
Chain-of-Thought Reasoning for Math: Theoretical Foundation
and Applications

Jessica E. Liang 1

Abstract
Chain-of-Thought (CoT) prompting improves the
reasoning capabilities of large language models
(LLMs), but its theoretical basis remains poorly
understood. We propose an information-theoretic
framework to analyze and improve CoT through
two complementary lenses. First, we model CoT
as a Markov process X → Z → Y , where inter-
mediate steps Z mediate information from inputs
X to outputs Y . By applying the Data Processing
Inequality and Fano’s inequality, we show that
explicit reasoning lowers the bound on prediction
error. Second, we use Partial Information Decom-
position (PID) to quantify how CoT rationales
contribute to task performance. Our analysis re-
veals strong synergy, i.e., reasoning and answers
together, provide more information than either
alone. Building on this insight, we introduce a
PID-guided loss that promotes synergy during
CoT distillation. On the e-SNLI dataset, this
approach outperforms standard fine-tuning and
mutual information baselines. To validate CoT’s
benefits in structured domains, we also study few-
shot arithmetic reasoning. CoT prompting boosts
accuracy from 4% to 70% with just one example
and up to 90% with four, far surpassing regular
prompting. Overall, our findings offer a theoreti-
cal foundation for CoT and suggest new strategies
for improving reasoning in LLMs.

1. Introduction
Recent advances in large language models (e.g., GPT-4.5,
GPT-4o, PaLM) have demonstrated remarkable capabilities
in tasks ranging from text generation to question-answering
and language understanding. However, these models often
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rely on implicit representations when transforming input to
output in a single pass. Chain-of-Thought (CoT) prompting
has been proposed as a technique that induces the model to
break down complex tasks into step-by-step reasoning, often
leading to significant improvements in accuracy, especially
in mathematical, commonsense, and multi-step reasoning
tasks (Wei et al., 2023; Kojima et al., 2022).

CoT prompting is the practice of instructing a model to think
through each step of a solution explicitly before arriving at
an answer. Instead of directly producing an answer from the
prompt, the model generates intermediate reasoning steps.
For example,

• Mathematical problem-solving: The model writes
down intermediate calculations (e.g., partial sums, fac-
toring steps, etc.).

• Logical puzzle solving: The model enumerates pos-
sible scenarios, discards contradictions, and narrows
down to the final conclusion.

Empirical results suggest that when CoT is used, the final
answers are more accurate. However, these improvements
are primarily observed empirically, prompting the question:
What is the theoretical underpinning?

Despite CoT’s empirically demonstrated success, a thorough
theoretical rationale for why chain-of-thought helps remains
elusive. In this work, we propose a perspective rooted in
information theory, particularly the Data Processing Inequal-
ity (DPI) and the Partial Information Decomposition (PID),
to shed light on how intermediate “explanations” or “reason-
ing steps” might preserve and highlight the most relevant
information for a final prediction.

Large language models often rely on CoT reasoning, where
the model generates intermediate reasoning steps (Z) before
producing a final answer (Y ). Empirically, this ”think out
loud” approach has been shown to improve performance on
complex tasks compared to providing a direct answer.

The main contributions of this paper are as follows:

1. An information-theoretic explanation of CoT using DPI.
While empirical studies have demonstrated the effec-

1



Chain-of-Thought Reasoning for Math

tiveness of CoT prompting in LLMs, its theoretical
underpinnings remain underdeveloped. We address
this gap by formally modeling CoT reasoning as a
Markov process X → Z → Y , enabling a princi-
pled analysis through the DPI. Additionally, we invoke
Fano’s inequality to explain why CoT can theoreti-
cally improve prediction accuracy. Specifically, if the
intermediate reasoning steps (Z) capture more rele-
vant information about the target output (Y ) than the
input (X) alone, the lower bound on the prediction
error decreases. Thus, a model trained to generate
explicit CoT steps can achieve improved empirical
performance. We validate this theory empirically on
four diverse NLP benchmarks—e-SNLI (textual en-
tailment), ANLI (adversarial NLI), CommonsenseQA
(commonsense reasoning), and SVAMP (arithmetic
reasoning)—consistently observing increased mutual
information and higher predictive accuracy under CoT
prompting (Hsieh et al., 2023).

2. Interpretability of CoT via PID. We introduce a novel
application of PID (Williams & Beer, 2010) to analyze
the informational roles of CoT rationales. PID enables
a fine-grained decomposition of mutual information
into unique, redundant, and synergistic components,
providing deeper insights into how different sources
contribute to a model’s predictions. Drawing inspi-
ration from structured multi-step reasoning puzzles
(e.g., hat puzzles (Winkler, 2003)), we demonstrate
how PID reveals interactions between inputs, ratio-
nales, and outputs. Our analysis across four datasets
reveals varied informational patterns: in e-SNLI, ratio-
nales provide significant unique information beyond
the input; in ANLI, rationales add little beyond what
the input already provides; and in CommonsenseQA
and SVAMP, synergy dominates-neither the input nor
rationale alone suffices, but their combination is in-
formative. We also show that this insight can guide
CoT distillation, with PID-enhanced training leading
to improved performance.

2. Related Work
2.1. Foundations and Theoretical Insights

CoT reasoning has emerged as a pivotal approach for en-
hancing the problem-solving capabilities of LLMs. By de-
composing complex tasks into intermediate reasoning steps,
CoT enables LLMs to excel in mathematical, logical, and
commonsense reasoning. This approach was popularized
by (Wei et al., 2023), who demonstrated that CoT achieves
state-of-the-art results on benchmarks like GSM8K, often
outperforming fine-tuned models with verifiers. Subsequent
theoretical analyses, such as those by (Feng et al., 2023),
have examined CoT from a model-capacity perspective,

underscoring the role of intermediate reasoning steps in
leveraging the latent capabilities of LLMs.

A major research focus has been ensuring the reliability of
CoT reasoning. (Lyu et al., 2023) introduced the notion of
faithful CoT reasoning, emphasizing the need for logical
coherence and alignment with ground truth. Surveys by
(Chu et al., 2024) have explored CoT’s potential extensions
to multimodal and multilingual contexts, while (Zhang et al.,
2022) proposed automated prompting techniques to reduce
reliance on handcrafted CoT prompts.

2.2. Interpreting CoT

Interpreting the reasoning processes within CoT is crucial
for understanding its mechanisms and improving its relia-
bility. (Lanham et al., 2023) proposed metrics to assess the
faithfulness of CoT-generated reasoning chains, ensuring
that the model’s reasoning aligns with its outputs. Addition-
ally, (Saparov & He, 2022) highlighted pitfalls in reasoning
coherence, showing that LLMs often generate plausible yet
unfaithful reasoning paths that do not accurately reflect their
internal computations.

