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ABSTRACT

We consider the problem of robustness against adversarial attacks in cooperative
multi-agent reinforcement learning (c-MARL) at deployment time, where agents
can face an adversary with an unknown objective. We address the uncertainty
about the adversarial objective by proposing a Bayesian Dec-POMDP game model
with a continuum of adversarial types, corresponding to distinct attack objectives.
To compute a perfect Bayesian equilibrium (PBE) of the game, we introduce
a novel partitioning scheme of adversarial policies based on their performance
against a reference c-MARL policy. This allows us to cast the problem as finding
a PBE in a finite-type Bayesian game. To compute the adversarial policies, we in-
troduce the concept of an externally constrained reinforcement learning problem
and present a provably convergent algorithm for solving it. Building on this, we
propose to use a simultaneous gradient update scheme to obtain robust Bayesian
c-MARL policies. Experiments on diverse benchmarks show that our approach,
called BATPAL, outperforms state-of-the-art baselines under a wide variety of at-
tack strategies, highlighting its robustness and adaptiveness.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (c-MARL) has achieved remarkable performance
in areas such as autonomous driving, 5G networks, robotics, and smart grids (Canese et al.[(2021)),
as it allows agents to learn distributed policies for complex sequential tasks. Nonetheless, the failure
or the compromise of even a single agent, either through direct manipulation of its actions or by
corrupting its observations, can degrade the overall team performance (Lin et al.[(2020)), calling for
policies that are robust against faults and adversarial attacks.

Existing approaches for obtaining robust policies rely on dataset augmentation or on adversarial
training (Gleave et al.| (2019); |Pattanaik et al.| (2017); Havens et al.| (2018); |[Pinto et al.| (2017);
Phan et al.[(2021); Liu et al.| (2024a)); [Li et al.| (2024))). Dataset augmentation involves introducing
one or more adversarial perturbations during training, allowing agents to learn under adversarial
and nominal conditions simultaneously (Gleave et al.| (2019); Pattanaik et al.| (2017); Havens et al.
(2018)). The alternative approach is based on jointly training the benign and the adversarial agents,
typically formulated as a zero-sum Stackelberg game, and a saddle-point equilibrium in policies is
sought after (Pinto et al.[|(2017); Phan et al.|(2021)); [Liu et al.| (2024a)). These approaches typically
yield a single policy optimized for adversarial conditions and thus they are typically suboptimal
when all agents are cooperative. Even if the trained policy can maintain a belief about the presence
of an adversary, as in |Li et al.| (2024), robust learning based on saddle-point equilibria against a
worst case adversary found using gradient descent has three fundamental limitations.

First, it relies on the assumption of a worst case adversary, which fails to capture adversaries with an
objective other than minimizing the team reward as well as non-cooperative behavior due to failure.
These may deviate substantially from worst-case attacks (Liu et al.|(2024b)); [Kokolakis et al.|(2020)),
and thus the defender’s max—min policy may be far from optimal considering the actual adversarial
strategy, resulting in poor team performance.

Second, the optimization problem solved is inherently non-convex, and learning algorithms are
prone to converge to local stationary points, which may not be globally optimal |Kalogiannis et al.
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(2022); [Fiez et al.| (2020); Reddi et al.|(2024). As a result, the saddle-point policies are local Stack-
elberg equilibria Loftin et al.| (2024), potentially far from the equilibrium sought after.

Third, exposure to perturbed versions of a single adversarial policy during training can cause the
agents’ representation of adversarial dynamics to overfit. Consequently, when faced with a different
type of adversarial behavior at deployment, the agents may fail to adapt their policies to the previ-
ously learned max—min strategy (Liu et al.| (2024a)). In such cases, they may not even achieve the
minimum performance guarantee that the max—min strategy is theoretically expected to provide.

To address these limitations, we introduce a novel approach for training robust MARL policies that
can adapt to a diverse set of adversarial behaviors. Instead of learning a single max—min policy,
our approach partitions the set of adversarial policies into disjoint subsets, defined by the range of
team reward they would impose, and computes a max—min policy for each subset of such adversarial
policies via a representative adversarial policy. Although our approach cannot completely eliminate
the problem of local stationary points described above, it mitigates the problem by restricting the
search to smaller, isolated feasible sets. Moreover, the subsets are constructed so that adversarial
policies in different subsets exhibit distinct behaviors. The defender’s MARL policy is then trained
to adapt based on its belief of adversarial behavior. Our main contributions are as follows.

(1) We introduce a Bayesian Dec-POMDP game model with a continuum of adversarial types and
propose a novel criterion for discretizing the type space to ensure exposure to a diverse set of adver-
sarial policies during training. Based on the perfect Bayesian equilibrium of the game, we formulate
the Bayesian regret as the objective to characterize the robustness of a policy.

(2) To compute an equilibrium, we introduce the concept of an externally-constrained RL to find
the adversarial policies of different types. We propose both a provably convergent algorithm and
a practically efficient variant to solve this problem. Building on these, we design an end-to-end
adversarial learning framework, termed BATPAL, to derive Bayesian robust c-MARL policies.

(3) Through extensive simulations, we demonstrate the effectiveness of BATPAL in adapting to un-
seen adversarial policies across four benchmark MARL environments, and show that it consistently
outperforms state-of-the-art robust MARL algorithms.

Related Work: In robust learning the agent—adversary interaction is modeled as a game, and the
agents seek a max—min policy for execution-time robustness. RARL Pinto et al.|(2017)) and RARAL
Pan et al.| (2019) focus on adversarial disturbances with alternating optimization, while Tessler et al.
(2019) and RAP |Vinitsky et al.| (2020) study adversarial manipulation of actions. Although effec-
tive against worst-case attacks, such approaches can be overly conservative; recent work [Liu et al.
(2024b)) addresses this by considering non-worst-case adversaries, but in a lifelong learning context.

For execution-time robustness in MARL, M3DDPG Li et al.| (2019) adopts a max—min value func-
tion, while RAT |Phan et al.| (2020) and RADAR [Phan et al.| (2021) consider environments with a
subset of adversarial agents. ROMANCE |Yuan et al.|(2023) models budget-limited attacks, and
Liu et al.|(2024a) studies adjustable, non-worst-case adversaries in two-agent scenarios. Most re-
cently, Li et al.|(2024)) propose to maintain belief states about what teammates are compromised, but
considers a worst case adversary only, leaving agents undefended against unseen adversaries.

2 MODEL AND PROBLEM FORMULATION

2.1 c¢c-MARL MODEL

We consider a Dec-POMDP M = (N, S,{A}ien, R, P, {Q}ien, O, 11,7), where N =
{1,2,..., N} is the set of agents, S is the set of states, and .A° and ° are the set of actions and the
set of observations of agent i, respectively. We assume that S and A’ are finite sets. Furthermore,
R(st,at), P(sty1]st, ar), and O(o4|st) denote the reward function, the state transition probability,
and the conditional observation probabilities, respectively. Finally, 4 and v < 1 denote the ini-
tial state distribution and the discount factor, respectively. We denote the history of observations,
rewards and own actions of agent i up to time ¢ by 7;.

