
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BAYESIAN ROBUST COOPERATIVE MULTI-AGENT RE-
INFORCEMENT LEARNING AGAINST UNKNOWN AD-
VERSARIES

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the problem of robustness against adversarial attacks in cooperative
multi-agent reinforcement learning (c-MARL) at deployment time, where agents
can face an adversary with an unknown objective. We address the uncertainty
about the adversarial objective by proposing a Bayesian Dec-POMDP game model
with a continuum of adversarial types, corresponding to distinct attack objectives.
To compute a perfect Bayesian equilibrium (PBE) of the game, we introduce
a novel partitioning scheme of adversarial policies based on their performance
against a reference c-MARL policy. This allows us to cast the problem as finding
a PBE in a finite-type Bayesian game. To compute the adversarial policies, we in-
troduce the concept of an externally constrained reinforcement learning problem
and present a provably convergent algorithm for solving it. Building on this, we
propose to use a simultaneous gradient update scheme to obtain robust Bayesian
c-MARL policies. Experiments on diverse benchmarks show that our approach,
called BATPAL, outperforms state-of-the-art baselines under a wide variety of at-
tack strategies, highlighting its robustness and adaptiveness.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (c-MARL) has achieved remarkable performance
in areas such as autonomous driving, 5G networks, robotics, and smart grids (Canese et al. (2021)),
as it allows agents to learn distributed policies for complex sequential tasks. Nonetheless, the failure
or the compromise of even a single agent, either through direct manipulation of its actions or by
corrupting its observations, can degrade the overall team performance (Lin et al. (2020)), calling for
policies that are robust against faults and adversarial attacks.

Existing approaches for obtaining robust policies rely on dataset augmentation or on adversarial
training (Gleave et al. (2019); Pattanaik et al. (2017); Havens et al. (2018); Pinto et al. (2017);
Phan et al. (2021); Liu et al. (2024a); Li et al. (2024)). Dataset augmentation involves introducing
one or more adversarial perturbations during training, allowing agents to learn under adversarial
and nominal conditions simultaneously (Gleave et al. (2019); Pattanaik et al. (2017); Havens et al.
(2018)). The alternative approach is based on jointly training the benign and the adversarial agents,
typically formulated as a zero-sum Stackelberg game, and a saddle-point equilibrium in policies is
sought after (Pinto et al. (2017); Phan et al. (2021); Liu et al. (2024a)). These approaches typically
yield a single policy optimized for adversarial conditions and thus they are typically suboptimal
when all agents are cooperative. Even if the trained policy can maintain a belief about the presence
of an adversary, as in Li et al. (2024), robust learning based on saddle-point equilibria against a
worst case adversary found using gradient descent has three fundamental limitations.

First, it relies on the assumption of a worst case adversary, which fails to capture adversaries with an
objective other than minimizing the team reward as well as non-cooperative behavior due to failure.
These may deviate substantially from worst-case attacks (Liu et al. (2024b); Kokolakis et al. (2020)),
and thus the defender’s max–min policy may be far from optimal considering the actual adversarial
strategy, resulting in poor team performance.

Second, the optimization problem solved is inherently non-convex, and learning algorithms are
prone to converge to local stationary points, which may not be globally optimal Kalogiannis et al.
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(2022); Fiez et al. (2020); Reddi et al. (2024). As a result, the saddle-point policies are local Stack-
elberg equilibria Loftin et al. (2024), potentially far from the equilibrium sought after.

Third, exposure to perturbed versions of a single adversarial policy during training can cause the
agents’ representation of adversarial dynamics to overfit. Consequently, when faced with a different
type of adversarial behavior at deployment, the agents may fail to adapt their policies to the previ-
ously learned max–min strategy (Liu et al. (2024a)). In such cases, they may not even achieve the
minimum performance guarantee that the max–min strategy is theoretically expected to provide.

To address these limitations, we introduce a novel approach for training robust MARL policies that
can adapt to a diverse set of adversarial behaviors. Instead of learning a single max–min policy,
our approach partitions the set of adversarial policies into disjoint subsets, defined by the range of
team reward they would impose, and computes a max–min policy for each subset of such adversarial
policies via a representative adversarial policy. Although our approach cannot completely eliminate
the problem of local stationary points described above, it mitigates the problem by restricting the
search to smaller, isolated feasible sets. Moreover, the subsets are constructed so that adversarial
policies in different subsets exhibit distinct behaviors. The defender’s MARL policy is then trained
to adapt based on its belief of adversarial behavior. Our main contributions are as follows.

(1) We introduce a Bayesian Dec-POMDP game model with a continuum of adversarial types and
propose a novel criterion for discretizing the type space to ensure exposure to a diverse set of adver-
sarial policies during training. Based on the perfect Bayesian equilibrium of the game, we formulate
the Bayesian regret as the objective to characterize the robustness of a policy.

(2) To compute an equilibrium, we introduce the concept of an externally-constrained RL to find
the adversarial policies of different types. We propose both a provably convergent algorithm and
a practically efficient variant to solve this problem. Building on these, we design an end-to-end
adversarial learning framework, termed BATPAL, to derive Bayesian robust c-MARL policies.

(3) Through extensive simulations, we demonstrate the effectiveness of BATPAL in adapting to un-
seen adversarial policies across four benchmark MARL environments, and show that it consistently
outperforms state-of-the-art robust MARL algorithms.

Related Work: In robust learning the agent–adversary interaction is modeled as a game, and the
agents seek a max–min policy for execution-time robustness. RARL Pinto et al. (2017) and RARAL
Pan et al. (2019) focus on adversarial disturbances with alternating optimization, while Tessler et al.
(2019) and RAP Vinitsky et al. (2020) study adversarial manipulation of actions. Although effec-
tive against worst-case attacks, such approaches can be overly conservative; recent work Liu et al.
(2024b) addresses this by considering non-worst-case adversaries, but in a lifelong learning context.

For execution-time robustness in MARL, M3DDPG Li et al. (2019) adopts a max–min value func-
tion, while RAT Phan et al. (2020) and RADAR Phan et al. (2021) consider environments with a
subset of adversarial agents. ROMANCE Yuan et al. (2023) models budget-limited attacks, and
Liu et al. (2024a) studies adjustable, non-worst-case adversaries in two-agent scenarios. Most re-
cently, Li et al. (2024) propose to maintain belief states about what teammates are compromised, but
considers a worst case adversary only, leaving agents undefended against unseen adversaries.

2 MODEL AND PROBLEM FORMULATION

2.1 C-MARL MODEL

We consider a Dec-POMDP M = (N ,S, {Ai}i∈N , R, P, {Ωi}i∈N ,O, µ, γ), where N =
{1, 2, ..., N} is the set of agents, S is the set of states, and Ai and Ωi are the set of actions and the
set of observations of agent i, respectively. We assume that S and Ai are finite sets. Furthermore,
R(st,at), P (st+1|st,at), and O(ot|st) denote the reward function, the state transition probability,
and the conditional observation probabilities, respectively. Finally, µ and γ < 1 denote the ini-
tial state distribution and the discount factor, respectively. We denote the history of observations,
rewards and own actions of agent i up to time t by τ it .

We assume that the reward is bounded such that, without loss of generality, |R(s,a)| ≤ 1, ∀(s,a) ∈
S × A. The value function when the agents follow a joint policy π = (π1, ..., πN ) is defined
as: V π(s) = E[

∑∞
t=0 γ

tR(st,at) | s0 = s]. We define the expected initial state value as
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V π = Es0∼µ[V π(s0)]. Throughout the paper, we use the game-theoretic notation x−i to denote
the collection of xj for all agents j ̸= i, where x can be actions, observations, or any other quantity.

2.2 BAYESIAN DEC-POMDP AS A MODEL OF ADVERSARIAL ROBUSTNESS

During deployment, agents may deviate from their pre-trained policies due to hardware or software
error and due to adversarial activity Lin et al. (2020); Kazari et al. (2023). The identity and the
objective of non-cooperative agents is, however, unknown to the cooperative agents. Yet, most of the
literature on robust single agent and multi agent RL focuses on worst case adversaries, i.e., one that
minimizes the team reward Gleave et al. (2019); Tessler et al. (2019); Li et al. (2019; 2024). Only
a few recent works considered robustness to non-worst case adversaries in a single agent setting,
e.g., assuming the adversary may not fully control the victim Liu et al. (2024a), via a population of
adversaries Vinitsky et al. (2020), or via repeated encounters in a bandit setting Liu et al. (2024b).

