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Abstract001

We proposes a novel algorithm, ANTHRO, that002
inductively extracts over 600K human-written003
text perturbations in the wild and leverages004
them for realistic adversarial attack. Unlike005
existing character-based attacks which often006
deductively hypothesize a set of manipulation007
strategies, our work is grounded on actual008
observations from real-world texts. We find009
that adversarial texts generated by ANTHRO010
achieve the best trade-off between (1) attack011
success rate, (2) semantic preservation of the012
original text, and (3) stealthiness–i.e. indistin-013
guishable from human writings hence harder014
to be flagged as suspicious. Specifically, our015
attacks accomplished around 83% and 91% at-016
tack success rates on BERT and RoBERTa,017
respectively. Moreover, it outperformed the018
TextBugger baseline with an increase of 50%019
and 40% in terms of semantic preservation and020
stealthiness when evaluated by both layperson021
and professional human workers. ANTHRO022
can further enhance a BERT classifier’s perfor-023
mance in understanding different variations of024
human-written toxic texts via adversarial train-025
ing when compared to the Perspective API. All026
source code will be released.027

1 Introduction028

Machine learning (ML) models trained to opti-029

mize only the prediction performance are often030

vulnerable to adversarial attacks (Papernot et al.,031

2016; Wang et al., 2019). In the text domain, espe-032

cially, a character-based adversarial attacker aims033

to fool a target ML model by generating an adver-034

sarial text x∗ from an original text x by manipu-035

lating characters of different words in x, such that036

some properties of x are preserved (Li et al., 2018;037

Eger et al., 2019; Gao et al., 2018). We character-038

ize strong and practical adversarial attacks as three039

criteria: (1) attack performance, as measured by040

the ability to flip a target model’s predictions, (2)041

semantic preservation, as measured by the ability042

Figure 1: ANTHRO (Bottom) extracts and uses human-
written perturbations for adversarial attacks instead of
proposing a specific set of manipulation rules (Top).

to preserve the meaning of an original text, and (3) 043

stealthiness, as measured by how unlikely it is de- 044

tected as machine-manipulation and removed by 045

defense systems or human examiners (Figure 1). 046

While the first two criteria are natural derivation 047

from adversarial literature (Papernot et al., 2016), 048

stealthiness is also important to be a practical at- 049

tack under a mass-manipulation scenario. In fact, 050

adversarial text generation remains a challenging 051

task under practical settings. 052

Previously proposed character-based attacks fol- 053

low a deductive approach where the researchers 054

hypothesize a set of text manipulation strategies 055

that exploit some vulnerabilities of textual ML 056

models (Figure 1). Although these deductively de- 057

rived techniques can demonstrate superior attack 058

performance, there is no guarantee that they also 059

perform well with regard to semantic preservation 060

and stealthiness. We first analyze why enforc- 061

ing these properties are challenging especially for 062

character-based attacks. 063

To preserve the semantic meanings, an attacker 064

can minimize the distance between representative 065

vectors learned from a large pre-trained model– 066

e.g., Universal Sentence Encoder (Cer et al., 2018) 067

of the two sentences. However, this is only appli- 068

cable in word- or sentence-based attacks, not in 069

character-based attacks. It is because character- 070

based manipulated tokens are more prone to be- 071
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come out-of-distribution–e.g., morons→mor0ns,072