We assume that the reward is bounded such that, without loss of generality, | R(s,a)| < 1, V(s,a) €
S x A. The value function when the agents follow a joint policy @ = (7!,..., ") is defined
as: V™(s) = E[> og7'R(st,a) | so = s]. We define the expected initial state value as
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V™ = Eg,~u[V™(s0)]. Throughout the paper, we use the game-theoretic notation x % to denote
the collection of =7 for all agents j # 4, where x can be actions, observations, or any other quantity.

2.2 BAYESIAN DEC-POMDP AS A MODEL OF ADVERSARIAL ROBUSTNESS

During deployment, agents may deviate from their pre-trained policies due to hardware or software
error and due to adversarial activity [Lin et al.| (2020); Kazari et al.|(2023). The identity and the
objective of non-cooperative agents is, however, unknown to the cooperative agents. Yet, most of the
literature on robust single agent and multi agent RL focuses on worst case adversaries, i.e., one that
minimizes the team reward |Gleave et al.| (2019); Tessler et al.| (2019); [Li et al.| (20195 [2024). Only
a few recent works considered robustness to non-worst case adversaries in a single agent setting,
e.g., assuming the adversary may not fully control the victim|Liu et al.|(2024a), via a population of
adversaries |Vinitsky et al.[(2020)), or via repeated encounters in a bandit setting [Liu et al.| (2024b).

To capture diversity of adversarial agents’ objectives and the resulting uncertainty, we propose the
Bayesian Dec-POMDP defined as

Mp = (Na 87 {ei}iGNa {Ai}iGNa Ra P, {Qi}ie/\/v 07 M, '7)7
where © is the type space of agent 4, extending the Dec-POMDP formulation. The type ©° captures

the uncertainty about the reward function of agent 7, and without loss of generality, we can consider
©* = [0, 1], as every compact subset of a Euclidean space is in bijection with a subset of [0, 1].

The type 6% € © of agent i is drawn at the beginning of each episode. We denote by by the agents’
prior about the types and the initial system state, obtained based on x. The type §* = 0 corresponds
to agent i aiming to maximize the team reward, each #° > 0 corresponds to an agent that aims to
maximize some other reward function. For notational convenience, we use 6 = 1 as the type of an
adversarial agent that aims to minimize the team reward. The policy 7*(ai|7/, 8%) of agent i is thus
a function of its type 6%, and the joint action of the agents has distribution a; ~ ;a7 (al|7},0°)
and it governs the state transitions. Importantly, even if states are fully observable, the policies of
the agents need not be stationary due to incomplete information; they depend on their beliefs b(7})
about the types of the other agents and their policies, maintained based on the observation history.

Our Bayesian Dec-POMDP formulation generalizes existing formulations in the literature L1 et al.
(2024; 2019); |Yuan et al.| (2023). A Dec-POMDP with only cooperative agents corresponds to
O = Oy, mixed cooperative-competitive problem formulations with N4 victim agents correspond
to ||©|]o = Ny [Li et al.| (2019; [2024)), while a Dec-POMDP with a single worst case adversary to
1©[lo =IOl = 1.

2.3 THREAT MODEL AND PROBLEM STATEMENT

Aligned with the game model M p we consider that the identity of the victims and the adversarial
objective are unknown to benign agents, and the types of the agents do not change during an episode.
For ease of notation we consider that the adversary takes control of a single victim agent v € N,
and we denote the adversarial policy by p”/" = 7V(-|7?,0"). Game M p is a Bayesian game with
imperfect information, its solution is thus a perfect Bayesian equilibrium (PBE), defined as follows.
Definition 2.1. A perfect Bayesian equilibrium (PBE) is a profile of cooperative policies (1%);czr
and of adversarial policies (p""%") e 0, cov, and a belief system (b'(1%));enr and (b° (77, 0°))ven,
that satisfies (i) each policy is optimal in expectation at every history given the beliefs (sequential
rationality) (ii) beliefs are updated using Bayes rule based on the equilibrium policies for on-path
histories, as well as for off-path histories whenever possible.

To evaluate agent policies, with a slight abuse of notation, let us denote the expected initial state
value when non-victim agents follow the joint policy =% and the victim follows policy p%:% by
v Intuitively, for any victim agent v and policy p”?", the non-victim agents should perform
optimally, i.e., as close as possible to the optimal policy against p”?". We can thus evaluate the
policies in terms of the Bayesian regret defined as

/' 0,6v o0
R(7) = E(y,0v)nbo [R 0w ()] = Eo,60) by [Df}f}X(V7r D I U S N )]

where expectation is taken over the prior by. Observe that a PBE minimizes (I)) by definition, and
our objective is to learn such an equilibrium policy profile (7%);cnr.
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3 BAYESIAN TYPE-PARTITIONED ADVERSARIAL LEARNING (BATPAL)

Ideally, the defender would learn a policy that minimizes the Bayesian regret. However, since the
attacker can choose from (possibly infinitely) many adversarial policies, finding a policy that corre-
sponds to a PBE is computationally infeasible. To overcome this issue, we propose a novel approach
that partitions the adversarial type space into a finite number of subsets, resulting in a Bayesian Dec-

POMDP M p with type space Oi = {0,1,,..., K} for agent ¢. Assuming at most one victim agent,
the support of p is the set of all 6 such that ||0]|o < 1. This set can be equivalently represented by
Z={(v,k):veN,ke{l,2,..,K}} U{0}, (2)

where O represents the non-adversarial type for all agents. We denote by p(6) the common prior

over 0 = (6°,...,0N). With a slight abuse of notation, we use both b*(#|7%) and b’ (z|7) for z € Z
to denote the beliefs.

While partitioning itself is conceptually simple, it is not straightforward how to map adversarial
types © to ©, and how to choose adversarial policies that would be representative for each discrete

adversarial type 6%. Our proposed solution is to partition adversarial types based on their severity,
defined appropriately, and to use the most severe policy in each partition as representative. The
core idea is then to train a single policy that performs optimally against the worst-case adversarial

policies in all partitions, i.e., a PBE of game M p. This approach allows us to explore a rich set of
adversarial policies during training, which is essential for obtaining a PBE policy profile.

3.1 REFERENCE-VALUE BASED PARTITIONING

The main issue in partitioning the type space is that the reward function for each type ©" is private
to agent v, and other agent cannot know it. If the other agents were to distinguish between two
different types in ©, they only could do it by playing against these two types with a fixed policy
and observing the rewards they get. This motivates us to define our partitioning based on how well
different adversarial types perform against a reference baseline policy.

Let myp € argmax, V'™ be a cooperative policy profile. We refer to 7 as the reference policy and
denote Vipax = V™. Given a victim agent v of type 0", let us denote the minimum expected initial
state value by V% = min,. V™", Note that V%, is the lowest value an adversarial policy played
by v can impose while the other players use 7. Thus, under the reference policy of the non-victim
agents, the expected initial state value induced by an attack on v lies in [V.%,, Vimax]. Importantly,
the initial state value of any adversarially robust cooperative policy has to lie in the same interval
whenever v is the victim. We can thus define the severity of an adversarial policy p" as

Vinax — V™0 "

Npv = W 3)

min

The severity of every adversarial policy satisfies 7,» € [0,1] by definition. Essentially, assuming
that the adversary plays optimally with respect to its private reward function, 7 provides a mapping
from ©" to [0, 1], by which the type 0 (non-adversarial) remains unchanged.