Information-theoretic perspectives have further contributed
to CoT interpretability. (Ton et al., 2024) explored how
information gain at each reasoning step can be quantified,
aiding in the identification of failure modes. Meanwhile,
(Wang & Zhou, 2024) proposed methods for extracting
CoT reasoning paths without explicit prompts, facilitating
a more autonomous generation of intermediate reasoning
steps. (Chen et al., 2024) also applied mutual information
to CoT distillation, enhancing the efficiency of knowledge
transfer.

To improve CoT interpretability, researchers have intro-
duced logical frameworks. (Zhao et al., 2024) developed
logical CoT strategies that integrate structured reasoning
principles, guiding the generation of coherent reasoning
chains. These efforts highlight the growing emphasis on
aligning CoT reasoning with human expectations and en-
hancing transparency.

2.3. Applications and Extensions

CoT has demonstrated versatility across a wide range of
domains. In medicine, (Miao et al., 2024) explored its
application in nephrology, improving diagnostic decision-
making. In broader problem-solving contexts, (Suzgun et al.,
2022) evaluated CoT on complex BIG-Bench tasks, where
it frequently surpassed human-level reasoning.

Recent innovations have further optimized CoT prompting
strategies. Active prompting (Diao et al., 2024) improves
prompt selection, while deductive verification (Ling et al.,
2023) enhances logical consistency. Contrastive prompt-
ing (Chia et al., 2023) refines CoT-generated reasoning
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processes by explicitly contrasting correct and incorrect
reasoning paths.

Generalized CoT frameworks have expanded its capabilities.
Tree-of-Thought (ToT) and Graph-of-Thought (GoT) mod-
els explore multiple reasoning paths in parallel, improving
problem-solving efficiency (Xia et al., 2025). Additionally,
multimodal extensions such as EmbodiedGPT (Mu et al.,
2023) integrate visual inputs with CoT reasoning, broaden-
ing its applicability across diverse data modalities.

2.4. Robustness, Optimization, and Advancements

The robustness of CoT prompting has been critically exam-
ined to understand when it enhances performance and when
it may be detrimental. (Chen et al., 2023) analyzed opti-
mal conditions for CoT application, while (Liu et al., 2024)
identified scenarios where CoT can degrade performance,
underscoring the need for task-specific designs.

Several optimization techniques have been introduced to
refine CoT reasoning. Chain of Preference Optimization
(Zhang et al., 2024) leverages feedback to improve accuracy
and user alignment. Meanwhile, emerging security concerns
have also been addressed. (Xiang et al., 2024) revealed
vulnerabilities to backdoor attacks, emphasizing the need
for robust safeguards against adversarial manipulation.

Advancements such as graph-based reasoning (Jin et al.,
2024) and compositional CoT prompting (Mitra et al., 2024)
underscore the potential of CoT to tackle increasingly com-
plex tasks. Ensuring the faithfulness of CoT reasoning
remains a significant challenge. Logical CoT frameworks
(Zhao et al., 2024) have been developed to enhance zero-
shot reasoning capabilities, while analyses of transformer
expressivity in CoT settings (Merrill & Sabharwal, 2023)
have demonstrated the model’s enhanced reasoning capabil-
ities.

3. Interpreting CoT via DPI
3.1. CoT as a Markov Chain

In a CoT reasoning, assume the following

• X: The initial input (or problem statement).

• Z: An intermediate (latent) representation or “thought”
derived from X .

• Y : The final output (or solution) that is ultimately
derived from Z.

In CoT reasoning, we often explicitly or implicitly generate
a series of intermediate steps or “thoughts” (summarized
as Z) from the input X . We then derive the final answer Y
based on those intermediate steps.

A Markov chain X → Z → Y implies the Markov property,
namely (Cover & Thomas, 2006):

p(Y | X,Z) = p(Y | Z). (1)

Equivalently, one can say that once Z is known, Y is condi-
tionally independent of X . In other words, any knowledge
about X beyond what is already encoded in Z does not
affect our predictions of Y . This conditional independence
can also be written in terms of joint distributions:

p(X,Y | Z) = p(X | Z)p(Y | Z). (2)

Here’s why this factorization makes sense in a CoT context:

1. X Given Z
Once we know Z, which is assumed to capture the
essential information derived from X , how X relates
to Z can be treated on its own. Formally, p(X | Z)
quantifies how the original input X might have led to
that intermediate representation Z.

2. Y Given Z
Similarly, once Z is known, Y depends only on Z.
In the chain-of-thought framework, Z is supposed to
encapsulate all necessary reasoning or knowledge to
arrive at Y . Hence, p(Y | Z) captures how we generate
the final answer from the latent thought process.

Putting these two pieces together leads to:

p(X,Y | Z) = p(X | Z)p(Y | Z). (3)

This equality expresses conditional independence of X and
Y once Z is known.

In CoT prompting, the intermediate steps Z are explicitly
generated by the model, though in practice it is often kept
“internal.” The assumption is that once the chain-of-thought
(i.e., Z) is fixed, the final answer Y is conditionally de-
termined. This perspective helps us break down complex
reasoning tasks into more manageable chunks: first encode
or derive Z from X , and then use Z to produce Y . Based
on the above analysis, in CoT reasoning,

X −→ Z −→ Y (4)

3.2. Interpreting CoT via DPI

For Markov Chain in CoT reasoning,

X −→ Z −→ Y, (5)

we can get
I(X;Y ) ≤ I(Z;Y ) (6)

based on DPI (Cover & Thomas, 2006).
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Let Ŷ be a predictor of the correct label Y . We define

Pe = Pr{Ŷ ̸= Y }. (7)

Our goal is to understand the best possible Pe that any
estimator can achieve, given some variable(s) from which it
decodes. We can use Fano’s inequality (Cover & Thomas,
2006) to make analysis.

In its simplest form (with base-2 logarithms), Fano’s in-
equality says that (Cover & Thomas, 2006),

H(A | Â) ≤ Pe log2 |A|+ 1, (8)

where Pe = Pr{Â ̸= A}. We can easily show that

Pe ≥ 1− I(A; Â) + 1

log2 |A|
. (9)

The proof is in Appendix A.

To study predicting Y (the true answer) from either X or Z,
we identify A ≡ Y in Fano’s setup. Thus:

• Direct (no CoT): Predict Y from X .

• Chain-of-Thought: Predict Y from Z.

Fano’s inequality tells us the minimum achievable error
(among all possible predictors) is bounded below by a func-
tion of the mutual information between the predictor’s input
and the true label Y .

