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Abstract

Uncertain perturbations in dynamical systems often arise from diverse resources,
represented by latent components. The predictions for these components, typically
generated by “black-box” machine learning tools, are prone to inaccuracies. To
tackle this challenge, we introduce DISC, a novel policy that learns a confidence pa-
rameter online to harness the potential of accurate predictions while also mitigating
the impact of erroneous forecasts. When predictions are precise, DISC leverages
this information to achieve near-optimal performance. Conversely, in the case of
significant prediction errors, it still has a worst-case competitive ratio guarantee.
We provide competitive ratio bounds for DISC under both linear mixing of latent
variables as well as a broader class of mixing functions. Our results highlight a
first-of-its-kind “best-of-both-worlds” integration of machine-learned predictions,
thus lead to a near-optimal consistency and robustness tradeoff, which provably
improves what can be obtained without learning the confidence parameter. We
validate the applicability of DISC across a spectrum of practical scenarios.

1 Introduction

We study the problem of online decision-making with predictions. Such settings are increasingly
popular with the use of machine learning for predictive modeling, with applications to power grids
and robotics [1, 2, 3, 4]. However, in many real-world settings, such black-box predictors can be
unreliable due to practical problems such as high model variability [5, 6], and out-of-distribution
generalization issues [7, 8]. In settings that require making reliable and high-quality decisions, recent
research has been working on designing the decision-making policy that can be adaptively in response
to receiving low-quality predictions [4].

In this paper, we consider the setting where there are different sources of disturbance, each represent-
ing distinct (and often independent) resources or factors. For instance, in electricity grids, machine
learning (ML) forecasts of variables like power consumption/generation fluctuations, electricity
prices, and battery states can facilitate near-optimal operational decisions on the one hand, but on the
other hand, latent variables such as power injections on certain loads can be highly unpredictable
due to their volatility [9]. Another example is the drone navigation task [10], where the challenge
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lies in managing external perturbations caused by a mixture of predictable elements like air flows
and less predictable factors like raindrops. When performing online decision-making in this setting,
one important technical challenge is to be able to combine disentanglement with an adaptive online
learning algorithm to result in a more exact estimation of the trustfulness of the disturbance. To
address this challenge, in this work, we focus on a linear quadratic control problem where system
perturbations originate from unidentified and possibly heterogeneous latent resources/components.

Contributions. We develop a novel policy DISC that does the disentanglement and learns the
adaptive parameter online simultaneously. We first introduce a policy, λ-CON, which extends the
λ-confident approach in [4] by adapting a vectorized confidence parameter λ ∈ [0, 1]k, where each
λ(i) represents the estimated trustworthiness of the ML prediction for the i-th latent variable in
the dynamical system. We then show that a static λ cannot guarantee an optimal consistency and
robustness tradeoff (see Definition 2.2 for a formal description) for λ-CON: if λ-CON is (1 + o(1))-
consistent, then it is at least ω(1)-robust.

To circumvent this limitation, we propose the dynamic policy DISC (Section 3.2). This algorithm
leverages online learning to optimize the confidence parameter λt at each time t. We establish
competitive ratio guarantees for DISC in both linear and general mixing scenarios, as shown in
Theorems 4.2 and 4.3 (Section 4) respectively. Under Assumption 1 and 2. The competitive ratio
bound for DISC, outlined informally as follows, incorporates a term that embodies our “best-of-both-
worlds utilization” of untrusted ML predictions:

E [CR(DISC)] ≤ 1 + o(1) +O
(
ρ2w
)
+O

(
k∑

i=1

ε(i)

Ω(T/w) + ε(i)

)
︸ ︷︷ ︸

Best-of-both-worlds utilization

, (1)

where the o(1) term hides quantities that vanish when the total number of steps T increases; k is
the number of latent variables generating the perturbations; ρ ∈ (0, 1); w denotes the prediction
window size and each ε(i) (for i = 1, . . . , k) denotes the prediction error corresponding to each
latent component. The last term in this result highlights the desired performance guarantee: When
a component-wise prediction error ε(i) is small, the individual term ε(i)/ (Ω(T/w) + ε(i)) will be
negligible; otherwise, it always holds that ε(i)/ (Ω(T/w) + ε(i)) ≤ 1, regardless of how high the
prediction error becomes. Our proposed DISC is both (1 + o(1))-consistent and O(1)-robust with a
sufficiently large prediction window size. We offer the first bound of this nature, grounded in a term
as a function of the prediction error, without restrictive assumptions on the errors (ε(1), . . . , ε(k)).

Proving our main result above is nontrivial due to the fact that despite it is known that an input-
disturbed linear system can be reduced to an online convex optimization (OCO) with structured
memory [1], the connection between the problem with λ-CON and a memoryless online optimization
is not previously discovered. In Lemma 1, we provide a result that decouples the loss terms in the
total regret in (9) and future perturbations, thereby reducing the problem of choosing λt to an online
optimization instance. Then we use a two-stage analysis as depicted in Figure 7 that combines a
dynamic regret bound for our control policy and static regret bounds induced by online learning
algorithms to derive the main result.

We demonstrate the practicality of DISC through two real-world examples (Section 5): a drone naviga-
tion problem with mixed external disturbances and voltage control in a power grid with heterogeneous
power injections. We demonstrate that DISC, when applied with disentangled ML predictions, out-
performs baselines that do not distinguish between underlying latent variables. Additionally, DISC
shows remarkable adaptability to rapid changes in various scenarios, such as those involving ML
models trained with out-of-distribution data in a non-stationary environment.

Related Work. Our work contributes to the growing community of algorithms with predictions
while also incorporating ideas from adaptive control, online learning, and disentangled representation
learning. We summarize the detailed related work in Appendix A.

2 Problem Formulation

Notational conventions. Throughout this paper, ∥ · ∥ denotes the ℓ2-norm for vectors and the
matrix norm induced by the ℓ2-norm. We use a subscript (·)t to represent a length-k vector st =
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Figure 1: Overview of the system model considered in this work. Left time series: Disentangled
latent variable time series predictions provided by an untrusted ML agent at time t ∈ [T ], represented
by (s̃t|t(i) : i = 1, . . . , k); Right time series: Observed mixed perturbations (f (sτ ; θ) : τ < t) at
time t− 1.

(st(1), . . . , st(k)) at time t whose i-th coordinate is written as st(i). We use λ ◦ s := (λ(i)s(i), i =
1, . . . , k) ∈ Rk to denote the Hadamard product between vectors λ, s ∈ Rk.

2.1 Linear Quadratic Control with Latent Perturbations

We consider a finite-time linear dynamical system with latent perturbations. Let [T ] := {0, . . . , T−1}
be the set of time steps. Denote by xt ∈ Rn a system state and ut ∈ Rm an action from a state
feedback policy πt at time t ∈ [T ]. The system update rule is given by

xt+1 = Axt +But + f(st; θ), t ∈ [T ] (2)

where st := (st(1), . . . , st(k)) ∈ Rk (k ≤ n) contains k latent variables (components) that together
generate a perturbation at time t ∈ [T ] via a mixing function f : Rk ×Θ → Rn parameterized by
θ ∈ Θ ⊆ Rd. The states and the actions are observed after being generated, while the mixing function
f transforms the unobservable latent variables in st to an additive system perturbation. Throughout
this paper, we focus on the nontrivial regime that f(st; θ) ̸= 0n for all t ∈ [T ].

In (2), A ∈ Rn×n and B ∈ Rn×m are system matrices. We consider the standard regime that the
pair (A,B) is stabilizable [4, 11]. Without loss of generality, we also assume the system is initialized
with some fixed x0 ∈ Rn. The goal of control is to minimize the following quadratic costs given
matrices A,B,Q,R:

J(π) :=

T−1∑
t=0

(
x⊤t Qxt + u⊤t Rut

)
+ x⊤T PxT , (3)

where π := (πt : t ∈ [T ]); Q ∈ Rn×n, R ∈ Rm×m are positive definite matrices, and P is a
symmetric positive definite cost-to-go solution of the following discrete algebraic Riccati equation
(DARE), which must exist because (A,B) is stabilizable and Q,R are positive definite [12]:

P = Q+A⊤PA−A⊤PB(R+B⊤PB)−1B⊤PA.

Given P , we define K := (R+B⊤PB)−1B⊤PA, and ut = −Kxt is the feedback control law of a
linear quadratic regulator (LQR), which is optimal in the case of zero disturbances (wt = 0 for all
t ∈ [T ]). Further, let F := A−BK be the closed-loop system matrix. The Gelfand’s formula implies
that there must exist a constant CF > 0 and a spectral radius ρF ∈ (0, 1) such that ∥F t∥ ≤ CF ρ

t
F

for all t ∈ [T ].

In this work, we focus on designing a near-optimal policy π = (πt : t ∈ [T ]) that minimizes the total
quadratic cost in (3) subject to the linear dynamics in (2). At time t ∈ [T ], each πt : Rn ×Rk → Rm

is a state-feedback policy that produces an action ut ∈ Rm with an observed state xt−1, and ML
predictions (s̃t|t(i) : i = 1, . . . , k) of the latent variables st ∈ Rk for future w time steps with a
prediction window size w > 0 (denoting t := min{t+ w − 1, T − 1}). Figure 1 above summarizes
our system model. We defer a detailed introduction of the ML predictions in Section 2.2, together
with the performance benchmarks considered in this paper. We relegate concrete latent perturbation
modelling examples and real-world applications to Appendix B.

In light of the existing nonlinear ICA models summarized in Appendix B, throughout this paper,
we assume the continuity and invertibility conditions hold for the mixing function f to guarantee
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our theoretical results. This assumption is weaker compared to those required in the nonlinear ICA
literature [13, 14, 15, 16, 17] to guarantee identifiability, as summarized in Table 1 (see Appendix B),
noting that our goal is instead to provide a near-optimal competitive ratio bound regardless of the
error of disentanglement and latent variable predictions (see our performance benchmarks defined in
Section 2.2).

Assumption 1. The mixing function f : Rk ×Θ → Rn is Lipschitz continuous and bijective with
respect to s ∈ Rk.

2.2 Performance Benchmark

Let s̃τ |t be the latent variable time series value at time τ , predicted by an untrusted ML agent at time
t ≤ τ . The prediction window size is an integer w > 0. We write t := min{t+ w − 1, T − 1}. The
estimated mixing parameter at each time t ∈ [T ] is denoted by θ̃t. Define the following error terms2

for all t ≤ τ ≤ t and t ∈ [T ]:(
ετ |t(1), . . . , ετ |t(k)

)
= ετ |t := sτ − s̃τ |t, ηt := θ̃t − θ. (4)

To assess the cumulative impact of prediction error over all T time steps, we define the total prediction
error corresponding to the component-wise latent variable time-series prediction and the mixing
parameter estimation as follows:

ε(i) :=

T−1∑
t=0

T∑
τ=t

(
ρτ−t
F ετ |t(i)

)2
, η :=

T−1∑
t=0

∥ηt∥2 , (5)

where ρF ∈ (0, 1) represents the spectral radius of the matrix F . The term ρτ−t
F in (5) accounts for

the exponential decay phenomenon in the impact of component-wise errors, implying that predictions
further into the future contribute less to the total error. This approach to error measurement is
analogous to methods employed in linear quadratic control models with adaptive offline adversarial
perturbations, as discussed in [4], which provides a foundational understanding of error evaluation in
our context.