To capture diversity of adversarial agents’ objectives and the resulting uncertainty, we propose the
Bayesian Dec-POMDP defined as

MB = (N ,S, {Θi}i∈N , {Ai}i∈N , R, P, {Ωi}i∈N ,O, µ, γ),
where Θi is the type space of agent i, extending the Dec-POMDP formulation. The type Θi captures
the uncertainty about the reward function of agent i, and without loss of generality, we can consider
Θi = [0, 1], as every compact subset of a Euclidean space is in bijection with a subset of [0, 1].

The type θi ∈ Θi of agent i is drawn at the beginning of each episode. We denote by b0 the agents’
prior about the types and the initial system state, obtained based on µ. The type θi = 0 corresponds
to agent i aiming to maximize the team reward, each θi > 0 corresponds to an agent that aims to
maximize some other reward function. For notational convenience, we use θi = 1 as the type of an
adversarial agent that aims to minimize the team reward. The policy πi(ait|τ it , θi) of agent i is thus
a function of its type θi, and the joint action of the agents has distribution at ∼ Πi∈Nπ

i(ait|τ it , θi)
and it governs the state transitions. Importantly, even if states are fully observable, the policies of
the agents need not be stationary due to incomplete information; they depend on their beliefs bi(τ it )
about the types of the other agents and their policies, maintained based on the observation history.

Our Bayesian Dec-POMDP formulation generalizes existing formulations in the literature Li et al.
(2024; 2019); Yuan et al. (2023). A Dec-POMDP with only cooperative agents corresponds to
Θ = 0N , mixed cooperative-competitive problem formulations with NA victim agents correspond
to ||Θ||0 = NA Li et al. (2019; 2024), while a Dec-POMDP with a single worst case adversary to
||Θ||0 = ||Θ||1 = 1.

2.3 THREAT MODEL AND PROBLEM STATEMENT

Aligned with the game model MB we consider that the identity of the victims and the adversarial
objective are unknown to benign agents, and the types of the agents do not change during an episode.
For ease of notation we consider that the adversary takes control of a single victim agent v ∈ N ,
and we denote the adversarial policy by ρv,θ

v

= πv(·|τv, θv). Game MB is a Bayesian game with
imperfect information, its solution is thus a perfect Bayesian equilibrium (PBE), defined as follows.
Definition 2.1. A perfect Bayesian equilibrium (PBE) is a profile of cooperative policies (πi)i∈N
and of adversarial policies (ρv,θv )v∈N ,θv∈Θv , and a belief system (bi(τ i))i∈N and (bv(τv, θv))v∈N ,
that satisfies (i) each policy is optimal in expectation at every history given the beliefs (sequential
rationality) (ii) beliefs are updated using Bayes rule based on the equilibrium policies for on-path
histories, as well as for off-path histories whenever possible.

To evaluate agent policies, with a slight abuse of notation, let us denote the expected initial state
value when non-victim agents follow the joint policy π−v and the victim follows policy ρv,θv by
V π,ρ

v,θv . Intuitively, for any victim agent v and policy ρv,θ
v

, the non-victim agents should perform
optimally, i.e., as close as possible to the optimal policy against ρv,θ

v

. We can thus evaluate the
policies in terms of the Bayesian regret defined as

R(π) = E(v,θv)∼b0 [Rρv,θv (π)] = E(v,θv)∼b0 [max
π′

(V π
′,ρv,θ

v

)− V π,ρ
v,θv

], (1)

where expectation is taken over the prior b0. Observe that a PBE minimizes (1) by definition, and
our objective is to learn such an equilibrium policy profile (πi)i∈N .

3
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3 BAYESIAN TYPE-PARTITIONED ADVERSARIAL LEARNING (BATPAL)

Ideally, the defender would learn a policy that minimizes the Bayesian regret. However, since the
attacker can choose from (possibly infinitely) many adversarial policies, finding a policy that corre-
sponds to a PBE is computationally infeasible. To overcome this issue, we propose a novel approach
that partitions the adversarial type space into a finite number of subsets, resulting in a Bayesian Dec-
POMDP M̂B with type space Θ̂i = {0, 1, , . . . ,K} for agent i. Assuming at most one victim agent,
the support of p is the set of all θ̂ such that ||θ̂||0 ≤ 1. This set can be equivalently represented by

Z = {(v, k) : v ∈ N , k ∈ {1, 2, ...,K}} ∪ {0}, (2)

where 0 represents the non-adversarial type for all agents. We denote by p(θ̂) the common prior
over θ̂ = (θ̂0, ..., θ̂N ). With a slight abuse of notation, we use both bi(θ̂|τ i) and bi(z|τ i) for z ∈ Z
to denote the beliefs.

While partitioning itself is conceptually simple, it is not straightforward how to map adversarial
types Θi to Θ̂i, and how to choose adversarial policies that would be representative for each discrete
adversarial type θ̂i. Our proposed solution is to partition adversarial types based on their severity,
defined appropriately, and to use the most severe policy in each partition as representative. The
core idea is then to train a single policy that performs optimally against the worst-case adversarial
policies in all partitions, i.e., a PBE of game M̂B . This approach allows us to explore a rich set of
adversarial policies during training, which is essential for obtaining a PBE policy profile.

3.1 REFERENCE-VALUE BASED PARTITIONING

The main issue in partitioning the type space is that the reward function for each type Θv is private
to agent v, and other agent cannot know it. If the other agents were to distinguish between two
different types in Θv , they only could do it by playing against these two types with a fixed policy
and observing the rewards they get. This motivates us to define our partitioning based on how well
different adversarial types perform against a reference baseline policy.

Let π0 ∈ argmaxπ V
π be a cooperative policy profile. We refer to π0 as the reference policy and

denote Vmax = V π0 . Given a victim agent v of type θv , let us denote the minimum expected initial
state value by V vmin = minρv V

π0,ρ
v

. Note that V vmin is the lowest value an adversarial policy played
by v can impose while the other players use π0. Thus, under the reference policy of the non-victim
agents, the expected initial state value induced by an attack on v lies in [V vmin, Vmax]. Importantly,
the initial state value of any adversarially robust cooperative policy has to lie in the same interval
whenever v is the victim. We can thus define the severity of an adversarial policy ρv as

ηρv =
Vmax − V π0,ρ

v

Vmax − V vmin
. (3)

The severity of every adversarial policy satisfies ηρv ∈ [0, 1] by definition. Essentially, assuming
that the adversary plays optimally with respect to its private reward function, η provides a mapping
from Θv to [0, 1], by which the type 0 (non-adversarial) remains unchanged.

We use the above to partition adversarial policies according to their severity and the victim agent. A
policy ρv belongs to adversarial type z = (v, k) if ηρv ∈ (k−1

K , kK ], and we denote the set of all such
policies by Πz . Note that any adversarial policy belongs to exactly one of the sets Πz for z ∈ Z .
The following proposition shows that such a partitioning is possible.

Proposition 3.1. If states are observable then Πz is a nonempty set for all z ∈ Z . (Proof in
Appendix C.1)

Now with this partitioning, the discrete adversarial types θ̂v correspond to sets Πz , and it can be
shown that the PBE in M̂B corresponds a policy π∗ = (π∗1, . . . , π∗N ) such that

π∗i(.|τ i, θi = 0) ∈ argmax
πi

Ebi(z|τ i)
[
min
ρv∈Πz

V π
∗,ρv

]
,∀i ∈ N ,∀τ i (4)

For a more detailed explanation and derivation of (4) we refer to Appendix B.
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Before presenting our solution to (4), we first elaborate on how such categorization enhances the
robustness of MARL compared to learning a single max-min policy. First, as empirically showed by
Kazari et al. (2023), there is a general trade-off between the impact of an attack and the abnormality
of the victim agent’s behavior as perceived by non-victim agents. Here, the abnormality refers to a
difference between what the non-victim agents expect to observe based on the reference policy and
what the victim actually does. Thus, one would expect that if two advesarial policies have a large
difference in V π0,ρ

v

, and accordingly belong to very distinct severity levels, their behavior would
be easy to distinguish from the non-victim agents’ perspective. This would help MARL training
to encounter a diverse set of adversarial policies. To provide theoretical support for this reasoning,
Proposition 3.2 establishes a bound on the KL divergence between two arbitrary adversarial policies
in terms of their reference expected initial state values. The KL divergence quantifies the discrepancy
between two probability distributions and is commonly employed as a metric for evaluating policy
diversity in regularized reinforcement learning tasks (Yuan et al. (2023); Derek & Isola (2021)).
Proposition 3.2. Consider a victim agent v and any two adversarial policies ρv,θ1 and ρv,θ2 . If
states are observable then we have