Let ŶX = f(X) be a predictor that uses X alone. By Fano’s
inequality:

Pe(X) = Pr[ŶX ̸= Y ] ≥ 1− I(X;Y ) + 1

log2 |Y|
. (10)

Now let ŶZ = g(Z) be a predictor that uses the chain-of-
thought Z. Then:

Pe(Z) = Pr[ŶZ ̸= Y ] ≥ 1− I(Z;Y ) + 1

log2 |Y|
. (11)

Based on the DPI in (6),

1− I(Z;Y ) + 1

log2 |Y|
≤ 1− I(X;Y ) + 1

log2 |Y|
. (12)

This shows that the Fano lower bound for predicting Y from
Z is smaller than the Fano lower bound for predicting Y
from X . Hence, CoT performs better. The lower bound on
error from X is larger than the lower bound from Z. This
means that using Z permits a smaller achievable error rate,
consistent with empirical findings.

4. Interpreting CoT via PID
4.1. PID for CoT

We consider the following variables in CoT reasoning:

• X: The input or question given to the model.

• C: The chain-of-thought (rationale) generated by the
model.

• Y : The final label or answer produced by the model.

• T : A target variable of interest (e.g., “Is the solution
both correct and interpretable?”).

PID provides a finer analysis of mutual information by divid-
ing it into four distinct components: redundancy, synergy,
and the unique contributions of C and Y (Williams & Beer,
2010). The breakdown of mutual information between C
and Y concerning T is given by (Williams & Beer, 2010):

I(C, Y ;T ) = R(C, Y ;T ) + S(C, Y ;T )

+U(C;T |Y ) + U(Y ;T |C), (13)

where:

• R(C, Y ;T ) denotes the redundant information about
T that is captured simultaneously by both C and Y .

• S(C, Y ;T ) represents the synergistic information
about T that arises only when C and Y are jointly
considered.

• U(C;T |Y ) captures the unique contribution of C to T
that is not shared with Y .

• U(Y ;T |C) reflects the unique information that Y pro-
vides about T independently of C.

Figure 1 visualizes the decomposition of I(C, Y ;T ).
The overlapping red region corresponds to redundancy
R(C, Y ;T ), while the blue section highlights synergy
S(C, Y ;T ). The orange and green portions indicate the
unique contributions of the vision and text modalities,
U(C;T |Y ) and U(Y ;T |C), respectively (Williams & Beer,
2010).

The individual components of the decomposition are com-
puted as follows (Williams & Beer, 2010):

R(C, Y ;T ) =I(C;Y ), (14)
S(C, Y ;T ) =I(C, Y ;T )− I(C;T |Y )

− I(Y ;T |C)− I(C;Y ), (15)
U(C;T |Y ) =I(C;T |Y ), (16)
U(Y ;T |C) =I(T ;T |C). (17)
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Figure 1. Partial Information Decomposition (PID) for CoT reason-
ing. The diagram illustrates the redundant component R(C, Y ;T ),
synergistic component S(C, Y ;T ), and the unique contributions
U(C;T |Y ) and U(Y ;T |C) (Williams & Beer, 2010).

4.2. An Example of Arithmetic-Type CoT

Question (X): “What is the sum of the digits of 194?”

A language model (or any reasoner) is prompted to provide:

1. A Chain-of-Thought (rationale) C.

2. A Final Answer (label) Y .

Rationale (C): “The digits are 1, 9, and 4. Summing them
gives 1 + 9 + 4 = 14.”

Final Answer (Y ): 14

Define the target variable: T = “Is the solution correct and
interpretable to a human?”

• Looking only at Y : We know the final numerical result
is 14, so we can check numerical correctness but not
necessarily how the answer was obtained.

• Looking only at C: We see how digits are summed,
which suggests 14 is the total. But without seeing
the final explicit answer, we might not be sure that the
model’s final concluded answer was indeed 14 (in more
complex scenarios, rationales might contain steps that
get overruled or misapplied).

• Looking at (C, Y ) jointly: We confirm the process
and the final result. This combination often provides
synergistic information about whether the solution is
both correct and transparent.

From a PID perspective, the synergy term captures how C
and Y together convey information about T that neither can
fully convey alone. If we want to maximize synergy, we
would aim to produce a rationale C and a final label Y such
that T is only fully resolved by viewing C and Y in tandem.

In this arithmetic example, the CoT C and the final label Y
each provide partial (and sometimes overlapping) informa-
tion about whether the solution is correct and interpretable
(T ). The synergetic information is that which arises only
when C and Y are considered together. While this example
is simple, it illustrates how PID can bring a structured lens to
analyzing—and potentially optimizing—CoT explanations.

4.3. An Example of Logic Reasoning CoT

To clearly illustrate the synergy between CoT rationales (C)
and final labels (Y ), we consider a logical puzzle involving
three individuals—Alice, Bob, and Charlie—each wearing
a hat that is either red or blue. The details of this example
are provided in Appendix B. Each person can see the hats
of the other two but not their own. They know there are
exactly two hats of one color and one hat of the other, but
initially do not know which color is in the majority.

The reasoning unfolds as follows: Alice sees Bob and Char-
lie’s hats. If both hats were blue, she would immediately
deduce her own hat is red. Her initial uncertainty implies
Bob and Charlie cannot both be blue. Bob, aware of Al-
ice’s uncertainty and seeing Charlie’s blue hat, concludes he
himself must have a red hat; otherwise, Alice would have
already deduced her hat color. Finally, Charlie realizes that
Bob’s confident deduction implies his own hat must be the
single blue one.

An LLM-generated CoT rationale (C) explicitly articulates
each of these logical inference steps, while the final label
(Y ) succinctly states, “Charlie is wearing a blue hat.” If
we consider each component separately, the rationale alone
provides logical steps without explicitly verifying the final
solution, and the final label alone provides a conclusion
without justification. Only by jointly examining C and Y
can we confidently verify the correctness and logical validity
of the solution. Thus, this puzzle effectively demonstrates
how synergy, as defined by PID, is crucial in fully validating
both correctness and interpretability within CoT reasoning
tasks.

5. Experiments
We evaluate our approaches on four widely-used datasets,
covering three distinct NLP tasks (Hsieh et al., 2023): for
textual entailment, we utilize the Explainable SNLI (e-
SNLI) dataset (Camburu et al., 2018) alongside the Ad-
versarial NLI (ANLI) dataset (Nie et al., 2020); for com-
monsense reasoning tasks, we employ CommonsenseQA
(CQA) (Talmor et al., 2019; Rajani et al., 2019); and for
arithmetic reasoning, we leverage the SVAMP dataset (Patel
et al., 2021). We obtained the datasets and their correspond-
ing CoT reasoning from the GitHub repository provided by
(Hsieh et al., 2023). The CoT reasoning was generated using
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Table 1. Mutual information and Fano lower bounds using direct input (X) vs. CoT explanations (Z) across datasets. In all cases,
I(Z;Y ) > I(X;Y ), supporting the Data Processing Inequality and demonstrating the informativeness of CoT reasoning.