Our performance benchmark is the competitive ratio for a given prediction error ε, defined as follows.
To be more precise, we focus on the competitive ratio defined for deterministic online algorithms
with an adaptive offline adversary that selects the system parameters A,B,Q,R, f, θ and latent time
series (st : t ∈ [T ]). Write ε := (ε(i) : i = 1, . . . , k) and denote by J(π; ε) the total cost obtained
by implementing π = (πt : t ∈ [T ]) with some fixed prediction error ε.

Definition 2.1. Fix some prediction error ε. The competitive ratio CR(π; ε) is defined as the smallest
constant C ≥ 1 such that J(π; ε) ≤ C · J⋆ for all A,B,Q,R, f, θ, and (st : t ∈ [T ]) satisfying the
model assumptions.

The following notions of consistency and robustness with respect to the competitive ratio offer a
concise characterization to measure the algorithmic performance in the presence of prediction error ε.
It aligns with the benchmarks used in the growing literature on algorithms with predictions [18, 19,
20, 21] (see further discussions provided in Section A).

Definition 2.2. A policy π is γ-consistent if its competitive ratio satisfies CR(π; ε) ≤ γ for ε = 0
and κ-robust if CR(π; ε) ≤ κ for all ε.

3 Disentangled Confident Policy

In this section, we present our policy, DISC, which takes disentangled and untrusted ML predictions
and achieves near-optimal consistency and robustness tradeoff (see Definition 2.2).

2We define two pairs (s, θ) and (s′, θ′) as consistent if they yield identical outputs in the mixing function
f , i.e., f(s; θ) = f(s′; θ′). For simplicity in our notation, we will treat consistent pairs (s, θ) and (s′, θ′) as
indistinguishable when they produce the same perturbation effect in the system. Here, at each time step t ∈ [T ],
the estimated mixing parameter and the time series predictions are compared against the consistent pairs θ and
sτ with the smallest prediction error.
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Algorithm 1: DISentangled Confidence (DISC) policy
for t = 0, . . . , T − 1 do

t← min{t+ w − 1, T − 1}
/* Online learning of λt */
if t = 0 then Initialize λ0 ∈ I
else Set λt = ONLINE-PROCEDURE (ζℓ : ℓ ∈ [t]) through (12) or (13) with ζℓ defined in (11)
/* Obtain disentangled predictions */
Get

(
s̃τ |t : t ≤ τ ≤ t

)
and an estimated mixing parameter θ̃t

/* Implement disentangled λt-confident policy */
Take ut as in (6) with a learned λt such that

ut = −Kxt − Y

t∑
τ=t

(
F⊤

)τ−t

Pf
(
λt ◦ s̃τ |t; θ̃t

)
Update and observe xt+1 following (2)

end

3.1 Warm-Up: Disentangled λ-Confident Policy (λ-CON)

Before proceeding to introduce DISC, we first consider a policy that balances consistency and
robustness by combining an MPC policy that fully utilizes the untrusted ML predictions, and an LQR
without considering any predictions.

Denote by t := min{t + w − 1, T − 1} and let Y := (R + B⊤PB)−1B⊤. Recall that as defined
in Section 2.2, at each time t ∈ [T ],

(
s̃τ |t : t ≤ τ ≤ t

)
represents a sequence of predictions for the

future values of the latent variables (sτ : t ≤ τ ≤ t), with these predictions spanning a predetermined
window size w > 0. Similarly, the sequence (θ̃t : t ∈ [T ]) corresponds to the estimated mixing
parameters. At each time t ∈ [T ], an estimate θ̃t is obtained by applying some disentanglement
algorithm (see those examples in Section B). With this setup, we proceed to define an MPC-type
action as follows:

ut = −Kxt − Y

t∑
τ=t

(
F⊤)τ−t

Pf
(
λ ◦ s̃τ |t; θ̃t

)
, (λ-CON POLICY) (6)

which specifies a disentangled λ-confident policy, denoted by λ-CON, where λ ∈ I := [0, 1]k is a
fixed trust parameter. The term λ ◦ s̃τ |t denotes the Hadamard product of λ and s̃τ |t. It is worth
noting that it is well known that (6) is an optimal solution of the following MPC scheme [4, 2]:

min
u∈Rm

t∑
τ=t

(
x⊤τ Qxτ + u⊤τ Ruτ

)
+ x⊤t+1Pxt+1 (7)

s.t. xτ+1 = Axτ +Buτ + f
(
λ ◦ s̃τ |t; θ̃t

)
, τ ∈

[
t, t
]
. (8)

In particular, if λ is an all-one vector 1k in (7), it trusts the ML predictions. Note that it generalizes
the λ-confident policy in [4], which linearly combines actions from an MPC policy and an LQR. In
Section 4.1, we present a negative result for λ-CON, indicating that it cannot achieve the optimal
consistency and robustness tradeoff (see Definition 2.2). This motivates the disentangled confident
policy discussed in the next section.

3.2 Disentangled Confidence Policy (DISC)

At each time t ∈ [T ], the algorithm adaptively learns a trust parameter λt ∈ I := [0, 1]k, and uses a
Hadamard product of λt and the ML learned latent variable λt ◦ s̃τ |t to estimate future perturbations.
The update rule of the trust parameter λt follows an ONLINE-PROCEDURE, which can be constructed
by the following explicit form of the overall dynamic regret (see [22, 4]) with a fixed λ ∈ I:

J(π(λ))− J⋆ =

T−1∑
ℓ=0

ψ⊤
ℓ,T (λ)Hψℓ,T (λ), (9)
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where H := B(R+B⊤PB)−1B⊤, and ψℓ,T (λ) is defined as

ψℓ,T (λ) :=

min{ℓ+w−1,T−1}∑
τ=ℓ

(
F⊤)τ−ℓ

P
(
f (sτ ; θτ )− f

(
λ ◦ s̃τ |ℓ; θ̃ℓ

))
. (10)

Consider the application of online optimization strategies to minimize total regret as depicted
in (9). At each time t, we obtain ψℓ,0(λ), . . . , ψℓ,t(λ). For ψℓ,t(λ), since the summation is over
τ ∈ {ℓ,min{ℓ + w − 1, t − 1}}, ψℓ,t : I → Rn is a function that depends on t ∈ [T ]. Thus, the
formulation of the offline optimization (9) does not conform to a canonical framework suitable for
online optimization. This necessitates a tailored approach for online learning, which is facilitated
by Lemma 1, allowing for the online learning of λ. Below we assume the following to regulate the
learned sequence (λt : t ∈ [T ]), which holds for typical online learning algorithms with stationary
environments [23, 24, 25]. Note that when t− τ < 0, we consider λt−τ = λ0.

Assumption 2. If τ > 0 is a constant, then (λt : t ∈ [T ]) satisfies that
∑T−1

t=0 |λt − λt−τ | = o(T ).

Define ℓ := max{ℓ−w+1, 0}. The following lemma helps convert (9) to a form that can be reduced
to an online optimization problem. The proof can be found in Appendix D.3.

Lemma 1. Define a function ζℓ : I → Rn as ζℓ(λ) :=
∑ℓ

τ=ℓ g
⊤(τ, ℓ)Hg(τ, ℓ), where

g(τ, ℓ) :=
(
F⊤)τ−ℓ

P
(
f (sτ ; θτ )− f

(
λ ◦ s̃τ |ℓ; θ̃ℓ

))
. (11)

Then for any t ∈ [T ], it follows that
∑t−1

ℓ=0 ψ
⊤
ℓ,t(λ)Hψℓ,t(λ) ≤ w

∑t−1
ℓ=0 ζℓ.

Therefore, the selection of λt at each time t ∈ [T ] follows from an online learning procedure ONLINE-
PROCEDURE, whose concrete realizations include the follow-the-regularized-leader (FTRL) approach
with an ℓ2-norm regularizer [23, 24], which is equivalent to online mirror descent (OMD) when f is
convex; and the follow-the-perturbed-leader (FTPL) [26, 27, 28, 25] for online non-convex learning,
taken previous quantities (ζℓ : ℓ ∈ [t]) as the input. Next, we will discuss theoretical guarantees
for linear and general mixing models with specified online learning procedures, as detailed later in
Section 4. Our policy is summarized in Algorithm 1.

4 Main Results

In this section, we present our technical results, proving that the scheme in DISC achieves near-
optimal competitive ratio bounds for both linear and general mixing cases. Proving our main result
above is nontrivial due to the fact that despite it is known that an input-disturbed linear system can
be reduced to an online convex optimization (OCO) with structured memory [1], the connection
between the problem with λ-CON and a memoryless online optimization is not previously discovered.
In Lemma 1, we provide a result that decouples the dependency between cost functions in our
problem that depends on previous actions via a linear dynamical system (see the dynamical system
defined in (2)), thereby reducing the problem of choosing λt to an online optimization instance, then
use a two-stage analysis (see Figure 7) that combines the dynamic regret analysis of λ-CON and
static regret bounds corresponding to applying online optimization algorithms to learn a confidence
parameter.

4.1 A Fundamental Gap

First, we motivate the necessity of learning (λt : t ∈ [T ]) online. Based on Definition 2.2, the
following theorem reveals a negative result of λ-CON, since for any fixed non-zero λ, there always
exists predicted time series

(
s̃τ |t : t ≤ τ ≤ t, t ∈ [T ]

)
such that the competitive ratio CR(λ-CON)

for λ-CON can be unbounded (when T goes to infinity).
Theorem 4.1 (Consistency-Robustness Impossibility for CR(λ-CON)). If the λ-confident policy
λ-CON is (1 + o(1))-consistent, then it is at least ω(1)-robust, even if the mixing parameter estimate
is perfect, i.e., η = 0.

Here, o(·) and ω(·) characterize the asymptotic asymptotic growth rates with respect to the time
horizon length T . Next, we show in both the linear and general mixing settings, CR(DISC) can
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be bounded as previewed in Section 1, thus the gap between CR(λ-CON) and CR(DISC) can be
arbitrarily large as implied by Theorem 4.1 above. Especially, Corollary B.1 in Section 4.2 implies
that DISC is both (1 + o(1))-consistent and O(1)-robust, with a sufficiently large prediction window
size w = ω(1), revealing that online learning of the confidence parameter provides a significant
improvement of the consistency and robustness tradeoff.

4.2 Linear Mixing

We consider a linear mixing setting, where the mixing function f is linear such that f(s; θ) = θs for
all s ∈ Rk where θ = (θij) denotes an n× k full column rank mixing matrix. Suppose (st : t ∈ [T ])

and θ are bounded such that ∥st∥ ≤ s for all t ∈ [T ] and ∥θ∥ ≤ θ. For this particular instance, we
implement a (follow-the-regularized-leader) FTRL procedure that sets

λt ∈ argmin
λ∈I

(
t−1∑
ℓ=0

∇⊤
λ (ζℓ(λ))λ+

1

β
∥λ− λ0∥2

)
(FTRL FOR λ-LEARNING) (12)

at each time t ∈ [T ] for some β > 0 that can be optimized. The DISC policy satisfies the following
competitive ratio bound, whose proof can be found in Appendix E.