E
s∼d

π0,ρ
v,θ1

µ

[
DKL(ρ

v,θ1(s)||ρv,θ1(s))
]
≥ (1− γ)2

2
|V π0,ρ

v,θ1 − V π0,ρ
v,θ1 |2, (5)

where dπ0,ρ
v

µ is the discounted state visitation distribution under (ρv,π−v
0 ). (Proof in Appendix

C.2)

Moreover, recall that one of the issues with learning a single max-min policy over the entire set of
adversarial policies is its sub-optimality when the c-MARL team faces an arbitrary non-worst case
attack. The next proposition demonstrates how the proposed partitioning mitigates this issue.
Proposition 3.3. Let ρ̂v ∈ Πz be an arbitrary adversarial policy for some z = (v, k) and π∗

z ∈
argmaxπminρv∈Πz V

π,ρv . Then, assuming fully observable states, we have

Rρ̂v (π
∗
z) ≤

k(Vmax − V vmin)

K
(6)

The proof is provided in Appendix C.3. To interpret this result, let us compare the case of K = 1
with K > 1. Note the case with K = 1 is equivalent to learning a max-min policy over the set
of all adversarial policies with v as the victim. When K = 1, the bound on the regret for any
arbitrary adversarial policy can get as large as Vmax − V vmin. In contrast, when K > 1, (6) gives a
severity-dependent bound. In particular, for attacks belonging to lower severity levels, i.e., small k,
the optimality gap becomes smaller, as the ratio k

K becomes smaller.

Finally, although the issue of getting stuck in local optima remains, our partitioning-based approach
improves the likelihood of finding better solutions by restricting the search to a collection of smaller,
non-overlapping feasible subsets that together cover the entire feasible space of adversarial policies.

4 ROBUST LEARNING

4.1 LEARNING ADVERSARIAL POLICIES VIA EXTERNALLY CONSTRAINED RL

To solve (4), we first focus on solving the inner minimization problem, i.e., for a given z = (v, k),
a non-victim policy π and reference policy π0, find a policy ρv∗ = argminρv∈Πz V

π,ρv . Since
throughout the subsection we focus on a single adversarial policy, we drop superscript v for nota-
tional simplicity. Observe that from the adversary´s perspective the inner minimization problem is
a constrained POMDP,

min
ρ

Es∼µ[V ρ(1)(s)]

s.t. l ≤ Es∼µ[V ρ(0)(s)] ≤ h, (7)

where V ρ(1) and V ρ(0) denote the initial state value function of policy ρ when it is applied to two dif-
ferent POMDPs, namely POMDP1 and POMDP0, respectively, and l and h are some real numbers.
For notational simplicity, in the rest of the subsection we consider that states are observable, hence
we refer to these as MDP1 and MDP0.

5
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Observe that MDP1 and MDP0 share the same action and state spaces, but differ in the reward func-
tion and the transition dynamics. Thus, although problem (7) resembles the constrained RL problem
in the context of safe learning Paternain et al. (2019); Liu et al. (2020), there is a fundamental dif-
ference. In constrained RL, the costs that define the constraints are essentially obtained through
the same trajectory as the rewards in the objective function. On the contrary, in our problem, the
objective and the constraints correspond to different MDPs, and consequently, different trajectories.
To highlight this difference, henceforth we refer to (7) as the externally constrained RL problem.

We propose to use the log barrier method to approximate (7) via an unconstrained problem. That is,
we define V ρ(j) = Es∼µ[V ρ(j)(s)] for j = 0, 1, and obtain

min
ρ

V ρ(1) − λ log(V ρ(0) − l)− λ log(h− V ρ(0)), (8)

where λ is a hyperparameter controlling the optimality-feasibility trade off. We propose to solve (8)
using a gradient descent approach on policy ρψ parametrized by parameter vector ψ. The gradient
of the objective function can then be expressed as follows.
Proposition 4.1. The policy gradient of the objective function (8) is

gψ =
1

1− γ
Es∼d(1), a∼ρψ(.|s)[∇ψ log ρψ(a|s)A

ρψ
(1)(s, a)]

− λ

1− γ
(

1

Es∼µ[V
ρψ
(0) (s)]− l

− 1

h− Es∼µ[V
ρψ
(0) (s)]

)Es∼d(0), a∼ρψ(.|s)[∇ψ log ρψ(a|s)A
ρψ
(0)(s, a)]

(9)

where Aρψ(j) and d(j) denote the advantage function and the discounted state visitation distribution
under ρψ corresponding to MDPj , respectively. (Proof in Appendix C.4)

Then, the stochastic update rule for the policy parameters would be

ψn+1 = ψn − αnĝψn , (10)

where ĝψn is an estimate of gψn and αn is the learning rate. To estimate the gradient gψ , let V̂ ψn(j) and

∇̂ψn
(j) denote some unbiased estimators of V ρψn(j) and ∇ψV

ρψn
(j) , respectively, where j = 0, 1. Then,

our proposed estimate is

ĝψn =
1

1− γ

[
∇̂ψn

(1) − λ(
1

V̂ ψn(0) − l
− 1

h− V̂ ψn(0)

)∇̂ψn
(0)

]
. (11)

To obtain the estimates, we collect trajectories of M episodes in the form
{(st,m,(j), at,m,(j), rt,m,(j))Tm−1

t=0 }Mm=1 by executing ρψ on MDPj for j ∈ {0, 1}. In prac-
tice, Tm could be the time to reach a terminal state or the episodic time limit. We propose to
maintain two parametrized functions, namely Vϕ(0)

and Vϕ(1)
, as the critics to estimate V ρψ(0) (s)

and V ρψ(1) (s). Then, ∇̂ψ
(j) is obtained in the same way as a standard actor-critic algorithm (Sutton

& Barto (2018)), using the empirical average of ∇ψ log ρψ(a|s)Aϕ(j)
(s, a), where Aϕ(j)

is the
advantage function calculated based on V ϕ(j) . Moreover, we can obtain V̂ ψn(0) as

1

M

M∑
m=1

[
(

Tm−1∑
t=0

γtrt,m,(0)) + Vϕ(0)
(sT,m,(0))

]
. (12)

A major difference between the proposed stochastic update and standard policy gradient methods is
that our estimate of the gradient is not unbiased, as E[ĝψn ] ̸= gψn , even if V̂ ψn(0) and ∇̂ψn

(j) are unbiased
estimators. Thus, our algorithm is not guaranteed to converge using standard arguments (Robbins &
Monro (1951)). Yet, it does converge with a proper selection of the step sizes, as we show next.
Proposition 4.2. Assume that for a parameterization ψ, the following conditions hold:

(1) V̂ ψ(0) and ∇̂ψ
(j) are unbiased estimators, and also Vϕ(j)

(s) = V
ρψ
(j) (s) (perfect critics). (2) For

any s ∈ S and a ∈ A, the function log ρψ(a|s) is twice differentiable with respect to ψ, and both

6
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its first and second derivatives are bounded. (3) There exists a strictly feasible starting point ψ0,
i.e., l < V

ρψ0

(0) < h. (4) There exists a constant ζ > 0 , such that ∇ψV
ρψn
(0) is nonzero when

h− ζ ≤ V
ρψn
(0) ≤ h or l ≤ V

ρψn
(0) ≤ l + ζ.

Then, for any ϵ, δ > 0, there exists a sequence of adaptive step sizes {αn} and some values Niter
and M , such that after Niter iterations of (10) using (11) and (12), we have minn≤Niter ||gψn || ≤ ϵ
with probability at least 1-δ. Moreover, as λ→ 0 the obtained point approaches a KKT point of the
constrained problem (7) with probability at least 1-δ. (Proof and detailed expressions of αn, Niter
and M are available in Appendix C.5)

Despite the above convergence result, using (11) poses two practical challenges. First, computing the
adaptive step size αn is computationally expensive and requires estimating bounds on the gradient
of log ρψ , which is difficult in general. Second, estimating log-barrier gradients near the boundary
of the feasible region is sensitive to noise Usmanova et al. (2024). Mitigating the sensitivity requires
a large number of episodic samples M , which is infeasible in practical RL settings.