Dataset I(X;Y ) (bits) I(Z;Y ) (bits) Fano Bound (X) Fano Bound (Z)

e-SNLI 0.0012 0.0017 0.3683 0.3680
ANLI 0.0039 0.0059 −0.0039 −0.0059
CQA 0.3633 0.4174 −0.3633 −0.4174
SVAMP 0.3933 0.3968 −0.3933 −0.3968

T5 models as described in (Hsieh et al., 2023). We analyze
the four datasets and their CoT reasoning using DPI and
PID. In Appendix C, we provide another set of experiments
based on synthetic data.

5.1. DPI for CoT Reasoning

We evaluate the DPI in the context of CoT reasoning
across four diverse NLP datasets. Under the Markov chain
X → Z → Y , where X is the direct input, Z is the
CoT explanation, and Y is the target label, DPI states that
I(X;Y ) ≤ I(Z;Y ). To assess this, we compute the mutual
information between input/explanation and the label using
dit package in Python (James et al., 2018), and use Fano’s
inequality to estimate the minimum achievable prediction
error.

On the e-SNLI dataset, we observe that the mutual informa-
tion between the CoT explanation (Z) and the true label (Y ),
I(Z;Y ) = 0.0017 bits, exceeds the mutual information be-
tween the direct input (X) and the label, I(X;Y ) = 0.0012
bits. The corresponding Fano lower bounds indicate that
CoT permits a slightly smaller minimum prediction error
(0.3680 vs. 0.3683), consistent with the expectations of DPI.

For the ANLI dataset, we use a simulated binary correct-
ness label. Here, I(Z;Ybin) = 0.0059 bits is greater than
I(X;Ybin) = 0.0039 bits. The Fano lower bounds, although
negative due to the low mutual information values, still
show a lower theoretical error when using CoT (-0.0059)
compared to the direct input (-0.0039). This reinforces the
advantage of CoT reasoning even in adversarial entailment
settings.

In the CQA dataset, CoT explanations provide I(Z;Ybin) =
0.4174 bits, significantly more than I(X;Ybin) = 0.3633
bits. This difference is also reflected in the Fano bounds
(-0.4174 for Z vs. -0.3633 for X), demonstrating that CoT
enhances the amount of useful information in commonsense
reasoning tasks.

Finally, in the SVAMP arithmetic reasoning dataset, we
again find that CoT provides higher mutual information
(I(Z;Ybin) = 0.3968 bits vs. I(X;Ybin) = 0.3933 bits) and
a lower Fano error bound (-0.3968 vs. -0.3933). Although
the difference is marginal, it still supports the theoretical

benefits of CoT.

Across all datasets, the DPI condition holds: I(Z;Y ) >
I(X;Y ), and CoT consistently leads to lower theoretical
error bounds. These findings, summarized in Table 1, pro-
vide strong empirical evidence that CoT reasoning improves
informativeness in a range of reasoning tasks.

5.2. PID for CoT Analysis

To analyze the informational contribution of CoT explana-
tions, we applied Partial Information Decomposition (PID)
using the PID WB method from the dit Python pack-
age (James et al., 2018). PID decomposes mutual infor-
mation into unique, redundant, and synergistic components,
providing a fine-grained view of how input sources con-
tribute to target prediction. We conducted experiments
across several NLP datasets, using input components (e.g.,
premise, hypothesis, rationale) as sources and the label as
the target.

On the e-SNLI dataset, the hypothesis alone provided nearly
all predictive information (1.5680 bits), while the premise
added no unique contribution. Replacing the hypothesis
with a gold rationale resulted in slightly higher unique in-
formation (1.5753 bits), suggesting rationales offer stronger
predictive signals than hypotheses for NLI.

For ANLI, the combined input (premise + hypothesis) was
solely responsible for predictive information (1.5509 bits),
with no unique or synergistic value added by the rationale.
This contrasts with e-SNLI and may reflect differences in
task difficulty or rationale quality.

In contrast, both CQA and SVAMP exhibited fully syn-
ergistic information patterns. In CQA, all 6.6439 bits of
information arose jointly from the question and rationale,
while in SVAMP, all 3.3219 bits came from the combina-
tion of problem and CoT explanation. Neither input alone
held predictive value, indicating the necessity of contextual
reasoning.

Table 2 summarizes the results. Collectively, these find-
ings highlight the varying roles CoT rationales play—from
unique information sources in classification to synergistic
components in complex reasoning tasks.
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Table 2. Summary of PID experiments across datasets.

Dataset Source 1 Source 2 Primary PID Component Information (bits)

e-SNLI Premise Hypothesis Unique (Hypothesis) 1.5680
e-SNLI Premise Rationale Unique (Rationale) 1.5753
ANLI Premise+Hypothesis Rationale Unique (Premise+Hypothesis) 1.5509
CQA Question Rationale Synergy 6.6439
SVAMP Problem Rationale Synergy 3.3219

5.3. PID for CoT Distillation

This work interprets CoT reasoning through the lens of DPI
and PID, which has broad applicability across explainable
AI. As a concrete use case, we apply PID to enhance CoT
distillation.

We propose a loss function that simultaneously optimizes
label prediction and rationale generation while incorporating
synergy-based regularization. The objective is defined as:

L = Llabel + αLrationale − βS(p, h; y)

−γS(p, h; r), (18)

where p is the premise, h the hypothesis, y the label, and
r the rationale. Here, Llabel is the standard cross-entropy
loss for predicting labels (Hsieh et al., 2023), and Lrationale
is an auxiliary cross-entropy loss for generating a coher-
ent rationale explaining the prediction (Hsieh et al., 2023).
The terms S(p, h; y) and S(p, h; r) represent synergy terms
from PID with respect to the label and rationale, respec-
tively.

We use the T5-small model (Raffel et al., 2019) as the
student in our CoT distillation experiments, trained on the
e-SNLI dataset (Camburu et al., 2018), which includes
premise-hypothesis pairs annotated with labels and human-
written rationales. The data is tokenized using the T5 tok-
enizer to maintain consistency. Training is performed for
five epochs using the Hugging Face Trainer API with a
learning rate of 1.0× 10−4, batch size of 32, and Adam op-
timizer. We selected the regularization parameters through
hyperparameter tuning, setting α = 1.0, β = 0.1, and
γ = 0.1.

Experiments were conducted on a Google Colab T4 GPU.
The e-SNLI training set includes 549,367 examples, and
the test set contains 9,824 examples. Training took approxi-
mately six hours, and inference required about two hours.