We use the above to partition adversarial policies according to their severity and the victim agent. A
policy p belongs to adversarial type z = (v, k) if n,v € (52, %], and we denote the set of all such
policies by II,. Note that any adversarial policy belongs to exactly one of the sets I, for z € Z.
The following proposition shows that such a partitioning is possible.

Proposition 3.1. If states are observable then 11, is a nonempty set for all z € Z. (Proof in
Appendix

Now with this partitioning, the discrete adversarial types 6v correspond to sets II., and it can be

shown that the PBE in M corresponds a policy * = (7*!, ..., 7*V) such that
(. |7", 0" = 0) € arg mabei(Z|T7:)[ mig V”*’p”},w € N, V7 4
e prell,

For a more detailed explanation and derivation of (4)) we refer to Appendix [B]
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Before presenting our solution to (), we first elaborate on how such categorization enhances the
robustness of MARL compared to learning a single max-min policy. First, as empirically showed by
Kazari et al.|(2023), there is a general trade-off between the impact of an attack and the abnormality
of the victim agent’s behavior as perceived by non-victim agents. Here, the abnormality refers to a
difference between what the non-victim agents expect to observe based on the reference policy and
what the victim actually does. Thus, one would expect that if two advesarial policies have a large
difference in V™ *" and accordingly belong to very distinct severity levels, their behavior would
be easy to distinguish from the non-victim agents’ perspective. This would help MARL training
to encounter a diverse set of adversarial policies. To provide theoretical support for this reasoning,
Proposition [3.2]establishes a bound on the KL divergence between two arbitrary adversarial policies
in terms of their reference expected initial state values. The KL divergence quantifies the discrepancy
between two probability distributions and is commonly employed as a metric for evaluating policy
diversity in regularized reinforcement learning tasks (Yuan et al.|(2023); Derek & Isola (2021)).

Proposition 3.2. Consider a victim agent v and any two adversarial policies p*%* and p¥%2. If
states are observable then we have

1—~)2 0.0 P
o D0 @l ()] 2 Syt Cymttp )

where dl’f“’pu is the discounted state visitation distribution under (p*,my"). (Proof in Appendix

[€2)

Moreover, recall that one of the issues with learning a single max-min policy over the entire set of
adversarial policies is its sub-optimality when the c-MARL team faces an arbitrary non-worst case
attack. The next proposition demonstrates how the proposed partitioning mitigates this issue.

Proposition 3.3. Ler p € II, be an arbitrary adversarial policy for some z = (v, k) and 7w} €
arg max,. min,» ey, V™P" . Then, assuming fully observable states, we have

k(Vipax — V2

Rﬁv (77*) < min) (6)

= K
The proof is provided in Appendix [C.3] To interpret this result, let us compare the case of K = 1
with K > 1. Note the case with K = 1 is equivalent to learning a max-min policy over the set
of all adversarial policies with v as the victim. When K = 1, the bound on the regret for any
arbitrary adversarial policy can get as large as Viyx — V3i,. In contrast, when K > 1, (6) gives a
severity-dependent bound. In particular, for attacks belonging to lower severity levels, i.e., small k,
the optimality gap becomes smaller, as the ratio % becomes smaller.

Finally, although the issue of getting stuck in local optima remains, our partitioning-based approach
improves the likelihood of finding better solutions by restricting the search to a collection of smaller,
non-overlapping feasible subsets that together cover the entire feasible space of adversarial policies.

4 ROBUST LEARNING

4.1 LEARNING ADVERSARIAL POLICIES VIA EXTERNALLY CONSTRAINED RL

To solve , we first focus on solving the inner minimization problem, i.e., for a given z = (v, k),
a non-victim policy 7 and reference policy o, find a policy p”* = argmin vy, V7 r" . Since
throughout the subsection we focus on a single adversarial policy, we drop superscript v for nota-
tional simplicity. Observe that from the adversary s perspective the inner minimization problem is
a constrained POMDP,

HEH]ESNM[V([{)(S)]

st. [ <Eguu VA (s)] < h, (7)

(0)
where V(pl) and V(g) denote the initial state value function of policy p when it is applied to two dif-
ferent POMDPs, namely POMDP; and POMDP, respectively, and [ and h are some real numbers.

For notational simplicity, in the rest of the subsection we consider that states are observable, hence
we refer to these as MDP; and MDP.
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Observe that MDP; and MDPj, share the same action and state spaces, but differ in the reward func-
tion and the transition dynamics. Thus, although problem (7)) resembles the constrained RL problem
in the context of safe learning |Paternain et al.| (2019); Liu et al.| (2020), there is a fundamental dif-
ference. In constrained RL, the costs that define the constraints are essentially obtained through
the same trajectory as the rewards in the objective function. On the contrary, in our problem, the
objective and the constraints correspond to different MDPs, and consequently, different trajectories.
To highlight this difference, henceforth we refer to (7)) as the externally constrained RL problem.

We propose to use the log barrier method to approximate (7)) via an unconstrained problem. That is,
we define V(?) =Esup [V(g)(s)] for j = 0, 1, and obtain

mpin V(pl) — )\log(V(’(’)) —1) — Alog(h — V(o)) (8)
where ) is a hyperparameter controlling the optimality-feasibility trade off. We propose to solve
using a gradient descent approach on policy p,, parametrized by parameter vector 1. The gradient
of the objective function can then be expressed as follows.

Proposition 4.1. The policy gradient of the objective function (§) is

1
Gy = ﬁE’Swd(l) ampy (1) [V 10g py (als) AT (s, )]
2 ( 1 . )E [V logp (a|5)pr (s,a)]
- v B s~vd(o), arvpy (1s) [V 108 Py ,
L= EerlVR ()] =1 h = Eoun [V ()] )5 a~py(.]s) s

©))
where Af;”) and d;) denote the advantage function and the discounted state visitation distribution

under py, corresponding to MDP, respectively. (Proofin Appendix

Then, the stochastic update rule for the policy parameters would be
’(/}nJrl = ’(/}n - Oénﬁwn, (10)

where gy, is an estimate of g,,, and «, is the learning rate. To estimate the gradient g,;, let V( ;) and

V?’TS denote some unbiased estimators of V(p;’" and V, V(?’)”" , respectively, where j = 0, 1. Then,

our proposed estimate is

1 iy 1 1 -

s l["n ¢n
Gy, = 7—— |V — M= - — )V | - (11)
1— (1) P, _ r¥n
7 Vg =1 h =V
To obtain the estimates, we collect trajectories of M episodes in the form
{(St’m’(j),at,,,n,(j),Tt7m7(j))?20_1}%:1 by executing p,; on MDP; for j € {0,1}. In prac-
tice, T, could be the time to reach a terminal state or the episodic time limit. We propose to
maintain two parametrized functions, namely Vi, and Vy ), as the critics to estimate V(’S’;’( s)
and Vp "”( ). Then, @w is obtained in the same way as a standard actor-critic algorithm (Sutton
& Barto (2018)), usmg the empirical average of Vy, log py(als )A%)(s a) where Ay, is the

advantage function calculated based on V #). Moreover, we can obtain V

Tm—1
) 5
M Do A i) + Vi (smm,) | - (12)

t=0

A major difference between the proposed stochastic update and standard policy gradient methods is
that our estimate of the gradient is not unbiased, as E[g,, | # gy, even if V(lg)" and Vz(/)vs are unbiased

estimators. Thus, our algorithm is not guaranteed to converge using standard arguments (Robbins &
Monro| (1951)). Yet, it does converge with a proper selection of the step sizes, as we show next.