from what is observed in a typical training cor-073

pus where the correct use of English is often as-074

sumed. In fact, existing character-based attacks075

such as TextBugger (Li et al., 2018), VIPER (Eger076

et al., 2019) and DeepWordBug (Gao et al., 2018)077

generally assume that the meaning of the original078

sentence is preserved without further evaluations.079

In addition, a robust ML pipeline is often080

equipped to detect and remove potential ad-081

versarial perturbations either via automatic soft-082

ware (Jayanthi et al., 2020; Pruthi et al., 2019),083

or human-in-the-loop (Le et al., 2020). Such de-084

tection is feasible especially when the perturbed085

texts are curated using a set of fixed rules that086

can be easily re-purposed for defense. Thus, at-087

tackers such as VIPER and DeepWordBug, which088

map each Latin-based character to either non-089

English accents (e.g., ė, ā, d̃), or homoglyphs090

(characters of similar shape), fall into this cate-091

gory and can be easily detected under simple nor-092

malization techniques (Sec. 4.1). TextBugger093

circumvents this weakness by utilizing a set of094

more general character-editing strategies–e.g., re-095

placing and swapping nearby characters to synthe-096

size human-written typos and misspellings. Al-097

though texts perturbed by such strategies become098

less likely to be detected, many of them may099

distort the meaning of the original text (e.g.,100

“garbage"→“gabrage", “dumb"→“dub") and can101

be easily flagged as machine-generated by human102

examiners. Therefore, we argue that generating103

perturbations that both preserve original mean-104

ings and are indistinguishable from human-written105

texts be a critically important yet challenging task.106

To overcome these challenges, we introduce107

ANTHRO, a novel algorithm that inductively finds108

and extracts text perturbations in the wild. As109

shown in Figure 1, our method relies on human-110

written sentences in the Web in their raw form. We111

then use them to develop a character-based adver-112

sarial attack that is not only effective and realis-113

tic but is also helpful in training ML models that114

are more robust against a wide variety of human-115

written perturbations. Distinguished from previ-116

ous research, our work considers both spellings117

and phonetic features (how a word sounds), to118

characterize text perturbations. Furthermore, we119

conducted user studies to quantitatively evaluate120

semantic preservation and stealthiness of adversar-121

ial texts. Our contributions are as follows.122

• ANTHRO extracts over 600K case-sensitive 123

character-based “real" perturbations from 124

human-written texts. 125

• ANTHRO facilitates black-box adversarial at- 126

tacks with an average of 82.7% and 90.7% attack 127

success rates on BERT and RoBERTa, and drops 128

the Perspective API’s precision to only 12%. 129

• ANTHRO outperforms the TextBugger baseline 130

by over 50% in semantic preservation and 40% 131

in stealthiness in human subject studies. 132

• ANTHRO combined with adversarial training 133

also enables BERT classifier to achieve 3%–14% 134

improvement in precision over Perspective API 135

in understanding human-written perturbations. 136

2 Perturbations in the Wild 137

2.1 Machine v.s. Human Perturbations 138

Perturbations that are neither natural-looking 139

nor resembling human-written texts are more 140

likely to be detected by defense systems (thus 141

not a practical attack from adversaries’ perspec- 142

tive). However, some existing character-based 143

perturbation strategies, including TextBugger, 144

VIPER and DeepWordBug, follow a deductive 145

approach and their generated texts often do not 146

resemble human-written texts. Qualitatively, 147

however, we find that humans express much 148

more diverse and creative (Tagg, 2011) per- 149

turbations (Figure B.1, Appendix) than ones 150

generated by such deductive approaches. For 151

example, humans frequently (1) capitalize and 152

change the parts of a word to emphasize distorted 153

meanings (e.g.,“democrats“→“democRATs", 154

“republicans"→“republiCUNTs"), (2) hyphenate 155

a word (e.g., “depression"→“de-pres-sion"), 156

(3) use emoticons to emphasize meaning (e.g., 157

“shit"→“sh t"), (4) repeat particular characters 158

(e.g., “dirty"→“diiirty", “porn"→“pooorn"), 159

or (5) insert phonetically similar characters 160

(e.g., “nigger"→“nighger"). Human-written 161

perturbations do not manifest any fixed rules 162

and often require some context understanding. 163

Moreover, one can generate a new meaningful 164

perturbation simply by repeating a character–e.g., 165

“porn"→“pooorn". Thus, it is challenging to 166

systematically generate all such perturbations, if 167

not impossible. Moreover, it is very difficult for 168

spell-checkers, which usually rely on a fixed set 169

of common spelling mistakes and an edit-distance 170

threshold, to correct and detect all human-written 171

perturbations. 172

2



Attacker Reddit Comts. News Comts.
#texts, #tokens »5B, N/A (34M, 11M)
TextBugger 51.6% (126/244) 7.10% (11K/152K)
VIPER 3.2% (1/31) 0.13% (25/19K)
DeepWordBug 0% (0/31) 0.27% (51/19K)

ANTHRO 82.4% (266/323) 55.7% (16K/29K)

Table 1: Percentage of offensive perturbed words gen-
erated by different attacks that can be observed in real
human-written comments on Reddit and online news.