To address these issues, we propose to incorporate the PPO loss function (Schulman et al. (2017))
into the policy updates. The key intuition is that the clipping mechanism in PPO constrains policy
updates by preventing large deviations from the current policy. This implicitly mitigates the risk of
crossing into the infeasible region due to high-variance gradient estimates, while also eliminating
the need to compute adaptive step sizes in practice. Moreover, when the initial policy lies outside the
feasible region, the update direction is reversed such that the gradient step encourages convergence
toward the feasible set. Then the gradient calculation of our proposed algorithm, which we refer to
as externally-constrained PPO (EC-PPO), can be summarized as

ĝEC-PPO
ψn =

∇PPO,ψn
(1) − λ( 1

V̂ ψn
(0)

−l
− 1

h−V̂ ψn
(0)

)∇̂ψn
(0), if l + ζ ≤ V̂ ψn(0) ≤ h− ζ

sign(V̂ ψn(0) − 1
2 (l + h))∇̂ψn

(0), otherwise ,
(13)

where ∇PPO,ψn
(1) is the gradient of the PPO objective function (Eq.(7) in Schulman et al. (2017)), and

ζ > 0 is a small value to prevent gradient explosion.

4.2 BAYESIAN ADVERSARIAL MARL TRAINING

To find the perfect Bayesian equilibrium policies in (4), recall that PBE policies are optimal in expec-
tation given the beliefs. Thus, we incorporate bi as an input to πi, represented as πi(·|τ i, bi, θi = 0).

It can be shown that M̂B is equivalent to a partially observable stochastic game G with N + 1
players, where player N + 1 plays adversarially against the others (details in Appendix B). This
interpretation allows us to employ the framework of adversarial training with min-oracle (Kalogian-
nis et al. (2022); Liu et al. (2024a)) for policy updates. Let πωi(.|τi, bi) be a policy parametrized
by ωi that represents πi(.|τ i, bi, θi = 0). Also, let ρψ be the adversarial policy parametrized by
ψ = (ψz)z∈Z\0, such that ψz corresponds to πv(.|s̄, θv = k) for z = (v, k). Note that if V̄ ω,ψ
represents the expected initial state value function of non-adversarial agents in G, whose objective is
to find argmaxωminψ V̄

ω,ψ . Then, assuming that there is an oracle that for any given policy πω
returns a best response policy ψ∗(ω) = argminψ V̄

ω,ψ , the MARL policy is updated as

ωn+1 = ωn + βn∇ωV̄ ωn,ψ
∗(ωn), (14)

where βn is a step size. It is straightforward to verify that minimizing V̄ is equivalent to minimiz-
ing V , the expected initial state value function of the original game. Consequently, our externally
constrained RL algorithm can serve as an oracle to compute ψz∗ for each z ∈ Z , since fixing ω re-
duces the problem to 7. Moreover, note that for a fixed ψ and assuming updated beliefs, the problem
reduces to the standard c-MARL setting.

Such policy optimization is theoretically guaranteed to converge to a Nash equilibrium of Markov
games under simplified settings, such as direct parameterization and fully observable states (Kalo-
giannis et al. (2022); Daskalakis et al. (2020)). However, these guarantees rely on performing exact
minimization at each policy update and having access to exact gradients, both of which are infeasible
in practice. To address this, we employ simultaneous gradient updates, also known as two-timescale
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(a) LBF (b) MPE-Spread (c) SMAC-2s3z (d) SMAC-MMM

Figure 1: Average episodic return of the proposed adversarial training, evaluated over 5 runs.

stochastic simultaneous gradient descent–ascent (Daskalakis et al. (2020)). Then assuming that
ĝω(ω,ψ) is an unbiased stochastic estimate of ∇ωV̄ ωn,ψ

∗(ωn), and that ĝEC-PPO
ψ (ω,ψ) is the ad-

versarial gradient derived by (13), our policy updates can be summarized as

ψn+1 = ψn − αnĝ
EC-PPO
ψ (ωn,ψn) (15)

ωn+1 = ωn + βnĝω(ωn,ψn). (16)

The intuition is that by selecting αn ≥ βn, the adversary’s policy serves as an approximate min-
oracle, while from the adversary’s perspective the c-MARL policy appears nearly quasi-static. To
compute ĝω(ωn,ψn), we first need to obtain the agents’ beliefs. For this purpose, we employ a
parametrized function approximator bχi(θ

−i|τ i), implemented using a Recurrent Neural Network
(RNN) that takes τ i as input. The belief model is trained against the true type θ−i using a cross-
entropy loss. Then, by feeding (bi, τ i) into the policy network and using the value estimate provided
by the critic Vϕ(1)(s̄), we compute ĝω(ωn,ψn) in the same way as in a standard actor-critic algo-
rithm. We refer to our algorithm as Bayesian Type-Partitioned Adversarial Learning (BATPAL), and
provide its pseudo-code in the Appendix.

5 EVALUATION

We evaluate BATPAL against various attack types in four c-MARL environments. We consider the
2s3z and MMM scenarios from the StarCraft II Multi-Agent Challenge (SMAC) (Samvelyan et al.
(2019)), with five and ten agents, respectively. We use scenario (10x10-5p-10f-c) in Level-Based
Foraging (LBF) (Papoudakis et al. (2021)) and the Spread scenario from Multi-Particle Environ-
ments (MPE) (Mordatch & Abbeel (2017)), involving five and three agents, respectively.

In all environments, we applied our algorithm to train a robust c-MARL policy and a set of adver-
sarial policies with different severity indices. We used MAPPO (Yu et al. (2022)) both for updating
the c-MARL policy in adversarial learning and to obtain the reference policy π0 in the pre-training
phase. We assumed a uniform prior over all possible types in the training. Moreover, for a low-
complexity implementation, we used parameter-sharing across all agents. Accordingly, we main-
tained a single neural network for c-MARL policy and K networks for different adversarial types.
For more details on implementation, we refer to the Appendix.

Baselines: We compare our proposed method with state-of-the-art baselines including EIR-MAPPO
(Li et al. (2024)), Generalized Maxmin (Gen-Maxmin) (Liu et al. (2024a)), and RAP (Vinitsky et al.
(2020)). We also include the evaluation of the vanilla MAPPO algorithm against the considered
attacks. Moreover, to provide a comprehensive assessment of the results, we include for each attack
the results obtained using an oracle defender that is aware of the type of the adversary and is trained
against it. This baseline, referred to as Known Type (KT), serves as an empirical upper bound.
Finally, we include a comparison with ROMANCE (Yuan et al. (2023)) in Appendix D.2.

Attacks: We use 10 adversarial policies for the evaluation. One the one hand, the policies trained
in the adversarial training process of BATPAL, these are indexed by their severity level. In addi-
tion, we use the adversarial policies trained against EIR-MAPPO, Gen-Maxmin and RAP, these are
marked as “A-X,” where X corresponds to the name of the baseline. To assess generalization, we
further evaluate all methods against three dynamic adversaries, unseen by all methods. These adver-
saries are trained by fixing non-victim policies and training an RL agent with a reward function that
balances adversarial impact on c-MARL performance with detectability (Kazari et al. (2023)). We