Proposition 4.2. Assume that for a parameterization 1, the following conditions hold:

(1) \7(13) and @1(/’]) are unbiased estimators, and also V. (s) = V('; ’)”( s) (perfect critics). (2) For
any s € S and a € A, the function log py(als) is twice differentiable with respect to 1, and both
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its first and second derivatives are bounded. (3) There exists a strictly feasible starting point 1,
ie, l < V(g;’” < h. (4) There exists a constant ¢ > 0, such that wv(’gg’n is nonzero when

h—=C< Vg <horl Vg <1+

Then, for any €,6 > 0, there exists a sequence of adaptive step sizes {,} and some values Niier
and M, such that after Ny, iterations Of@ using and , we have min,<n;,,., |19y, || < €
with probability at least 1-5. Moreover, as A — 0 the obtained point approaches a KKT point of the
constrained problem (7)) with probability at least 1-0. (Proof and detailed expressions of o, Niter
and M are available in Appendix|[C.5))

Despite the above convergence result, using poses two practical challenges. First, computing the
adaptive step size v, is computationally expensive and requires estimating bounds on the gradient
of log p,, which is difficult in general. Second, estimating log-barrier gradients near the boundary
of the feasible region is sensitive to noise Usmanova et al.|(2024). Mitigating the sensitivity requires
a large number of episodic samples M, which is infeasible in practical RL settings.

To address these issues, we propose to incorporate the PPO loss function (Schulman et al.| (2017))
into the policy updates. The key intuition is that the clipping mechanism in PPO constrains policy
updates by preventing large deviations from the current policy. This implicitly mitigates the risk of
crossing into the infeasible region due to high-variance gradient estimates, while also eliminating
the need to compute adaptive step sizes in practice. Moreover, when the initial policy lies outside the
feasible region, the update direction is reversed such that the gradient step encourages convergence
toward the feasible set. Then the gradient calculation of our proposed algorithm, which we refer to
as externally-constrained PPO (EC-PPQO), can be summarized as

PPO,%, 1 1 SUn O thn _
gerro _ [V A g Vg IR CSVopshmc
o szgn(f/{é’)” -+ h))@q(%”)', otherwise ,

where Vl()f )O ¥n is the gradient of the PPO objective function (Eq.(7) in|Schulman et al.|(2017)), and
¢ > 0is a small value to prevent gradient explosion.

4.2 BAYESIAN ADVERSARIAL MARL TRAINING

To find the perfect Bayesian equilibrium policies in (@), recall that PBE policies are optimal in expec-
tation given the beliefs. Thus, we incorporate b* as an input to 7*, represented as 7 (-|7*, b, 6* = 0).

It can be shown that Mp is equivalent to a partially observable stochastic game G with N + 1
players, where player N + 1 plays adversarially against the others (details in Appendix [B]). This
interpretation allows us to employ the framework of adversarial training with min-oracle (Kalogian-
nis et al.| (2022); [Liu et al.| (2024a)) for policy updates. Let 7 (.|7;, b;) be a policy parametrized
by w' that represents 7*(.[7",b", 0" = 0). Also, let py, be the adversarial policy parametrized by
¥ = (¥*).ez\0, such that ¢* corresponds to 7 (.|5,6” = k) for = = (v, k). Note that if V<%
represents the expected initial state value function of non-adversarial agents in G, whose objective is
to find arg max,, miny V¥ Then, assuming that there is an oracle that for any given policy .,
returns a best response policy ¥* (w) = arg min,, V¥ the MARL policy is updated as

Wn1 = Wy o+ BV Vo ? @0, (14)

where 3, is a step size. It is straightforward to verify that minimizing V' is equivalent to minimiz-
ing V, the expected initial state value function of the original game. Consequently, our externally
constrained RL algorithm can serve as an oracle to compute ¢** for each z € Z, since fixing w re-
duces the problem to[7} Moreover, note that for a fixed ¢) and assuming updated beliefs, the problem
reduces to the standard c-MARL setting.

Such policy optimization is theoretically guaranteed to converge to a Nash equilibrium of Markov
games under simplified settings, such as direct parameterization and fully observable states (Kalo-
giannis et al.[(2022); Daskalakis et al.| (2020)). However, these guarantees rely on performing exact
minimization at each policy update and having access to exact gradients, both of which are infeasible
in practice. To address this, we employ simultaneous gradient updates, also known as two-timescale
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Figure 1: Average episodic return of the proposed adversarial training, evaluated over 5 runs.

stochastic simultaneous gradient descent—ascent (D_askalakis et al.| (2020)). Then assuming that
Jes(w, ) is an unbiased stochastic estimate of V,, V=¥ (“n) and that g5°PPO(w, vp) is the ad-
versarial gradient derived by (I3)), our policy updates can be summarized as

1/’n+1 = wn - O‘ngfz:;C-PPO(wnv 1/)71) (15)
Wnt1 = Wy + Bngw (wny wn) (16)

The intuition is that by selecting «,, > f3,, the adversary’s policy serves as an approximate min-
oracle, while from the adversary’s perspective the c-MARL policy appears nearly quasi-static. To
compute g, (wy,, ¥, ), we first need to obtain the agents’ beliefs. For this purpose, we employ a
parametrized function approximator b, (§~%|7%), implemented using a Recurrent Neural Network
(RNN) that takes 7° as input. The belief model is trained against the true type 6% using a cross-
entropy loss. Then, by feeding (b?, 7%) into the policy network and using the value estimate provided
by the critic Vi,(1)(5), we compute ., (wn, %, ) in the same way as in a standard actor-critic algo-
rithm. We refer to our algorithm as Bayesian Type-Partitioned Adversarial Learning (BATPAL), and
provide its pseudo-code in the Appendix.

5 EVALUATION

We evaluate BATPAL against various attack types in four c-MARL environments. We consider the
2s3z and MMM scenarios from the StarCraft IT Multi-Agent Challenge (SMAC) (Samvelyan et al.
(2019)), with five and ten agents, respectively. We use scenario (10x10-5p-10f-c) in Level-Based
Foraging (LBF) (Papoudakis et al.| (2021)) and the Spread scenario from Multi-Particle Environ-
ments (MPE) (Mordatch & Abbeel (2017)), involving five and three agents, respectively.

In all environments, we applied our algorithm to train a robust c-MARL policy and a set of adver-
sarial policies with different severity indices. We used MAPPO (Yu et al.| (2022)) both for updating
the c-MARL policy in adversarial learning and to obtain the reference policy 7 in the pre-training
phase. We assumed a uniform prior over all possible types in the training. Moreover, for a low-
complexity implementation, we used parameter-sharing across all agents. Accordingly, we main-
tained a single neural network for c-MARL policy and K networks for different adversarial types.
For more details on implementation, we refer to the Appendix.