We later show that human examiners rely on173

personal exposure from Reddit or YouTube com-174

ments to decide if a word choice looks natural175

(Sec. 4.2). Quantitatively, we discover that not176

all the perturbations generated by deductive meth-177

ods are observed on the Web (Table 1). To analyze178

this, we first use each attack to generate all pos-179

sible perturbations of either (1) a list of over 3K180

unique offensive words or (2) a set of the top 5181

offensive words (“c*nt”, “b*tch”, “m*therf***er”,182

“bast*rd”, “d*ck”). Then, we calculate how many183

of the perturbed words are present in a dataset184

of over 34M online news comments or are used185

by at least 50 unique commentators on Reddit,186

respectively. Even though TextBugger was well-187

known to simulate human-written typos as adver-188

sarial texts, merely 51.6% and 7.1% of its perturba-189

tions are observed on Reddit and online news com-190

ments, implying TextBugger’s generated adversar-191

ial texts being “unnatural" and “easily-detectable"192

by human-in-the-loop defense systems.193

2.2 The SMS Property: Similar Sound,194

Similar Meaning, Different Spelling195

The existence of a non-arbitrary relationship be-196

tween sounds and meanings has been proven by197

a life-long research establishment (Köhler, 1967;198

Jared and Seidenberg, 1991; Gough et al., 1972).199

In fact, Blasi et al. (2016) analyzed over 6K lan-200

guages and discovered a high correlation between201

a word’s sound and meaning both inter- and intra-202

cultures. Aryani et al. (2020) found that how a203

word sounds links to an individual’s emotion. This204

motivates us to hypothesize that words spelled dif-205

ferently yet have the same meanings such as text206

perturbations will also have similar sounds.207

Figure B.1 (Appendix) displays several pertur-208

bations that are found from real-life texts. Even209

though these perturbations are spelled differently210

from the original word, they all preserve similar211

meanings when perceived by humans. Such se-212

mantic preservation is feasible because humans213

perceive these variations phonetically similar to 214

the respective original words (Van Orden, 1987). 215

For example, both “republican" and “republikan" 216

sound similar when read by humans. There- 217

fore, given the surrounding context of a perturbed 218

sentence–e.g., “President Trump is a republikan”, 219

and the phonetic similarity of “republican” and 220

“republikan”, end-users are more likely to interpret 221

the perturbed sentence as “President Trump is a re- 222

publican”. We call these characteristics of text per- 223

turbations the SMS property: “similar Sound, sim- 224

ilar Meaning, different Spellings”. Noticeably, the 225

SMS characterization includes a subset of “visu- 226

ally similar" property of perturbations as studied 227

in previous adversarial attacks such as TextBug- 228

ger (e.g., “hello” sounds similar with “he11o”), 229

VIPER and DeepWordBug. However, two words 230

that look very similar sometimes carry different 231

meanings–e.g., “garbage”→“gabrage”. Moreover, 232

our characterization is also distinguished from ho- 233

mophones (e.g., “to” and “two”) which describe 234

words with similar sound yet different meaning. 235

3 A Realistic Adversarial Attack 236

Given the above analysis, we now derive our pro- 237

posed ANTHRO adversarial attack. We first share 238

how to systematically encode the sound–i.e., pho- 239

netic feature, of any given words and use it to 240

search for their human-written perturbations that 241

satisfy the SMS property. Then, we introduce an 242

iterative algorithm that utilizes the extracted per- 243

turbations to attack textual ML models. 244

3.1 Mining Perturbations in the Wild 245

Sound Encoding with SOUNDEX++. To capture 246

the sound of a word, we adopt and extend the 247

case-insensitive SOUNDEX algorithm. SOUNDEX 248

helps index a word based on how it sounds rather 249

than how it is spelled (Stephenson, 1980). Given 250

a word, SOUNDEX first keeps the 1st character. 251

Then, it removes all vowels and matches the re- 252

maining characters one by one to a digit following 253

a set of predefined rules–e.g., “B”, “F”→1, “D”, 254

“T”→3 (Stephenson, 1980). For example, “Smith” 255

and “Smyth” are both encoded as S530. 256

As the SOUNDEX system was designed mainly 257

for encoding surnames, it does not necessarily 258

work for texts in the wild. For example, it can- 259

not recognize visually-similar perturbations such 260

as “l"→“1", “a"→“@" and “O"→“0". Moreover, 261

it always fixes the 1st character as part of the fi- 262

3



Word SOUNDEX SOUNDEX++ (Ours)
porn P650 P650 (k=0), PO650 (k=1)
p0rn P065(!) (same as above)

lesbian L215 L245 (k=0), LE245 (k=1)
lesbbi@n L21@(!) (same as above)
losbian L215(!) L245 (k=0), LO245 (k=1)
(!): Incorrect encoding

Table 2: SOUNDEX++ can capture visually similar
characters and is more accurate in differentiating be-
tween desired (blue) and undesired (red) perturbations.

Key TH000 DE5263 AR000 DI630 NO300

Value the democrats are dirty not
(Set) demokRATs arre dirrrty

ANTHRO(democrats,k=1,d=1)→{democrats, demokRATs}
ANTHRO(dirty,k=1,d=2)→{dirty, dirrrty}

Table 3: Examples of hash table H1(k=1) curated
from sentences “the demokRATs are dirrrty" and “the
democrats arre not dirty" and its utilization.

nal encodes. This rule is too rigid and can result263

in words that are entirely different yet encoded the264

same (Table 2). To solve these issues, we propose265

a new SOUNDEX++ algorithm. SOUNDEX++ is266

equipped to both recognize visually-similar char-267

acters and encode the sound of a word at dif-268

ferent hierarchical levels k (Table 2). Particu-269

larly, at level k=0, SOUNDEX++ works similar to270

SOUNDEX by fixing the first character. At level271

k≥1, SOUNDEX++ instead fixes the first k+1272

characters and encodes the rest.273

Levenshtein Distance d and Phonetic Level274

k as a Semantic Preservation Proxy. Since275

SOUNDEX++ is not designed to capture a word’s276

semantic meaning, we utilize both phonetic param-277

eter k and Levenshtein distance d (Levenshtein278

et al., 1966) as a heuristic approximation to mea-279

sure the semantic preservation between two words.280

Intuitively, the higher the phonetic level (k≥1)281

at which two words share the same SOUNDEX++282

code and the smaller the Levenshtein distance d283

to transform one word to another, the more likely284

human associate them with the meaning. In other285

words, k and d are hyper-parameters that help286

control the trade-off between precision and recall287

when retrieving perturbations of a given word such288

that they satisfy the SMS property (Figure 2). We289

will later carry out a human study to evaluate how290

well our extracted perturbations can preserve the291

semantic meanings in practice.292

Mining from the Wild. To mine all human-293

written perturbations, we first collect a large cor-294

Figure 2: Trade-off between precision and recall of ex-
tracted perturbations for the word “president" w.r.t dif-
ferent k and d values. Higher k and lower d associate
with better preservation of the original meaning.

pus D of over 18M sentences written by netizens 295

from 9 different datasets (Table A.1 in Appendix). 296

We select these datasets because they include of- 297

fensive texts such as hate speech, sensitive search 298

queries, etc., and hence very likely to include text 299

perturbations. Next, for each phonetic level k≤K, 300

we curate different hash tables {H}K0 that maps a 301

unique SOUNDEX++ code c to a set of its match- 302

ing unique case-sensitive tokens that share the 303

same encoding c as follows: 304

Hk : c $→ {wj |S(wi, k) = S(wj , k) = c

∀wi, wj ∈ D, wi '= wj},
(1) 305

where S(w,k) returns the SOUNDEX++ code of 306

token w at phonetic level k, K is the largest pho- 307

netic level we want to encode. With {H}K0 , k and 308

d, we can now search for the set of perturbations 309

Gd
k(w

∗) of a specific target token w∗ as follows: 310

Gd
k(w

∗)←{wj |wj∈Hk[S(w
∗, k)],Lev(w∗, wj)≤d}

(2) 311

where Lev(w∗, wj) returns the Levenshtein dis- 312

tance between w∗ and wj . Noticeably, we only ex- 313

tract {H}K0 once from D via Eq. (1), then we can 314

use Eq. (2) to retrieve all perturbations for a given 315

word during deployment. We name this method of 316

mining and retrieving human-written text pertur- 317

bations in the wild as ANTHRO, aka human-like 318

perturbations: 319

ANTHRO : w∗,k,d, {H}K0 $−→ Gd
k(w

∗) (3) 320

ANTHRO Attack. To utilize ANTHRO for adver- 321

sarial attack on model f(x), we propose the AN- 322

THRO attack algorithm (Alg. 1). We use the 323

same iterative mechanism (Ln.9–13) that is com- 324

mon among other black-box attacks. This process 325

replaces the most vulnerable word in sentence x, 326

which is evaluated with the support of Score)(·) 327
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Algorithm 1 ANTHRO Attack Algorithm

