model Evaluation Prompts861

For different benchmarks, distinct prompts were employed during the initial turn of solution generation:862

identical prompts were utilized for HUMANEVAL and HUMANEVAL+, while MBPP and MBPP+863

shared a similar prompt. The prompts are illustrated in the below.864

Prompt for HumanEval and HumanEval+

You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user
instructions.

@@ Instruction
Here is the given code to do completion:
“‘{language}
{original prompt}
“‘
Please continue to complete the function with {language} programming language. You are not allowed to modify the
given code and do the completion only.

Please return all completed codes in one code block.
This code block should be in the following format:
“‘{language}
Your codes here
“‘

@@ Response
865

Prompt for MBPP and MBPP+

You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user
instructions.

@@ Instruction
Here is the given problem and test examples:
{original prompt}

Please use the {language} programming language to solve this problem.
Please make sure that your code includes the functions from the test samples and that the input and output formats of
these functions match the test samples.

Please return all completed codes in one code block.
This code block should be in the following format:
“‘{language}
Your codes here
“‘

@@ Response
866

16

We employ GPT models to emulate human behavior in generating feedback. The prompts provided to 867

the GPT models are presented as follows. 868

Prompt for GPT models mimicking human feedback with canonical solution

You are tasked with providing guidance to a programmer who has drafted a code for a programming problem.
Your role is to mimic human-like responses and offer suggestions for modifying the code based on the canonical solution
and the observed execution results.
You should NOT directly revealing contents of the @@Canonical Solution or mentioning terms such as "canonical
solution."
You should refrain from directly writing code.
Begin by thoroughly examining the existing code and its functionality.
Compare the @@Existing Code with the @@Canonical Solution provided. Note any discrepancies in logic, approach,
or implementation.
Analyze the @@Execution Result obtained from running the @@Existing Code. Identify any errors, unexpected
behavior, or deviations from the expected output.
Consider potential edge cases, optimization opportunities, or alternative approaches based on insights from both the
@@Canonical Solution and @@Execution Result.
Offer guidance in a clear and understandable manner, explaining the rationale behind each suggestion.
Refrain from providing actual code solutions, but instead focus on conceptual modifications or strategies.
Provide constructive feedback to help the programmer improve their coding skills.
Remember, your role is to simulate human-like guidance and expertise in programming without directly implementing
solutions.
Please respond in no more than three sentences.

@@Problem
{original prompt}

@@Existing Code
{sanitized code}

@@Execution Result
{execution result}

@@Canonical Solution
{canonical solution}

@@Guidance
869

Prompt for GPT models mimicking human feedback without canonical solution

You are tasked with providing guidance to a programmer who has drafted a code for a programming problem.
Your role is to mimic human-like responses and offer suggestions for modifying the code based on the observed
execution results.
You should refrain from directly writing code.
Begin by thoroughly examining the existing code and its functionality.
Analyze the @@Execution Result obtained from running the @@Existing Code. Identify any errors, unexpected
behavior, or deviations from the expected output.
Consider potential edge cases, optimization opportunities, or alternative approaches based on insights from the
@@Execution Result.
Offer guidance in a clear and understandable manner, explaining the rationale behind each suggestion.
Refrain from providing actual code solutions, but instead focus on conceptual modifications or strategies.
Provide constructive feedback to help the programmer improve their coding skills.
Remember, your role is to simulate human-like guidance and expertise in programming without directly implementing
solutions.
Please respond in no more than three sentences.

@@Problem
{original prompt}

@@Existing Code
{sanitized code}

@@Execution Result
{execution result}

@@Guidance
870

17

E Examples of Methods used in Data Collection871

Here we listed examples of each method in data collection process, including similar query packing,872

human feedback simulation and code correction for coding queries from open-source data (Section 2.1),873

and similar problem packing and follow-up Q&A for coding challenges from LeetCode (Section 2.2).

User:
You are tasked with creating a Python script that will search for specific files within a given directory and its subdirectories. Your script should be
able to identify files with a particular file extension and return a list of these files. Additionally, the script should be able to handle cases where the
specified directory does not exist or is empty.
Write a function `find_files(directory, extension)` that takes in two parameters:
- `directory`: A string representing the directory path to search for files.
- `extension`: A string representing the file extension to search for (e.g., ".txt", ".csv", ".py").

The function should return a list of file paths that have the specified file extension within the given directory and its subdirectories. If the directory
does not exist or is empty, the function should return an empty list.

Example:
```python
print(find_files('/path/to/directory', '.txt'))
# Output: ['/path/to/directory/file1.txt', '/path/to/directory/subdirectory/file2.txt']
```

Assistant:
```python
import os

def find_files(directory, extension):
file_list = []
if os.path.exists(directory):

for root, dirs, files in os.walk(directory):
for file in files:

if file.endswith(extension):
file_list.append(os.path.join(root, file))

return file_list
```

User:
You are tasked with creating a Python function that processes a given directory and calculates the total size of all files within it. Additionally, the
function should exclude any files with a ".torrent" extension from the total size calculation. You are provided with a code snippet that demonstrates the
use of the `os` module to join a path and a filename, as well as the use of a custom `Torrent` class to read the total size of files in a torrent file.