Theorem 4.2 (DISC for Linear Mixing). With our model assumptions, the competitive ratio of DISC
with a linear mixing function satisfies

CR(DISC) ≤ 1 +O

(
k∑

i=1

ε(i)

Ω(T/w) + ε(i)

)
+O

(
w

√
k

T

)
+O

(
ρ2wF +

η

T

)
,

where k is the number of latent variables; T is the time horizon length; ρF ∈ (0, 1) is the spectral
radius of F ; (ε(i) : i = 1, . . . , k) and η are defined in (5); O(·) and Ω(·) hide multiplicative
constants (see the details in Appendix E).

This result highlights a consistency and robustness tradeoff of DISC, as claimed in Section 1, which
offers a dual advantage: it exploits accurate predictions when available, and safeguards against the
ramifications of trusting inaccurate forecasts, thus ensuring system performance reliability. Besides,
our analysis can be carried out to convex mixing functions, as the online learning of λt in (12) via
FTRL guarantees a sub-linear static regret as long as ζℓ(λ) is convex in λ for all ℓ ∈ [T ]. We further
provide a bound for sample efficient ICA in the appendix.

4.3 General Mixing

In this section, we extend the linear assumption on f by considering a general setting where the
mixing function f is an arbitrary Lipschitz continuous function (see Assumption 1). To deal with the
non-convexity of f , we revisit the (follow-the-perturbed-leader) FTPL approach (see [28, 25]) and
consider the following online learning procedure for tuning (λt : t ∈ [T ]):

λt ∈ argmin
λ∈I

(
t−1∑
ℓ=0

ζℓ(λ) + σ⊤
t λ

)
(FTPL FOR λ-LEARNING). (13)

Here, σt is a length-k random vector with each coordinate σt(i) (i = 1, . . . , k) being an IID random
variable from an exponential distribution. The DISC policy satisfies the following competitive ratio
bound.

Theorem 4.3 (DISC for General Mixing). With our model assumptions, the expected competitive
ratio of DISC satisfies

E [CR(DISC)] ≤ 1+O

(
k∑

i=1

ε(i)

Ω(T/w) + ε(i)

)
+O

(
sρ2wF +

η

T

)
+O

(
wk2√
T

)
(14)

where the parameters ρF , w, k, T, η, and (ε(i) : i = 1, . . . , k) are the same as in Theorem 4.2 and
∥st∥ ≤ s for all t ∈ [T ]. The expectation is taken over the randomly sampled (σt : t ∈ [T ]).
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The notation O(·) and Ω(·) above in Theorem 4.3 hide multiplicative constants such as the Lipschitz
constant of the mixing function f (details are provided in Appendix H). The result above implies the
best-of-both-worlds prediction utilization as previewed in Section 1, except that the online learning of
λt converges slower with a rate k2, causing the term O(k2/

√
T ) in the competitive ratio bound (14).

Unlike the linear setting, to ensure a near-optimal expected competitive ratio, the latent time series
(st : t ∈ [T ]) is not necessarily bounded, as long as the prediction window size w is sufficiently large
(e.g., w = Θ(log T )) so that the term sρ2wF vanishes. Finally, note that the online learning procedure
of λt is not limited to FTPL. For example, the non-convex online optimization algorithm in [29] can
be used to optimize (λt : t ∈ [T ]) online and leads to a similar guarantee. The proof of Theorem 4.3
can be found in Appendix H.

5 Experiments

Experimental Setup. To generate ML predictions, we use the FastICA method in [30] to decompose
the mixed perturbations and train a multi-layer perceptron neural network with 4 hidden layers to pre-
dict the future latent variables. FastICA is a simple and efficient linear ICA method that aims to find an
orthogonal rotation of the observation that maximizes the rotated components’ non-Gaussianity using
fixed-point iteration. Furthermore, in our experiments, we implement a follow-the-regularized-leader
(FTRL) optimization with a ℓ2-regularizer ∥λ− λ0∥2, which is equivalent to the following equivalent
online mirror descent (OMD) implementation [24]: τt = τt−1 − β

2∇λ

(
ζ⊤t Hζt

)
, λt = ProjI(τt).

The detailed parameters and hyper-parameters used in our experiments can be found in Appendix C.3.
The code is available at https://github.com/tspbfs/DisentangleControl.

5.1 Experiment A: Drone Navigation with Mixed Disturbances

Figure 2: Drone Navigation under challenging windy and rainy weather conditions, with the drone’s
target path illustrated by a dotted curve. The external perturbations impacting the drone’s flight
are modeled by two independent, time-varying latent variables: wt for wind speed and rt for rain
intensity at time t ∈ [T ]. The trajectory produced by the DISC policy (Algorithm 1 in Section 3)
is represented by the blue curve, while that from the offline optimal policy is traced in red. More
comparison results with other baseline policies can be found in Appendix C.2. Right: Ratio of Costs
J(π)/J⋆ (y-axis) between DISC (red), linear quadratic regulator (LQR, orange), model predictive
control with untrusted ML predictions (MPC (UNTRUSTED), green), and the self-tuning policy
(blue), with a varying scaling factor ν from 0.25 to 8. Shadow area depicts the range of standard
deviations for 5 random tests.

We first consider the drone piloting task described in Example 1 (a detailed description is delegated
to Appendix B) to track an unknown trajectory, shown on the left of Figure 2.

Competitive Ratio Analysis. We present a comparative analysis of the ratio of costs achieved by our
DISC policy (detailed in Algorithm 1 in Section 3) on the right of Figure 2, against several benchmarks:
the Linear Quadratic Regulator (LQR), Model Predictive Control (MPC) using untrusted ML
predictions (i.e., setting λ = 1k in Equation (7)), and the self-tuning policy outlined in [4] and [31].

We examine the impact of varying a scaling factor ν in the range 0.25 to 8, adjusting the additive
perturbation rtc2 in (16) to (rt/ν)c2. This scaling factor ν serves as a proxy for different rain intensi-
ties, influencing the level of environmental unpredictability—the larger ν is, the more predictable the
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environment. With the theoretically guaranteed best-of-both-worlds utilization of disentangled and
untrusted ML predictions, DISC consistently outperforms existing baselines in terms of cost ratios
across varying levels of environmental predictability.

5.2 Example B: Voltage Control with Heterogeneous Power Injections

We consider the voltage control task outlined in Example 2 for a distribution power grid with 11
nodes, as depicted in Figure 3. Specifically, nodes 3, 5, and 8 are active, each supplying dynamic
active power injections (pt(i) : i = 3, 5, 8) at every time step t ∈ [T ]. Collectively, these nodes
induce the composite perturbation Gpt + v01n. The objective is to apply the DISC algorithm to
determine near-optimal controllable reactive power injections that will effectively mitigate voltage
fluctuations across the grid. More details of the problem setting can be found in Appendix C.4.

Figure 3: Voltage Control with in a dynamic environment. This figure illustrates the heterogeneity
and variability of power injections at different nodes within an electrical grid, including a residential
area, a solar photovoltaic (PV) system, and a wind turbine. Right: Example B. Voltage Control
(Section 5.2). Left column: Convergence of confidence parameters λ(1), λ(2), λ(3) corresponding
to 3 latent components. Right column: Temporal dynamics of latent time series st in R. We illustrate
the time series data for three key latent variables in the energy system (see Figure 3): Gaussian-
distributed residential consumption (bottom), real-world photovoltaic (PV) integration (top), and
wind generation (middle). The red dotted line marks a critical transition point where there is a notable
shift in the power generation patterns. We use time series before the blue dotted line as the buffered
data to warm start the ML model, learn the mixing matrix, and obtain disentangled predictions. The
x-axis in each graph marks the time steps, while the y-axis denotes the values of the time series.

We consider a realistic scenario when and use this to demonstrate the adaptivity of DISC in changing
environments. Figure 3 shows the change of patterns corresponding to the solar integration and wind
generation. We set T = 200. At time t = 110, the solar generation switches from a regular pattern to
generating random Gaussian noise, representing miscommunication or system faults. Similarly, at
time t = 100, the wind generation is recovered from the irregular mode to a regular mode. For the
regular solar and wind generation time series, we use the real solar PV generation time series data
from the DTU-Data in 2021 [32] and wind generation from the U.S. Virgin Islands Wind Resources
from the National Renewable Energy Lab (NREL) [33].

Adaptability Amidst Environmental Variability. Figure 3 exhibits the adaptability of our ap-
proach in response to environmental shifts in renewable energy generation and consumption patterns.
Specifically, the figure presents the time series for solar generation (st(1) : t ∈ [T ]), wind generation
(st(2) : t ∈ [T ]), and residential power consumption (st(3) : t ∈ [T ]). The transition points in the
time series patterns are marked by dotted red lines in the figure.

A notable observation is the reactive behavior of the confidence parameters to the changes in
predictability within each time series. For instance, as the solar generation transitions to an irregular
Gaussian noise profile at t ≥ 110, this unpredictability precipitates a decline in the corresponding
confidence parameter λt(1). Conversely, the wind generation time series exhibits a move towards
a more predictable pattern past t ≥ 100, resulting in a progressive increase in the confidence
parameter λt(2). In the case of residential consumption, which is consistently modeled as Gaussian
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noise, the algorithm adaptively learns to reduce the confidence parameter λ(3). The resilience of
the DISC algorithm in dynamically adjusting confidence levels demonstrates its robustness against
environmental shifts, a critical feature for real-world applications where conditions are subject to
sudden and unpredictable changes. This further highlights the efficacy of DISC in maintaining system
stability and performance through intelligent adaptability to the reliability of input data, as verified
by the theoretical results in Section 4.

6 Concluding Remarks

Our work combines online control and the concept of learning disentangled predictions. In this
paper, we have introduced a novel policy DISC that achieves the best-of-both-world utilization of
untrusted ML predictions of latent variables for a linear control problem, where the advantage of
disentanglement is theoretically validated. The practicality of our method has been validated through
two real-world applications, which exemplify its relevance and adaptability to complex, real-world
scenarios.

Limitations and Future Directions. Despite that our main results, i.e., the competitive ratio bounds
in Theorem 4.2 and 4.3 do not rely on the assumption that the latent variables (st(1), . . . , st(k)) are
independent, most of the disentanglement methods do (like sample efficient ICA algorithms used to
derive Corollary B.1 and the detailed assumptions are summarized in Table 1). It would be interesting
to explore more carefully designed algorithms to guarantee both sample efficiency and identifiability
based on our control model. Looking ahead, our results open several intriguing paths. An immediate
extension of particular interest is adapting our methodology to nonlinear dynamical systems, which
could strengthen our current results. Furthermore, our work contributes to the growing community of
algorithms with predictions, a compelling question arises: can the best-of-both-worlds competitive
ratio bounds we have achieved be replicated across different online decision-making problems?
Obtaining either positive or negative results would potentially lead to broad implications for the field
of robust control and online learning.
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Broader Impacts. As demonstrated in our experiments (see Appendix C), the ability to incorporate
and correctly utilize latent variable predictions in control systems can drastically improve decision-
making processes in critical areas such as autonomous driving, aerospace navigation, and healthcare
systems, leading to more efficient and robust system performance under varying conditions. Despite
that by leveraging disentangled predictions, our approach can potentially reduce the need for extensive
data in making accurate predictions, concerns exist when implementing our method in real systems.
For example, in the voltage control task, disentangling power generation resources including the
residential consumption, solar injection, wind generation, etc may lead to discrimination among the
system users.