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Ours
EIR-M

GenM
RAP

MAPPO
KT Ours

EIR-M
GenM

RAP
MAPPO

KT Ours
EIR-M

GenM
RAP

MAPPO
KT Ours

EIR-M
GenM

RAP
MAPPO

KT

No Attack

Severity 0

Severity 1

Severity 2

Severity 3

A-EIR-MAPPO

A-Gen-Maxmin

A-RAP

ACT

DYN-1

DYN-2

1.00 0.59 0.79 0.71 0.97 1.00

0.68 0.41 0.47 0.26 0.38 0.85

0.50 0.18 0.29 0.24 0.21 0.68

0.32 0.12 0.29 0.26 0.12 0.59

0.35 0.00 0.18 0.21 0.06 0.62

0.26 0.06 0.03 0.15 0.00 0.35

0.38 0.21 0.68 0.29 0.18 0.68

0.32 0.15 0.26 0.15 0.24 0.53

0.35 0.15 0.24 0.26 0.24 0.50

0.53 0.32 0.44 0.18 0.24 0.71

0.59 0.24 0.50 0.24 0.35 0.53

LBF

1.00 0.97 0.94 0.57 0.99 1.00

0.87 0.78 0.83 0.58 0.85 0.84

0.81 0.57 0.70 0.17 0.70 0.83

0.77 0.62 0.68 0.31 0.67 0.82

0.73 0.49 0.66 0.02 0.58 0.82

0.64 0.67 0.47 0.30 0.54 0.69

0.80 0.49 0.83 0.02 0.61 0.83

0.61 0.65 0.54 0.24 0.55 0.66

0.81 0.49 0.66 0.00 0.53 0.83

0.67 0.51 0.51 0.35 0.59 0.77

0.72 0.47 0.62 0.05 0.63 0.73

MPE-Spread

0.98 0.96 0.98 0.94 0.96 1.00

0.66 0.49 0.84 0.79 0.58 0.96

0.55 0.12 0.18 0.39 0.11 0.94

0.60 0.09 0.00 0.09 0.00 0.73

0.70 0.07 0.05 0.08 0.00 0.73

0.38 0.20 0.04 0.17 0.00 0.65

0.50 0.15 0.64 0.47 0.08 0.69

0.51 0.19 0.01 0.58 0.00 0.64

0.72 0.35 0.22 0.20 0.00 0.75

0.52 0.27 0.12 0.21 0.10 0.83

0.71 0.56 0.57 0.74 0.38 0.90

SMAC-2s3z

1.00 0.98 1.00 1.00 1.00 1.00

0.96 0.86 0.97 0.95 0.79 1.00

0.88 0.74 0.89 0.80 0.59 0.96

0.85 0.83 0.62 0.82 0.40 0.92

0.78 0.61 0.79 0.74 0.55 0.84

0.85 0.83 0.62 0.80 0.43 0.87

0.93 0.62 0.92 0.83 0.51 0.98

0.93 0.82 0.49 0.84 0.37 0.93

0.89 0.75 0.79 0.78 0.46 0.87

0.82 0.62 0.70 0.78 0.47 0.90

0.92 0.80 0.86 0.83 0.42 0.96

SMAC-MMM

Figure 2: Performance in four environments against 10 adversarial policies (Best, 2nd best not
considering KT). The episode rewards for MPE-Spread and LBF are in [-189, -47] and [0.4, 0.74].

consider three such adversaries: ACT, which minimizes team reward, and DYN-1 and DYN-2, with
DYN-2 placing greater emphasis on close to normal behavior (low detectability). For all attacks, we
apply the policy to victim agents for 50 episodes and report the averages across all episodes.

5.1 RESULTS

Figure 1 shows the learning curves of BATPAL with K = 4 severity levels. The curves show the
episodic rewards of the learned policy when evaluated in both non-adversarial settings and against
simultaneously trained adversarial policies. The results demonstrate the convergence of the proposed
training scheme across all scenarios and adversarial types.

Figure 2 compares the performance of BATPAL with baselines. For SMAC environments, we use the
team win rate of the c-MARL agents as the performance metric, while for the other environments we
use the mean episodic total reward, normalized to enable unified comparison across environments.
We can make several key observations based on the results. First, in terms of non-adversarial per-
formance, the BATPAL performs at least as well as vanilla MAPPO, indicating that robustification
does not compromise optimality under normal conditions. Second, although we train a single co-
operative policy profile, it almost always outperforms the robust baselines policies when they face
the attack they are trained against. This highlights the importance of exposing agents to a diverse
set of adversarial policies in order to obtain robust policies. Third, from the adversary’s perspective,
the worst performance of other baselines in many cases occurs when they face one of the attacks
generated for training BATPAL, rather than their own adversarial policies. This can be attributed
to adversarial training getting stuck in local stationary points, which further justifies our proposed
method for adversarial search over disjoint sets. Fourth, although the upper bound represented by
KT is obtained empirically and may not correspond to the true upper bound on the performance
of a robust policy, the performance gap to KT provides an indication of the regret associated with
each policy. In many cases, our algorithm achieves near no-regret, even against unseen attacks. It
is also worth noting that, even for previously encountered attacks, uncertainty regarding both the
adversary’s type and the identity of the victim agent (if any) prevents the defender from consistently
executing an optimal policy. We provide more results in the Appendix.

6 CONCLUSION

We showed that reference-value–based partitioning of adversarial types enhances the adaptability of
c-MARL agents to unseen adversaries by exposing the c-MARL team to a diverse set of adversarial
policies, demonstrated both theoretically and empirically. We proposed EC-PPO to learn adversarial
policies of different types and demonstrated that it can be effectively integrated into our Bayesian
adversarial learning framework BATPAL. Our results show that BATPAL outperforms the state-of-
the-art by achieving almost no-regret performance against various unseen attacks.
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APPENDIX

A RELATED WORK

Adversarial robustness in reinforcement learning has been studied mainly through adversarial train-
ing and robust learning. In single-agent RL, adversarial training introduces perturbations during
training so that the agent can adapt to both nominal and adversarial conditions. Works such as
Gleave et al. (2019); Pattanaik et al. (2017) adopt this approach, while MLAH Havens et al. (2018)
extends it to meta-learning for faster adaptation. These methods primarily target training-time at-
tacks and rely on prior knowledge of the adversary.

Robust learning instead models the agent–adversary interaction as a game, often zero-sum, where
the agent seeks a max–min policy for execution-time robustness. RARL Pinto et al. (2017) and
RARAL Pan et al. (2019) focus on adversarial disturbances with alternating optimization, while
Tessler et al. (2019) and RAP Vinitsky et al. (2020) study adversarial manipulation of actions. Al-
though effective against worst-case attacks, such approaches can be overly conservative; recent work
Liu et al. (2024b) addresses this by considering arbitrary non-worst-case adversaries in a lifelong
learning context.

In MARL, robustness has been explored both at training and at execution. Training-time defenses
include adversarial regularization for smooth policies Bukharin et al. (2023) and consensus-based
learning robust to Byzantine agents Ye et al. (2024). Execution-time resilience has been studied
through robust learning: M3DDPG Li et al. (2019) adopts a max–min value function, while RAT
Phan et al. (2020) and RADAR Phan et al. (2021) consider environments with a subset of adversarial
agents. ROMANCE Yuan et al. (2023) models budget-limited attacks, and Liu et al. (2024a) studies
adaptation to non-worst-case adversaries in two-agent scenarios. Most recently, Li et al. (2024)
propose adversarial belief states that allow agents to adapt online when teammates are compromised.
While this approach addresses the challenge of reacting to attacks on different agents, it remains
focused on worst-case robustness and does not capture the diversity of adversarial strategies.

B BAYESIAN GAME FORMULATION

B.1 DISCRETE TYPE FORMULATION

As explained in Section 3, M̂B is a Bayesian game with type spaces Θ̂i. In Bayesian games the
strategy space is assumed to be type-independent, while the utility is assumed to be type dependent.
To align our problem with this model we define the utility function as

ui(πi,π−i, θ̂) =


V π, if θ̂i = 0

−V π, if θ̂i = k, πi ∈ Πz, z = (i, k) ∈ Z
−∞, if θ̂i = k, πi /∈ Πz, z = (i, k) ∈ Z

The last line is to restrict the set of adversarial policies of each type to the corresponding set Πz , and
the second line is based on our assumption that the representative of each discrete type is the worst
case adversarial strategy in the corresponding partition.

Now assume that (π∗,ρ∗) with ρ∗v = (ρ∗v,θ̂
v
1 , . . . , ρ∗v,θ̂

v
K ) is a PBE of M̂B . With the utilities

defined above, it can be immediately seen that it corresponds to a solution of (4) and vise-versa.
This is because when player v’s type is θ̂k ̸= 0 , it knows its own type and also the type of the
other players. So for a fixed strategy profile π∗, it plays a strategy ρv,θ̂

v
k that minimizes V π

∗,ρv,θ̂
v
k

within the corresponding set Πz . On the other hand, when a player i’s type is θ̂ = 0, given a fixed
profile (π∗−i,ρ∗), it plays the strategy that maximizes its expected payoff based on its belief, and
the payoff is defined as V (πi.π∗−i),ρ∗v,θ̂

v

for the type corresponding to θ̂v .
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Moreover, a PBE minimizes the regret in MB for the given adversarial profile ρ∗. To show that,
note that we can write

argmin
π

R(π) = argmin
π

E(v,θv)∼b0 [Rρ∗v,θv (π)]

= argmin
π

E(v,θv)∼b0 [max
π′

(V π
′,ρ∗v,θ

v

)− V π,ρ
∗v,θv

]

= argmin
π

[E(v,θv)∼b0 max
π′

(V π
′,ρ∗v,θ

v

)]− [E(v,θv)∼b0V
π,ρ∗v,θ

v

]. (17)

Notice that maxπ′(V π
′,ρ∗v,θ

v

) is independent of π, thus the minimizer above is equivalent to

argmin
π

−[E(v,θv)∼b0V
π,ρ∗v,θ

v

] = argmax[E(v,θv)∼b0V
π,ρ∗v,θ

v

] (18)

which is satisfied by π∗ by definition.

B.2 EQUIVALENT DEC-POMDP FORMULATION

The Bayesian game M̂B ca equivalently be formulated as a partially observable stochastic game G
with N + 1 players, where player N + 1 denotes the adversary, and with states s̄ = (s, θ̂). Each
agent i ∈ N only observes its own type θ̂i (as part of its observation in G), while the adversary has
full observability of the types θ̂. The reward function R̄i(s̄,a) is the same as R(s,a) for i ∈ N and
is set to −R(s,a) for player N + 1.