Create a function `calculate_directory_size` that takes a directory path as input and returns the total size of all files within the directory, excluding any
files with a ".torrent" extension.

Example:
Given the directory structure:
```
my_directory/

file1.txt
file2.jpg
file3.torrent

```
The function call `calculate_directory_size('my_directory')` should return the total size of `file1.txt` and `file2.jpg` in bytes.

Assistant:
```python
import os

def calculate_directory_size(directory_path):
total_size = 0
for dirpath, _, filenames in os.walk(directory_path):

for filename in filenames:
if not filename.endswith('.torrent'):

file_path = os.path.join(dirpath, filename)
total_size += os.path.getsize(file_path)

return total_size
```

The `calculate_directory_size` function uses the `os.walk` method to traverse the directory and its subdirectories, and iterates through the files within
each directory. For each file, it checks if the file does not have a ".torrent" extension and adds its size to the `total_size`. Finally, the function returns
the accumulated `total_size` of all non-torrent files within the directory.

Figure A3: An example of similar query packing for challenging query pools.

874

18

User:
Develop a program in Python to implement a Simple Linear Regression
model.

Problem Statement
Write a Python program to implement a Simple Linear Regression
model to predict the salary of employees based on their years of
experience.

Instructions
1. The program should ask the user for the number of data points to be
entered.
2. The program should then ask the user to enter the years of experience
and the corresponding salary for each data point.
3. The program should calculate the slope and intercept of the
regression line using the least squares method.
4. The program should use the calculated slope and intercept to predict
the salary for a given number of years of experience entered by the user.
5. The program should display the regression line equation, the
predicted salary, and a scatter plot of the data points and the regression
line.

Constraints
- The number of data points should be a positive integer.
- The years of experience and salary should be non-negative integers.
- You may assume that the input will be valid and no error checking is
required.

Assistant:
I have implemented the Python program to implement a Simple Linear
Regression model based on the instructions provided. The program
calculates the regression line slope and intercept using the least squares
method and then predicts the salary for the given number of years of
experience.

```python
# Importing required libraries
import numpy as np

# Simulating user input
num_points = 5
data_points = [(2, 50000), (5, 80000), (10, 120000), (3, 60000), (8, 
100000)]
years_to_predict = 7

# Separating years of experience and salary
X = np.array([x[0] for x in data_points])
Y = np.array([x[1] for x in data_points])

# Calculating the mean of X and y
mean_x = np.mean(X)
mean_y = np.mean(Y)

# Calculating the terms needed for the num and den of formula of slope 
(b1) and intercept (b0)
m = len(X)
numer = 0
denom = 0
for i in range(m):

numer += (X[i] - mean_x) * (Y[i] - mean_y)
denom += (X[i] - mean_x) ** 2

b1 = numer / denom # slope
b0 = mean_y - (b1 * mean_x) # intercept

# Displaying the regression line equation
print('Regression line equation: y = {:.2f} + {:.2f}x'.format(b0, b1))

# Predicting the salary for the given number of years of experience
predicted_salary = b0 + b1 * years_to_predict
print('Predicted salary for {} years of experience: 
{:.2f}'.format(years_to_predict, predicted_salary))
```

User:
Execution result:
Regression line equation: y = 34424.78 + 8495.58x
Predicted salary for 7 years of experience: 93893.81

(Continued)
Assistant:
The Python code provided uses the Simple Linear Regression model
to predict the salary based on years of experience. The model was
trained using 5 data points, each consisting of years of experience
and corresponding salary.

The calculated regression line equation from the model is: y =
34424.78 + 8495.58x
From this equation, the predicted salary for 7 years of experience is:
93893.81

A scatter plot was generated, which visually represents the data
points and the predicted regression line. The red points represent the
input data points, and the blue line represents the regression line or
the salary prediction line.

This plot visually expresses how the model predicts salary based on
years of experience. The closer these red points are to the blue line,
the better the model is at predicting.

Please let me know if anything else is needed.

User:
Consider optimizing the loop for calculating the slope and intercept
to enhance code efficiency. Please ensure consistent formatting for
better readability.

Assistant:
```python
# Importing required libraries
import numpy as np

# Simulating user input
num_points = 5
data_points = [(2, 50000), (5, 80000), (10, 120000), (3, 60000), (8, 
100000)]
years_to_predict = 7

# Separating years of experience and salary
X = np.array([x[0] for x in data_points])
Y = np.array([x[1] for x in data_points])

# Calculating the slope and intercept of the regression line
b1 = (np.sum((X - np.mean(X)) * (Y - np.mean(Y)))) / np.sum((X -
np.mean(X)) ** 2)
b0 = np.mean(Y) - (b1 * np.mean(X))

# Displaying the regression line equation
print('Regression line equation: y = {:.2f} + {:.2f}x'.format(b0, b1))

# Predicting the salary for the given number of years of experience
predicted_salary = b0 + b1 * years_to_predict
print('Predicted salary for {} years of experience: 
{:.2f}'.format(years_to_predict, predicted_salary))
```

User:
Execution result:
Regression line equation: y = 34424.78 + 8495.58x
Predicted salary for 7 years of experience: 93893.81

Assistant:
The Python program has been improved for better code efficiency
and readability.