A Related Work

Our work contributes to the growing community of algorithms with predictions, while also incorpo-
rating ideas from adaptive control, online learning, and disentangled representation learning.

Online Decision-Making with Predictions. The challenge posed by untrusted ML advice in
online decision-making processes has attracted increasing attention, as evidenced by recent studies
(e.g., [34, 18]) for various models such as ski rental [18, 19, 20], caching [35, 36, 37], bipartite
matching [38], online covering [39, 40], online optimization [21, 41], reinforcement learning [42, 43],
control [3, 4, 44, 45], and real-world applications [46, 47, 48, 49] with focuses on exploring the
implications and potential solutions for handling unreliable ML predictions. The most relevant
result to this work is [4], which establishes a consistency-robustness tradeoff for the linear quadratic
control problem with untrusted predictions. However, the self-tuning algorithm proposed in [4] has a
competitive ratio that suffers from high variability of system perturbations and predictions, yielding a
sub-optimal consistency and robustness tradeoff provided there.

Linear Quadratic Control Our work intersects with and extends upon established research in the
area of linear quadratic control (LQC) systems and the analysis of the linear quadratic regulator (LQR),
particularly in the context of integrating predictions with control strategies. The existing literature
primarily explores the balance between achieving optimal control and managing the uncertainties
inherent in predictive models. Significant work has been conducted in the realm of LQR systems,
especially regarding model predictive control (MPC). For instance, Yu et al. in [2] have analyzed
LQR regret in MPC under the assumption of accurate perturbation predictions. The implications of
imprecise predictions are explored in [22]. In addition, there are notable contributions to the discourse
on regret and competitive ratio in MPC, as evidenced by works like [1, 50, 4]. Our work is closely
related to [4], which reveals a consistency and robustness tradeoff in LQC, with a self-tuning policy
that updates a 1-dimensional confidence parameter based on past observations.

Adaptive and Robust Control Moreover, our approach also aligns with the adaptive control
paradigm, especially in its recent intersection with learning theory to address non-asymptotic metrics.
While the adaptive control community has traditionally concentrated on Lyapunov stability and
asymptotic convergence [51], the newer trend represented in [52, 53, 54, 55] employs learning-
theoretic measures such as regret and dynamic regret for finite-time horizon analysis. Our results
contribute to this evolving field by presenting a adaptive control policy that achieves the first of-its-
kind near-optimal consistency and robustness tradeoff, as a novel endeavor in the context of LQR
systems that also incorporates the unique challenge raised by untrusted predictions. Besides, robust
control is a large area that concerns the design of controllers with performance guarantees that are
robust against model uncertainty or adversarial disturbances [12]. Tools of robust control include
H∞ synthesis [56, 57] and robust MPC [58]. Our work diverges from these existing approaches by
considering an LQC model that employs disentangled predictions. While it adheres to the robust
control principle of resilience to uncertainties and perturbations, our work also aims to achieve
near-optimal performance when predictions become accurate. This best-of-both-worlds strategy in
utilizing untrusted predictions introduces a novel dimension to the robustness-consistency tradeoff, a
concept not extensively explored in the existing robust control literature.

Learning Disentangled Latent Variables Disentanglement, a key goal of which is to separate
the typically independent effects of latent variables on observations, is a well-established concept
within the field of representation learning. For instance, when the underlying mixing function that
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mixes latent independent signals to observations is linear with respect to st, i.e., f(st; θ) = θst,
for a matrix θ ∈ Rn×k, linear independent component analysis (ICA) [59, 30] can be effectively
employed to identify the k latent components. This linear approach, while powerful in its simplicity,
is often insufficient for more complex, real-world data structures. In contrast, advanced nonlinear
ICA methods [60] have been developed to address these complexities, providing more nuanced
tools for disentangling latent perturbations. These methods extend the traditional ICA framework to
accommodate nonlinear mixing functions, thereby enhancing its applicability to a wider range of
scenarios. State-of-the-art techniques in nonlinear ICA have introduced novel algorithms that can
effectively manage the intricacies of nonlinear relationships between observed and latent variables.
Furthermore, nonlinear ICA has been explored under various settings, with multiple assumptions
ensuring the identifiability of the model, such as sparsity [61, 17], auxiliary information [62, 15], and
others. Recent work by Hyvärinen et al. [63] has utilized contrastive learning to identify the nonlinear
ICA model in a time-series context, demonstrating the evolving capabilities of these methods. Table 1
in Section B provides a summary of key assumptions of recent nonlinear ICA methods. Note that
these methods often incorporate deep neural networks as critical black-box elements within their
algorithmic structures. We focus on optimally harnessing the predictions of latent variables derived
from those aforementioned disentanglement methods, regardless of their trustworthiness. Therefore,
our work uniquely represents a strategic shift towards effectively utilizing uncertain or unverified
predictions in downstream decision-making tasks, a challenge not directly addressed by existing
representation learning techniques.

B Examples and Applications

B.1 Latent Perturbation Modelling

Understanding how the observed variables relate to a set of latent variables st = (st(1), . . . , st(k))
has been extensively studied in machine learning. When the mixing function f is linear, standard
statistical assumptions (see Corollary B.1) on st can guarantee the desired identifiability of f , up
to multiplicative scaling and permutation. For the case when f is nonlinear, recent advances such
as [13, 14, 15, 16, 17] in nonlinear independent component analysis (ICA) leverage additional
assumptions on the latent variables in st and the mixing function f , to make the model identifiable.
Below in Table 1 we summarize the key assumptions (besides the common assumptions of mutual
independence between latent variables and at most one latent variable is Gaussian) made in those
models.

Table 1: Standard assumptions on f and s for a subset of nonlinear ICA models.

Nonlinear ICA Models Key Assumptions on f

Identifiable VAE [15] Mixing function f is bijective and smooth
Contrastive learning [13, 14] Mixing function f is bijective and smooth
Structural sparsity model [17] Support of the Jacobian Jf (s) of f is sparse
Volume-preserving model [16] Mixing function f is bijective and |detJf (s)| = 1

Nonlinear ICA Models Key Assumptions on s

Identifiable VAE [15] (st(1), . . . , st(k)) are conditionally independent given a variable u
Contrastive learning [13, 14] (st : t ∈ [T ]) is nonstationary or has temporal dependencies

B.2 Real-World Applications

Our model represents a classical control framework with extensive applicability across a variety of
real-world decision-making problems. In the following section, we illustrate the versatility of our
model through a selection of examples that demonstrate our dynamical model in (2) (see Section 2.1),
subject to latent perturbations. These applications not only exemplify our model, but also set the
stage for the comprehensive experimental results we discuss later in Section C, where we validate the
model’s practical efficacy in real-world scenarios.

Example 1 (Piloting a Drone with mixed disturbances). Imagine the challenge of piloting a drone to
follow an unpredictable path (yt ∈ R2 : t ∈ [T ]) on a windy and rainy day. This dynamic scenario
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can be mathematically represented in a discrete-time counterpart of the kinematic model [64, 2]:[
∆xt+1

vt+1

]
= A

[
∆xt
vt

]
+But + Cwt,

for some matrices A ∈ R4×4, B ∈ R4×2, C ∈ R4×4. The column vector wt =
(wt(1), wt(2), wt(3), wt(4)) contains 4 latent variables where wt(1) := yt(1)− yt+1(1); wt(2) :=
yt(2)− yt+1(2); wt(3) is the environmental wind speed and wt(4) is the rainfall intensity at time
t ∈ [T ]. More details are discussed in Section 5.1.

Besides, it is well-known that any controllable system can be transformed into a canonical linear
input-disturbed systems with dynamics described by xt+1 = Axt + B(ut + wt) [65, 1] that can
be used in many real-world applications with disturbances added to the control inputs. Now, we
introduce another example in an electricity grid, with latent variables representing power injections
from distinct buses of a distribution network.
Example 2 (Heterogeneous Voltage Control). Consider a Volt/Var control task with the Simplified
Distflow model in a distribution power network consisting of n branch buses and a substation
bus [66, 67]:

vt+1 = Xqct +Gpt +Xqet + v01n, (15)

wherein imaginary constants of the complex power injection at time t ∈ [T ] are separated into
two parts qct ∈ Rn and qet ∈ Rn, representing the controllable reactive power injection and
the uncontrollable external injection (perturbation) respectively. The fixed and known matrices
X,G ∈ Rn×n are positive definite and positive (Lemma 1 in [68]) with their entries depend on
the line impedance and the grid topology. Our goal is to design a Volt/Var controller to regulate
squared voltage magnitudes vt+1 = (vt+1(1), . . . , vt+1(n)) to their nominal values by provisioning
the reactive power injection qct for each time step t ∈ [T ].

For the above example, we focus on a scenario with a set of n heterogeneous users corresponding
to n branch nodes that generate a sequence of time-varying active and reactive injections (pt(i) :
i = 1, . . . , n) and (qct (i) : i = 1, . . . , n). The injection at the branch nodes i = 1, . . . , n may be
generated by various types of renewable resources and power consumption patterns, e.g., solar/wind
generations, residential, and commercial activities, energy storage management, or charging EVs, etc.
Together they form a set of latent variables st in (2) with k = n and in this special case, the mixing
function f(st; θ) = Gpt +Xqet + v01n is affine.

In Section 5.1 and 5.2, we explore in greater detail the two examples previously discussed, and
demonstrate the efficacy of our proposed method through case studies using real-world data.

B.3 Sample efficient ICA

Furthermore, there are sample efficient ICA algorithms for independent latent variables [69, 70,
71]. The following corollary can be derived from Theorem 4.2 and the sample complexity result
in [71], which shows that η is sub-linear in T , thereby concluding the best-of-both-worlds prediction
utilization claimed in Section 1.
Corollary B.1. Suppose the mixing matrix θ is full column rank, and the latent variables (st(i) :
i = 1, . . . , k) are mutually independent for all t ∈ [T ]. Under the classic assumptions such that
E [st(i)] = 0, E

[
s2t (i)

]
= 1, E

[∣∣s5t (i)∣∣] ≤ M , and the fourth cumulant |cum4(st(i))| ≥ ∆ for all
t ∈ [T ] and i = 1, . . . , k, there exists a polynomial-time ICA algorithm that provides a sequence of
mixing matrix estimates (θ̃t : t ∈ [T ]) of θ such that with high probability, the competitive ratio of
DISC satisfies

CR(DISC) ≤ 1 +O

(
k∑

i=1

ε(i)

Ω(T/ log T ) + ε(i)

)
+O

(√
k

T

)
+O

(
ρ2wF + (log n)

7
2 k

1
2
log T

T

)
.