1: Input: {H}K0 , k, d
2: Input: target classifier f , original sentence x
3: Output: perturbed sentence x∗

4: Initialize: x∗ ← x
5: for word xi in x do: si←Score(xi, f)
6: Worder←Sort(x1, x2, ..xm) according to si
7: for xi in Worder do:
8: P←ANTHRO(xi,k,d, {H}K0 ) // Eq.(3)
9: x∗← replace xi ∈ x with the best w ∈ P

10: if f(x∗) '=f(x) then return x∗

11: return None

function (Ln. 5), with the perturbation that best328

drops the prediction probability f(x) on the cor-329

rect label. Unlike the other methods, ANTHRO in-330

clusively draws from perturbations extracted from331

human-written texts captured in {H}K0 (Ln. 10).332

We adopt the Score(·) from TextBugger.333

4 Evaluation334

We evaluate ANTHRO by: (1) attack perfor-335

mance, (2) semantic preservation, and (3) human-336

likeness–i.e., how likely an attack message is spot-337

ted as machine-generated by human examiners.338

4.1 Attack Performance339

Setup. We use BERT (case-insensitive) (Jin340

et al., 2019) and RoBERTa (case-sensitive) (Liu341

et al., 2019) as target classifiers to attack. We342

evaluate on three public tasks, namely detect-343

ing toxic comments ((TC) dataset, Kaggle 2018),344

hate speech ((HS) dataset (Davidson et al.)), and345

online cyberbullying texts ((CB) dataset (Wul-346

czyn et al., 2017a)). We split each dataset to347

train, validation and test set with the 8:1:1 ratio.348

Then, we use the train set to fine-tune BERT and349

RoBERTa with a maximum of 3 epochs and se-350

lect the best checkpoint using the validation set.351

BERT and RoBERTa achieve around 0.85–0.97352

in F1 score on the test sets (Table A.2 in Ap-353

pendix). We evaluate with targeted attack (change354

positive→negative label) since it is more practi-355

cal. We randomly sample 200 examples from each356

test set and use them as initial sentences to attack.357

We repeat the process 3 times with unique random358

seeds and report the results. We use the attack359

success rate (Atk%) metric–i.e., the number of ex-360

amples whose labels are flipped by an attacker361

over the total number of texts that are correctly362

predicted pre-attack. We use the 3rd party open- 363

source OpenAttack (Zeng et al., 2021) framework 364

to run all evaluations. 365

Baselines. We compare ANTHRO with three 366

baselines, namely TextBugger (Li et al., 2018), 367

VIPER (Eger et al., 2019) and DeepWordBug (Gao 368

et al., 2018). These attackers utilize different 369

character-based manipulations to craft their adver- 370

sarial texts as described in Sec. 1. From the anal- 371

ysis in Sec. 3.1 and Figure 2, we set k←1 and 372

d←1 for ANTHRO to achieve a balanced trade-off 373

between precision and recall on the SMS property. 374

We examine all attackers under several combina- 375

tions of different normalization layers. They are 376

(1) Accents normalization (A) and (2) Homoglyph 377

normalization 1 (H), which converts non-English 378

accents and homoglyphs to their corresponding 379

ascii characters, (3) Perturbation normalization 380

(P), which normalizes potential character-based 381

perturbations using the SOTA misspelling correc- 382

tion model Neuspell (Jayanthi et al., 2020). These 383

normalizers are selected as counteracts against the 384

perturbation strategies employed by VIPER (uses 385

non-English accents), DeepWordBug (uses homo- 386

glyphs) and TextBugger, ANTHRO (based on mis- 387

spelling and typos), respectively. 388

Results. Overall, both ANTHRO and TextBug- 389

ger perform the best. Being case-sensitive, AN- 390

THRO performs significantly better on RoBERTa 391

and is competitive on BERT when compared to 392

TextBugger (Table 4). This makes ANTHRO more 393

practical since many of popular commercial APIs 394

such as the Perspective API are case-sensitive–i.e., 395

“democrats"'=“democRATs". VIPER achieves a 396

near perfect score on RoBERTa, yet it is ineffec- 397

tive on BERT because RoBERTa uses the accent Ġ 398

as a part of its byte-level BPE encoding (Liu et al., 399

2019) while BERT by default removes all such ac- 400

cents. Since VIPER exclusively utilizes accents, 401

its attacks can be easily corrected by the accents 402

normalizer (Table 4). Similarly, DeepWordBug 403

perturbs texts with homoglyph characters, most of 404

which can also be normalized using a 3rd party ho- 405

moglyph detector (Table 4). 406

In contrast, even under all normalizers–i.e., 407

A+H+P, TextBugger and ANTHRO still achieves 408

66.3% and 73.7% in Atk% on average across all 409

evaluations. Although Neuspell (Jayanthi et al., 410

2020) drops TextBugger’s Atk% 14.7% across 411

all runs, it can only reduce the Atk% of AN- 412

1 https://github.com/codebox/homoglyph
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Attacker Normalizer
BERT (case-insensitive) RoBERTa (case-sensitive)