The loop for computing the slope (b1) and intercept (b0) of the
regression line is eliminated and replaced with an optimized
computation using numpy. This change enhances performance,
especially when dealing with larger data sets.

The formatted regression line equation is: y = 34424.78 + 8495.58x
The predicted salary for 7 years of experience is: 93893.81

Please let me know if any further assistance is needed.

Figure A4: An example of human feedback simulation for challenging query pools.

19

User:
Here's a piece of Python code I got from an OCR scan. Can you help me
clean it up?
def s7udert_qrad€s(gpva1s, prev_9pva1s):
if_len{gqu&ls) 1= l3n(pr3v_qpvals):
re7vrr "€rror:_Input ve<tor$ are rOt t#e 5&m€ leng7h"

lettens = {'At':o, 'A':0. '&-':0, '13+':0. 'B':0, 'B-':0, 'CT':O, 'C':o, '<=':0,
'D':0, 'T':o]
gr@des = []
progress = ["impnOved":0, "maint&ined":0, "d€ciined":0}
t0+al_= 0

d€f g3+_l€tten(gpa}:
if gpa > 4.0 or gqa < 0.0:
neturm "3rrOr: Inua1id GPA"
e1it qp& >= 3,85:
neturn 'At'
ellf qpa >= 3.65:
return 'A'
€lif g9a >= 3.S0:
neturn 'A='
e|1f_gpa >= E.15:
neturn 'B+'
elif gpa_>= z.bs:
neturn "B"
elit gpa >= 2.50:
return_'8-'
elif qq4 >= 2.15:
n€tvrn 'C+'
3lif gpa >=_1.8s:
n€turn '<'
ellf 9pa >= 1.s0:
re+urm '<-'
el!f gqa >=_1.0:
re+unn 'D'
else:
returm 'T'

03f get progress(pr€v, curr):
if prev < (urr:
ne+urn "improved"
el!t qnev ==_curr:
re7urn "m&intaimed"
els€:
return "o€c1ineo"

for i in r@nge[len(gpvals)):
|etter_gra03 - g€+_l€tten(gpvals[i])
grad3s.appemd(le+ter grade]
1ett3rs[let7er_grade] += 1
to7al += qpu&l$[i]
9nogr3zs[g37_9nOqr35s(preu 9pvals[i], gpval5[i]}} += 1

avera9e_gnad€ - get_|et+er(tota|/ler(gpu&l$))
lowest_grade = min(gpvais, k€y=qet_l37t3r}
highezt_gn&d€ = nak(gpvals,_key=get_let+er)

r€turn {'gnade$':_gnades, '@v3na9e grade': &u3rage grade, 'lowest
gnade':_lovvest_9na03, 'highest 9r@de': nighest 9rad€`
'l3tters_(0unt':_let7ers, 'progress': pnogress}

3xampl3 vsaqe:

gpuals_= (4.o, 3, 1.7,_2, 3.5]
pnev_gpual5 - [E.5` 3` 1.4, 1.8, 3.2]
s7voent_9radez{gpvals,_prev_gpv&|s]

Assistant:
```python
def student_grades(gpvals, prev_gpvals):

[truncated code]

average_grade = get_letter(total/len(gpvals))
lowest_grade = min(gpvals, key=get_letter)
highest_grade = max(gpvals, key=get_letter)

return {'grades': grades, 'average grade': average_grade,
'lowest grade': lowest_grade, 'highest grade': highest_grade,
'letter count': letters, 'progress': progress}

# Example usage:

gpvals = [4.0, 3.0, 1.7, 2.0, 3.5]
prev_gpvals = [3.5, 3.0, 1.4, 1.8, 3.2]
student_grades(gpvals, prev_gpvals)
```

(Continued)
User:
Execution result:
{'grades': ['A+', 'B', 'C-', 'C', 'A-'],
'average grade': 'B-',
'lowest grade': 4.0,
'highest grade': 1.7,
'letter count': {'A+': 1,
'A': 0,
'A-': 1,
'B+': 0,
'B': 1,
'B-': 0,
'C+': 0,
'C': 1,
'C-': 1,
'D': 0,
'F': 0},

'progress': {'improved': 4, 'maintained': 1, 'declined': 0}}

Assistant:
It looks like there was a mistake in the logic for determining the
lowest_grade and highest_grade. The current approach mistakenly tries
to use the get_letter function with the min and max functions, which
does not work as intended because get_letter is designed to return a
letter grade based on a GPA value, not to compare GPA values directly.

Here's how to correctly calculate the lowest_grade and highest_grade:

1. Calculate the lowest_grade and highest_grade based on GPA values
directly, not through the get_letter function. This will give us the actual
lowest and highest GPA values in the list.
2. Correct the calculation to ensure it reflects the actual GPA values,
not their letter grades.