Therefore, if for all i ∈ {1, . . . , k}, ε(i) is negligible, CR(DISC) will converge to the optimal
competitive ratio 1 with an increasing time horizon length T and a sufficiently large prediction
window w; otherwise, for any ε(i) > 0, CR(DISC) will be asymptotically bounded from above by
O(k) + 1 where k is the number of latent variables. It is worth noting that the statistical assumptions
on the latent variables (st(i) : i = 1, . . . , k) are classic in the ICA analysis [69, 70, 71].
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C Case Studies

In this section, we delve deeper into the practical applications of our main results by using two
real-world examples (see Example 1 and 2) to demonstrate the efficacy of DISC. We first describe our
experimental setup in Section 5. We then demonstrate the effectiveness of the proposed method in
Section 5.1, and compare DISC with several baselines. In Section 5.2, we show the desired resilience
with respect to a non-stationary environment in a voltage control task.

Online Learning of Confidence Parameters. We illustrate the convergence of the confidence pa-
rameter (λt : t ∈ [T ]) with respect the latent dimensions. In Figure 4, we exemplify the convergence
behavior of the confidence parameters associated with each of the four latent components shown
in (16) on the left column, together the time series for the four latent components on the right.

Notably, the first three components display learnable patterns while the last component, representing
rainfall intensity is some unpredictable Gaussian noise. This distinction is reflected in the convergence
behaviors of the corresponding confidence parameters: λ(1), λ(2), and λ(3), associated with the
more predictable components, quickly converge to the optimal value of 1. Conversely, the last
parameter λ(4) associated with the erratic rainfall component exhibits a decreasing trend due to the
unpredictability of the fourth component, highlighting the resilience of the proposed DISC policy
against the prediction error.

C.1 Implementation Details of Experiment A

The drone’s location at each moment, pt+1 ∈ R2, is determined by its current position and velocity
vt ∈ R2, evolving as pt+1 = pt + cpvt. The drone controller can adjust its velocity at every time
step through a control input ut, leading to the updated velocity vt+1 = vt + cvut. The coefficients
cp, cv > 0 are determined by control time intervals and physical parameters like the drone’s weight
and the drag coefficient. Defining ∆xt := pt − yt the location mismatch at time t, this piloting task
can be mathematically represented in a linear control framework as shown in (2):

R4 ∋
[
∆xt+1

vt+1

]
= A

[
∆xt
vt

]
+But +

[
yt

02×1

]
−
[
yt+1

02×1

]
+ wtc1 + rtc2︸ ︷︷ ︸

4 latent components

, (16)

with system matrices A :=

1 0 cp 0
0 1 0 cp
0 0 1 0
0 0 0 1

 , B :=

 0 0
0 0
cv 0
0 cv

 .
The term wtc1 + rtc2 represents external perturbations from the environment. The column vectors
c1, c2 ∈ R4 quantify the effects of the stochastic time-varying wind speed and rainfall intensity,
represented by two time series (wt : t ∈ [T ]) and (rt : t ∈ [T ]). We assume the wind speed time
series forms a sinusoidal function and the rain intensity time series is Gaussian, which are visualized
together with the ML predictions in Figure 4. Table 2 in Appendix C.3 presents detailed choices of
the matrices A,B,Q,R and vectors c1, c2.

C.2 Additional Experimental Results

We provide further experimental results that complement and extend the results presented in Section C.

In Figure 5, we display the trajectories in the drone navigation task (Section 5.1) corresponding
to DISC and the three baseline policies: the LQR, the self-tuning policy in [4], and the MPC with
untrusted predictions (setting λ = 1k in (7)). The trajectory for DISC closely aligns the best with the
offline optimal trajectory upon convergence.

In Figure 6, for the voltage control task (see Section 5.2), we compare the average total costs J(π)
(defined in (3)) corresponding to DISC and the three baseline policies. Note that DISC consistently
achieves the lowest average cost with the smallest variance computed from 5 random tests. The
scaling parameter ν of the Gaussian component at node 8 is set as 1.25.
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Figure 4: Example A. Drone Navigation (Section 5.1). Left column: Convergence of confidence
parameters λ(1), λ(2), λ(3), λ(4) corresponding to 4 latent components. Right column: Temporal
dynamics of latent components θst in R4. We illustrate the time series for the latent components
in (16), with each sub-figure featuring four distinct curves representing the dimensions of the
respective 4-dimensional component. Post the dotted red line, the additional blue curves visualize
imperfect ML predictions from the multi-layer neural network, elaborated in Appendix C.3. The
x-axis in each graph marks the time steps, while the y-axis denotes the values of the time series.

C.3 Detailed Setup and Hyper-Parameters

ML Model Setup We train an ML model online to generate predictions of (sτ (i)θ(i) : t ≤ τ ≤ t)
at each time t ∈ [T ]. Here, θ(i) denotes the i-th column of the true mixing parameter matrix θ. At
each time step, the prediction model is trained and updated using previously collected disturbances.
The warm-start buffer size is set as 100 and 50 respectively for the drone navigation and voltage
control applications. In particular, we update the ML prediction model at each time step t ∈ [T ]
and use a length-b subsequence of the collected time series (sτ (i)θ̃t(i) : max{0, τ − b} ≤ τ < t) as
the input to predict the future w = 5 (w is the prediction window size defined in Section 2) steps
of perturbations, as the output. Note that θ̃t(i) is the i-th column of the estimated mixing parameter
matrix θ̃t−1 provided by the FastICA method in [30] at time t ∈ [T ]. All prediction models are
formed via a fully-connected neural network with 4 hidden layers with a width 80 and LeakyReLU
as the activation function except the final layer, and are trained using Adam [72] as the optimizer
with a learning rate 1e−3 for 500 epochs.
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Figure 5: Supplementary results showcasing drone navigation in windy and rainy conditions, further
illustrating the scenarios discussed in Section 5.1 depicted in Figure 2. The external perturbations
impacting the drone’s flight are modeled by two independent, time-varying latent variables: wt for
wind speed and rt for rain intensity at time t ∈ [T ]. The path navigated by the drone using the DISC
policy (detailed in Algorithm 1 in Section 3) is traced in red. Notably, this trajectory closely aligns
the best with the offline optimal trajectory upon convergence, demonstrating the effectiveness of the
DISC policy in adapting to complex environmental conditions.

Figure 6: Average total cost J(π) with error bars
for four policies in the voltage control task (Sec-
tion 5.2).

Disentanglement Implementation A well-
recognized issue in independent component
analysis (ICA) and its nonlinear variants is the
permutation indeterminacy of sources. This
implies that the ordering of disentangled com-
ponents can vary, such that the i-th compo-
nent identified at one time step may not cor-
respond to the i-th component in subsequent al-
gorithm outputs. To mitigate this “permutation
unidentifiability”, our methodology involves pre-
processing the time series data by ranking the
components according to their sample entropy,
as suggested in [73]. This step precedes the ap-
plication of the ML prediction model, thereby
enhancing the consistency of component identi-
fication across time steps.

Table 2 below summarizes the detailed param-
eters used in Section C. In our experiments, the
parameters are not subject to extensive optimiza-
tion.

C.4 Detailed Setup in Section 5.2

The matrices X and G are generated from the following an impedance matrix Z ∈ C11×11 with the
following non-zero entries:

Z0,1 = Z1,0 = Z1,2 = Z2,1 = 1 + i,

Z2,3 = Z3,2 = Z2,4 = Z4,2 = 1 + 2i,

Z5,9 = Z9,5 = Z5,10 = Z10,5 = 2 + 4i,

Z3,5 = Z5,3 = Z3,6 = Z6,3 = Z4,7 = Z7,4 = Z4,8 = Z8,4 = 2 + 2i,

where i denotes the imaginary unit.
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Parameter Value
Time horizon length T 240 (Section 5.1), 200 (Section 5.2)
Warm start buffer length 100 (Section 5.1), 50 (Section 5.2)
State dimension n 4 (Section 5.1), 10 (Section 5.2)
Action dimension m 2 (Section 5.1), 10 (Section 5.2)
Prediction window size w 5

Coefficients cv, cp 0.2

Mixing Column c1
1
8
(0.8, 1.6, 1.25, 0.75)⊤

Mixing Column c2
1
8
(1.2, 0.4, 0.75, 1.25)⊤

Q,R (Section 5.1)

[
I2×2 02×2

02×2 02×2

]
, I2×2

Q,R (Section 5.2) I10×10, 0.1× I10×10

Initial confidence parameter λ0 0.3

(a) Basic Control Problem Setup in Section 5.1 and 5.2.

Hyper-Parameter Value
Number of hidden layers 4

Hidden layer width 80

Covariate size b 5

Input dimension n× b

Output dimension n× w

Activation function LeakyReLU
Optimizer Adam [72]
Learning rate 1e−3

(b) Neural Network Hyper-parameters.

Table 2: Parameters and hyper-parameters used in Section C.

D Useful Lemmas

We first present some preliminary results that will be used when proving our main theorems.

D.1 Convexity of ζℓ(λ)⊤Hζℓ(λ)

Below we verify that ζℓ(λ)⊤Hζℓ(λ) is a convex function of λ ∈ [0, 1]k. By definition,

ζℓ(λ)
⊤Hζℓ(λ) =

 ℓ∑
τ=ℓ

(F⊤)ℓ−τP
(
θsℓ − θ̃τ (λ ◦ s̃ℓ|τ )

)⊤

H

 ℓ∑
τ=ℓ

(F⊤)ℓ−τP
(
θsℓ − θ̃τ (λ ◦ s̃ℓ|τ )

) ,
which equals to (since H is symmetric) ℓ∑

τ=ℓ

(F⊤)ℓ−τPθsℓ

⊤

H

 ℓ∑
τ=ℓ

(F⊤)ℓ−τPθsℓ


︸ ︷︷ ︸

Constant independent of λ

+

 ℓ∑
τ=ℓ

(F⊤)ℓ−τP θ̃τ (λ ◦ s̃ℓ|τ )

⊤

H

 ℓ∑
τ=ℓ

(F⊤)ℓ−τP θ̃τ (λ ◦ s̃ℓ|τ )


−2

 ℓ∑
τ=ℓ

(F⊤)ℓ−τPθsℓ

⊤

H

 ℓ∑
τ=ℓ

(F⊤)ℓ−τP θ̃τ (λ ◦ s̃ℓ|τ )

 .
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Now, we simplify the remaining two terms. We first notice that
∑ℓ

τ=ℓ(F
⊤)ℓ−τP θ̃τ (λ ◦ s̃ℓ|τ ) = Λλ

for some matrix Λ ∈ Rn×k. To see this, denote ϕℓ,τ := (F⊤)ℓ−τP θ̃τ ∈ Rn×k. We get

ℓ∑
τ=ℓ

(F⊤)ℓ−τP θ̃τ (λ ◦ s̃ℓ|τ ) =
ℓ∑

τ=ℓ

ϕℓ,τ (λ ◦ s̃ℓ|τ ) =


...

...
ϕℓ,τ (1) · · · ϕℓ,τ (k)

...
...


s1λ1...
skλk



=


...

...
s1ϕℓ,τ (1) · · · skϕℓ,τ (k)

...
...