Baselines: We compare our proposed method with state-of-the-art baselines including EIR-MAPPO
(L1 et al.|(2024)), Generalized Maxmin (Gen-Maxmin) (Liu et al.|(2024a)), and RAP (Vinitsky et al.
(2020)). We also include the evaluation of the vanilla MAPPO algorithm against the considered
attacks. Moreover, to provide a comprehensive assessment of the results, we include for each attack
the results obtained using an oracle defender that is aware of the type of the adversary and is trained
against it. This baseline, referred to as Known Type (KT), serves as an empirical upper bound.
Finally, we include a comparison with ROMANCE (Yuan et al (2023)) in Appendix [D.2]

Attacks: We use 10 adversarial policies for the evaluation. One the one hand, the policies trained
in the adversarial training process of BATPAL, these are indexed by their severity level. In addi-
tion, we use the adversarial policies trained against EIR-MAPPO, Gen-Maxmin and RAP, these are
marked as “A-X,” where X corresponds to the name of the baseline. To assess generalization, we
further evaluate all methods against three dynamic adversaries, unseen by all methods. These adver-
saries are trained by fixing non-victim policies and training an RL agent with a reward function that
balances adversarial impact on c-MARL performance with detectability (Kazari et al.| (2023)). We
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Figure 2: Performance in four environments against 10 adversarial policies (Best, 2nd best not
considering KT). The episode rewards for MPE-Spread and LBF are in [-189, -47] and [0.4, 0.74].

consider three such adversaries: ACT, which minimizes team reward, and DYN-1 and DYN-2, with
DYN-2 placing greater emphasis on close to normal behavior (low detectability). For all attacks, we
apply the policy to victim agents for 50 episodes and report the averages across all episodes.

5.1 RESULTS

Figure |1 shows the learning curves of BATPAL with ' = 4 severity levels. The curves show the
episodic rewards of the learned policy when evaluated in both non-adversarial settings and against
simultaneously trained adversarial policies. The results demonstrate the convergence of the proposed
training scheme across all scenarios and adversarial types.

Figure[2]compares the performance of BATPAL with baselines. For SMAC environments, we use the
team win rate of the c-MARL agents as the performance metric, while for the other environments we
use the mean episodic total reward, normalized to enable unified comparison across environments.
We can make several key observations based on the results. First, in terms of non-adversarial per-
formance, the BATPAL performs at least as well as vanilla MAPPO, indicating that robustification
does not compromise optimality under normal conditions. Second, although we train a single co-
operative policy profile, it almost always outperforms the robust baselines policies when they face
the attack they are trained against. This highlights the importance of exposing agents to a diverse
set of adversarial policies in order to obtain robust policies. Third, from the adversary’s perspective,
the worst performance of other baselines in many cases occurs when they face one of the attacks
generated for training BATPAL, rather than their own adversarial policies. This can be attributed
to adversarial training getting stuck in local stationary points, which further justifies our proposed
method for adversarial search over disjoint sets. Fourth, although the upper bound represented by
KT is obtained empirically and may not correspond to the true upper bound on the performance
of a robust policy, the performance gap to KT provides an indication of the regret associated with
each policy. In many cases, our algorithm achieves near no-regret, even against unseen attacks. It
is also worth noting that, even for previously encountered attacks, uncertainty regarding both the
adversary’s type and the identity of the victim agent (if any) prevents the defender from consistently
executing an optimal policy. We provide more results in the Appendix.

6 CONCLUSION

We showed that reference-value—based partitioning of adversarial types enhances the adaptability of
c-MARL agents to unseen adversaries by exposing the c-MARL team to a diverse set of adversarial
policies, demonstrated both theoretically and empirically. We proposed EC-PPO to learn adversarial
policies of different types and demonstrated that it can be effectively integrated into our Bayesian
adversarial learning framework BATPAL. Our results show that BATPAL outperforms the state-of-
the-art by achieving almost no-regret performance against various unseen attacks.
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APPENDIX

A RELATED WORK

Adversarial robustness in reinforcement learning has been studied mainly through adversarial train-
ing and robust learning. In single-agent RL, adversarial training introduces perturbations during
training so that the agent can adapt to both nominal and adversarial conditions. Works such as
Gleave et al.|(2019)); Pattanaik et al.|(2017) adopt this approach, while MLAH |Havens et al.| (2018])
extends it to meta-learning for faster adaptation. These methods primarily target training-time at-
tacks and rely on prior knowledge of the adversary.

Robust learning instead models the agent—adversary interaction as a game, often zero-sum, where
the agent seeks a max—min policy for execution-time robustness. RARL |[Pinto et al.|(2017)) and
RARAL |Pan et al.| (2019) focus on adversarial disturbances with alternating optimization, while
Tessler et al.[(2019) and RAP |Vinitsky et al.[|(2020) study adversarial manipulation of actions. Al-
though effective against worst-case attacks, such approaches can be overly conservative; recent work
Liu et al.|(2024b)) addresses this by considering arbitrary non-worst-case adversaries in a lifelong
learning context.

In MARL, robustness has been explored both at training and at execution. Training-time defenses
include adversarial regularization for smooth policies |Bukharin et al.[| (2023 and consensus-based
learning robust to Byzantine agents |Ye et al.|(2024). Execution-time resilience has been studied
through robust learning: M3DDPG [Li et al.| (2019) adopts a max—min value function, while RAT
Phan et al.|(2020) and RADAR |Phan et al.|(2021) consider environments with a subset of adversarial
agents. ROMANCE Yuan et al.|(2023) models budget-limited attacks, and |Liu et al.| (2024a) studies
adaptation to non-worst-case adversaries in two-agent scenarios. Most recently, [Li et al.| (2024)
propose adversarial belief states that allow agents to adapt online when teammates are compromised.
While this approach addresses the challenge of reacting to attacks on different agents, it remains
focused on worst-case robustness and does not capture the diversity of adversarial strategies.

B BAYESIAN GAME FORMULATION

B.1 DISCRETE TYPE FORMULATION

As explained in Section Mg isa Bayesian game with type spaces 6. In Bayesian games the
strategy space is assumed to be type-independent, while the utility is assumed to be type dependent.
To align our problem with this model we define the utility function as

VT, iffi =0
Wi(rt, T 0) =S V™, il =k atell,z=(i,k) e Z
—o0, ifli=k ¢, z=(ik)eZ

The last line is to restrict the set of adversarial policies of each type to the corresponding set 11, and
the second line is based on our assumption that the representative of each discrete type is the worst
case adversarial strategy in the corresponding partition.

Now assume that (7w*, p*) with p*¥ = (p*”’éf, e ,p*”’é%) is a PBE of Mp. With the utilities
defined above, it can be immediately seen that it corresponds to a solution of ({@) and vise-versa.
This is because when player v’s type is 65 # 0, it knows its own type and also the type of the

v,07

other players. So for a fixed strategy profile 7v*, it plays a strategy p”?ég that minimizes V7™ """

within the corresponding set II,. On the other hand, when a player i’s type is § = 0, given a fixed
profile (w*~*, p*), it plays the strategy that maximizes its expected payoff based on its belief, and

the payoff is defined as V(”i'”*%)’ﬁw’év for the type corresponding to 6.