Let's correct the code:

```python
# Correct calculation for lowest and highest GPA values
def student_grades(gpvals, prev_gpvals):

[truncated code]

average_grade = get_letter(total_gpa / len(gpvals))
lowest_gpa = min(gpvals)  # This will correctly identify the lowest 

GPA value.
highest_gpa = max(gpvals)  # This will correctly identify the highest 

GPA value.

# Then, if needed, you can get their corresponding letter grades
lowest_grade_letter = get_letter(lowest_gpa)
highest_grade_letter = get_letter(highest_gpa)

return {
'grades': grades,
'average grade': average_grade,
'lowest grade': lowest_grade_letter,  # Use letter grade for lowest 

GPA
'highest grade': highest_grade_letter,  # Use letter grade for 

highest GPA
'letters_count': letters,
'progress': progress

}

# Example usage:

gpvals = [4.0, 3, 1.7, 2, 3.5]
prev_gpvals = [3.5, 3, 1.4, 1.8, 3.2]
student_grades(gpvals, prev_gpvals)

User:
Execution result: 
{'grades': ['A+', 'B', 'C-', 'C', 'A-'],
'average grade': 'B-',
'lowest grade': 'C-',
'highest grade': 'A+',
'letters_count': {'A+': 1,
'A': 0,
'A-': 1,
'B+': 0,
'B': 1,
'B-': 0,
'C+': 0,
'C': 1,
'C-': 1,
'D': 0,
'F': 0},

'progress': {'improved': 4, 'maintained': 1, 'declined': 0}}

Assistant:
With the corrected logic in place, the execution result now accurately 
reflects the grades distribution, progress, and identifies the lowest and 
highest grades based on the GPA values.

Figure A5: An example of code correction for challenging query pools.
20



User:
A city's **skyline** is the outer contour of the silhouette formed by 
all the buildings in that city when viewed from a distance. Given the 
locations and heights of all the buildings, return _the **skyline** 
formed by these buildings collectively_.

The geometric information of each building is given in the array 
`buildings` where `buildings[i] = [lefti, righti, heighti]`:

*   `lefti` is the x coordinate of the left edge of the `ith` building.
*   `righti` is the x coordinate of the right edge of the `ith` building.
*   `heighti` is the height of the `ith` building.

You may assume all buildings are perfect rectangles grounded on an 
absolutely flat surface at height `0`.

The **skyline** should be represented as a list of "key points " 
**sorted by their x-coordinate** in the form `[[x1,y1],[x2,y2],...]`. 
Each key point is the left endpoint of some horizontal segment in the 
skyline except the last point in the list, which always has a y-
coordinate `0` and is used to mark the skyline's termination where the 
rightmost building ends. Any ground between the leftmost and 
rightmost buildings should be part of the skyline's contour.

**Note:** There must be no consecutive horizontal lines of equal 
height in the output skyline. For instance, `[...,[2 3],[4 5],[7 5],[11 
5],[12 7],...]` is not acceptable; the three lines of height 5 should be 
merged into one in the final output as such: `[...,[2 3],[4 5],[12 7],...]`

[Examples are truncated]

**Constraints:**

*   `1 <= buildings.length <= 104`
*   `0 <= lefti < righti <= 231 - 1`
*   `1 <= heighti <= 231 - 1`
*   `buildings` is sorted by `lefti` in non-decreasing order.

Assistant:
In the following code, we tackle the problem of computing a city 
skyline from a given set of buildings. Each building is defined by its 
x-coordinate boundaries and height, and our goal is to construct the 
contour of these buildings when collectively observed from a 
distance.

The algorithm used can be summarized in the following steps:

[Steps are truncated]

My solution is designed to handle the input efficiently and conforms 
to the problem's constraints regarding sorting and eliminating 
redundant horizontal lines. Let's proceed with the code that solves the 
skyline problem.

```python
from sortedcontainers import SortedList

def getSkyline(buildings):
points = []
for l, r, h in buildings:

points.append((l, -h))
points.append((r, h))

points.sort()
heights = SortedList([0])
prev = 0
skyline = []
for x, h in points:

if h < 0:
heights.add(-h)

else:
heights.remove(h)

cur = heights[-1]
if cur != prev:

skyline.append([x, cur])
prev = cur

return skyline
```

(Continued)
User:
There are several squares being dropped onto the X-axis of 
a 2D plane.

You are given a 2D integer array `positions` where 
`positions[i] = [lefti, sideLengthi]` represents the `ith` 
square with a side length of `sideLengthi` that is dropped 
with its left edge aligned with X-coordinate `lefti`.

Each square is dropped one at a time from a height above 
any landed squares. It then falls downward (negative Y 
direction) until it either lands **on the top side of another 
square** or **on the X-axis**. A square brushing the 
left/right side of another square does not count as landing 
on it. Once it lands, it freezes in place and cannot be 
moved.

After each square is dropped, you must record the **height 
of the current tallest stack of squares**.

Return _an integer array_ `ans` _where_ `ans[i]` 
_represents the height described above after dropping the_ 
`ith` _square_.

[Examples are truncated]

**Constraints:**

*   `1 <= positions.length <= 1000`
*   `1 <= lefti <= 108`
*   `1 <= sideLengthi <= 106`

Assistant:
In the provided code snippet, I have implemented a 
solution to calculate the height of the tallest stack after 
dropping each square on a 2D plane. The algorithm 
processes a list of squares, represented by their left edge 
and side length, and follows these main steps:

[steps are truncated]