︸ ︷︷ ︸

=:Λ

λ1...
λk

 .

Therefore, it suffices to validate that the matrix H is positive semi-definite to show (Λλ)⊤H(Λλ)−
2ϑ⊤H(Λλ) is convex, where we denote ϑ :=

∑ℓ
τ=ℓ(F

⊤)ℓ−τPθsℓ ∈ Rn. Note that H = B(R +

B⊤PB)−1B⊤. Since R is positive definite by assumption and the DARE solution P is also positive
definite, (Λλ)⊤H(Λλ)− 2ϑ⊤H(Λλ) is a summation of a quadratic form and a linear function of λ,
validating the convexity of ζℓ(λ)⊤Hζℓ(λ). For the same reason, g(τ, ℓ)(λ)⊤Hg(τ, ℓ) is also convex.

D.2 A Generalized Lower Bound on J⋆

The following lemma is a generalized result from [4], which provides a lower bound on the offline
optimal cost J⋆, as a function of system perturbations.

Lemma 2 (Generalized Lower Bound on J⋆ [4]). Let λmin(Q) and λmin(P ) denote the smallest
eigenvalues of positive definite matrices Q and P , respectively. It follows that

J⋆ ≥C0

T−1∑
t=0

(
T−1∑
τ=t

ρτ−t
F ∥f(sτ ; θ)∥

)2

(17)

for some constant 0 < C0 ≤ (1−ρF )2

2 min{λmin(P ), λmin(R)/∥B∥, λmin(Q)/max{2, ∥A∥}}.

Next, we present the proof of Lemma 1.

D.3 Proof of Lemma 1

We restate the lemma below, which reduces the online learning objective
∑t−1

ℓ=0 ψ
⊤
ℓ,t(λ)Hψℓ,t(λ) to a

canonical online optimization formulation.

Lemma 3. Define ζℓ : I → Rn as in (11). Then for any t ∈ [T ], it follows that

t−1∑
ℓ=0

ψ⊤
ℓ,t(λ)Hψℓ,t(λ) ≤ w

t−1∑
ℓ=0

ζℓ(λ).

Denote by g(τ, ℓ) :=
(
F⊤)τ−ℓ

P
(
f (sτ ; θτ )− f

(
λ ◦ s̃τ |ℓ; θ̃ℓ

))
. We first note that

t−1∑
ℓ=0

ℓ∑
τ=ℓ

g(τ, ℓ)⊤Hg(τ, ℓ) =

t−1∑
τ=0

τ∑
ℓ=τ

g(ℓ, τ)⊤Hg(ℓ, τ) =

t−1∑
τ=0

ζτ (λ). (18)

Since H = B(R+B⊤PB)−1B⊤ is positive semi-definite as we have shown in Appendix D.1, the
function h(x) := x⊤Hx is convex. Applying the Jensen’s inequality,

h

 1

w

ℓ∑
τ=ℓ

g(τ, ℓ)

 ≤ 1

w

ℓ∑
τ=ℓ

h (g(τ, ℓ)) .
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Figure 7: Illustration of the equivalence in (18). When ℓ increases from t − 1 to t, the reduced
form adds a new term ζt while the original form needs to update w previous functions ψℓ,t for
ℓ = t− w, . . . , t− 1.

Therefore,
t−1∑
ℓ=0

ψ⊤
ℓ,t(λ)Hψℓ,t(λ) ≤ w

t−1∑
ℓ=0

ℓ∑
τ=ℓ

g⊤(τ, ℓ)Hg(τ, ℓ) =

t−1∑
τ=0

ζτ (λ), (19)

where (19) follows from (18). The proof is illustrated in Figure 7. We now proceed to show our main
results. The key structure of the lemmas and theorems is outlined in Figure 8.

Figure 8: Outline of key steps in the proofs of Theorem 4.2 and 4.3. Arrows denote implications.

E Proof of Theorem 4.2

We first state a detailed version of Theorem 4.2 below with explicit multiplicative constants.
Theorem E.1 (DISC for Linear Mixing). Let H := B(R+B⊤PB)−1B⊤. With our model assump-
tions, the competitive ratio of DISC with a linear mixing function satisfies

CR(DISC) ≤ 1 +
C1

J⋆

(
2η +

(
θρwF

)2
T
)
+ 8C2w

(
k∑

i=1

(
ε(i)

C0σ2
min(θ)ε(i) + J⋆

)
+

(
s2

J⋆

√
kT

))
,

where σmin(θ) > 0 is the smallest singular value of θ; s and θ are defined in Section 4.2; C0 is

defined in Lemma 2; C1 := 2∥H∥
(

CF

1−ρF
∥P∥s

)2
, and C2 := ∥H∥

(
CF ∥P∥θ

)2
.
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We now proceed to prove Theorem E.1.

Step 1: Consistency-Robustness Analysis of λ-CON We first show the following lemma, which
highlights a tradeoff between consistency and robustness. The following definition of dynamic regret
will be used as an alternative worst-case performance metric in our main results. Dynamic regret is a
more general (and often more challenging to analyze) measure than classical static regret, which has
been mostly used for stationary environments [74, 75].

Definition E.1 (Dynamic regret). The dynamic regret of a policy π = (πt : t ∈ [T ]) is defined as the
difference between the quadratic cost induced by the policy π, J(π) in (3), and the offline optimal
cost J⋆ := infπ J(π) subject to (2), i.e., DR(π) := J(π)− J⋆.

Lemma 4 (Consistency-Robustness Lemma). With a fixed trust parameter λ ∈ I, the disentangled
λ-confident policy in Section 3.1 has a dynamic regret of at most

2∥H∥ (2∥P∥CF s)
2
(
η +

(
θρwF

)2
T
)
+ 8∥H∥

T−1∑
t=0

(
gcon
t + grob

t

)
, (20)

where P,CF , η, ρF are defined in Section 2; s and θ are defined in Section 4.2. The terms gcon
t and

grob
t are functions of λ, defined as

gcon
t :=

∥∥∥∥∥∥
T∑

τ=t

(
F⊤)τ−t

P
(
θ̃t
(
λ ◦ ετ |t

))∥∥∥∥∥∥
2

, grob
t :=

∥∥∥∥∥∥
T∑

τ=t

(
F⊤)τ−t

P
(
θ̃t
(
(1k − λ) ◦ sτ |t

))∥∥∥∥∥∥
2

.

Proof of Lemma 4. Denote by λ-CON the λ-confident policy, and J (λ-CON) the corresponding total
cost induced by taking actions (u0, . . . , uT−1) generated by λ-CON. Similarly, denote by J⋆ the
optimal total cost. Denote T := min{t + w − 1, T − 1}. Lemma 3 in [4] implies the following
explicit form of J (λ-CON)− J⋆:

T−1∑
t=0

(
T−1∑
τ=t

(
F⊤)τ−t

P
(
θτsτ − κ(τ)θ̃t

(
λ ◦ s̃τ |t

)))⊤

H

·

(
T−1∑
τ=t

(
F⊤)τ−t

P
(
θτsτ − κ(τ)θ̃t

(
λ ◦ s̃τ |t

)))
, (21)

where κ(τ) ≡ 0 when τ > T . The sum of quadratic costs in (21) can be further bounded by

J (λ-CON)− J⋆

≤∥H∥
T−1∑
t=0

∥∥∥ T−1∑
τ=t

(
F⊤)τ−t

P
(
θsτ − κ(τ)θ̃t

(
λ ◦ s̃τ |t

)) ∥∥∥2
≤2∥H∥

T−1∑
t=0

(∥∥∥ T∑
τ=t

(
F⊤)τ−t

P
(
θsτ − θ̃t

(
λ ◦ s̃τ |t

)) ∥∥∥2︸ ︷︷ ︸
short-term error gerror

t (linear setting)

+
∥∥∥ T−1∑

τ=t+w

(
F⊤)τ−t

Pθsτ

∥∥∥2︸ ︷︷ ︸
long-term error herror

t (linear setting)

)
. (22)

In above, the first term characterizes a total cost gap induced by inaccrurate ICA identifiability and
predictions. The second term in (22) is the long-term error for disentangled times series predictions
that are at least w steps away from the current time steps, denoted by herror

t , which becomes 0 when
t+ w ≥ T − 1. It follows that

herror
t ≤

(
T−1∑

τ=t+w

CF ρ
τ−t
F ∥P∥θs

)2

≤
(

CF

1− ρF
∥P∥θs

)2

ρ2wF , (23)

25



since by our assumption on F , the Gelfand’s formula implies that there must exist a constant CF > 0,
ρF ∈ (0, 1) s.t. ∥F t∥ ≤ CF ρ

t
F for all t ≥ 0. Moreover, for gerror

t , we can bound it from above by

gerror
t =

∥∥∥∥∥∥
T∑

τ=t

(
F⊤)τ−t

P
(
θsτ − θ̃tsτ + θ̃tsτ − θ̃t

(
λ ◦ s̃τ |t

))∥∥∥∥∥∥
2

≤2

∥∥∥∥∥∥
T∑

τ=t

(
F⊤)τ−t

Pηtsτ

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
T∑

τ=t

(
F⊤)τ−t

P
(
θ̃t
(
sτ − λ ◦ s̃τ |t

))∥∥∥∥∥∥
2

, (24)

where ηt := θ̃t − θ is the mixing parameter error in (4) defined Section 2.2. Furthermore, noting(
ετ |t(1), . . . , ετ |t(k)

)
= ετ |t := sτ − s̃τ |t, we obtain

gerror
t ≤ 2

∥∥∥∥∥∥
T∑

τ=t

(
F⊤)τ−t

Pηtsτ

∥∥∥∥∥∥
2

+2

∥∥∥∥∥∥
T∑

τ=t

(
F⊤)τ−t

P
(
θ̃t
(
λ ◦ ετ |t + (1k − λ) ◦ sτ

))∥∥∥∥∥∥
2

≤ 2

 T∑
τ=t

CF ρ
τ−t
F ∥Pηtsτ∥

2

+4

∥∥∥∥∥∥
T∑

τ=t

(
F⊤)τ−t

P
(
θ̃t
(
λ ◦ ετ |t

))∥∥∥∥∥∥
2

︸ ︷︷ ︸
consistency error gcon

t (ICA setting)

+4

∥∥∥∥∥∥
T∑

τ=t

(
F⊤)τ−t

P
(
θ̃t ((1k − λ) ◦ sτ )

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
robustness error grob

t (ICA setting)

. (25)

The right hand side of (25) contains two types of errors - the consistency error, denoted by gcon
t that

occurs due to the estimated time series; and the robustness error, denoted by grob(t) that arises when
λ becomes small. Therefore, combining (22), (23), and (25) implies the following upper bound on
J (λ-CON)− J⋆:

J (λ-CON)− J⋆ ≤ 2∥H∥
T−1∑
t=0

(gerror
t + herror

t )

≤4∥H∥
(

CF

1− ρF
∥P∥s

)2

η + 2∥H∥T
(

CF

1− ρF
∥P∥θs

)2

ρ2wF + 8∥H∥
T−1∑
t=0

(
gcon
t + grob

t

)
,

where η is defined in (4).