Toxic Comments HateSpeech Cyberbullying Toxic Comments HateSpeech Cyberbullying
TextBugger - 0.76±0.02 0.94±0.01 0.78±0.03 0.77±0.06 0.87±0.01 0.72±0.01
DeepWordBug - 0.56±0.04 0.68±0.01 0.50±0.02 0.52±0.01 0.42±0.04 0.38±0.04
VIPER - 0.08±0.03 0.01±0.01 0.13±0.02 1.00±0.00 1.00±0.00 0.99±0.01
ANTHRO - 0.72±0.02 0.82±0.01 0.71±0.02 0.84±0.00 0.93±0.01 0.78±0.01

TextBugger A - - - 0.72±0.02 0.92±0.00 0.74±0.02
DeepWordBug A - - - 0.43±0.02 0.59±0.03 0.43±0.01
VIPER A - - - 0.09±0.01 0.05±0.01 0.17±0.02
ANTHRO A - - - 0.77±0.02 0.94±0.02 0.84±0.02
TextBugger A+H 0.78±0.03 0.85±0.00 0.79±0.00 0.74±0.02 0.93±0.01 0.77±0.03
DeepWordBug A+H 0.04±0.00 0.06±0.02 0.01±0.01 0.03±0.01 0.01±0.01 0.06±0.02
VIPER A+H 0.07±0.00 0.01±0.01 0.10±0.00 0.13±0.02 0.07±0.01 0.17±0.01
ANTHRO A+H 0.76±0.02 0.77±0.03 0.73±0.05 0.82±0.02 0.97±0.00 0.82±0.02
TextBugger A+H+P 0.73±0.02 0.64±0.06 0.70±0.04 0.68±0.06 0.57±0.03 0.66±0.04
DeepWordBug A+H+P 0.02±0.01 0.04±0.02 0.01±0.01 0.02±0.01 0.01±0.01 0.02±0.01
VIPER A+H+P 0.12±0.01 0.04±0.01 0.17±0.03 0.11±0.02 0.05±0.01 0.18±0.01
ANTHRO A+H+P 0.65±0.04 0.64±0.01 0.60±0.05 0.80±0.02 0.91±0.03 0.82±0.02
(-) BERT already has the accents normalization (A normalizer) by default, (Red): Poor performance (Atk%<0.15)

Table 4: Averaged attack success rate (Atk%↑) of different attack methods

THRO a mere 7.5% on average. This is because413

TextBugger and Neuspell or other dictionary-based414

typo correctors rely on fixed deductive rules–e.g.,415

swapped, replaced by neighbor letters, for attack416

and defense. However, ANTHRO utilizes human-417

written perturbations which are greatly varied,418

hence less likely to be systematically detected. We419

further discuss the limitation of misspelling correc-420

tors such as NeuSpell in Sec. 7.421

4.2 Human Evaluation422

Since ANTHRO and TextBugger are the top two423

effective attacks, this section will focus on eval-424

uating their ability in semantic preservation and425

human-likeness. Given an original sentence x and426

its adversarial text x∗ generated by either one of427

the attacks, we design a human study to directly428

compare ANTHRO with TextBugger. Specifically,429

two alternative hypotheses for our validation are430

(1) HSemantics: x∗ generated by ANTHRO pre-431

serves the original meanings of x better than that432

generated by TextBugger and (2) HHuman: x∗ gen-433

erated by ANTHRO is more likely to be perceived434

as a human-written text (and not machine) than435

that generated by TextBugger.436

Human Study Design. We use the two attack-437

ers to generate adversarial texts targeting BERT438

model on 200 examples sampled from the TC439

dataset’s test set. We then gather examples that440

are successfully attacked by both ANTHRO and441

TextBugger. Next, we present a pair of texts, one442

generated by ANTHRO and one by TextBugger, to-443

gether with the original sentence to human sub-444

Figure 3: Semantic preservation and human-likeness

jects. We then ask them to select (1) which text 445

better preserves the meaning of the original sen- 446

tence (Figure B.2 in Appendix) and (2) which text 447

is more likely to be written by human (Figure B.3 448

in Appendix). To reduce noise and bias, we also 449

provide a “Cannot decide" option when quality of 450

both texts are equally good or bad, and present the 451

two questions in two separate tasks. Since the def- 452

inition of semantic preservation can be subjective, 453

we recruit human subjects as both (1) Amazon 454

Mechanical Turk (MTurk) workers and (2) profes- 455

sional data annotators at a company with extended 456

experience in annotating texts in domain such as 457

toxic and hate speech. Our human subject study 458

with MTurk workers was IRB-approved. We re- 459

fer the readers to Sec. B.3 (Appendix) for more 460

details on MTurks and study designs. 461

Quantitative Results. It is statistically signifi- 462

cant (p-value≤0.05) to reject the null hypotheses 463

of both HSemantics and HHuman (Table A.3 in Ap- 464

pendix). Overall, adversarial texts generated by 465

perturbations mined in the wild are much better 466

at preserving the original semantics and also at 467

resembling human-written texts than those gener- 468
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Attacker Normalizer
BERT (case-insensitive) RoBERTa (case-sensitive)

Toxic Comments HateSpeech Cyberbullying Toxic Comments HateSpeech Cyberbullying
TextBugger - 0.76±0.02 0.94±0.01 0.78±0.03 0.77±0.06 0.87±0.01 0.72±0.01
ANTHROβ - 0.82±0.01 0.97±0.01 0.88±0.04 0.91±0.02 0.97±0.01 0.89±0.02
TextBugger A+H+P 0.73±0.02 0.64±0.06 0.70±0.04 0.68±0.06 0.57±0.03 0.66±0.04
ANTHROβ A+H+P 0.85±0.04 0.79±0.02 0.84±0.03 0.88±0.04 0.93±0.01 0.91±0.01