Table 3 compares the performance of our PID-based method
with prior approaches. The fine-tuning (FT) baseline (Dodge
et al., 2020) achieves 82.90% accuracy. DSS (Hsieh et al.,
2023), which structures the distillation process, improves
performance to 83.43%. An MI-based approach (Chen et al.,
2024) that aligns CoT rationales with labels obtains 83.23%.

Our PID-based method achieves the highest accuracy at

Method Accuracy (%)
FT (Dodge et al., 2020) 82.90
DSS (Hsieh et al., 2023) 83.43
MI (Chen et al., 2024) 83.23
Our PID 83.71

Table 3. Comparison of different approaches on the e-SNLI test
dataset.

83.71%, indicating that modeling and maximizing informa-
tional synergy can enhance both reasoning and prediction
in CoT learning. These results underscore the promise of
PID in guiding more interpretable and effective distillation
strategies.

5.4. CoT Prompting for Arithmetic Reasoning

To evaluate the effectiveness of different prompting
strategies in arithmetic reasoning, we constructed a
synthetic dataset consisting of mathematical expres-
sions that involve a combination of addition, sub-
traction, and multiplication operations. Each expres-
sion is randomly generated in the following format:
num1 operator1 num2 operator2 num3

The operators operator1 and operator2 are indepen-
dently sampled from the set {+,−, ∗}, and the operands
num1, num2, and num3 are integers randomly drawn from
the range [0, 9]. Operator precedence is respected (i.e., mul-
tiplication is evaluated before addition or subtraction).

The dataset is composed of:

• 50 evaluation examples, generated with a fixed random
seed of 42.

• 32 training examples, generated using a different seed
(43), which are used for constructing few-shot prompt
demonstrations.

We employed the instruction-tuned language model
google/gemma-2b-it, which is designed to follow
task instructions and produce appropriate completions. This
model is suitable for evaluating general-purpose prompt-
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ing strategies on reasoning tasks. Two types of prompting
methods were compared:

1. Regular Few-Shot Prompting: Each demonstration
in the prompt is presented as a question-answer pair,
e.g., “3 + 5 * 2? 13”, without any explanation
or reasoning steps.

2. Chain-of-Thought (CoT) Prompting: Each demon-
stration includes a full decomposition of the arith-
metic operations leading to the final result. For
example, “3 + 5 * 2? 5 * 2 = 10. 3 +
10 = 13. 13”.

We varied the number of few-shot examples in the prompt
(N ∈ {1, 2, 4, 8, 16, 32}) and recorded the model’s accu-
racy over the 50 evaluation expressions for both prompting
strategies. Results are summarized in Table 4.

N Few-Shot Accuracy (%) CoT Accuracy (%)

1 4.0 70.0
2 4.0 86.0
4 24.0 90.0
8 20.0 86.0

16 20.0 88.0
32 28.0 86.0

Table 4. Arithmetic accuracy of the model under few-shot and CoT
prompting strategies across different values of N .

Figure 2 visualizes the accuracy trends for both prompting
strategies.

Figure 2. Comparison of Few-Shot and Chain-of-Thought (CoT)
Prompting Accuracy as a Function of N .

As observed in Table 4 and Figure 2, CoT prompting con-
sistently outperforms regular few-shot prompting across all
values of N . With just a single example, CoT achieves 70%
accuracy—demonstrating strong inductive generalization
even in low-shot settings. Accuracy peaks at 90% with four

CoT examples and remains stable thereafter. In contrast,
regular few-shot prompting yields limited gains, reaching
a maximum of only 28% with 32 examples. These results
highlight the importance of intermediate reasoning in arith-
metic tasks and underscore the benefits of structured thought
processes in improving model performance.

6. Conclusions and Future Work
We presented an information-theoretic perspective on CoT
reasoning in LLMs, offering two complementary frame-
works. First, we modeled CoT as a Markov process
X → Z → Y , where Z denotes intermediate reasoning
steps. By applying the DPI, we showed that CoT can pre-
serve or increase mutual information between inputs and
outputs. Second, we used PID to analyze the contributions
of CoT explanations (C) and final answers (Y ) to task per-
formance (T ). We found consistent synergy, where CoT
and predictions together conveyed more information than ei-
ther alone—offering a theoretical basis for CoT’s empirical
success.

We also demonstrated that PID can enhance CoT distilla-
tion. Our proposed loss jointly optimizes rationales and
predictions while encouraging high synergy. Experiments
on e-SNLI showed that this approach outperforms stan-
dard distillation methods, confirming the practical value of
information-theoretic objectives.

To further validate our framework, we conducted a fo-
cused study on arithmetic reasoning. We found that CoT
prompting dramatically improves accuracy over regular
prompting—achieving 70% with just one example and up
to 90% with four. In contrast, standard few-shot prompt-
ing plateaued at 28%. These results support the idea that
intermediate reasoning enables stronger generalization, es-
pecially in low-shot settings.

In future work, mathematics remains a promising and un-
derexplored frontier for CoT prompting. Future research
could examine symbolic manipulation, multi-step algebra,
and formal proofs to better understand how reasoning steps
interact in highly structured domains. Extending PID to
quantify the information flow in multi-hop or hierarchical
mathematical reasoning could yield deeper insights into
how LLMs generalize beyond surface patterns. Scaling PID
to broader tasks and modalities may also reveal richer dy-
namics in reasoning. Additionally, optimizing prompting
strategies for synergy—via Tree-of-Thoughts, graph-based
inference, or adaptive prompting—offers a promising di-
rection. Finally, the DPI and PID tools developed here can
generalize to other interpretability frameworks, including
retrieval-augmented generation (RAG), multi-hop inference,
and policy learning in reinforcement learning.
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E., Kernion, J., Lukošiūtė, K., Nguyen, K., Cheng, N.,
Joseph, N., Schiefer, N., Rausch, O., Larson, R., McCan-
dlish, S., Kundu, S., Kadavath, S., Yang, S., Henighan,
T., Maxwell, T., Telleen-Lawton, T., Hume, T., Hatfield-
Dodds, Z., Kaplan, J., Brauner, J., Bowman, S. R., and
Perez, E. Measuring faithfulness in chain-of-thought
reasoning, 2023. URL https://arxiv.org/abs/
2307.13702.

Ling, Z., Fang, Y., Li, X., Huang, Z., Lee, M., Memisevic,
R., and Su, H. Deductive verification of chain-of-thought
reasoning, 2023. URL https://arxiv.org/abs/
2306.03872.

Liu, R., Geng, J., Wu, A. J., Sucholutsky, I., Lombrozo, T.,
and Griffiths, T. L. Mind your step (by step): Chain-of-
thought can reduce performance on tasks where thinking
makes humans worse, 2024. URL https://arxiv.
org/abs/2410.21333.