The initial state distribution is is based on p(θ̂), i.e.,

µ̄(s̄0 = (s0, θ̂)) = µ(s0)p(θ̂), (19)

and the state transition probabilities are defined as

P̄ ((s′, θ̂′)|(s, θ̂),a) =

{
P (s′|s,a), if θ̂′ = θ̂

0, otherwise

Additionally, when θv = k > 0, the strategy space of player N + 1 is restricted to policies in Πz ,
with z = (v, k). In this case, player v’s actions become ineffective, which can be modeled using
a singleton action set. This model can be considered as a partially observable ”Adversarial Team
Markov Game” proposed by (Kalogiannis et al. (2022)).

C PROOFS

C.1 PROOF OF PROPOSITION 3.1

First we need to argue that Vmax and V vmin are well-defined. Notice that with full observability as-
sumption, the DEC-MDP model is equivalent to an stochastic game, which always has a Nash
equilibrium (Fink (1964)). Since the rewards of all players are identical, the Nash equilibrium cor-
responds to maximizing V π over the set of all policies. Thus, π0, and accordingly, Vmax exist.

Now if we fix the policies of all non-victim agents to π−v
0 , then the adversary faces a single-agent

MDP with the reward function and the state transition probability defined as follows:

R̄(s, av) = −
∑
a−v

R(s, (av,a−v))π−v
0 (a−v|s) (20)

P̄ (s′|s, av) =
∑
a−v

P (s′|s, (av,a−v))π−v
0 (a−v|s) (21)

Such MDP always has an optimal solution (Puterman (1994)), thus V vmin also exists.
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Now, we show that all sets Πz are non-empty. For a given victim v, consider ρ̄v ∈ argminρv V
π0,ρv .

Define ρvα = αρ̄v + (1− α)πv0 for α ∈ [0, 1]. Fix π−v
0 as the policy of non-victim agents. For any

policy, πv , the Bellman equation in matrix form is

vπ
v

= (I − γP πv )−1rπ
v

, (22)

where vπ
v

is the vectorized state value function, P πv is a matrix with elements P πv

s′s =∑
av P̄ (s

′|s, av)πv(av|s), rπv is a vector with elements rπ
v

s = −
∑
av R̄(s, a

v)πv(av|s), and P̄
and R̄ are as defined above. Accordingly, we have V π0,π

v

= µTvπ
v

.

For ρvα, it is easy to verify that

P ρvα = αP ρ̄v + (1− α)P πv0 = α(P ρ̄v − P πv0 ) + P πv0 (23)

rρ
v
α = αrρ̄

v

+ (1− α)rπ
v
0 = α(rρ̄

v

− rπ
v
0 ) + rπ

v
0 . (24)

Thus, we have

V π0,ρ
v
α = µT (I − γP πv0 − γα(P ρ̄v − P πv0 ))−1(α(rρ̄

v

− rπ
v
0 ) + rπ

v
0 ). (25)

Note that, since P ρ̄v and P πv0 are both row-stochastic matrices, P ρvα is also a row-stochastic matrix
and thus, the matrix inverse in (25) always exists, and the result is a continuous function of α.
Accordingly, V π0,ρ

v
α in (25) is a continuous function of α. When α is 0 and 1, V π0,ρ

v
α equals Vmax

and V vmin, respectively. Thus, as α sweeps between 0 and 1, V π0,ρ
v
α sweeps between Vmax and V vmin

continuously. Thus, Πz for all z ∈ Z is non-empty.

C.2 PROOF OF PROPOSITION 3.2

Note that when π−v
0 is fixed, under the full observability assumption, the DEC-MDP can be viewed

as an MDP for agent v. Thus, the performance difference lemma (Agarwal et al. (2021)) implies
that

V π0,ρ
v
1 (s0)− V π0,ρ

v
2 (s0) = Es∼dπ,ρ1s0

Eav∼ρ1(.|s)
[
Aπ0,ρ

v
2 (s, av)

]
. (26)

Taking the expectation with respect to s0, we get

V π0,ρ
v
1 − V π0,ρ

v
2 = Es∼dπ,ρ1µ

Eav∼ρ1(.|s)
[
Aπ0,ρ

v
2 (s, av)

]
. (27)

By taking the absolute value of both sides and applying the Jensen inequality, we can write

|V π0,ρ
v
1 − V π0,ρ

v
2 | ≤ Es∼dπ,ρ1µ

∣∣∣Eav∼ρ1(.|s) [Aπ0,ρ
v
2 (s, av)

]∣∣∣ . (28)

Now, we can write∣∣∣Eav∼ρ1(.|s) [Aπ0,ρ
v
2 (s, av)

]∣∣∣ = ∣∣∣∣∣∑
av

ρ1(a
v|s)

[
Qπ0,ρ

v
2 (s, av)− V π0,ρ

v
2 (s)

]∣∣∣∣∣
=

∣∣∣∣∣∑
av

ρ1(a
v|s)Qπ0,ρ

v
2 (s, av)− Eav∼ρ2(.|s)

[
Qπ0,ρ

v
2 (s, av)

]∣∣∣∣∣
=

∣∣∣∣∣∑
av

[ρ1(a
v|s)− ρ2(a

v|s)]Qπ0,ρ
v
2 (s, av)

∣∣∣∣∣
≤

∑
av

|ρ1(av|s)− ρ2(a
v|s)|Qπ0,ρ

v
2 (s, av). (29)

Note that the reward function is bounded in [−1, 1], thus the Q-function is bounded by
∑∞
t=0 1γ

t =
1

1−γ . Thus, we conclude that∣∣∣Eav∼ρ1(.|s) [Aπ0,ρ
v
2 (s, av)

]∣∣∣ ≤ ||ρ1(s)− ρ2(s)||1
1− γ

, (30)

and accordingly,

|V π0,ρ
v
1 − V π0,ρ

v
2 | ≤ 1

1− γ
Es∼dπ,ρ1µ

||ρ1(s)− ρ2(s)||1. (31)
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On the other hand, the Pinsker inequality (Csiszár & Körner (2011)) implies that

||ρ1(s)− ρ2(s)||1 ≤
√
2DKL(ρv1(s)||ρv2(s)), ∀s ∈ S. (32)

Thus, by taking the expectation and applying Jensen’s inequality to the concave square-root function,
one can obtain

|V π0,ρ
v
1 − V π0,ρ

v
2 | ≤ 1

(1− γ)

√
2Es∼dπ,ρ1µ

[DKL(ρv1(s)||ρv2(s))], (33)

and therefore,

(1− γ)2

2
|V π0,ρ

v
1 − V π0,ρ

v
2 |2 ≤ Es∼dπ,ρ1µ

[DKL(ρ
v
1(s)||ρv2(s))] . (34)

C.3 PROOF OF PROPOSITION 3.3

We have
Rρ̂v (π

∗) = (max
π

V π,ρ̂
v

)− V π
∗
z ,ρ̂

v

. (35)

Note that maxπ V
π,ρ̂vz ≤ maxπ V

π = Vmax. Also, we can write

V π
∗
z ,ρ̂

v

≥ min
ρv∈Πz

V π
∗
z ,ρ

v

. (36)

However, based on the definition of π∗
z , we know that minρv∈Πz V

π∗
z ,ρ

v

= maxπminρv∈Πz V
π,ρv .

Thus, it follows that

V π
∗
z ,ρ̂

v

≥ min
ρv∈Πz

V π0,ρ
v

= Vmax −
k

K
(Vmax − V vmin). (37)

Thus, we conclude that Rρ̂v (π
∗) ≤ k

K (Vmax − V vmin).

C.4 PROOF OF PROPOSITION 4.1

The policy gradient theorem (Sutton & Barto (2018)) implies that

∇ψEs∼µ[V
ρψ
(j) (s)] = Es∼d(j), a∼ρψ(.|s)[∇ψ log ρψ(a|s)A

ρψ
(j)(s, a)], j = 0, 1. (38)

Thus, we can write

∇ψ log(Es∼µ[V
ρψ
(0) (s)]− l) =

∇ψEs∼µ[V
ρψ
(0) (s)]

Es∼µ[V
ρψ
(0) (s)]− l

=
Es∼d(0), a∼ρψ(.|s)[∇ψ log ρψ(a|s)A

ρψ
(0)(s, a)]

Es∼µ[V
ρψ
(0) (s)]− l

∇ψ log(h−Es∼µ[V
ρψ
(0) (s)]) =

−∇ψEs∼µ[V
ρψ
(0) (s)]

h− Es∼µ[V
ρψ
(0) (s)]

=
−Es∼d(0),a∼ρψ(.|s)[∇ψ log ρψ(a|s)A

ρψ
(0)(s, a)]

h− Es∼µ[V
ρψ
(0) (s)]

.