Step 2: Component-Wise Consistency Bound on gcon
t In the sequel, we bound gcon

t and grob(t)
respectively. First, the consistency error caused by inaccurate time series predictions can be bounded
by

gcon
t ≤

 T∑
τ=t

CF ρ
τ−t
F θ∥P∥

∥∥λ ◦ ετ |t
∥∥2

≤ w
(
CF ∥P∥θ

)2 T∑
τ=t

ρ
2(τ−t)
F

∥∥λ ◦ ετ |t
∥∥2 ,

which can be further decomposed into a summation of component-wise latent variable time-series
prediction errors by denoting ε(i) :=

∑T−1
t=0

∑T
τ=t(ρ

(τ−t)
F ετ |t(i))

2 where ετ |t = (ετ |t(i) : i =
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1, . . . , k), as defined in Section 2.2. Considering λ = (λ(1), . . . , λ(k)), it follows that

T−1∑
t=0

gcon
t ≤w

(
CF ∥P∥θ

)2 T−1∑
t=0

T∑
τ=t

ρ
2(τ−t)
F

∥∥λ ◦ ετ |t
∥∥2

≤w
(
CF ∥P∥θ

)2 T−1∑
t=0

T∑
τ=t

ρ
2(τ−t)
F

∥∥λ ◦ ετ |t
∥∥2

=w
(
CF ∥P∥θ

)2 k∑
i=1

(λ(i))
2
ε(i). (26)

Step 3: Robustness bound on grob
t Next, we consider deriving a bound on grob

t . We obatin

grob
t =

∥∥∥∥∥∥
T∑

τ=t

(
F⊤)τ−t

P
(
θ̃τ ((1k − λ) ◦ sτ )

)∥∥∥∥∥∥
2

≤
(
CF ∥P∥θ

)2 T∑
τ=t

ρτ−t
F ∥(1k − λ) ◦ sτ∥

2

,

which leads to

grob
t ≤

(
CF ∥P∥θ

)2 ∥(1k − λ)∥24

 T∑
τ=t

ρτ−t
F ∥sτ∥4

2

(27)

by applying the Cauchy–Schwarz inequality where ∥·∥4 denotes the ℓ4-norm. Denote by σmin(θ) > 0
the smallest singular value of the full column rank mixing matrix θ. Noting that ∥sτ∥4 ≤ ∥sτ∥ ≤

1
σmin(θ)

∥θsτ∥ for all τ , and f(s; θ) = θs in this linear mixing setting, applying Lemma 2,

1

J⋆

T−1∑
t=0

grob
t ≤

(
CF ∥P∥θ

)2 ∥(1k − λ)∥24
C0σ2

min(θ)
(28)

for some constant 0 < C0 ≤ (1−ρF )2

2 min{λmin(P ), λmin(R)/∥B∥, λmin(Q)/max{2, ∥A∥}}.

Step 4: Competitive Analysis of λ-CON Putting together Lemma 4, (26), and (28), since J⋆ > 0,

J (λ-CON)− J⋆

J⋆
≤ 1

J⋆

(
2∥H∥ (2∥P∥Cfs)

2
(
η +

(
θρwF

)2
T
))

+
8∥H∥
J⋆

T−1∑
t=0

(
gcon
t + grob

t

)
,

(29)

where the last term can be further bounded from above by

8∥H∥
J⋆

T−1∑
t=0

(
gcon
t + grob

t

)
≤8∥H∥

(
CF ∥P∥θ

)2( w

J⋆

k∑
i=1

(λ(i))
2
ε(i) +

∥(1k − λ)∥24
C0σ2

min(θ)

)

≤8∥H∥
(
CF ∥P∥θ

)2( k∑
i=1

(
wε(i)

J⋆
(λ(i))

2
+

(1− λ(i))
2

C0σ2
min(θ)

))
. (30)

Step 5: Online Learning of λt via FTRL Consider a follow-the-regularized-leader (FTRL)
optimization with an ℓ2-regularizer ∥λ − λ0∥2. The following lemma can be proved based on the
equivalent online convex optimization (OCO) form of the online mirror descent (OMD) (see the
implementation described in Section 5) above as shown in Lemma 1. We reprise the OMD steps
below.

τt = τt−1 −
β

2
∇λ (ζt) , (31a)

λt = ProjI(τt) (31b)

Now, fix λ = (λt : t ∈ [T ]) generated by DISC. Let us consider a pseudo-cost ∆J†(λ) defined
below, which is compared with the true objective ∆J (λ) of DISC.
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∆J†(λ) :=

T−1∑
ℓ=0

ℓ∑
τ=ℓ

[
(F⊤)ℓ−τP

(
θsℓ − θ̃τ (λℓ ◦ s̃ℓ|τ )

)]⊤
H
[
(F⊤)ℓ−τP

(
θsℓ − θ̃τ (λℓ ◦ s̃ℓ|τ )

)]

∆J (λ) =

T−1∑
ℓ=0

ℓ∑
τ=ℓ

[
(F⊤)ℓ−τP

(
θsℓ − θ̃τ (λτ ◦ s̃ℓ|τ )

)]⊤
H
[
(F⊤)ℓ−τP

(
θsℓ − θ̃τ (λτ ◦ s̃ℓ|τ )

)]
The lemma in the following holds.
Lemma 5. The online mirror descent (OMD) (31a)-(31b) generates a sequence λ = (λ0, . . . , λT−1)
in DISC such that

∆J† −min
λ∈I

∆J (λ) ≤ 8∥H∥
(
sθ∥P∥ Cf

1− ρF

)2 √
kT .

Proof of Lemma 5. The gradient of the cost gap at time t ∈ [T ] satisfies

∇λ (ζt) =

T−1∑
t=0

ℓ∑
τ=ℓ

J⊤(τ, t)
(
H +H⊤) g(τ, t)

=2

T−1∑
t=0

ℓ∑
τ=ℓ

J⊤ (τ, t)H
(
F⊤)t−τ

P
(
θst − θ̃τ

(
λ ◦ s̃t|τ

))
, (32)

where in (32) we have used the fact that H := B(R+B⊤PB)−1B⊤ is symmetric. Moreover, noting
that s̃t|τ =

(
s̃t|τ (1), . . . , s̃t|τ (k)

)
, in (32) above,

J (τ, t) := −
(
F⊤)t−τ

P θ̃τ

s̃t|τ (1) . . .
s̃t|τ (k)


denotes an n×k Jacobian matrix J (τ, t) of g(τ, t) with respect to λ whose (i, j)-th entry is ∂g(τ,t)(i)

∂λ(j) .
Normalizing the predicted time series yields that

∥∇λ (ζt)∥ ≤ 4∥H∥
(
sθ∥P∥ Cf

1− ρF

)2

.

As we have verified in Appendix D.1, each g(τ, t)⊤(λ)Hg(τ, t) is a convex function of λ ∈ I . There-
fore, based on the static regret analysis for OCO [23, 76], FTRL with an ℓ2-regularizer guarantees
(after optimizing β) that

∆J†(λ)−min
λ∈I

∆J (λ)

≤2 ∥∇λ (ζt)∥max
λ∈I

∥λ− λ0∥
√
T

≤8∥H∥
(
sθ∥P∥ Cf

1− ρF

)2 √
kT . (33)

Applying Assumption 2 and noting that λ2ℓ − λ2ℓ−τ ≤ O(|λℓ − λℓ−τ |) for all ℓ ∈ [T ], we conclude
that ∆J (λ)−∆J†(λ) = o(T ), since for τ that is not a constant, the exponent ρτ = o(1).

Denote by λ∗ the optimal solution that minimizes J (λ-CON). Using 29 and (33) above, we conclude
that

J(DISC)

J⋆
= 1 +

J (λ∗-CON)− J⋆

J⋆︸ ︷︷ ︸
Lemma 4 and (30)

+
J(DISC)− J (λ∗-CON)

J⋆︸ ︷︷ ︸
Lemma 5

,
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whose right hand side can be bounded respectively via Lemma 4 and Lemma 5. Furthermore, noting
that f(st; θ) ̸= 0 for all t ∈ [T ], hence ∥θst∥ > 0. As a result, Lemma 2 implies J⋆ = Ω(T ).
Therefore, using Lemma 1,

J(DISC)

J⋆
≤ 1 + 2∥H∥

(
2∥P∥ Cf

1− ρF
s

)2
1

J⋆

(
η +

(
θρwF

)2
T
)

+ 8∥H∥
(
CF ∥P∥θ

)2
min
λ∈I

(
k∑

i=1

(
wε(i)

J⋆
(λ(i))

2
+

(1− λ(i))
2

C0σ2
min(θ)

))

+ 8∥H∥
(
∥P∥ Cf

1− ρF
sθ

)2
w
√
kT

J⋆
+ o(1).

After optimizing over λ ∈ I,

J(DISC)

J⋆
≤ 1 + 2∥H∥ (2∥P∥Cfs)

2 1

J⋆

(
η +

(
θρwF

)2
T
)

+ 8∥H∥
(
CF ∥P∥θ

)2( k∑
i=1

(
wε(i)

σ2
min(θ)C0wε(i) + J⋆

))

+ 8∥H∥
(
∥P∥ Cf

1− ρF
sθ

)2
w
√
kT

J⋆
+ o(1).

F Proof of Corollary B.1

Under the classic assumptions such that E [st(i)] = 0, E
[
s2t (i)

]
= 1, E

[∣∣s5t (i)∣∣] ≤ M , and the
fourth cumulant |cum4(st(i))| ≥ ∆ for all t ∈ [T ] and i = 1, . . . , k, the Recursive Fourier PCA
algorithm in [75] is a polynomial-time and it guarantees (c.f. Theorem 1 in [75]) that for all t ∈ [T ],

∥ηt∥ = ∥θ − θt∥ ≤ ∥θ − θt∥F ≤ θs(log n)7/2M1/2k1/2

∆3t1/2
,

with high probability, which yields η = O
(
(log n)7/2k1/2

∑
t∈[T ]

1
t

)
= O

(
(log n)7/2k1/2 log T

)
.

Therefore, with high probability, the competitive ratio bound in the corollary holds.

G Proof of Theorem 4.1

Denote T := min{ℓ + w − 1, T − 1}. Similar to the analysis in the proof of Theorem 4.2 in
Appendix E, we obtain

J (λ-CON)− J⋆

=

T−1∑
ℓ=0

 T∑
τ=ℓ

(
F⊤)τ−ℓ

P
(
fτ − f̃τ |ℓ(λ)

)⊤

H

 T∑
τ=ℓ

(
F⊤)τ−ℓ

P
(
fτ − f̃τ |ℓ(λ)

) . (34)

WLOG, we assume f is linear such that f(s; θ) = θs for some n × k matrix θ = (θij) and the
estimated mixing matrix is accurate so that η = 0. Then it follows that

J (λ-CON)− J⋆ ≥ λmin

(
(R+B⊤PB)−1

) T−1∑
ℓ=0

∥∥B⊤ψℓ,T

∥∥2 ,
where

ψℓ,T :=

T∑
τ=ℓ

(
F⊤)τ−ℓ

Pθτ
(
λ ◦ ετ |ℓ − (1k − λ) ◦ sτ |ℓ

)
. (35)
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Since λ-CON is (1 + o(1))-consistent, we must have J (λ-CON) − J⋆ ≤ o(1)J⋆ (by our model
assumption that st ̸= 0 for all t ∈ [T ], J⋆ > 0). Combining this with (35) above, it is necessary to
have

o(1)J⋆ ≥ λmin

(
(R+B⊤PB)−1

) T−1∑
t=0

∥∥∥∥∥∥B⊤
T∑

τ=ℓ

(
F⊤)τ−ℓ

Pθτ
(
(1k − λ) ◦ sτ |ℓ

)∥∥∥∥∥∥
2

. (36)

The competitive ratio is the worst-case ratio for all A,B,Q,R, f, θ, and (st : t ∈ [T ]), we must have
λ = 1k to guarantee (36) above.