Lyu, Q., Havaldar, S., Stein, A., Zhang, L., and Rao,
D. Faithful chain-of-thought reasoning. arXiv preprint
arXiv:2301.11903, 2023.

Merrill, W. and Sabharwal, A. The expressive power
of transformers with chain of thought. arXiv preprint
arXiv:2310.07923, 2023.

Miao, J., Thongprayoon, C., Suppadungsuk, S., Krisanapan,
P., Radhakrishnan, Y., and Cheungpasitporn, W. Chain
of thought utilization in large language models and appli-
cation in nephrology. Medicina, 60(1), 2024. ISSN 1648-
9144. doi: 10.3390/medicina60010148. URL https:
//www.mdpi.com/1648-9144/60/1/148.

Mitra, C., Huang, B., Darrell, T., and Herzig, R. Com-
positional chain-of-thought prompting for large multi-
modal models, 2024. URL https://arxiv.org/
abs/2311.17076.

Mu, Y., Zhang, Q., Hu, M., Wang, W., Ding, M., Jin,
J., Wang, B., Dai, J., Qiao, Y., and Luo, P. Embod-
iedGPT: Vision-language pre-training via embodied chain

9

https://arxiv.org/abs/2304.03262
https://arxiv.org/abs/2309.15402
https://arxiv.org/abs/2302.12246
https://arxiv.org/abs/2302.12246
https://aclanthology.org/2020.acl-main.468/
https://aclanthology.org/2020.acl-main.468/
https://openreview.net/forum?id=qHrADgAdYu
https://openreview.net/forum?id=qHrADgAdYu
https://arxiv.org/abs/2404.07103
https://arxiv.org/abs/2404.07103
https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2306.03872
https://arxiv.org/abs/2306.03872
https://arxiv.org/abs/2410.21333
https://arxiv.org/abs/2410.21333
https://www.mdpi.com/1648-9144/60/1/148
https://www.mdpi.com/1648-9144/60/1/148
https://arxiv.org/abs/2311.17076
https://arxiv.org/abs/2311.17076


Chain-of-Thought Reasoning for Math

of thought. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=IL5zJqfxAa.

Nie, Y., Williams, A., Dinan, E., Bansal, M., Weston, J.,
and Kiela, D. Adversarial nli: A new benchmark for nat-
ural language understanding. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics,
2020.

Patel, A., Bhattamishra, S., and Goyal, N. Are nlp models
really able to solve simple math word problems? In Pro-
ceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 2080–2094, Online,
2021. Association for Computational Linguistics.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Rajani, N. F., McCann, B., Xiong, C., and Socher, R. Ex-
plain yourself! leveraging language models for com-
monsense reasoning. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics,
pp. 4932–4942, Florence, Italy, 2019. Association for
Computational Linguistics.

Saparov, A. and He, H. Language models are greedy rea-
soners: A systematic formal analysis of chain-of-thought.
arXiv preprint arXiv:2210.01240, 2022.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi, E. H.,
Zhou, D., and Wei, J. Challenging big-bench tasks and
whether chain-of-thought can solve them, 2022. URL
https://arxiv.org/abs/2210.09261.

Talmor, A., Herzig, J., Lourie, N., and Berant, J. Com-
monsenseqa: A question answering challenge targeting
commonsense knowledge. In Proceedings of the 2019
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp.
4149–4158, Minneapolis, Minnesota, 2019. Association
for Computational Linguistics.

Ton, J.-F., Taufiq, M. F., and Liu, Y. Understanding chain-
of–thought in llms through information theory. arXiv
preprint arXiv:2411.11984, 2024.

Wang, X. and Zhou, D. Chain-of-thought reasoning without
prompting. arXiv preprint arXiv:2402.10200, 2024.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter,
B., Xia, F., Chi, E., Le, Q., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models, 2023. URL https://arxiv.org/abs/
2201.11903.

Williams, P. L. and Beer, R. D. Nonnegative decom-
position of multivariate information. arXiv preprint
arXiv:1004.2515, 2010. URL https://arxiv.org/
abs/1004.2515.

Winkler, P. Mathematical Puzzles: A Connoisseur’s Collec-
tion. A K Peters/CRC Press, 2003. ISBN 9781568812014.
URL https://openlibrary.org/books/
OL25435493M/Mathematical_puzzles_a_
connoisseur%E2%80%99s_collection?utm_
source=chatgpt.com.

Xia, Y., Wang, R., Liu, X., Li, M., Yu, T., Chen, X.,
McAuley, J., and Li, S. Beyond chain-of-thought: A
survey of chain-of-x paradigms for llms, 2025. URL
https://arxiv.org/abs/2404.15676.

Xiang, Z., Jiang, F., Xiong, B., Ramasubramanian, B., et al.
Badchain: Backdoor chain-of-thought prompting for
large language models. arXiv preprint arXiv:2403.11903,
2024.

Zhang, X., Du, C., Pang, T., Liu, Q., Gao, W., and
Lin, M. Chain of preference optimization: Improv-
ing chain-of-thought reasoning in llms. arXiv preprint
arXiv:2403.14312, 2024.

Zhang, Z., Zhang, A., Li, M., and Smola, A. Auto-
matic chain of thought prompting in large language mod-
els, 2022. URL https://arxiv.org/abs/2210.
03493.

Zhao, X., Li, M., Lu, W., Weber, C., Lee, J. H., Chu, K.,
and Wermter, S. Enhancing zero-shot chain-of-thought
reasoning in large language models through logic, 2024.
URL https://arxiv.org/abs/2309.13339.

10

https://openreview.net/forum?id=IL5zJqfxAa
https://openreview.net/forum?id=IL5zJqfxAa
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/1004.2515
https://arxiv.org/abs/1004.2515
https://openlibrary.org/books/OL25435493M/Mathematical_puzzles_a_connoisseur%E2%80%99s_collection?utm_source=chatgpt.com
https://openlibrary.org/books/OL25435493M/Mathematical_puzzles_a_connoisseur%E2%80%99s_collection?utm_source=chatgpt.com
https://openlibrary.org/books/OL25435493M/Mathematical_puzzles_a_connoisseur%E2%80%99s_collection?utm_source=chatgpt.com
https://openlibrary.org/books/OL25435493M/Mathematical_puzzles_a_connoisseur%E2%80%99s_collection?utm_source=chatgpt.com
https://arxiv.org/abs/2404.15676
https://arxiv.org/abs/2210.03493
https://arxiv.org/abs/2210.03493
https://arxiv.org/abs/2309.13339


Chain-of-Thought Reasoning for Math

A. Fano’s Inequality
In its simplest form (with base-2 logarithms), Fano’s inequality says that (Cover & Thomas, 2006),

H(A | Â) ≤ Pe log2 |A|+ 1, (19)

where Pe = Pr{Â ̸= A}. Rearranging, one obtains:

Pe ≥
H(A | Â)− 1

log2 |A|
. (20)

If A is uniformly distributed, we can rewrite H(A | Â) in terms of mutual information I(A; Â),

H(A|Â) = H(A)− I(A; Â) (21)
= log2 |A| − I(A; Â) (22)

which yields

Pe ≥ 1− I(A; Â) + 1

log2 |A|
. (23)

B. An Example of Logic Reasoning in PID for CoT
Whereas a simple arithmetic example may only need one or two steps of reasoning, here we present a short logic puzzle
where synergy between the rationale and final label is more pronounced. The puzzles requiring reasoning about other agents’
knowledge (such as the hat puzzle in (Winkler, 2003)) serve as motivating examples for multi-step reasoning tasks.