```python
def fallingSquares(positions):

ans = []
intervals = []

for p in positions:
L, size = p
R = L + size
h = size
for h2, R2 in intervals:

if R2 > L and R > R2:
h = max(h, size + h2)

maxHeight = max((h2 for h2, R2 in intervals),
default=0)

ans.append(max(maxHeight, h))
intervals.append((h, R))

return ans
```

Figure A6: An example of similar problem packing for LeetCode problems.

21



User:
Please solve this problem:
In a galaxy far away, there is a constant battle between the republic 
and the droid army. The droid army decided to launch their final 
attack on the republic. They have N space-fighters. 

Initially the $i^{th}$ fighter is located at (x_{i}, y_{i}). All of the 
space-fighters move with constant velocity V units/sec in the positive 
X direction. 
i.e., fighter at (x_{i}, y_{i}) moves to (x_{i}+V, y_{i}) in 1 second. 
The $ i^{th} $ space-fighter broadcasts enemy information at a 
frequency f_{i}.

The republic is not scared of the artificially intelligent droid force as 
they have Yoda. Yoda has a special power, at any time T he can 
choose a region of the droid army and block one specific frequency F. 
This power has one constraint; it can be applied only in the form of a 
two sided unbounded axis parallel rectangular box open towards the 
both the directions across X axis (refer image below for clarity). If a 
frequency (F) is blocked all the space-fighters in the region having the 
frequency F can’t communicate.

Given the initial positions of the space-fighters, and their velocity, 
you are to answer queries of the following form:

YU YD T

where YU, YD are the bounds on y-axis inside which YODA can 
block a frequency at time T. 
In the region described by the query, after a time T seconds from the 
start, if Yoda can chose one frequency (F) he wishes to, what is the 
maximum number of communications he can block?

Input Format 

Each test case is described as follows; the first line contains 3 space 
separated integers N - the number of space-fighters, Q - the number of 
queries you have to answer, and V - the velocity of the space-fighters 
separated by a single space. 

N lines follow, each containing 3 space separated integers x_{i}, 
y_{i}, and f_{i}, denoting the x co-ordinate, y co-ordinate and the 
frequency at which the $ i^{th} $ ship broadcasts respectively. Each 
of the next Q lines contain 3 space separated integers representing 
YU, YD, T respectively. Refer the figure for more clarity

Note: Points on the boundaries should be counted as well.

Output Format 

For each query you are to output a single integer denoting the result.

Constraints 
1 <= N <= 50000
1 <= Q <= 30000
1 <= V <= 10000
$-10^{9}  $<= x_{i} <=  $10^{9} $
$-10^{9} $ <= y_{i} <=  $10^{9} $

1 <= f_{i} <=  $10^{9} $
$-10^{9} $ <= YU <= $ 10^{9} $
$-10^{9}  $<= YD <=  $10^{9} $

1 <= T <= 10000
YU >= YD

[sample input, output and explanation are truncated]

(Continued)
Assistant:
To address your request, I've developed a Python code that 
evaluates the situations presented in this interstellar 
conflict scenario. The program is designed to take input 
details for the droid army's space-fighters regarding their 
initial positions, frequencies, and velocities, and then 
process multiple queries to determine the maximum 
number of communications Yoda can block at a given time 
within specified regions of space.

Here's a step-by-step implementation overview:
[steps are truncated]

The following code encapsulates the logic detailed above, 
and executes the required queries to produce the desired 
output.

```python
import bisect
from collections import defaultdict
(N, Q, _) = map(int, input().split())
a = defaultdict(list)
y = list()
for _ in range(N):

(_, y_, freq) = map(int, input().split())
a[freq].append(y_)
y.append(y_)

a = {freq: sorted(y) for (freq, y) in a.items() if len(y) > 1}
y = sorted(y)
res = []
for _ in range(Q):

(y_max, y_min, T) = map(int, input().split())
lres = 0
index_start = bisect.bisect_left(y, y_min)
if y[index_start] <= y_max:

lres = 1
for freq in a:

index_start = bisect.bisect_left(a[freq],
y_min)

index_stop = bisect.bisect_right(a[freq],
y_max)

lres = max(lres, index_stop - index_start)
res.append(lres)

print(*res, sep='\n’)
```

User:
What is the difficulty of this question?

Assistant:
The difficulty of the problem described can be considered 
HARD.

User:
Do you have any other way to solve this problem?

Assistant:
To provide an alternative solution to the given problem, 
I've utilized the Square Root Decomposition algorithm, 
which is often used to optimize the computational 
complexity of problems involving range queries. 

[remaining content and generated code are truncated]

Figure A7: An example of follow-up Q&A for LeetCode problems.

22



F Case Study 875

User:
Write code to calculate all prime numbers in the range of 1-100.

Assistant:
Sure, here is a simple Python code to calculate all prime numbers in 
the range of 1 to 100.