Now, consider an adaptive offline adversary that generates ετ |ℓ = µsτ |ℓ for all ℓ ≤ τ ≤ ℓ. Since
λ = 1k, we obtain

J (λ-CON)− J⋆ ≥µ2λmin

(
(R+B⊤PB)−1

) T−1∑
t=0

∥∥∥∥∥∥B⊤
T∑

τ=ℓ

(
F⊤)τ−ℓ

Pθτsτ |ℓ

∥∥∥∥∥∥
2

.

Setting µ = log T , above implies CR (λ-CON) = ω(1).

H Proof of Theorem 4.3

We first state a detailed version of Theorem 4.2 below with explicit multiplicative constants.

Step 1: Consistency-Robustness Analysis of λ-CON We first show the following lemma, which
highlights a tradeoff between consistency and robustness.

Lemma 6. With a fixed trust parameter λ ∈ I, the disentangled λ-confident control (DISC) has a
worst-case dynamic regret of at most

4∥H∥
(

CF

1− ρF
Cf∥P∥

)2

η + 2∥H∥T
(

CF

1− ρF
Cf∥P∥fmax

)2

ρ2wF + 8∥H∥
T−1∑
t=0

(
gcon
t + grob

t

)
(37)

where H := B(R+B⊤PB)−1B⊤; fmax := f0 +Cfs with f0 := |f(0)|; P,CF , ρF , w are defined
in Section 2; Cf denotes the Lipschitz constant of f . The terms gcon

t and grob
t are functions of λ,

defined as

gcon
t (λ) :=

 T∑
τ=t

CFCfρ
τ−t
F ∥P∥

∥∥λ ◦ ετ |t
∥∥2

,

grob
t (λ) :=

 T∑
τ=t

CFCfρ
τ−t
F ∥P∥ ∥(1k − λ) ◦ sτ∥

2

.

Proof of Lemma 6. Similar to the analysis in the proof of Theorem 4.2 in Appendix E, we obtain

J (λ-CON)− J⋆

=

T−1∑
t=0

(
T−1∑
τ=t

(
F⊤)τ−t

P
(
fτ − f̃τ |t(λ)

))⊤

H

(
T−1∑
τ=t

(
F⊤)τ−t

P
(
fτ − f̃τ |t(λ)

))
(38)

where we simplify the latent perturbations and the corresponding predictions as fτ := f (sτ ; θ) and
f̃τ |t(λ) := f

(
λ ◦ s̃τ |t; θ̃t

)
. Especially, f̃τ |t(λ) := 0 when τ > T . Thus, the total cost gap can be
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bounded by
J (λ-CON)− J⋆

≤∥H∥
T−1∑
t=0

∥∥∥ T−1∑
τ=t

(
F⊤)τ−t

P
(
fτ − f̃τ |t(λ)

)∥∥∥2
≤2∥H∥

T−1∑
t=0

(∥∥∥ T∑
τ=t

(
F⊤)τ−t

P
(
fτ − f̃τ |t(λ)

)∥∥∥2︸ ︷︷ ︸
short-term error gerror

t (general mixing)

+
∥∥∥ T−1∑

τ=t+w

(
F⊤)τ−t

Pfτ

∥∥∥2︸ ︷︷ ︸
long-term error herror

t (general mixing)

)
. (39)

Note that by Assumption 1 f is continuous with a Lipschitz constant Cf > 0, hence, f is bounded,
since ∥sτ∥ ≤ s. Denote by fmax ≤ f0 + Cfs the largest value of f where f0 := |f(0)|. The second
term herror

t in (22) can be bounded similarly to (23) in the proof of Theorem 4.2 (see Appendix E):

herror
t ≤

(
T−1∑

τ=t+w

CF ρ
τ−t
F Cf∥P∥fmax

)2

≤
(

CF

1− ρF
Cf∥P∥fmax

)2

ρ2wF , (40)

The first term gerror
t in (22) characterizes a total cost gap induced by inaccrurate mixing matrix

estimation and time series prediction errors. It follows that

gerror
t =

∥∥∥∥∥∥
T∑

τ=t

(
F⊤)τ−t

P
(
f (sτ ; θ)− f

(
sτ ; θ̃t

)
+ f

(
sτ ; θ̃t

)
− f

(
λ ◦ s̃τ |t; θ̃t

))∥∥∥∥∥∥
2

≤2

 T∑
τ=t

CFCfρ
τ−t
F ∥P∥

∥∥∥θ − θ̃t

∥∥∥
2

+ 2

 T∑
τ=t

CFCfρ
τ−t
F ∥P∥

∥∥sτ − λ ◦ s̃τ |t
∥∥2

, (41)

where we have used the fact that ∥F t∥ ≤ CF ρ
t
F for all t ∈ [T ] with a spectral radius ρF ∈ (0, 1).

Recall that ηt := θ̃t − θ is the mixing parameter error in (4) defined Section 2.2. Furthermore, noting(
ετ |t(1), . . . , ετ |t(k)

)
= ετ |t := sτ − s̃τ |t, continuing from (41), we get

gerror
t ≤ 2

 T∑
τ=t

CFCfρ
τ−t
F ∥P∥ηt

2

+2

 T∑
τ=t

CFCfρ
τ−t
F ∥P∥

∥∥sτ − λ ◦ s̃τ |t
∥∥2

≤ 2

 T∑
τ=t

CFCfρ
τ−t
F ∥P∥ηt

2

+4

 T∑
τ=t

CFCfρ
τ−t
F ∥P∥

∥∥λ ◦ ετ |t
∥∥2

︸ ︷︷ ︸
consistency error gcon

t (general mixing)

+4

 T∑
τ=t

CFCfρ
τ−t
F ∥P∥ ∥(1k − λ) ◦ sτ∥

2

︸ ︷︷ ︸
robustness error grob

t (general mixing)

. (42)

The right hand side of (42) contains two types of errors - the consistency error, denoted by gcon
t that

occurs due to the estimated time series; and the robustness error, denoted by grob(t) that arises when
λ becomes small. Therefore, rearranging the terms and combining (39), (40), and (42) imply the
following upper bound on J (λ-CON)− J⋆:

J (λ-CON)− J⋆ ≤ 2∥H∥
T−1∑
t=0

(gerror
t + herror

t )

≤4∥H∥
(

CF

1− ρF
Cf∥P∥

)2

η + 2∥H∥T
(

CF

1− ρF
Cf∥P∥fmax

)2

ρ2wF + 8∥H∥
T−1∑
t=0

(
gcon
t + grob

t

)
,

(43)
with η defined in (4).
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Furthermore, we can bound the terms gerror
t and herror

t separately as:

T−1∑
t=0

gcon
t ≤w (CFCf∥P∥)2

k∑
i=1

(λ(i))
2
ε(i), (44)

and

1

J⋆

T−1∑
t=0

grob
t ≤

(CFCf∥P∥)2 ∥(1k − λ)∥24
C0 ∥f−1∥2

, (45)

where f−1 is the inverse function of the mixing function f . Since by Assumption 1, f is bijective,
f−1 must exist. Thus, (44) and (45) together imply

1

J⋆

T−1∑
t=0

(
gcon
t + grob

t

)
≤ (CFCf∥P∥)2

(
k∑

i=1

(
wε(i)

J⋆
(λ(i))

2
+

(1− λ(i))
2

C0 ∥f−1∥2

))
. (46)

Step 2: Online Learning of λt via FTPL Consider a follow-the-perturbed-leader (FTPL) opti-
mization [28, 25], with:

λt ∈ argmin
λ∈I

(
t−1∑
ℓ=0

ζℓ(λ) + σ⊤
t λ

)
(FTPL FOR λ-LEARNING) (47)

The following lemma is a result of [25] by fixing each coordinate σt(i) (i = 1, . . . , k) an IID random
variable from an exponential distribution with some parameter α > 0.
Lemma 7. The FTPL procedure (47) above generates a sequence λ = (λ0, . . . , λT−1) in DISC such
that

E
[
1

T

(
∆J†(λ)−min

λ∈I
∆J ((λ))

)]
≤ O

(
αk5/2C2

f +
k3/2

αT

)
. (48)

Similarly to the proof of Theorem 4.2, applying Assumption 2, J (DISC)−J† = o(T ). Denote by λ∗
the optimal solution that minimizes J (λ-CON). Putting together (43), (46), and (48), we conclude

E
[
J (DISC)

J⋆

]
= 1 + E

[
J (λ∗-CON)− J⋆

J⋆

]
︸ ︷︷ ︸

Lemma 6 and Eq. (46)

+E
[
J (DISC)− J (λ∗-CON)

J⋆

]
︸ ︷︷ ︸

Lemma 7

,

yielding the following after optimizing over α > 0:

E
[
J (DISC)

J⋆

]
≤ 1+

C3

J⋆

(
4η + 2T (fmaxρ

w
F )

2
)
+ 8C4 min

λ∈I

(
k∑

i=1

(
wε(i)

J⋆
(λ(i))

2
+

(1− λ(i))
2

C0 ∥f−1∥2

))

+O

(
k2Cf

w
√
T

J⋆

)
(49)

≤ 1+O

(
ρ2wF +

η

T

)
+ 8C4

(
k∑

i=1

(
wε(i)

C0 ∥f−1∥2 wε(i) + J⋆
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)
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(50)

where we denote C3 := ∥H∥
(

CF

1−ρF
Cf∥P∥

)2
and C4 := ∥H∥ (CFCf∥P∥)2 and have used J⋆ =

Ω(T ) in (49) (implied by Lemma 2 and the assumption that f is non-zero and Lipschitz continuous,
similar to the proof of Theorem 4.2 in Appendix E) to derive (50).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction align with our theoretical
and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this work are discussed in our last concluding remark
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We have clearly stated our model assumptions for the derived results to hold.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have detailed the settings and parameters used in the experiments, and we
will further release our code after the anonymous review stage.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: Our contributions focus on the theoretical side. The experimental results
shown in the submitted manuscript do not depend on private datasets and can be reproduced
using the provided settings and parameters.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have clearly stated our experimental settings and details to reproduce the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: When there is randomness in our experiments, we characterize the variance
using shadow regions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our contributions focus on the theory side, and the experimental setup is
sufficiently basic that it does not require intense computing resources such as GPUs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed both positive and negative societal impacts in our conclud-
ing remark section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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