This proves the result.

C.5 PROOF OF PROPOSITION 4.2

First let us establish the following preliminaries.

Lemma C.1. let G and H be the upper bounds on ||∇ψ log ρψ(a|s)|| and ||∇2
ψ log ρψ(a|s)||, re-

spectively. Then,

• The variance of V̂ ψ(0) is bounded by σ2(M) = 1
M(1−γ)2 .

• The variance of the gradient estimates of the value function, i.e., 1
1−γ ∇̂

ψ
(j), is bounded by

σ̄2(M) = 4G2

M(1−γ)4 .
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• V ρψ(j) is Lipschitz continuous with respect to ψ with constant L = 2G
(1−γ)2 . It is also B-

smooth with smoothness constant B = 1
(1−γ)2 (

1+γ
1−γG

2 +H).

Proof. First notice that if σ is the variance bound per one sample (one episode), then σ(M) = 1√
M
σ.

To bound σ, note that as ||rt|| ≤ 1, ||
∑∞
t=0 γ

trt|| ≤ 1
1−γ , so V̂ ψ(0) ∈ [− 1

1−γ ,
1

1−γ ], and σ cannot be
larger than 1

1−γ .

Regarding the variance of the gradient estimation, note that for any st, at:
1

1− γ
||∇ψ log ρψ(at|st)Aρψ (st, at)|| ≤

1

(1− γ)
Gmax

s,a
|Aρψ (s, a)|. (39)

Moreover, we have

|Aρψ (s, a)| = |Qρψ (s, a)− V ρψ (s)| ≤ |Qρψ (s, a)|+ |V ρψ (s)| ≤ 2

1− γ
. (40)

Thus, each per sample (per episode) estimate of the gradient is norm-bounded by 2G
(1−γ)2 , which

implies that

E[|| 1

1− γ
∇̂ψ

(j) −∇ψV
ρψ
(j) ||

2] ≤ 4G2

M(1− γ)4
. (41)

The bound on the norm range of ∇ψV
ρψ will also implies Lipschitz continuity with the same bound

L = 2G
(1−γ)2 .

Finally, the smoothness constant is the direct consequence of Lemma 6 in Papini et al.
(2022) by setting the bounds E[||∇ψ log ρψ(a|s)||] ≤ G, E[||∇ψ log ρψ(a|s)||2] ≤ G2, and
E[||∇2

ψ log ρψ(a|s)||] ≤ H .

In our analysis we use the results of Usmanova et al. (2024), however, given the structure of our
problem we are able to derive simpler step-sizes. Moreover, we base our proof on a required error ϵ
on the true gradient gψ given a fixed λ instead of a fixed required error on the noisy gradients.

To use these results of Usmanova et al. (2024), first we have to confirm that the required assump-
tions hold. The Lipschtiz continuity and smoothness of V ρψ(k) are already established using the above
lemma, and assumption 3 in Proposition 4.2 ensures a feasible starting point. Moreover, since the
gradient of our constraints differ only on their signs, the extended Mangasarian-Fromovitz constraint
qualification (MFCQ) requirements proposed by Usmanova et al. (2024) is equivalent to the require-
ment that ”there are positive constants ζ and q, such that ||∇ψV

ψ
(0)|| ≥ q when h − ζ ≤ V

ρψ
(0) ≤ h

or l ≤ V
ρψ
(0) ≤ l + ζ”. Assumption 4 in Proposition 4.2 guarantees this condition. This is because

∇ψV
ρψ
(0) is differentiable in [l, l + ζ] and [h − ζ, h] and hence ||∇ψV

ρψ
(0) || is continuous over these

sets. Accordingly, the Extreme Value Theorem guarantees the existence of a minimum in each of
these sets. We define q as the minimum among these two minimums, and it is indeed positive.

Let us define c = 0.5( q
20L )

2 and

C =
c

2L2(1 + 2
c )max{4 + 5Bcλ

L2 , 1 +
√

Bcλ
4L2 ,}

, (42)

where B and L are as defined in Lemma C.1. We denote by Fλ the log-barrier regularized objective
function in (8). Now define

Niter =
3(Fλ(ψ0) +

1
1−γ + 2λ log(h− l))

32ϵ2Cλ
, (43)

and let δ̂ = δ
2Niter

.

To find the local smoothness constant, we further require to define x1n = V
ρψn
(0) − l, x2n = h−V ρψn(0) ,

x̄1n = V̂ ψn(0) − l, and x̄2n = h− V̂ ψn(0) . Moreover, assume xjn = x̄jn − σ(M)
√
ln 1

δ̂
.
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Now we are ready to introduce the adaptive step-size and the local smoothness constant
Fλ. Let B̂2 = B + 10Bλ( 1

x1
n

+ 1
x2
n
) + 8L2λ( 1

(x1
n)

2 + 1
(x2
n)

2 ),. Moreover, let Dn ≜

min{ x1
n

2L+
√
Bx1

n

,
x2
n

2L+
√
Bx2

n

}. We define the step size

αn = min

{
Dn

|| ˆgψn ||
,
1

B̂2

}
. (44)

Lemma C.2. The function Fλ is locally smooth and its smoothness constant is less B̂2 with proba-
bility at least 1− δ̂.

Proof. Let yn = ⟨∇ψV
ρψn
(0) ,

gψn
||gψn ||

⟩. Lemma 2 in Usmanova et al. (2024) implies that Fλ is locally
smooth with constant

B2(ψn) = B + 10λ(
B

x1n
+
B

x2n
) + 8λ((

yn
x1n

)2 + (
yn
x2n

)2) (45)

as long as αn ≤ min{ x1
n

2yn+
√
x1
nB
,

x2
n

2yn+
√
x2
nB

}, and xjn+1 ≥ xjn
2 for j = 1, 2.

Now, note that we can consider x̄jn is a lower bound on xjn with probability 1− δ̂, and we have

yn = ⟨∇ψV
ρψn
(0) ,

gψn
||gψn ||

⟩ = ||∇ψV
ρψn
(0) ||⟨

∇ψV
ρψn
(0)

||∇ψV
ρψn
(0) ||

,
gψn

||gψn ||
⟩ ≤ ||∇ψV

ρψn
(0) || ≤ L. (46)

Thus, the step size αn satisfies the requirement with probability at least 1− δ̂. Moreover, Lemma 3
in Usmanova et al. (2024) implies that xjn+1 ≥ xjn

2 , which concludes the proof.

Based on the smoothness of Fλ, for any n with probability 1− δ̂ we have

Fλ(ψn)− Fλ(ψn+1) ≥ αn⟨gψn , ĝψn⟩ −
1

2
B̂2α

2
n|| ˆgψn ||2 ≥ 1

2
αn|| ˆgψn ||2 − αn|| ˆgψn ||||gψn − ĝψn ||.

(47)
The last inequality holds because of the selection of the step sizes. which implies that αnB̂2 ≤ 1

with probability 1− δ̂.

Note that with this selection of step sizes, Theorem 4 in Usmanova et al. (2024) implies the feasi-
bility of all ψn for all n = 1, 2, ..., Niter with probability at least 1 − 2Niter δ̂ = 1 − δ. Then, by
summing up the above inequality for 0 ≤ n < Niter, we obtain

Nitermin
n

[
αn|| ˆgψn ||(

1

2
|| ˆgψn || − ||gψn − ĝψn ||)

]
≤
Niter−1∑
n=0

αn|| ˆgψn ||(
1

2
|| ˆgψn || − ||gψn − ĝψn ||)

≤ Fλ(ψ0)−min
ψ
Fλ(ψ)

≤ Fλ(ψ0) +
1

1− γ
+ 2λ log(h− l) (48)

w.p 1− δ. Accordingly, given the definition of Niter, we obtain

min
n

[
αn|| ˆgψn ||(

1

2
|| ˆgψn || − ||gψn − ĝψn ||)

]
≤ 3

32
ϵ2Cλ. (49)

To bound ||gψn − ĝψn ||, assume that M is large enough such that

σ(M) ≤ ϵ

20λL
√
log 1

δ̂

min{(x1n)2, (x2n)2},

σ̂(M) ≤ ϵ

20
√

log 1
δ̂

min

{
1,
x1nL

λ
,
x2nL

λ

}
(50)
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Then, Lemma 1 in Usmanova et al. (2024) implies that w.p. at least 1− δ̂ we have

||gψn − ĝψn || ≤ σ̂(M)