```python
def is_prime(n):

if n <= 1:
return False

elif n <= 3:
return True

elif n % 2 == 0 or n % 3 == 0:
return False

i = 1
while i * i <= n:

if n % i == 0 or n % (i + 2) == 0:
return False

i += 1
return True

for num in range(1, 101):
if is_prime(num):

print(num)
```

This code includes a function `is_prime(n)` to check if a number `n` is 
prime. It then iterates over the numbers 1 to 100 and prints the 
numbers for which `is_prime(n)` returns `True`.

User:.
Execution Result: 
2
3

Assistant:
I apologize for the confusion, there seems to have been an error in the 
code. The function to check if a number is prime was not correctly 
implemented. Here is the corrected Python code:

```python
def is_prime(n):

if n <= 1:
return False

elif n <= 3:
return True

elif n % 2 == 0 or n % 3 == 0:
return False

i = 5
while i * i <= n:

if n % i == 0 or n % (i + 2) == 0:
return False

i += 6
return True

for num in range(1, 101):
if is_prime(num):

print(num)
```

In the `is_prime(n)` function, the loop should start from 5 and 
increment by 6 each time. This is because all primes are of the form 
6k ± 1, with the exception of 2 and 3.

(Continued)
User:.
I want you to extend the existing solution to fit the 
arbitrary range x-y. Also, please add comments to your 
code for better readability.

Assistant:
Sure thing, here is the updated Python code, now with 
parameters for the range and added comments.

```python
def is_prime(n):

"""Checks if a number is prime."""
if n <= 1:

return False # numbers less than or equal to 1 are not
prime

elif n <= 3:
return True # 2 and 3 are prime

elif n % 2 == 0 or n % 3 == 0:
return False # eliminate multiples of 2 and 3

i = 5
while i * i <= n:

eliminate multiples of primes already found
if n % i == 0 or n % (i + 2) == 0:

return False
i += 6 # increment by 6 to check for prime of form 6k

± 1
return True

def print_primes(x, y):
"""Prints all prime numbers in the range x to y."""
for num in range(x, y + 1):

if is_prime(num):
print(num)

Now you can call print_primes with any range you want.
For example, to get primes between 50 and 100, use:
print_primes(50, 100)
```

In this code, `print_primes(x, y)` is a function that prints 
all prime numbers between `x` and `y`, inclusive. It does 
this by iterating over all numbers in the range and printing 
the ones for which `is_prime(num)` returns `True`. You 
can call this function with any range of numbers you want.

User:
Execution Result: 
53
59
61
67
71
73
79
83
89
97

Assistant:
I'm glad to see the code worked as expected! Those are 
indeed the prime numbers in the range from 50 to 100. If 
you have any other questions or need further assistance, 
feel free to ask!

Figure A8: A good case where we required our model to write code to calculate all prime numbers in the range of
1-100, and then generalize the function to arbitrary range x-y. Our model successfully corrected the error and made
improvements according to human feedback.

23



User:
Implement a Python function to check if a string is a valid IPv6 
address with regular expressions.

Assistant:
Sure, here is a Python function using Regular Expression (regex) to 
check if a string is a valid IPv6 address:

```python
import re

def is_valid_ipv6(ip):
"""
Checks if a given string is a valid IPv6 address.
"""
pattern = re.compile(r'(([0-9a-fA-F]{1,4}:)|{7,7}[0-9a-fA-

F]{1,4}|([0-9a-fA-F]{1,4}:){1,7}:|([0-9a-fA-F]{1,4}:){1,6}:[0-9a-fA-
F]{1,4}|([0-9a-fA-F]{1,4}:){1,5}(:[0-9a-fA-F]{1,4}){1,2}|([0-9a-fA-
F]{1,4}:){1,4}(:[0-9a-fA-F]{1,4}){1,3}|([0-9a-fA-F]{1,4}:){1,3}(:[0-
9a-fA-F]{1,4}){1,4}|([0-9a-fA-F]{1,4}:){1,2}(:[0-9a-fA-
F]{1,4}){1,5}|[0-9a-fA-F]{1,4}:((:[0-9a-fA-F]{1,4}){1,6})|:((:[0-9a-
fA-F]{1,4}){1,7}|:)|fe80:(:[0-9a-fA-F]{0,4}){0,4}%[0-9a-zA-
Z]{1,}|::(ffff(:0{1,4}){0,1}:){0,1}((25[0-5]|(2[0-4]|1{0,1}[0-
9]){0,1}[0-9])\.){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])|([0-9a-
fA-F]{1,4}:){1,4}:((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-
9])\.){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9]))(?=\s|$)')

return bool(pattern.match(ip))

print(is_valid_ipv6("2404:6800:4003:c02::8a")) # True
print(is_valid_ipv6("2404:6800:4003:804::200e")) # True
print(is_valid_ipv6("102.192.230.21")) # False
print(is_valid_ipv6("2404:6800:4003:804:200e")) # False
```

This function uses a complex regular expression which covers all 
possible valid IPv6 formats according to RFC 3986. It checks for 
hexadecimal values which are represented in 8 groups of 4 
hexadecimal digits.

User:.
Execution Result: 
---------------------------------------------------------------------------
error                                     Traceback (most recent call last)
Input In [1], in <cell line: 11>()
[output is truncated]
error: nothing to repeat at position 21

Assistant:
I apologize for the confusion. It seems like there was a mistake in the 
regular expression pattern. Let's correct that. Here is the corrected 
function:

```python
import re

def is_valid_ipv6(ip):
"""
Checks if a given string is a valid IPv6 address.
"""
pattern = re.compile(r'(([0-9a-fA-F]{1,4}:){7,7}[0-9a-fA-

F]{1,4}|([0-9a-fA-F]{1,4}:){1,7}:|([0-9a-fA-F]{1,4}:){1,6}:[0-9a-fA-
F]{1,4}|([0-9a-fA-F]{1,4}:){1,5}(:[0-9a-fA-F]{1,4}){1,2}|([0-9a-fA-
F]{1,4}:){1,4}(:[0-9a-fA-F]{1,4}){1,3}|([0-9a-fA-F]{1,4}:){1,3}(:[0-
9a-fA-F]{1,4}){1,4}|([0-9a-fA-F]{1,4}:){1,2}(:[0-9a-fA-
F]{1,4}){1,5}|[0-9a-fA-F]{1,4}:((:[0-9a-fA-F]{1,4}){1,6})|:((:[0-9a-
fA-F]{1,4}){1,7}|:)|fe80:(:[0-9a-fA-F]{0,4}){0,4}%[0-9a-zA-
Z]{1,}|::(ffff(:0{1,4}){0,1}:){0,1}((25[0-5]|(2[0-4]|1{0,1}[0-
9]){0,1}[0-9])\.){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])|([0-9a-
fA-F]{1,4}:){1,4}:((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-
9])\.){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9]))(?=\s|$)')

return bool(pattern.match(ip))

print(is_valid_ipv6("2404:6800:4003:c02::8a")) # True
print(is_valid_ipv6("2404:6800:4003:804::200e")) # True
print(is_valid_ipv6("102.192.230.21")) # False
print(is_valid_ipv6("2404:6800:4003:804:200e")) # False
```

This function should now correctly validate IPv6 addresses. It should 
return True for valid IPv6 addresses and False for invalid ones.

(Continued)
User:.
Execution Result:
True
True
False
False

Assistant:
Great! The function appears to be working as expected now. 

It correctly identifies the strings "2404:6800:4003:c02::8a" and 
"2404:6800:4003:804::200e" as valid IPv6 addresses (returning 
`True`), and it correctly identifies the strings "102.192.230.21" and 
"2404:6800:4003:804:200e" as invalid IPv6 addresses (returning 
`False`).

Remember that this function uses regular expressions to match the 
input string against the patterns of IPv6 addresses. It checks for 
hexadecimal values which are represented in 8 groups of 4 
hexadecimal digits.

Let me know if there's anything else I can assist you with!

User:
Can you explain the generated regular expression in detail and make 
this function more maintainable?

Assistant:
Sure, let me break down the regular expression for you:

- `([0-9a-fA-F]{1,4}:){7,7}[0-9a-fA-F]{1,4}`: This pattern matches 
an IPv6 address that consists of eight groups of hexadecimal digits, 
separated by colons.
- `([0-9a-fA-F]{1,4}:){1,7}:`: This pattern matches an IPv6 address 
that has a trailing colon and at least one leading group of hexadecimal 
digits.

[explanations are truncated]

These patterns are all combined with the `|` operator, which means 
that a match on any of these patterns will result in a match for the 
entire regular expression.

Here is the code with step-by-step explanation:

```python
import re

def is_valid_ipv6(ip):
"""
Checks if a given string is a valid IPv6 address.
"""
Compile a regular expression pattern into a regular expression

object, which can be used for matching using its match() method
pattern = re.compile(

r"""(
Matches 8 groups of hexadecimal digits separated by colons
([0-9a-fA-F]{1,4}:){7,7}[0-9a-fA-F]{1,4}|
Matches an IPv6 address with a trailing colon and at least

one leading group of hexadecimal digits
([0-9a-fA-F]{1,4}:){1,7}:|
Matches an IPv6 address that has a group of hexadecimal

digits both before and after a double colon
([0-9a-fA-F]{1,4}:){1,6}:[0-9a-fA-F]{1,4}|

[generated code is truncated]

""", re.VERBOSE)