Consider a puzzle involving three people—Alice, Bob, and Charlie—each wearing a hat. The hats can be either red or blue.
All three participants know:

• There are exactly three hats in total, one per person.

• The distribution of colors is either: (2 hats of one color, 1 hat of the other color), i.e., it could be (2R, 1B) or (2B, 1R).

• Each person can see the hats of the other two, but not their own.

• Alice, Bob, and Charlie each must guess their own hat color.

They do not know which color is in the majority (red or blue), only that one color has 2 hats and the other color has 1 hat.

Suppose we pose the question to an LLM:

X =“Which color is Charlie’s hat,
and how can you prove it?”

We then instruct the model to produce:

C =CoT rationale,

Y =Final Label (the model’s answer).

Here is the logical reasoning scenario that leads to the conclusion (2 red, 1 blue), with Charlie as blue:

1. Alice’s perspective. She sees Bob and Charlie:

“If Bob and Charlie both had blue hats, then that would use up both blue hats. Hence I (Alice) must be
wearing red. In that case, I would know my hat color immediately. But I am initially uncertain. Therefore,
Bob and Charlie are not both blue.”

2. Bob’s perspective. Bob notices Alice is uncertain and sees Charlie’s hat is blue:
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“If I (Bob) were also blue, then Alice, upon seeing two blues, would know she is the single red. But Alice was
not certain. Therefore, I must be red.”

3. Charlie’s perspective. Once Bob concludes he is red, Charlie thinks:

“If I were also red, Bob’s reasoning might have unfolded differently. Given Bob’s announcement, I must be
the lone blue hat.”

Below is a hypothetical CoT rationale C an LLM might produce:

‘‘Alice sees Bob and Charlie. If Bob and Charlie both had blue hats,
Alice would immediately know she is wearing red (since there would be 2
blues in view).
But Alice does not immediately know her hat color, so it’s unlikely both
are blue.
Bob sees that Alice is unsure, and Bob notices Charlie’s hat is blue.
If Bob himself were also blue, then Alice would have known she was red.
Hence Bob deduces he must be wearing red.
Charlie realizes if he were also red, Bob might have shown a different
logic or timing.
Given Bob’s confidence, Charlie concludes he is the single blue hat.’’

The final label Y is succinct:
Y = “Charlie is wearing a blue hat.”

Define the target variable T to be:

T =“Is the puzzle’s conclusion both correct and
logically justified?”

• Only looking at Y : We learn the claim “Charlie is wearing a blue hat,” which is correct if the puzzle indeed yields that
distribution. But we do not see the reasoning that supports it.

• Only looking at C: We see logical steps involving Alice, Bob, and Charlie’s knowledge states, but we do not see the
final official answer. If the chain-of-thought is consistent, we suspect Charlie is blue, but we’re not 100% sure the
model’s declared final color is blue.

• Looking at (C, Y ) jointly: By combining the step-by-step logic (C) and the final claim (Y ), we can confirm that the
conclusion is both (a) correct under the puzzle constraints and (b) logically justified by the reasoning.

This is a more complex puzzle. Multi-step logic (even if it’s just a few steps) shows how synergy between C (the reasoning)
and Y (the conclusion) can be more evident than in a trivial puzzle. Seeing both the rationale and final label lets a human or
another system verify both correctness and internal consistency. One could use an objective that maximizes synergy in PID
terms, ensuring C and Y jointly provide more clarity about T than either does alone.

This puzzle demonstrates how synergy—in the sense of PID—applies to CoT reasoning. The final label Y alone reveals
the conclusion (“Charlie is wearing a blue hat”), but the chain-of-thought C supplies the crucial logical steps. Only by
considering both R and Y do we fully validate the conclusion is both correct and justified, thus illustrating the synergy term
in PID.

C. Experimental Results Based on Synthetic Data
C.1. DPI for CoT

We perform a small-scale empirical study to illustrate how the Markov chain assumption X → Z → Y in a CoT setting
obeys the DPI. Concretely, we generate a synthetic dataset in which:
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• X is sampled from a simple Bernoulli or categorical distribution,

• Z is determined by transforming X with some noise or probabilistic rule (e.g., “flip” with a small probability),

• Y is then generated from Z according to a similar probabilistic mapping.

Under this construction, once Z is known, the final label Y is conditionally independent of X . Formally, we have
X → Z → Y as a Markov chain. We draw a large number of samples (we used 105) to form an empirical joint distribution
p̂(X,Z, Y ) and then estimate the marginal distributions p̂(X,Y ) and p̂(Z, Y ). Next, we use standard discrete formulas to
compute the mutual information I(X;Y ) and I(Z;Y ).

Table 5 shows a run result of this experiment:

Mutual Information Value (bits)

I(X;Y ) 0.1715
I(Z;Y ) 0.5334

Table 5. Empirical estimates of I(X;Y ) and I(Z;Y ) from a synthetic CoT-style Markov chain.

Because Z incorporates and refines information from X , it is unsurprising that I(Z;Y ) exceeds I(X;Y ). This outcome
agrees with the Data Processing Inequality, which states that: I(X;Y ) ≤ I(Z;Y ) whenever X → Z → Y is a Markov
chain.

Intuitively, knowledge of the intermediate variable Z reduces uncertainty about Y more effectively than observing X alone.
In the context of CoT reasoning, one can interpret Z as the “internal” or “latent” chain-of-thought representation that guides
the final output Y . This result thus supports the view that having access to the CoT (i.e., Z) can, in principle, improve our
ability to infer or predict Y .

Empirically, even in a simplified discrete scenario, we see that I(X;Y ) ≈ 0.1715 bits, while I(Z;Y ) ≈ 0.5334 bits, which
is over three times larger. These findings highlight how intermediate reasoning steps, when modeled as Z, encode crucial
information about the final answer. Consequently, in any chain-of-thought style approach, revealing or utilizing Z (where
feasible) naturally yields stronger predictive power about correctness or final responses than relying solely on the original
input X .