√
log

1

δ̂
+ λσ̂(M)

√
log

1

δ̂
(
1

x̄1n
+

1

x̄2n
) + λLσ(M)

√
log

1

δ̂
(

1

x1nx̄
1
n

+
1

x2nx̄
2
n

)

≤ 5ϵ

20
=
ϵ

4
. (51)

Thus, w.p. 1 − δ, ||gψn − ĝψn || ≤ ϵ
4 for all 0 ≤ n < Niter. On the other hand, by Lemma 5 in

Usmanova et al. (2024) we know αn ≥ Cλ for all 0 ≤ n < Niter w.p. 1− δ. Thus we can write

3

32
ϵ2Cλ ≥ min

n

[
αn|| ˆgψn ||(

1

2
|| ˆgψn || − ||gψn − ĝψn ||)

]
≥ Cλ(

1

2
g2 − g

ϵ

4
), (52)

where g ≜ minn ||ĝψn ||. Therefore, we have 1
2g

2 − g ϵ4 ≤ 3
32ϵ

2. Solving for g (and given its
positivity) we obtain

g ≤ ϵ

4
+

√
ϵ2

16
+ 3

ϵ2

16
=

3ϵ

4
. (53)

Finally, we obtain that w.p 1− δ:

min
n

||gψn || ≤ min
n

(||ĝψn ||+ ||gψn − ĝψn ||) ≤
ϵ

4
+

3ϵ

4
= ϵ, (54)

which concludes the proof for the first part. Moreover, approaching the solution to a KKT point
of the constrained problem is the direct consequence of Lemma 7 in Usmanova et al. (2024) when
λ→ 0.

D ADDITIONAL RESULTS

D.1 LEARNING CURVES

Figure 3 shows the learning curves of the baselines in their training phase against their own adver-
sarial policy.

(a) LBF (b) MPE-Spread (c) SMAC-2s3z (d) SMAC-MMM

Figure 3: Average episodic return of the baselines during adversarial learning.

D.2 EVALUATION OF ROMANCE

ROMANCE (Yuan et al. (2023)) is a c-MARL framework designed for adversaries with a limited
budget of action manipulations. Thus its comparison in our setting is not fair, however, for the sake
of completeness we report its performance against attacks trained in BATPAL and also dynamic
adversaries in SMAC-2s3z. We used the already trained models in the original implementation.

D.3 REFERENCE-VALUE EVALUATION

Figure 4 shows the normalized initial state value function of the different attacks trained for BATPAL
against the reference policy π0 in all environments. This figure shows how the type of the attacks
changed during the training.
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Table 1: Win rate of ROMANCE against different attacks in SAMC-2s3z

Attack Win Rate
No Attack 0.97
Severity 0 0.23
Severity 0 0.08
Severity 0 0.07
Severity 0 0.05
ACT 0.05
DYN-1 0.07
DYN-2 0.06

(a) LBF (b) MPE-Spread (c) SMAC-2s3z (d) SMAC-MMM

Figure 4: Normalized average initial state value of the BATPAL attacks against the reference policy.

D.4 COMPARISON OF DIFFERENT VALUES OF K

Table 2 shows the evaluation of policies learned by BATPAL with different number of severity
types K. It can be observed that, as expected, increasing the number of adversarial types generally
enhances the robustness of the c-MARL policy. However, each additional severity type requires the
introduction of an additional network, which increases the overall training time. Nonetheless, the
results indicate that even with a relatively small number of severity levels (e.g., K = 4), satisfactory
performance can be achieved across most scenarios

E IMPLEMENTATION

E.1 PSEUDO CODE

The pseudo-code of our algorithm is shown in Algorithm 1.

E.2 IMPLEMENTATION DETAILS

We used MAPPO as the backbone algorithm in updating c-MARL policies. Our implementation
has been built on the implementation of HARL (Zhong et al. (2024)) and EIR-MAPPO (Li et al.
(2024)). We used parameter sharing across the agents, thus we maintained a single belief network,
a single c-MARL policy network, and one network per each adversarial type (in total K).

As baselines, we used EIR-MAPPO Li et al. (2024), Generalized Maxmin (Gen-Maxmin) Liu et al.
(2024a), and RAP Vinitsky et al. (2020). EIR-MAPPO can be regarded as a special case of BATPAL
with only a single adversarial type, and we used their original implementation in our comparisons.
Gen-Maxmin models an adversary that at each time step in a two-agent setting, plays a worst-case
attack (trained using adversarial learning) with probability q and a cooperative policy with probabil-
ity 1− q. We adapted their algorithm to the multi-agent setting and set q = 0.5. Moreover, based on
the results reported by Liu et al. (2024a) we selected a learning rate of 0.0001 for non-victim agents
and 0.0005 for the adversarial agents. RAP, on the other hand, considers a population of adversarial
policies; however, unlike our method, these policies are not differentiated by behavioral diversity
and are all trained under the max–min principle. RAP is originally designed for single-agent RL,
and we adapted it to the c-MARL setting.
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Table 2: Comparison of BATPAL with different values of parameter K in 4 environments

Environment Attack K = 3 K = 4 K = 5

MPE-Spread

No attack 0.99 1.0 1.0
A-EIR-MAPPO 0.72 0.64 0.73
ACT 0.79 0.81 0.89
DYN-1 0.64 0.67 0.71
DYN-2 0.70 0.72 0.70

LBF

No attack 1.0 1.0 0.82
A-EIR-MAPPO 0.20 0.26 0.38
ACT 0.18 0.35 0.35
DYN-1 0.44 0.52 0.53
DYN-2 0.52 0.58 0.35

SMAC-2s3z

No attack 0.94 0.98 0.98
A-EIR-MAPPO 0.1 0.38 0.29
ACT 0.16 0.72 0.79
DYN-1 0.23 0.52 0.53
DYN-2 0.55 0.71 0.76

SMAC-MMM

No attack 1 1 1
A-EIR-MAPPO 0.83 0.85 0.87
ACT 0.87 0.89 0.88
DYN-1 0.83 0.82 0.88
DYN-2 0.89 0.92 0.92

Table 3: Hyperparameters used in all environments

Hyperparameter Value / Description
Discount factor (γ) 0.99
Actor network MLP
Belief network GRU
Belief hidden layer single layer with 128 units
Policy learning rate (β) 0.0005
Adversary learning rate (α) 0.0005
Critic learning rate 0.0005
Entropy coefficient 0.01

In our implementations, the value of log barrier coefficient λ is 0.1 in SMAC environments and 0.2
in the other two environments. The rest of the hyperparameters are the same for all environments
and are reported in Table 3.
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Algorithm 1 Adversarial Learning in BATPAL

Input Networks: The reference policy networks ωi0, the policy networks ωi, the critic ϕ(1), the
reference critic ϕ(0), the belief networks χi, and the adversarial policies ψz

1: Pretraining:
2: Train the c-MARL team in a non-adversarial environment and obtain ω0, Vmax, and V vmin

3: Adversarial Training:
4: for each iteration do
5: Sample θ̂ ∼ p, and set z = (k, v) or z = 0.
6: for m = 1, 2, . . . ,M do ▷ Storing experiences corresponding to POMDP1

7: Sample the initial state and observations s0,(0),o0,(0)

8: for t = 0, 1, 2, . . . , Tm − 1 do
9: Sample non-victim actions ait,(1) ∼ πωi(.|τ it,(1), b

i
t), where bit = bχi(τ

i
t,(1))

10: Sample adversary action if z ̸= 0, avt ∼ ρψz

11: Set the joint action profile at = (avt ,a
−v
t ) if z ̸= 0

12: Environment transitions and st+1,(1), rt,(1) are obtained
13: Store the transition history Ht,(1)

14: end for
15: end for
16: if z ̸= 0 then ▷ Storing experiences corresponding to POMDP0

17: for m = 1, 2, . . . ,M do
18: Sample the initial state and observations s0,(0),o0,(0)

19: for t = 0, 1, 2, . . . , Tm − 1 do
20: Sample non-victim actions ait,(0) ∼ πωi0(.|τ

i
t,(0))

21: Sample adversary action avt ∼ ρψz

22: Set the joint action profile at = (avt ,a
−v
t )

23: Environment transitions and st+1,(0), rt,(0) are obtained
24: Store the transition history Ht,(0)

25: end for
26: end for
27: end if
28: The critics ϕ(0). ϕ(1) using the advantages obtained by Ht,(0) and Ht,(1)

29: Update χi using true types in Ht,(1)

30: Update ω using (16)
31: Update ψz using (15)
32: end for
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