13



Under review as a conference paper at ICLR 2026

Moreover, a PBE minimizes the regret in M g for the given adversarial profile p*. To show that,
note that we can write

arg min R(ﬂ-) = arg min ]E(U,a“)wbo [RP*U‘Q’U (71')]
™ T
= argminE(vﬂv)Nbo [max(vﬂ./mw,e - Vﬂ_,pw,e ]
T 7‘-/

. ’r *xv,0V
= argmin[E, gv)~p, m@x(V‘n P
T T

*v,0Y
)] — [E(v}gu)NbOVﬂ’p ] (17)

. 1 oxv,0Y .. e . .
Notice that max,/ (V™ »* ) is independent of 7r, thus the minimizer above is equivalent to

*v,07 *v,07

arg min —[E, goyp, V"7 | = argmax[E, goyup, V™’
™

] (18)

which is satisfied by 7w* by definition.

B.2 EQUIVALENT DEC-POMDP FORMULATION

The Bayesian game Mp ca equivalently be formulated as a partially observable stochastic game G
with N + 1 players, where player N + 1 denotes the adversary, and with states § = (s,6). Each
agent i € N only observes its own type 6° (as part of its observation in G), while the adversary has

full observability of the types 6. The reward function R?(s, a) is the same as R(s, a) for i € A" and
is set to —R(s, a) for player N + 1.

The initial state distribution is is based on p(é), ie.,

fi(50 = (s0,0)) = p(s0)p(h), (19)

and the state transition probabilities are defined as

o P(s/|s,a), if0' =0
p ' 0/ 0 _ ’ ’
((S ) )‘(Sa )7a) {07 otherwise

Additionally, when 0¥ = k > 0, the strategy space of player N + 1 is restricted to policies in II,
with z = (v, k). In this case, player v’s actions become ineffective, which can be modeled using
a singleton action set. This model can be considered as a partially observable ”Adversarial Team
Markov Game” proposed by (Kalogiannis et al.| (2022)).

C PROOFS

C.1 PROOF OF PROPOSITION[3.1]

First we need to argue that Vi, and Vi are well-defined. Notice that with full observability as-

sumption, the DEC-MDP model is equivalent to an stochastic game, which always has a Nash
equilibrium (Fink| (1964)). Since the rewards of all players are identical, the Nash equilibrium cor-
responds to maximizing V'™ over the set of all policies. Thus, 7y, and accordingly, Vi, exist.

Now if we fix the policies of all non-victim agents to 7, ’, then the adversary faces a single-agent
MDP with the reward function and the state transition probability defined as follows:

R(s,a") = — Z R(s,(a”,a™))mw, " (a™"s) (20)

P(s|s,a) =Y P(s'|s, (a",a™"))my " (a™"]s) (21)

a—v

Such MDP always has an optimal solution (Puterman|(1994)), thus V. also exists.
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Now, we show that all sets I are non-empty. For a given victim v, consider p* € argmin,,, V70:"v.
Define p!, = ap’ + (1 — a)n§ for a € [0, 1]. Fix 7w, ¥ as the policy of non-victim agents. For any
policy, 7, the Bellman equation in matrix form is

v = (I —yP" )" (22)
where v™ is the vectorized state value function, P™ is a matrix with elements PJ, =
Doav P(s']s,a”) 7m0 (a"]s), r™ is a vector with elements T = =2 g0 Bi(s,a”)m"(a”]s), and P
and R are as defined above. Accordingly, we have V™0™ = pToy™ .

For p? , it is easy to verify that

Pro = PP + (1— a)P”g = a(P’jv - PWE’J) + P (23)
o = ar? + (1 —a)r™ = a(r? —r™) 4 ¢, 24

Thus, we have
vrorh = yT (I — yP™ — ya(PP — P™0)) " (a(r? —r™) + ™). (25)

Note that, since P” * and P70 are both row-stochastic matrices, Pra is also a row-stochastic matrix
and thus, the matrix inverse in @]) always exists, and the result is a continuous function of «.
Accordingly, V7™« in is a continuous function of . When cvis 0 and 1, V™ Pa equals Viax
and V%, , respectively. Thus, as « sweeps between 0 and 1, V™0Pa sweeps between Vi, and V%,

continuously. Thus, I, for all z € Z is non-empty.

C.2 PROOF OF PROPOSITION[3.2]

Note that when 7, is fixed, under the full observability assumption, the DEC-MDP can be viewed
as an MDP for agent v. Thus, the performance difference lemma (Agarwal et al.| (2021))) implies
that

Vo (s9) — V4% (50) = B, gmios Bqvepn (1) [A”O’Pg (s, a”)] . (26)
Taking the expectation with respect to sy, we get
Vst YTt = B o Egupy (o) [A’w% (s, a”)} . 27)
By taking the absolute value of both sides and applying the Jensen inequality, we can write

|Vﬂ-07p71’ _ V‘n’o,ﬁg| S Eswd:’pl ]E(ZUNPI(AIS) |:A7"O,p'§ (S, av):| ‘ . (28)

Now, we can write

Euinpn o) [A™ 5 (5,0%)] | = |32 pra’ls) [@70 % (s, %) = Vol (s) ‘
=
=1 p1(a’]8)Q™ 2 (s, ") — Eqvpy(fs) [Q”O”Jg(&a”)”

= 3" [o1(a®]s) — pala®]s)] Q7 (s,a”)

av?

< Y Ipi(a’]s) = pala’ls)| Q7 (s, a”). 29)
Note that the reward function is bounded in [—1, 1], thus the Q-function is bounded by ;> 17* =

ﬁ. Thus, we conclude that

Eompy (1o |47 5,00 | < 12— 22G) (30)
-
and accordingly,
v v 1
|V7r07f’1 — VTP < EESNd::’m ||p1(8) — p2(5)||1. 31D
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On the other hand, the Pinsker inequality (Csiszar & Korner|(2011)) implies that

loa(s) = p2(s)ll < /2Dxcn (PR (5) Ipb(s), Vs € S. (32)

Thus, by taking the expectation and applying Jensen’s inequality to the concave square-root function,
one can obtain

|V"°’p’f—v*°’p5\<( T/ 2Bz (DL (63 5) 5 (5) (33)

and therefore,

1 - 2 v v
U st ymoss2 <, [Din(0h ()] 05(3))]. (34)

C.3 PROOF OF PROPOSITION [3.3]

We have . .
Rpo (") = (max V™F ) — V7P (33)

T

Note that max, VhL < maxy V™ = Vyax. Also, we can write

V7™l > min VTP (36)

prEll,

However, based on the definition of 7}, we know that min v gy, V7P = max, mine ey, Ve,
Thus, it follows that

. v k
VTP > p{réilgll VTP = Viax — ?(Vmax = Viain)- @37

Thus, we conclude that R jo (7*) < £ (Viyax — ViY,)-

min

C.4 PROOF OF PROPOSITION .11

The policy gradient theorem (Sutton & Barto|(2018))) implies that
VoEsnilVEY ()] = Esnagyy, ampy (1) [V 108 py(als) AfH (s, )], 7 =0,1. (38)

Thus, we can write

VyEqn V”w( ) E,. arpu(ls) [V log p (a|s)Ap“’ (s,a)
v’lb log( SNIJ,I:VP"/)( )] l) = i 'u[ ) } — doy, Py (- )[ P ) (0) ]

s~u[V(p01)p( )] ! SNM[V(G;H( )] -1
Py . _v’l/)ESNH[‘/Y(f;;) (8)] Es~d<o) arpy (. Ww log py(als)A (0)(s,a)]
Volog(h-BorulV () = 5 — vy = h —ESNHW@?( 9) |

This proves the result.

C.5 PROOF OF PROPOSITION [4.2]

First let us establish the following preliminaries.