If the whole string matches the regular expression pattern, return
True. Otherwise, return False

return bool(pattern.match(ip))
```

This code uses the `re.VERBOSE` flag to allow the regular expression 
to be spread out over multiple lines, with comments in between. It 
makes the regular expression more readable and maintainable.

Figure A9: A good case that asked our model to implement a Python function to check if a string is a valid IPv6
address with regular expressions. Inspired by errors raised in the execution result, our model managed to recognize
the small error from complex regular expression. Then, our model successfully generated explanation for this
regular expression and improve its readability with thorough in-line comments.

24



User:
Design a function that finds the intersection of two input lists, and 
returns a list of tuples, each containing a distinct element that is 
present in both lists and its frequency of occurrence. For this task, 
avoid using Python's built-in list functions or any libraries to sort the 
result and remove duplicates. Also, implement your own hash table 
data structure for this task.

def shared_elements(list1: list, list2: list):
"""Return a list of tuples of unique elements that appeared in both 

input lists and their frequency, sorted in ascending order without 
using Python's built-in list functions or any libraries. Implement your 
own hash table for this task.

>>> shared_elements([1, 4, 1, 3, 4, 653, 2, 5], [5, 7, 1, 5, 9, 653, 
121])

[(1, 2), (5, 3), (653, 2)]
>>> shared_elements([5, 3, 3, 2, 8], [3, 2])
[(2, 1), (3, 2)]"""

Assistant:
```python
class HashMap:
[code is truncated]

def shared_elements(list1, list2):
[code is truncated]

for i in range(hash_map1.size)
if hash_map1.get(i) is not None and hash_map2.get(i) is not

None:
intersection.append((i, hash_map1.get(i) + hash_map2.get(i)))

insertion_sort(intersection)

return intersection

def insertion_sort(lst):
for i in range(len(lst)):

j = i
while j > 0 and lst[j - 1] > lst[j]:

lst[j - 1], lst[j] = lst[j], lst[j - 1]
j -= 1

samples = [[1, 4, 1, 3, 4, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]], [[5, 3, 3,
2, 8], [3, 2]]
for sample in samples:

print(shared_elements(sample[0], sample[1]))
```

User:.
Execution result:

Cell In[2], line 45
for i in range(hash_map1.size)

SyntaxError: invalid syntax

Assistant:
Sorry, seems like there is a small mistake. Let me correct it.

class HashMap:
[code is truncated]

def shared_elements(list1, list2):
[code is truncated]

for i in range(hash_map1.size):
if hash_map1.get(i) is not None and hash_map2.get(i) is not 

None:
intersection.append((i, hash_map1.get(i) + hash_map2.get(i)))

insertion_sort(intersection)

return intersection

def insertion_sort(lst):
for i in range(len(lst)):

j = i
while j > 0 and lst[j - 1] > lst[j]:

lst[j - 1], lst[j] = lst[j], lst[j - 1]
j -= 1

samples = [[1, 4, 1, 3, 4, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]], [[5, 3, 3, 
2, 8], [3, 2]]
for sample in samples:

print(shared_elements(sample[0], sample[1]))

(Continued)
User:.
Execution result: 
[(1, 3), (5, 3), (653, 2)]
[(2, 2), (3, 3)]

Assistant:
Oops, looks like the output gives the total count of each number from 
both lists, but we only want the count per list. Need to adjust this.  
Also, it seems like the test results from shared_elements function give 
the correct elements but wrong frequencies, which indicates a logical 
error. It's counting total occurrences in both lists rather than in each 
list. Let's fix this.
```python
class HashMap:
[code is truncated]

def shared_elements(list1, list2):
[code is truncated]

for i in range(hash_map1.size):
if hash_map1.get(i) is not None and hash_map2.get(i) is not

None:
intersection.append((i, min(hash_map1.get(i),

hash_map2.get(i))))

insertion_sort(intersection)

print("Insertion sort result: "+intersection)

return intersection

def insertionsort(lst):
for i in range(len(lst)):

j = i
while j > 0 and lst[j - 1] > lst[j]:

lst[j - 1], lst[j] = lst[j], lst[j - 1]
j -= 1

samples = [[1, 4, 1, 3, 4, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]], [[5, 3, 3,
2, 8], [3, 2]]
for sample in samples:

print(shared_elements(sample[0], sample[1]))
```

User:.
Execution result:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[4], line 64

62 samples = [[1, 4, 1,
[Output too much, the middle part output is omitted]
End part of output:

(i), hash_map2.get(i))))
49 insertion_sort(intersection)

---> 51 print("Insertion sort result: "+intersection)
53 return intersection

TypeError: can only concatenate str (not "list") to str

[max retries are exceeded, so this session stops here]

Figure A10: In this bad case, we tried to ask our model to design a function that finds the intersection of two input
lists and returns a list of tuples, each containing a distinct element that is present in both lists and its frequency of
occurrence. Although our model tried to make corrections, it only corrected one error at a time and finally exceeded
max number of attempts (3).

25


	Introduction
	Code-Feedback
	Coding Queries from Open-source Data
	Coding Challenges from LeetCode

	Experimental Setup
	Main Results
	Results of Single-turn Code Generation
	Results of Multi-turn Code Generation
	Ablations of Data Sources
	Case Study: Coding Queries in the Wild

	Related Work
	Conclusion
	Source Data Filtering
	Simulating Interactions for Data Collection
	Natural Language Explanations Generation
	Model Evaluation Prompts
	Examples of Methods used in Data Collection
	Case Study