Table 5: Averaged attack success rate (Atk%↑) of ANTHROβ and TextBugger

ated by TextBugger (Figure 3, Left).469

Qualitative Analysis. Table A.4 (Appendix) sum-470

marizes the top reasons why they favor ANTHRO471

over TextBugger in terms of human-likeness. AN-472

THRO’s perturbations are perceived similar to gen-473

uine typos and more intelligible. They also bet-474

ter preserve both meanings and sounds. Moreover,475

some annotators also rely on personal exposure on476

Reddit, YouTube comments, or the frequency of477

word use via the search function on Reddit to de-478

cide if a word-choice is human-written.479

5 ANTHROβ Attack480

ANTHROβ . We examine if perturbations induc-481

tively extracted from the wild help improve the de-482

ductive TextBugger attack. Hence, we introduce483

ANTHROβ , which considers the perturbation can-484

didates from both ANTHRO and TextBugger in Ln.485

10 of Alg. 1. Alg. 1 still selects the perturbation486

that best flip the target model’s prediction.487

Attack Performance. Even though ANTHRO488

comes second after TextBugger when attacking489

BERT model, Table 5 shows that when com-490

bined with TextBugger–i.e., ANTHROβ , it consis-491

tently achieves superior performance with an aver-492

age of 82.7% and 90.7% in Atk% on BERT and493

RoBERTa even under all normalizers (A+H+P).494

Semantic Preservation and Human-Likeness.495

ANTHROβ improves TextBugger’s Atk%, seman-496

tic preservation and human-likeness score with497

an increase of over 8%, 32% and 42% (from498

0.5 threshold) on average (Table 5, 3, Right), re-499

spectively. The presence of only a few human-500

like perturbations generated by ANTHRO is suffi-501

cient to signal whether or not the whole sentence502

is written by humans, while only one unreason-503

able perturbation generated by TextBugger can ad-504

versely affect its meaning. This explains the per-505

formance drop in terms of semantic preservation506

but not in human-likeness when indirectly compar-507

ing ANTHROβ with ANTHRO. Overall, ANTHROβ508

also has the best trade-off between Atk% and hu-509

Figure 4: Trade-off among evaluation metrics

Model ANTHRO ANTHROβ

TC↓ HS↓ CB↓ TC↓ HS↓ CB↓
BERT 0.72 0.82 0.71 0.82 0.97 0.88
BERT+A+H+P 0.65 0.65 0.60 0.85 0.79 0.84

ADV.TRAIN 0.41 0.30 0.35 0.72 0.72 0.67
SOUNDCNN 0.14 0.02 0.15 0.86 0.84 0.92

Table 6: Averaged Atk%↓ of ANTHRO and ANTHROβ

against different defense models.

man evaluation–i.e., positioning at top right cor- 510

ners in Figure 4, with a noticeable superior Atk%. 511

6 Defend ANTHRO, ANTHROβ Attack 512

We suggest two countermeasures against ANTHRO 513

attack. They are (i) Sound-Invariant Model 514

(SOUNDCNN): When the defender do not have 515

access to {H}K0 learned by the attacker, the de- 516

fender trains a generic model that encodes not the 517

spellings but the phonetic features of a text for 518

prediction. Here we train a CNN model (Kim, 519

2014) on top of a embeddings layer for discrete 520

SOUNDEX++ encodings of each token in a sen- 521

tence; (ii) Adversarial Training (ADV.TRAIN): 522

To overcome the lack of access to {H}K0 , the de- 523

fender extracts his/her perturbations in the wild 524

from a separate corpus D∗ where D∗∩D=∅ and 525

uses them to augment the training examples–i.e., 526

via self-attack with ratio 1:1, to fine-tune a more 527

robust BERT model. We use D∗ as a corpus of 528

34M general comments from online news. 529

Results. We compare the two defenses against 530

BERT and BERT combined with 3 layers of nor- 531

malization A+H+P. BERT is selected as it is bet- 532

ter than RoBERTa at defending against ANTHRO 533
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Figure 5: (Left) Precision on human-written perturbed
texts synthesized by ANTHRO and (Right) Robustness
evaluation of Perspective API under different attacks