Lemma C.1. let G and H be the upper bounds on ||V log py(als)|| and ||V log py (als)||, re-
spectively. Then,

* The variance of V(Ig) is bounded by 0*(M) = 1

M(1-7)?
* The variance of the gradient estimates of the value function, i.e., 1i7V(3), is bounded by
=2 _ _ 4G?
(M) = T
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. V(?)’ is Lipschitz continuous with respect to v with constant L = (133)2. It is also B-
smooth with smoothness constant B = 7 17)2 (12 G2 + H).
Proof. Firstnotice that if o is the variance bound per one sample (one episode), then o (M) = ﬁa.
To bound o, note that as [[re|] < 1, || 2020 7'rel] < 125, 80 V{g) [— 11v’ - 7] and o cannot be
larger than ﬁ'
Regarding the variance of the gradient estimation, note that for any s;, a;:
1 1
—— ||V log p¥ (a¢|s:) AP# (st, ar)|| £ ——— G max|AP* (s, a)l. (39)
1=V T-)
Moreover, we have
2
A7 (s,0)| = Q7 (s,a) = VP (5)] < 1@ (s,a)| + [V ()| < T— (40)
-7

Thus, each per sample (per episode) estimate of the gradient is norm-bounded by %, which

implies that
1 . 4G?
I v Py (12 o

E[Hl _,Yv(j) vwv(j) 1] < M(l _7)4-

The bound on the norm range of V,, V*+ will also implies Lipschitz continuity with the same bound
_ 2@

L=
Finally, the smoothness constant is the direct consequence of Lemma 6 in |[Papini et al.
(2022) by setting the bounds E[||Vy log py(als)||] < G, E[||[Vylogpy(als)|?] < G? and
E[|[V} log py (als)|]] < H.

(41)

O

In our analysis we use the results of [Usmanova et al.| (2024), however, given the structure of our
problem we are able to derive simpler step-sizes. Moreover, we base our proof on a required error e
on the true gradient g,, given a fixed ) instead of a fixed required error on the noisy gradients.

To use these results of [Usmanova et al.| (2024), first we have to confirm that the required assump-
tions hold. The Lipschtiz continuity and smoothness of V’;“’ are already established using the above
lemma, and assumption 3 in Proposition 4.2] ensures a feasible starting point. Moreover, since the
gradient of our constraints differ only on their signs, the extended Mangasarian-Fromovitz constraint
qualification (MFCQ) requirements proposed by Usmanova et al.| (2024)) is equivalent to the require-
ment that "there are positive constants ¢ and ¢, such that ||V,¢V(1§)|| > qgwhenh — (¢ < V(’(’)’;’ <h

orl < V{gf < 1+ ¢”. Assumption 4 in Proposition guarantees this condition. This is because

va(o is differentiable in [I,] + (] and [h — ¢, h] and hence |\V¢Vp“ || is continuous over these

sets. Accordingly, the Extreme Value Theorem guarantees the existence of a minimum in each of
these sets. We define ¢ as the minimum among these two minimums, and it is indeed positive.

Let us define ¢ = 0.5(5%-)* and

20L )
C= ¢ (42)

2L2%2(1 + )max{4 + 5??‘, fgﬁ 7}

where B and L are as defined in Lemma|[C.1] We denote by F) the log-barrier regularized objective
function in (8). Now define

3(Fa(vo) + 125 + 2\ log(h — 1))

Nz' r = ’
te 32620)\

(43)

and let § = 2NW‘

To find the local smoothness constant, we further require to define 1’ V(g;’” —1, zf, =h-— V(g’)’“ s

V(lg; —l,and 72 = h — V(O;”’. Moreover, assume zJ, = &, — o(M),/In %.
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Now we are ready to introduce the adaptive step-size and the local smoothness constant
Fy. Let By = B + lOB)\(i i) + 8L2)\(ﬁ + ﬁ), Moreover, let D, =

1
min{ = } We define the step size

2L+ le T oL+
D, 1
an:min{ T } (44)
g3, I" By

Lemma C.2. The function Fy is locally smooth and its smoothness constant is less By with proba-
bility at least 1 — 6.

Proof. Lety, = (Vy V’é’)”", IIZW I ). Lemma 2 in|Usmanova et al. (2024) implies that F is locally

smooth with constant

Bs(¢,) = B+ 10A(§1 + 52) + 8/\((%)2 + (y—’;)z) (45)

n l‘n n n

1 2 . j
] Ty Tn J Tn —
as long as «;,, < min{ EaY L 2yn+\/3:278}’ and z; | > 2 forj=1,2.
n n

Now, note that we can consider :E;L is a lower bound on :z:{l with probability 1 — 5 , and we have

V prn
_ b 9\ pw Y'Y (0) Gepn pw
Yn = (Vi V1", )y =1V Ve IK 2 ) SIVLVEG I < L. (46)
©* Tgy, I v V5V |1 g, ] v

Thus, the step size «;, satisfies the requirement with probability at least 1 — 4. Moreover, Lemma 3

in|Usmanova et al.|(2024) implies that a;il 112 m; , which concludes the proof. O

Based on the smoothness of F, for any n with probability 1 — & we have

I” I”

= anllgo, 19w, = Gu.l-

(47
The last inequality holds because of the selection of the step sizes. which implies that anBs <1
with probability 1 — 4.

. 1. . 1 .
Fx(¥n) = Fx(¥ny1) 2 anlgyp,, Gy,.) — 5320!%”9% > §an||gwn

Note that with this selection of step sizes, Theorem 4 in [Usmanova et al. (20%4) implies the feasi-
bility of all ¢,, for all n = 1,2, ..., Ny, with probability at least 1 — 2N;;.,.06 = 1 — 4. Then, by
summing up the above inequality for 0 < n < N, we obtain
1 Niter—1 1
(S llgin [ = llgy., ﬁwnll)] < 2) anllgi, 151190, 11 = 9w, = gu.l)
< Fa(ho) — IfgnF,\W)

Niter ngn an| |g&;n

1
< Fa(vo) + i +2Xlog(h —1) (48)
w.p 1 — . Accordingly, given the definition of N, we obtain
in {19, 1 193,11 = 19w, = Gun )| < 25O 9)
n n gwn 2 gwn gwn gwn — 32 :
To bound ||gy,, — Gu,, ||, assume that M is large enough such that
o(M) € ————min{(z})* (})°}.
20AL, /log %
'L 22L
&(M) < emin{l,x",x} (50)
20, /log & AA
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Then, Lemma 1 in |Usman0va et a1.|(]2024|) implies that w.p. at least 1 — 4 we have

1 1.1 1 1,1 1
—Go. || < 6(M)y[log = + A6(M)/log = (— + —) + ALo (M) /log = (—— + ——
190, — ol < 5(M), flog £+ A6(M), log 25+ 25) + ALo(M)ylog 5oy + s

5€
< — 1
<%0 (51

€
1
Thus, w.p. 1 — 6, ||gy, — Gy, || < § forall 0 < n < Nise,. On the other hand, by Lemma 5 in
Usmanova et al.[(2024) we know «,, > C'A for all 0 < n < Njze w.p. 1 — 6. Thus we can write

1

3 . ST S X €
35O = min [l G0~ s, = go.lD] = G -9 62

where ¢ £ min,, ||gy, ||. Therefore, we have 2g°> — g< < 22, Solving for g (and given its

positivity) we obtain
€ €2 e 3
<S4l =
O TS T =
Finally, we obtain that w.p 1 — §:

. . N R € e
min ||gy, || < min(l|gy, [ +lgp, = gp.l) < 7+ =€ (54)
which concludes the proof for the first part. Moreover, approaching the solution to a KKT point
of the constrained problem is the direct consequence of Lemma 7 in|[Usmanova et al.|(2024)) when
A—0.