C.2. Experiment on PID for Arithmetic-Type CoT

We conduct a small-scale experiment to illustrate how PID can analyze the roles of the CoT and the final answer in
determining solution correctness and interpretability. Specifically, we construct a simple discrete distribution over the
variables (C, Y, T ), where:

• C ∈ {coherent, partial, none} represents the chain-of-thought,

• Y ∈ {14, 13, 9} denotes the final answer proposed by the model, and

• T ∈ {0, 1} indicates whether the overall solution is correct and interpretable (T = 1) or not (T = 0).

An example assignment in our synthetic dataset is Pr{C = coherent, Y = 14, T = 1} = 0.30, with other triplets receiving
smaller or larger probabilities depending on correctness and coherence. After ensuring all probabilities sum to 1.0, we
compute both the marginal mutual information values and the PID measures:

• I(C;T ) and I(Y ;T ), respectively capturing how much the chain-of-thought alone and the final answer alone reveal
about correctness and interpretability,

• I(C, Y ;T ), the total information that (C, Y ) jointly carry about T ,

• The four PID components: redundancy R, synergy S, and the unique contributions U(C;T | Y ) and U(Y ;T | C).
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Table 6. A representative outcome from the PID procedure, showing the decomposition of I(C, Y ;T ) into redundancy R(C, Y ;T ),
synergy S(C, Y ;T ), and unique information U(·;T | ·). All values are in bits.

Quantity Value

I(C;T ) 0.5568
I(Y ;T ) 0.3958
I(C, Y ;T ) 0.8813
R(C, Y ;T ) 0.1958
S(C, Y ;T ) 0.6855
U(C;T | Y ) 0.3610
U(Y ;T | C) 0.2000

A representative outcome from this procedure is summarized below:

The values highlight several interesting properties:

1. Chain-of-Thought Alone vs. Final Answer Alone. We observe that I(C;T ) > I(Y ;T ), suggesting that the chain-of-
thought itself provides more information about correctness and interpretability than the final numeric answer alone.
This can reflect scenarios where seeing the reasoning process clarifies possible mistakes or confirms logical consistency.

2. Synergy Dominates. The synergy S(C, Y ;T ) ≈ 0.6855 is relatively large compared to the total I(C, Y ;T ) ≈ 0.8813.
This implies that the combination of seeing both the chain-of-thought and the final label provides substantially more
information about whether the solution is correct and interpretable than either variable in isolation.

3. Unique Contributions. Both C and Y have nontrivial unique parts (U(C;T | Y ) = 0.3610 and U(Y ;T | C) = 0.2000),
indicating that each variable reveals some aspect of correctness and interpretability that the other does not fully capture.

Overall, these simple results align with intuition that the reasoning process (C) and the final answer (Y ) each carry partial,
sometimes overlapping information about solution quality. Most notably, the large synergy term underscores how observing
the rationale along with the final label can dramatically clarify correctness and interpretability. Even in this simplified
discrete example, PID helps reveal the structure of how C and Y jointly determine the target T .

C.3. Experiment on PID for Logical Reasoning CoT

In this section, we illustrate how PID can be used to analyze CoT explanations in logical reasoning tasks. Specifically, we
examine how the correctness of the chain-of-thought (C) and the correctness of the final answer (Y ) together inform a target
variable T , which indicates whether the model’s solution is both correct and logically justified.

We constructed a small, synthetic dataset of logical puzzles where:

• C ∈ {0, 1} captures whether the chain-of-thought is coherent or logically consistent;

• Y ∈ {0, 1} reflects whether the final answer is correct;

• T ∈ {0, 1} indicates whether the puzzle’s solution (including the final answer and explanation) is both correct and
justified.

For each puzzle, we recorded a frequency count of how often the model produced each combination of (C, Y, T ), and
a probability distribution p(C, Y, T ) by normalizing these frequency counts. We then applied the PID to decompose the
mutual information I(C, Y ;T ). Table 7 summarizes the PID components obtained from our simple dataset.

Observe Table 7, these values suggest that there is moderate redundant information R (0.549 bits) shared by the chain-
of-thought correctness (C) and final answer correctness (Y ) about whether the solution is both correct and justified (T ).
However, the synergy component S = 0.428 is also substantial, implying that one must consider both C and Y together to
gain additional insight into whether the solution is truly valid and justified.
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Table 7. PID results for logical reasoning with CoT on a synthetic dataset.

Quantity Value

I(C;T ) 0.774
I(Y ;T ) 0.674
I(C, Y ;T ) 0.977
R(C, Y ;T ) 0.549
S(C, Y ;T ) 0.428
U(C;T | Y ) 0.226
U(Y ;T | C) 0.125

In other words, while either the chain-of-thought or the final answer alone conveys meaningful information about T , looking
at both variables jointly reveals extra information (0.428 bits) that neither one alone can fully capture. This aligns with the
intuition that logical reasoning tasks often require both a correct final answer and a coherent explanatory chain-of-thought to
ensure that a solution is truly well-justified.

Our experiment highlights that synergistic information can be substantial in logical reasoning: a coherent chain-of-thought
and a correct final answer jointly determine whether a solution is fully justified.

D. Limitations
While our study provides valuable theoretical insights into CoT reasoning, several limitations should be acknowledged.
First, our analyses primarily focused on theoretical and controlled experimental settings with limited dataset sizes and
simplified tasks. Real-world tasks often involve more complex reasoning patterns and noisy data, potentially affecting the
generalizability of our results. Second, our PID experiments relied on discretization techniques to manage textual data,
which may result in information loss or overly coarse approximations of the underlying information-theoretic relationships.
Moreover, the computational complexity of mutual information and PID calculations grows rapidly with larger datasets and
richer vocabularies, potentially limiting scalability. Finally, our analyses assume accurate and high-quality rationales or
reasoning steps. In practice, LLM-generated rationales may sometimes be plausible yet incorrect or incomplete, necessitating
further research on robustness and reliability of CoT outputs.

E. Ethics Statement
This research involves the theoretical analysis of LLMs, specifically focusing on interpretability and information processing
through CoT reasoning. Although our work does not involve direct collection or usage of sensitive personal data, ethical
considerations regarding LLMs still apply. LLMs may inadvertently generate biased, misleading, or harmful outputs
depending on training data and usage context. Our methodologies aim to improve interpretability, potentially helping
identify and mitigate harmful biases or inaccuracies. However, enhancing interpretability does not inherently solve issues of
fairness, accountability, and transparency. Researchers and practitioners must remain aware that interpretability methods
alone cannot fully address ethical risks associated with model deployment. We encourage ongoing attention to responsible
AI practices and transparency in methodologies.

During the writing of this paper, we used ChatGPT 4o with editing (e.g., grammar, spelling, word choice) and facilitating
the experiments.
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