(Table 4). Table 6 shows that both SOUND-534

CNN and ADV.TRAIN are robust against AN-535

THRO attack, while ADV.TRAIN performs best536

when defending ANTHROβ . Since SOUNDCNN is537

strictly based on phonetic features, it is vulnerable538

against ANTHROβ whenever TextBugger’s pertur-539

bations are selected. Table 6 also underscores that540

ANTHROβ is a strong and practical attack, defense541

against which is thus an important future direction.542

7 Discussion and Analysis543

Evaluation with Perspective API. We evaluate if544

ANTHRO and ANTHROβ can successfully attack545

the popular Perspective API 2, which has been546

adopted in various publishers–e.g., NYTimes, and547

platforms–e.g., Disqus, Reddit, to detect toxicity.548

We evaluate on 200 toxic texts randomly sampled549

from the TC dataset. Figure 5 (Left) shows that the550

API provides superior performance compared to551

a self fine-tuned BERT classifier, yet its precision552

deteriorates quickly from 0.95 to only 0.9 and 0.82553

when 25%–50% of a sentence are randomly per-554

turbed using human-written perturbations. How-555

ever, the ADV.TRAIN (Sec. 6) model achieves556

fairly consistent precision in the same setting. This557

shows that ANTHRO is not only a powerful and re-558

alistic attack, but also can help develop more ro-559

bust text classifiers in practice. The API is also560

vulnerable against both direct (Alg. 1) and transfer561

ANTHRO attacks through an intermediate BERT562

classifier, with its precision dropped to only 0.12563

when evaluated against ANTHROβ .564

Generalization beyond Offensive Texts. Al-565

though ANTHRO extracts perturbations from abu-566

sive data, the majority of them are non-abusive567

texts. Thus, ANTHRO learns perturbations for568

non-abusive English words–e.g., hilarious->Hi-569

Larious, shot->sht. We also make no assump-570

tion on the task domains that ANTHRO can at-571

2 https://www.perspectiveapi.com/

tack. Evidently, ANTHRO and ANTHROβ achieves 572

80%, 86% Atk% and 90%, 100% Atk% on fooling 573

the sentiment analysis and text categorization API 574

from Google Cloud (Table A.5, Appendix). 575

Limitation of Misspelling Correctors. Similar 576

to other spell-checkers such as pyspellchecker and 577

symspell, the SOTA NeuSpell depends on a fixed 578

dictionary of common misspellings, or synthetic 579

misspellings generated by random permutation of 580

characters (Jayanthi et al., 2020). These check- 581

ers often assume perturbations are within an edit- 582

distance threshold from the original words. This 583

makes them exclusive since one can easily gen- 584

erate new perturbations by repeating a specific 585

character–e.g., “porn"→“pooorn". Also, due to 586

the iterative attack mechanism (Alg. 1) where 587

each token in a sentence is replaced by many can- 588

didates until the correct label’s prediction proba- 589

bility drops, ANTHRO only needs a single good 590

perturbation that is not detected by NeuSpell for 591

a successful replacement. Thus, by formulating 592

perturbations by not only their spellings but also 593

their sounds, ANTHRO is able to mine perturba- 594

tions that can circumvent NeuSpell. 595

Limitation The perturbation candidate retrieval 596

operation (Eq. (2)) has a higher computational 597

complexity than that of other methods–i.e., O(|w|) 598

v.s. O(1) where |w| is the length of an input token 599

w (Please refer to Sec. A.2 in the Appendix for 600

detailed computational complexity). This can pro- 601

long the running time, especially when attacking 602

long documents. However, we can overcome this 603

by storing all the perturbations (given k,d) of the 604

top frequently used offensive and non-offensive 605

English words. We can then expect the opera- 606

tion to have an average complexity close to O(1). 607

The current SOUNDEX++ algorithm is designed 608

for English texts and might not be applicable in 609

other languages. Thus, we plan to extend AN- 610

THRO to a multilingual setting. 611

8 Conclusion 612

We propose ANTHRO, a character-based attack al- 613

gorithm that extracts human-written perturbations 614

in the wild and then utilizes them for adversarial 615

text generation. Our approach yields the best trade- 616

off between attack performance, semantic preser- 617

vation and stealthiness under both empirical ex- 618

periments and human studies. A BERT classifier 619

trained with examples augmented by ANTHRO can 620

also better understand human-written texts. 621
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Ethical Consideration622

Similar to previous works in adversarial NLP lit-623

erature, there are risks that our proposed approach624

may be unintentionally utilized by malicious ac-625

tors to attack textual ML systems. To mitigate this,626

we will not publicly release the full perturbation627

dictionary that we have extracted and reported in628

the paper. Instead, we will provide access to our629

private API on a case-by-case basis with proper630

security measures. Moreover, we also suggest and631

discuss two potential approaches that can defend632

against our proposed attacks (Sec. 6). We believe633

that the benefits of our work overweight its poten-634

tial risks. All public secondary datasets used in635

this paper were either open-sourced or released by636

the original authors.637
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A Supplementary Materials749

A.1 Additional Results and Figures750

Below are list of supplementary materials:751

• Table A.1: list of datasets we used to curate the752

corpus D, from which human-written perturba-753

tions are extracted (Sec. 3.1). All the datasets754

are publicly available, except from the two pri-755

vate datasets Sensitive Query and Hateful Com-756

ments.757

• Table A.2: list of datasets we used to evaluate758

the attack performance of all attackers (Sec. 4.1)759

and the prediction performance of BERT and760

RoBERTa on the respective test sets. All datasets761

are publicly available.762

• Table A.3: Statistical analysis of the human study763

results (Sec. 4.2).764

• Table A.4: List of top reasons provided by the765

professional annotators on why they prefer AN-766

THRO over TextBugger in the human-likeness test767

(Sec. 4.2).768

• Figure B.1: Word-cloud of extracted human-769

written perturbations by ANTHRO for some of770

popular English words.771

• Figure B.2, B.3: Interfaces of the human study772

described in Sec. 4.2.773

A.2 Computational Complexity.774

The one-time extraction of {H}K0 via Eq. (1) has775

O(|D|L) where |D|, L is the # of tokens and the776

length of longest token in D (hash-map operations777

cost O(1)). Given a word w and k,d, ANTHRO778

retrieves a list of perturbation candidates via Eq.779

(2) with O(|w|max(Hk)) where |w| is the length780

of w and max(Hk) is the size of the largest set of781

tokens sharing the same SOUNDEX++ encoding in782

Hk. Since max(Hk) is constant, the upper-bound783

then becomes O(|w|).784

A.3 Infrastructure and Software785

B Implementation Details786

B.1 Attackers787

We evaluate all the attack baselines using the open-788

source OpenAttack framework (Zeng et al., 2021).789

We keep all the default parameters for all the attack790

methods.791

Dataset #Texts #Tokens

List of Bad Words 3 1.9K 1.9K
Rumours (Twitter) (Kochkina et al., 2018) 99K 159K
Hate Memes (Twitter) (Gomez et al., 2020) 150K 328K
Personal Atks (Wiki.) (Wulczyn et al., 2017b) 116K 454K
Toxic Comments (Wiki.) (Kaggle, 2019) 2M 1.6M
Malignant Texts (Reddit) (Kaggle, 2021)4 313K 857K
Hateful Comments (Reddit) (Kaggle, 2021)5 1.7M 1M