D ADDITIONAL RESULTS

D.1 LEARNING CURVES

Figure [3] shows the learning curves of the baselines in their training phase against their own adver-
sarial policy.

Episodic Return Over Time o Episodic Return Over Time
— EIR-MAPPO
18] — GEN-Maxmin

100 16] — RAP

— EIR-MAPPO
50| — GEN-Maxmin
— RAP

@ o6 o8 10 12 14 00 02 04 06 08 10
Time Steps w Time Steps

(b) MPE-Spread (c) SMAC-2s3z (d) SMAC-MMM

Figure 3: Average episodic return of the baselines during adversarial learning.

D.2 EVALUATION OF ROMANCE

ROMANCE (2023)) is a c-MARL framework designed for adversaries with a limited
budget of action manipulations. Thus its comparison in our setting is not fair, however, for the sake
of completeness we report its performance against attacks trained in BATPAL and also dynamic
adversaries in SMAC-2s3z. We used the already trained models in the original implementation.

D.3 REFERENCE-VALUE EVALUATION
Figure[dshows the normalized initial state value function of the different attacks trained for BATPAL

against the reference policy 7 in all environments. This figure shows how the type of the attacks
changed during the training.
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Table 1: Win rate of ROMANCE against different attacks in SAMC-2s3z

Attack Win Rate

No Attack  0.97
Severity 0 0.23
Severity 0 0.08
Severity 0 0.07
Severity 0 0.05
ACT 0.05
DYN-1 0.07
DYN-2 0.06

(a) LBF (b) MPE-Spread (c) SMAC-2s3z (d) SMAC-MMM

Figure 4: Normalized average initial state value of the BATPAL attacks against the reference policy.

D.4 COMPARISON OF DIFFERENT VALUES OF K

Table [2] shows the evaluation of policies learned by BATPAL with different number of severity
types K. It can be observed that, as expected, increasing the number of adversarial types generally
enhances the robustness of the c-MARL policy. However, each additional severity type requires the
introduction of an additional network, which increases the overall training time. Nonetheless, the
results indicate that even with a relatively small number of severity levels (e.g., K = 4), satisfactory
performance can be achieved across most scenarios

E IMPLEMENTATION

E.1 Pseupo CODE

The pseudo-code of our algorithm is shown in Algorithm [I]

E.2 IMPLEMENTATION DETAILS

We used MAPPO as the backbone algorithm in updating c-MARL policies. Our implementation
has been built on the implementation of HARL (Zhong et al (2024)) and EIR-MAPPO
(2024)). We used parameter sharing across the agents, thus we maintained a single belief network,
a single c-MARL policy network, and one network per each adversarial type (in total K).

As baselines, we used EIR-MAPPO (2024), Generalized Maxmin (Gen-Maxmin)
(20244)), and RAP|Vinitsky et al.| (2020). EIR-MAPPO can be regarded as a special case of BATPAL
with only a single adversarial type, and we used their original implementation in our comparisons.
Gen-Maxmin models an adversary that at each time step in a two-agent setting, plays a worst-case
attack (trained using adversarial learning) with probability g and a cooperative policy with probabil-
ity 1 — g. We adapted their algorithm to the multi-agent setting and set ¢ = 0.5. Moreover, based on
the results reported by [Liu et al| we selected a learning rate of 0.0001 for non-victim agents
and 0.0005 for the adversarial agents. RAP, on the other hand, considers a population of adversarial
policies; however, unlike our method, these policies are not differentiated by behavioral diversity
and are all trained under the max—min principle. RAP is originally designed for single-agent RL,
and we adapted it to the c-MARL setting.
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Table 2: Comparison of BATPAL with different values of parameter K in 4 environments

Environment Attack K=3 K=4 K=5
No attack 0.99 1.0 1.0
A-EIR-MAPPO 0.72 0.64 0.73
MPE-Spread ACT 0.79 0.81 0.89
DYN-1 0.64 0.67 0.71
DYN-2 0.70 0.72 0.70
No attack 1.0 1.0 0.82
A-EIR-MAPPO 0.20 0.26 0.38
LBF ACT 0.18 0.35 0.35
DYN-1 0.44 0.52 0.53
DYN-2 0.52 0.58 0.35
No attack 0.94 0.98 0.98
A-EIR-MAPPO 0.1 0.38 0.29
SMAC-2s3z ACT 0.16 0.72 0.79
DYN-1 0.23 0.52 0.53
DYN-2 0.55 0.71 0.76
No attack 1 1 1
A-EIR-MAPPO 0.83 0.85 0.87
SMAC-MMM ACT 0.87 0.89 0.88
DYN-1 0.83 0.82 0.88
DYN-2 0.89 0.92 0.92

Table 3: Hyperparameters used in all environments

Hyperparameter Value / Description
Discount factor (v) 0.99

Actor network MLP

Belief network GRU

Belief hidden layer single layer with 128 units
Policy learning rate (5) 0.0005

Adversary learning rate (o)  0.0005

Critic learning rate 0.0005

Entropy coefficient 0.01

In our implementations, the value of log barrier coefficient A is 0.1 in SMAC environments and 0.2
in the other two environments. The rest of the hyperparameters are the same for all environments
and are reported in Table[3]
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Algorithm 1 Adversarial Learning in BATPAL

N =

R I A

22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:

Input Networks: The reference policy networks w, the policy networks w?, the critic ®(1), the
reference critic @), the belief networks X', and the adversarial policies *

Pretraining:
Train the c-MARL team in a non-adversarial environment and obtain wq, Vinax, and V3,
Adpversarial Training:
for each iteration do
Sample 6 ~ p, and set z = (k,v) or z = 0.
form=1,2,...,M do > Storing experiences corresponding to POMDP,
Sample the initial state and observations s (q), 09, (0)
fort=0,1,2,...,T,, —1do
Sample non-victim actions aiy(l) ~ Ty (.|’Tti’(1), bi), where b} = b, (Té(l))
Sample adversary action if z # 0, ay ~ py-
Set the joint action profile a; = (a},a; ") if 2 # 0
Environment transitions and s; 1 (1), 7¢,(1) are obtained
Store the transition history H; (1)
end for
end for
if z # 0 then > Storing experiences corresponding to POMDP
form=1,2,...,M do
Sample the initial state and observations s (q), 0o, (0)
fort=0,1,2,...,7,, — 1do
Sample non-victim actions aj ) ~ i (-7 (¢))
Sample adversary action ay ~ py=
Set the joint action profile a; = (a},a; )
Environment transitions and s; 1 (o), 7+,(0) are obtained
Store the transition history H; (o)
end for
end for
end if
The critics ¢ (o). ¢(1) using the advantages obtained by H; (o) and Hy (1)
Update X" using true types in Hy (1
Update w using (16))
Update 1* using

end for
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