Sensitive Query (Search Engine, Private) 1.2M 314K
Hateful Comments (Online News, Private) 12.7M 7M

Total texts used to extract ANTHRO 18.3M -

Table A.1: Real-life datasets that are used to ex-
tract adversarial texts in the wild, number of total ex-
amples (#Texts) and unique tokens (#Tokens) (case-
insensitive)

Dataset #Total BERT RoBERTa
CB (Wulczyn et al., 2017a) 449K 0.84 0.84
TC (Kaggle, 2018) 160K 0.85 0.85
HS (Davidson et al.) 25K 0.91 0.97

Table A.2: Evaluation datasets Cyberbullying (CB),
Toxic Comments (TC) and Hate Speech (HS) and pre-
diction performance in F1 score on their test sets of
BERT and RoBERTa.

Alternative Hypothesis Mean t-stats p-value df
—– AMT Workers as Subjects —–

HSemantics : ANTHRO > TB 0.82 5.66 4.1e-7** 48
HSemantics : ANTHROβ > TB 0.64 1.95 2.9e-2* 46
HHuman : ANTHRO > TB 0.71 3.14 1.5e-3** 47
HHuman : ANTHROβ > TB 0.70 3.00 2.2e-3** 46

—– Professional Annotators as Subjects —–

HSemantics : ANTHRO > TB 0.75 3.79 2.4e-4** 44
HSemantics : ANTHROβ > TB 0.68 2.49 8.6e-3** 41
HHuman : ANTHRO > TB 0.70 3.06 1.82e-3** 50
HHuman : ANTHROβ > TB 0.73 3.53 4.6e-4** 48

Statistical significant **(p-value≤0.01) *(p-value≤0.05)

Table A.3: It is statistically significant (p-value≤0.01)
that adversarial texts generated by ANTHRO are bet-
ter than those generated by TextBugger (TB) at both
preserving the semantics of the original sentences
(HSemantics)) and at being perceived as human-written
texts (HHuman).

B.2 Defenders 792

For the (1) Accents normalization, we adopt the ac- 793

cents removal code from the Hugging Face repos- 794

itory 6. For (2) Homoglyph normalization, we 795

adopt a 3rd party python Homoglyph library7. For 796

(3) Perturbation normalization, we use the state- 797

6 https://huggingface.co
7 https://github.com/codebox/homoglyph
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Reason Favorable Unfavorable
From ANTHRO From TextBugger

Genuine Typos stuupid, but, Faoggt sutpid, burt, Foggat
Intelligible faiilure faioure
Sound Preserv. shytty, crp shtty, crsp
Meaning Preserv. ga-y, ashole, dummb bay, alshose, dub
High Search Results sodmized, kiills Smdooized, klils
Personal Exposure ign0rant, gaarbage ignorajt, garage
Word Selection morons→mor0ns edited→ewited

Table A.4: Top reasons in favoring ANTHRO’s pertur-
bations as more likely to be written by human.

Task Sentiment Analysis Categorization

ANTHRO 0.80 0.93
ANTHROβ 0.86 1.00

Table A.5: Attack success rate (Atk%↑) of ANTHRO
and ANTHROβ in fooling Google(https://cloud.
google.com/natural-language)’s sentiment
analysis API (untargeted attack using 200 randomly se-
lected texts of the SST dataset (Socher et al., 2013))
and text categorization API (untargeted attack on
50 randomly selected news with original label of
“SPORT" from the BBC News dataset at https://
www.kaggle.com/c/learn-ai-bbc/)

of-the-art misspelling-based perturbation correc-798

tion Neuspell model (Jayanthi et al., 2020) 8. For799

Perspective API, we directly use the publicly avail-800

able API provided by Jigsaw and Google 9.801

B.3 Details of Human Study and Experiment802

Controls803

To ensure a high quality response from MTurks,804

we require a minimum attentions span of 30 sec-805

onds for each question. We recruit MTurk workers806

who are 18 years or older residing in North Amer-807

ica. MTurk workers are recruited using the follow-808

ing qualifications provided by AMT, namely (1)809

recognized as “master” workers by AMT system,810

(2) have done at least 5K HITs and (3) have histori-811

cal HITs approval rate of at least 98%. These qual-812

ifications are also more conservative than previous813

human studies we found in previous literature. We814

pay each worker on average around $10 an hour or815

higher (federal minimum wage was $7.25 in 2021816

when we carried out our study). To limit abusive817

behaviors, we impose a minimum attention span818

of 30 seconds for the workers to complete each819

task.820

8 https://github.com/neuspell/neuspell
9 https://www.perspectiveapi.com/
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Figure B.1: Word-clouds of perturbations in the wild extracted by ANTHRO for the word “amazon”, “republicans”,
“democrats” and “president”.

Figure B.2: User-study design for semantic preservation comparison between ANTHRO, ANTHROβ v.s. TextBug-
ger

Figure B.3: User-study design for human-likeness comparison between ANTHRO, ANTHROβ v.s. TextBugger
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